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A HOCHSCHILD COHOMOLOGY COMPARISON THEOREM

FOR PRESTACKS

WENDY LOWEN AND MICHEL VAN DEN BERGH

Abstract. We generalize and clarify Gerstenhaber and Schack’s “Special Co-
homology Comparison Theorem”. More specifically we obtain a fully faithful
functor between the derived categories of bimodules over a prestack over a
small category U and the derived category of bimodules over its corresponding
fibered category. In contrast to Gerstenhaber and Schack we do not have to
assume that U is a poset.

1. Introduction

Throughout k is a commutative base ring. In [2, 3, 4], Gerstenhaber and Schack
study deformation theory and Hochschild cohomology of presheaves of algebras.
For a presheaf A of k-algebras on a small category U , the corresponding Hochschild
cohomology is defined as1

(1.1) HHn(A) = ExtnBimod(A)(A,A).

To A Gerstenhaber and Schack associate a single algebra A!, and a functor

(−)! : Bimod(A) → Bimod(A!),

which sends A to A! and preserves Ext. It follows in particular that HHn(A) ∼=
HHn(A!). As (−)! does not preserve injectives nor projectives the fact that it
preserves Ext is not at all a tautology.

In fact the construction of A! and the proof of the preservation of Ext are rather
difficult and proceed in several steps. The first step covers the case that U is a
poset. In that case A! is simply

∏
V ∈U

⊕
V≤U A(V ). This part of the construction

is the so-called Special Cohomology Comparison Theorem (SCCT). It is stated and
proved in [4].

To cover the general case Gerstenhaber and Schack doubly subdivide U , which
transforms it into a poset. The General Cohomology Comparison Theorem (GCCT)
states that this subdivision preserves Ext. The statement of this theorem is given
in [3], but the proof has not been published.
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In this paper we will be concerned with the SCCT. Our methods may also be
used to give new insight on the GCCT, but this will be covered elsewhere.

We now discuss our main result (in a less general setting than in the body of
the paper for the purposes of exposition). To A we may associate a “U-graded
category” (see [5] or §2.2 below) which has an associated category of “bimodules”
BimodU (a). Our generalization of the SCCT is the following.

Theorem 1.1 (A restricted version of Theorem 4.1). There is a natural functor

Π∗ : Bimod(A) → BimodU (a)

which has the property Π∗(A) = a and which induces a fully faithful functor between
the corresponding derived categories.

In case U is a poset this theorem quickly yields the SCCT in the version of
Gerstenhaber and Schack (see §5). Despite the fact that our result is more general
our proof seems more direct than the one by Gerstenhaber and Schack as we are
able to leverage some basic properties of natural systems [1].

Our main application of Theorem 1.1 is that combined with [5, Thm. 3.27] it im-
plies that the Hochschild cohomology of A controls the deformation theory of A as a
k-linear prestack2 (but not as a presheaf of k-algebras!). In fact, from Theorem 4.1
below it follows that a similar result is true if A is itself a k-linear prestack.

In an appendix we describe the essential image of Π∗ as the objects inverting
certain maps between projectives. Theorem 1.1 may be translated into saying that
Π∗ is obtained from a certain stably flat universal localization [8] of linear categories.
In particular the K-theoretic results of [7, 8] apply.

Finally we mention that Theorem 1.1 (or rather its generalization, Theorem 4.1)
is a key ingredient in [6].

2. Prestacks and graded categories

In this section we quickly recall the relation between fibered categories and
prestacks in the k-linear setting. For full details we refer to [5, 11].

2.1. The classical formalism. We first recall the classical theory when there is
no additive structure. Let U , a, φ be respectively a small category, an arbitrary
category and a functor φ : a → U . For A,B ∈ a and for f : φ(A) → φ(B) in U put
af (A,B) = φ−1(f). For U ∈ Ob(U), we define a subcategory aU of a as follows:
Ob(aU ) = φ−1(U) and for A,B ∈ φ−1(U) we put aU (A,B) = a1U (A,B).

Instead of specifying the functor φ we may just as well specify the (possibly big)
sets Ob(aU ) and for A ∈ Ob(aU ), B ∈ Ob(aV ) the decompositions

a(A,B) =
∐

f :U→V

af (A,B).

This is what we will do in the sequel.
If f : U → V , then an arrow δ ∈ af (A,B), A ∈ aU , B ∈ aV is called cartesian if

left composing with δ defines an isomorphism ag(C,A) → afg(C,B) for all W ∈ U ,
C ∈ aw, g : W → U . Given f,B, a cartesian arrow is necessarily unique up to
unique isomorphism.

2k-linear prestacks over U were called “pseudofunctors” in [5].
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We say that a is fibered if for any f : U → V in U and any B ∈ aV there exists
a cartesian arrow δf,B : A → B.

Given a fibered U-category, the choice of cartesian morphisms δf,B ∈ af (A,B)
for every f,B is called a cleavage. We will always choose a normalized cleavage, i.e.
one in which δ1V ,B = IdB. If we have chosen a cleavage, then the domain of δf,B is
denoted by f∗B.

In this way for every B we obtain a functor f∗ : aV → aU . For compositions

W
g−→ U

f−→ V we obtain natural isomorphisms (fg)∗ ∼= g∗f∗ which satisfy the usual
compatibility for triple compositions. In other words U %→ aU defines a pseudo-
functor a : U → Cat. This pseudo-functor satisfies a(1V ) = IdaV . We will call such
a pseudo-functor normalized.

We now have functors of 2-categories

(2.1)
{fibered U-categories} ← {fibered U-categories with a normalized cleavage}

→ {normalized pseudo-functors U → Cat},

where the first one is the forgetful functor and the second one is the construction
outlined in the above paragraphs. The above discussion shows that the first functor
is an equivalence and one easily verifies that the second one is an isomorphism. The
inverse functor associates to a normalized pseudo-functor A : U → Cat the fibered
category a such that aU = A(U) and

af (A,B) = A(U)(A, f∗B)

for f : U → V , A ∈ aU , B ∈ aV . A normalized cleavage is given by defining δf,B
as the identity map in af (f∗B,B) = A(U)(f∗B, f∗B).

2.2. Additive structure. Let a → U be as above. Following [5] we say that a
is (k-linear) U-graded if the sets af (A,B) are equipped with the structure of a k-
module such that the compositions ag(B,C)×af (A,B) → agf (A,C) are k-bilinear.
If a is fibered and we run this additional structure through (2.1) we find that a now
corresponds to a normalized pseudo-functor U → Cat(k) (where Cat(k) stands for
the 2-category of k-linear categories) and that this correspondence is reversible.

Below we will call a normalized pseudo-functor U → Cat(k) a k-linear prestack
on U .

Remark 2.1. If we equip U with the trivial Grothendieck topology, then this use
of the word “prestack” is consistent with standard terminology as the usual gluing
condition on maps is empty. Since the same is true for objects we might even have
talked about stacks instead of prestacks.

3. Module and bimodule categories

In this section we introduce a number of (bi)module categories and relate them.
The only non-formal result is Lemma 3.13.

3.1. Modules over a k-linear prestack. Recall that if l is a k-linear category,
then a (right) l-module is by definition a k-linear contravariant functor l → Mod(k).
This may be generalized to k-linear prestacks. To do this consider the constant
presheaf Mod(k) as a prestack on U .
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Definition 3.1. Let A be a k-linear prestack on U . An A-module is a morphism
of prestacks M : Aop −→ Mod(k). More concretely, an A-module consists of the
following data:

• for every U ∈ U , an A(U)-module MU ;
• for every u : V −→ U , a morphism of A(U)-modules ρu : MU −→ MV u∗;

such that the following additional compatibilities hold:

• for every u : V −→ U , v : W −→ V , ρuv equals the canonical composition

MU −→ MV u∗ −→ MW v∗u∗ −→ MW (uv)∗;

• for every U ∈ U , ρU : MU −→ MU1∗ = MU is the identity.

A morphism of A-modules ϕ : M −→ N consists of morphisms

ϕU : MU −→ NU

commuting with the ρu.

Modules over a k-linear prestack A and their morphisms constitute an abelian
category Mod(A).

3.2. Bimodules over k-linear prestacks. Let A, B be two k-linear prestacks.
By definition an A-B-bimodule is a module over Aop ⊗ B. More concretely an
A-B-bimodule M is given by k-modules

MU (B,A)

for U ∈ Ob(U), A ∈ Ob(AU ), B ∈ Ob(BU ) which vary covariantly in A and
contravariantly in B together with compatible restriction morphisms

ρu(B,A) : MU (B,A) → MV (u∗B, u∗A)

for u : V → U in U .
The abelian category of A-B-bimodules is denoted by Bimod(A,B).

3.3. Bimodules over a graded category. U-graded categories are mild gen-
eralizations of linear categories. In particular they admit a natural notion of a
bimodule.

Definition 3.2 ([5, Definition 2.9]). Let a and b be U-graded categories. An
a-b-bimodule M consists of k-modules

Mu(B,A)

for u : V −→ U , B ∈ Ob(bV ), A ∈ Ob(aU ) and “multiplication” morphisms

(3.1) ρ : aw(A,A′)⊗Mu(B,A)⊗ bv(B
′, B) −→ Mwuv(B

′, A′)

satisfying the natural associativity and identity axioms.

The abelian category of a-b-bimodules is denoted by BimodU (a, b).

3.4. Functors between bimodule categories. LetA and B be k-linear prestacks
on U with associated fibered graded categories a and b (see §2.2).

There is a natural functor

Π∗ : Bimod(A,B) −→ BimodU (a, b)

defined by

(3.2) (Π∗M)u(B,A) = MV (B, u∗A)

for u : V → U , A ∈ Ob(A(U)) = Ob(aU ), B ∈ Ob(B(V )) = Ob(bV ).
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3.5. Fibered bimodules. In this section we identify the essential image of Π∗.

Definition 3.3. Let a and b be fibered U-graded categories. An a-b-bimodule M
is called fibered if for one (and hence for every) cartesian morphism δ ∈ au(A,A′)
with u : V → U , A ∈ aV , A′ ∈ aU we have for every v : W −→ V , B ∈ bW that the
map

Mv(B,A) −→ Muv(B,A′)

given by left multiplication (cf. (3.1)) with δ is an isomorphism.

Let

BimodfibU (a, b) ⊆ BimodU (a, b)

denote the full subcategory of fibered bimodules.

Proposition 3.4. Assume that a and b are obtained from k-linear prestacks A and
B. Then the functor Π∗ induces an equivalence of categories

Bimod(A,B) −→ BimodfibU (a, b).

In particular Π∗ is fully faithful.

Proof. Let N ∈ Bimod(A,B). We first show that Π∗N is a fibered bimodule. With
the notation of Definition 3.3 we have to show that the composition map

(Π∗N)v(B,A) −→ (Π∗N)uv(B,A′)

is an isomorphism. We may choose A = u∗A′ and δ = δu,A′ .
By (3.2) we have

(Π∗N)v(B,A) = NW (B, v∗A) = NW (B, v∗u∗A′),

(Π∗N)uv(B,A′) = NW (B, (uv)∗A′).

Making explicit the various definitions we see that the composition map is derived
from the isomorphism v∗u∗ = (uv)∗ and hence is itself an isomorphism. Thus Π∗N
is fibered.

Conversely assume that M is a fibered a-b bimodule. Then we may define an
A-B bimodule Π∗M via

(Π∗M)U (B,A) = M1U (B,A)

for A ∈ Ob(A(U)) = Ob(aU ), B ∈ Ob(B(U)) = Ob(bU ), where the restriction
maps

M1U (B,A)
def
= (Π∗M)U (B,A)

ρu

−→ (Π∗M)V (u∗B, u∗A)
def
= M1V (u

∗B, u∗A)
fib.
= Mu(u

∗B,A)

for u : V → U are given by right multiplication with the cartesian arrow δu,B ∈
au(u∗B,B).

It is easy to see that Π∗ and Π∗ define quasi-inverse functors between Bimod(A,B)
and BimodfibU (a, b). !

In the sequel we work with the category BimodfibU (a, b) instead of Bimod(A,B).
The previous proposition shows that this is equivalent. We will denote the inclusion
BimodfibU (a, b) ↪→ BimodU (a, b) by I.
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3.6. Relation with presheaves and natural systems on U . Let a and b be
fibered U-graded categories equipped with a normalized cleavage. Assume that M
is a fibered a-b-bimodule. Pick W ∈ U , A ∈ aW , B ∈ bW . Then M induces a
presheaf Ψ∗

A,B(M) of k-modules over U/W as follows: for g : V → W in U/W put

(3.3) Ψ∗
A,B(M)(g) = M1V (g

∗B, g∗A).

The restriction morphisms are obtained from the fact that M is obtained from a
bimodule over the prestacks corresponding to a, b (by Proposition 3.4).

Concretely for v : V ′ → V the restriction map

M1V (g
∗B, g∗A)

def
= Ψ∗

A,B(M)(g)

ρv

−→ Ψ∗
A,B(M)(gv)

def
= M1V ′ ((gv)

∗B, (gv)∗A)
fib.
= Mv(v

∗g∗B, g∗A)

is given by right multiplying with the cartesian arrow δv,g∗B ∈ bv(v∗g∗B, g∗B).
We think of Ψ∗

A,B(M) as a (A,W,B)-local version of M . For use below we
present a generalization of this construction to the case that M is not necessarily
fibered.

A natural system of k-modules on U in the sense of [1] is by definition a functor

(3.4) Fact(U) −→ Mod(k),

where Fact(U) is the category with the morphisms u : V −→ U of U as objects, and
morphisms from u to u′ given by diagrams

V
u !! U

p

""

V ′

q

##

u′
!! U ′.

Natural systems on U constitute a category Nat(U).
Sending an arrow to its domain defines a functor

Fact(U) −→ U
op

.

Hence from (3.4) we obtain a corresponding functor

I : Pr(U) −→ Nat(U),

where Pr(U) is the category of k-linear presheaves on U . Concretely for a presheaf
F and an arrow u : V → U we have

(IF )(u) = F (V ).

Clearly I is fully faithful.
We define a natural system Φ∗

A,B(M) on U/W via

Φ∗
A,B(M)(u) = Mu((fu)

∗B, f∗A),

where V
u−→ U

f−→ W represents an object in Fact(U/W ).
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Let us check that this has the right functoriality property. Consider the following
morphism in Fact(U/W ):

V
u !! U

f

$$
!!

!!
!!

!!

p

""

V ′

q

##

u′
!! U ′

f ′
!! W.

We have to produce a map

Mu((fu)
∗B, f∗A)

def
= Φ∗

A,B(M)(u) −→ Φ∗
A,B(M)(u′)

def
= Mu′((f ′u′)∗B, f ′∗A).

We have

Mu((fu)
∗B, f∗A) ∼= Mu((fu)

∗B, p∗f ′∗A),

Mu′((f ′u′)∗B, f ′∗A) ∼= Mpuq(q
∗(fu)∗B, f ′∗A).

The required map is given by left multiplying with δp,f ′∗A ∈ ap(p∗f ′∗A, f ′∗A) and
right multiplying with δq,(uf)∗B ∈ bv(v∗(uf)∗B, (uf)∗B).

Proposition 3.5. Let a, b be fibered U-graded categories and let W ∈ U , A ∈ aW ,
B ∈ bW . The following diagram is commutative:

Bimodfib(a, b)

Ψ∗
A,B

""

I !! Bimod(a, b)

Φ∗
A,B

""

Pr(U/W )
I

!! Nat(U/W ).

Proof. Easy. !

Remark 3.6. Natural systems are a special case of bimodules over a fibered U-
graded category. More precisely, putting A = B = k, the constant presheaf on U ,
and k the associated graded category, then natural systems on U are nothing but
k-k-bimodules.

3.7. Projective bimodules. Let a, b be U-graded categories. For u : V → U ,
B ∈ bV , A ∈ aU the exact functor

BimodU (a, b) −→ Mod(k) : M %→ Mu(B,A)

is representable by a projective object, which we denote by PB,u,A. Concretely for
u′ : V ′ → U ′ in U and B ∈ bV ′ , A ∈ aU ′ we have

(3.5) (PB,u,A)u′(B′, A′) =
⊕

puq=u′

bq(B
′, B)⊗ ap(A,A′).

An element

b⊗ a ∈ bq(B
′, B)⊗ ap(A,A′)

may be interpreted in several equivalent ways.

• If x ∈ Mu(B,A), then the corresponding map

PB,u,A −→ M

sends b⊗ a to bxa.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

976 WENDY LOWEN AND MICHEL VAN DEN BERGH

• If we view b⊗ a as a map

PB′,u′,A′ −→ PB,u,A

corresponding to IdB ⊗ IdA ∈ (PB,u,A)u(B,A), then the corresponding nat-
ural transformation from the functor

M %→ Mu(B,A)

to the functor
M %→ Mu′(B′, A′)

is given by m %→ amb.

From the second interpretation we obtain that if we have maps

PB′′,u′′,A′′
b′⊗a′
−−−→ PB′,u′,A′

b⊗a−−→ PB,u′,A,

then the composition is given by bb′ ⊗ a′a.
For u : V → U , q : V ′ → V , p : U → U ′, B ∈ aV , A ∈ aU , A′ ∈ aU ′ we have

canonical maps

(3.6)
δrq :Pq∗B,uq,A −→ PB,u,A,

δlp :PB,pu,A′ −→ PB,u,p∗A′ ,

which are respectively associated to

δq,B ⊗ IdA ∈ bq(q
∗B,B)⊗ a1U (A,A),

IdB ⊗δp,A′ ∈ b1V (B,B)⊗ ap(p
∗A′, A′).

These canonical maps will play an important role below.
Now let W ∈ U , A ∈ aW , B ∈ bW . The functors Φ∗

A,B, Ψ
∗
A,B introduced in §3.6

are functors between Grothendieck categories commuting with products. Hence
they have left adjoints which we denote respectively by ΦA,B,! and ΨA,B,!. Since
these functors have exact right adjoints they preserve projectives.

Lemma 3.7. For V
u−→ U

f−→ W in U/W , let Pu be the projective natural system
on U/W given by

Pu = kFact(U/W )(u,−).

(1) We have
ΦA,B,!(Pu) = P(fu)∗B,u,f∗A.

(2) The morphism Pu′ → Pu corresponding to the morphism u → u′ in
Fact(U/W ) given by

V
u !! U

f

%%
!!

!!
!!

!!

p

""

V ′

q

##

u′
!! U ′

f ′
!! W

is sent under ΦA,B,! to δrqδ
l
p = δlpδ

r
q .

Proof. To verify the first claim we compute for M ∈ BimodU (a, b),

Hom(ΦA,B,!(Pu),M) = Hom(Pu,Φ
∗
A,BM)

= (Φ∗
A,BM)(u)

= Mu((fu)
∗B, f∗A). !

The second claim is verified in a similar way.
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Remark 3.8. There is an alternative way to think about the projective objects
PB,u,A. Introduce the k-linear category t = a◦ ⊗U b (see [5], Definition 2.10) as
follows:

Ob(t) = {(B, u,A) | u : V → U ∈ U , B ∈ Ob(bV ), A ∈ Ob(aU )}
with

t((B′, u′, A′), (B, u,A)) =
⊕

u′=puq

bq(B
′, B)⊗ ap(A,A′)

with the obvious composition.
Then there is an isomorphism of categories

(3.7) BimodU (a, b) −→ Mod(t) : M %→ ((B, u,A) %→ Mu(B,A)).

Under this isomorphism we have

PB,u,A = t(−, (B, u,A)).

If W ∈ U , A,B ∈ bW , then we have an associated functor

Fact(U/W ) −→ t◦ : (V
u−→ U

f−→ W ) %→ ((fu)∗B, u, f∗A).

Hence we get a corresponding dual functor

Mod(t) −→ Nat(U/W ).

Composing this with (3.7) we obtain a functor

BimodU (a, b) −→ Nat(U/W )

which turns out to be precisely Φ∗
A,B. From this one easily obtains Lemma 3.7.

3.8. Projective fibered bimodules. Let A, B be k-linear prestacks on U with
associated fibered categories a, b. If W ∈ U and A ∈ aW , B ∈ bW the functor

BimodfibU (a, b) −→ Mod(k) : M %→ M1W (B,A)

is representable by a projective object P fib
B,W,A. Again concretely for u′ : V −→ U ,

B′ ∈ bV , A′ ∈ aU we have

(P fib
B,W,A)u′(B′, A′) =

⊕

u:V→W

b1V (B
′, u∗B)⊗ au′(u∗A,A′).

Remark 3.9. Again, there is an alternative way to think about the projective objects
P fib
B,W,A. Let r be the underlying linear category of the fibered graded category

associated to A⊗ B. Concretely,
Ob(r) = {(B,W,A) | W ∈ Ob(U), B ∈ Ob(B(W )), A ∈ Ob(A(W ))}

and

r((B′,W ′, A′), (B,W,A)) =
⊕

w:W ′−→W

A(W )(w∗A,A′)⊗ B(W )(B′, w∗B).

Then we have an isomorphism of categories

Bimod(A,B) ∼= Mod(r) : M %→ ((B,W,A) %→ MW (B,A))

and, by Proposition 3.4, an equivalence of categories

Bimod(A,B) −→ BimodfibU (a, b).

Then P fib
B,W,A is the image of r(−, (B,W,A)) under these functors.
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Remark 3.10. With t as in Remark 3.8 and r as in Remark 3.9, the functor

Π∗ : Bimod(A,B) −→ BimodU (a, b)

of §3.4 is induced by an underlying linear functor

Π : t −→ r : (B, u : V −→ U,A) %−→ (B, V, u∗A).

3.9. Cohomology of natural systems and the bar complex. In [1], the co-
homology of U with values in a natural system N has been defined via a certain
complex C(U , N). This complex computes in fact

(3.8) RHomNat(U)(k,N),

where k is the constant natural system with value k (see [1, Thm. 4.4]). If N is
obtained from a presheaf, then this reduces to ordinary presheaf cohomology. I.e.,

Proposition 3.11 ([1, Proposition 8.5]). Let F ∈ Pr(U). Then

C(U , IF ) ∼= RHomPr(U)(k, F ).

To compute (3.8) one uses the bar resolution B(k) (see the proof of [1, Thm.
4.4]) of k. To define this, let N = N(U) denote the simplicial nerve of U . For
v ∈ Nn given by

V0 v0
!! V1 v1

!! . . . !! Vn−1 vn−1

!! Vn,

we put |v| = vn−1 . . . v1v0. For V ∈ N0 we put |V | = 1V . Then we have

(3.9) B(k)n =
⊕

v∈Nn

P|v|,

where Pu stands for the bimodule associated to the projective natural system
kFact(U)(u,−).

As a complex, B(k)n is the chain complex of a simplicial object in Nat(U), which
we will denote by B(k). The degeneracies (which we will not use) are obtained from
the identity maps

σvi : P|v| −→ P|σi(v)| = P|v|.

The boundary maps ∂i are obtained from maps

∂vi : P|v| −→ P|∂i(v)|,

which we now define. For i different from 0 and n, |∂i(v)| = |v|, and the map ∂vi is
the identity. For i = 0 and i = n, ∂v0 and ∂vn are obtained from the following maps:
∂i(v) → v in Fact(U) (using the contravariant dependence of Pu on u), i.e.,

Vn−1
|∂0(v)|

!! Vn

1

""

V0

v0

##

|v|
!! Vn

and V0
|∂n(v)|

!! Vn−1

vn−1

""

V0

1

##

|v|
!! Vn.

Remark 3.12. If we consider natural systems as a special instance of bimodules
as in Remark 3.6, then the complex C(U , N) is readily seen to coincide with the
Hochschild complex defined in [5].
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3.10. Resolutions. Now we return to our standard settings: a, b are fibered U-
graded categories equipped with a normalized cleavage, W ∈ U and A ∈ aW ,
B ∈ bW . The following is our key technical result.

Lemma 3.13. Consider the constant natural system k on U/W . We have

LΦA,B,!(k) = ΦA,B,!(k) = P fib
B,W,A.

Proof. By definition, LΦA,B,!(k) = ΦA,B,!(B(k)). We will define an augmentation
map ε : ΦA,B,!(B(k))0) −→ P fib

B,W,A and for every u′ : V ′ → U ′, B′ ∈ bV ′ , A′ ∈ aU ′

we will show that the augmented simplicial abelian group (ΦA,B,!(B(k))u′(B′, A′), ε)
is contractible. As the chain complex associated to ΦA,B,!(B(k)) is ΦA,B,!(B(k))
this proves the claim.

We need to give a detailed description of the simplicial object ΦA,B,!(B(k)). Put
N = N(U/W ). We write the elements of Nn as (v, f), where v represents an
element of N(U)n,

V0 v0
!! V1 v1

!! . . . !! Vn−1 vn−1

!! Vn,

and f is a map Vn → W . Then

σi(v, f) = (σi(v), f)

and

∂i(v, f) =

{
(∂iv, f) if i *= n,

(∂nv, vn−1f) if i = n.

Combining (3.9) with Lemma 3.7(1) we obtain

ΦA,B,!(B(kn)) =
⊕

(v,f)∈Nn

P(f |v|)∗B,|v|,f∗A.

The explicit description of B(k) given in §3.9 combined with Lemma 3.7(2) allows
us to describe the degeneracies and boundary maps in ΦA,B,!(B(k)).

The degeneracies on ΦA,B,!(B(k)) (which we do not use) are obtained from the
identity maps

σvi : P(f |v|)∗B,|v|,f∗A −→ P(f |σi(v)|)∗B,|σi(v)|,f∗A = P(f |v|)∗B,|v|,f∗A.

Likewise the boundary maps ∂i for i *= 0, n are obtained from the identity maps

∂vi : P(f |v|)∗B,|v|,f∗A −→ P(f |∂i(v)|)∗B,|∂i(v)|,f∗A = P(f |v|)∗B,|v|,f∗A.

∂0 is obtained from the maps

∂v0 : P(f |v|)∗B,|v|,f∗A −→ P(f |∂0v|)∗B,|∂0v|,f∗A,

where with the notation of (3.6) we have ∂v0 = δrv0 .
Similarly ∂n is obtained from the maps

∂vn : P(f |v|)∗B,|v|,f∗A −→ P(fvn−1|∂nv|)∗B,|∂nv|,(fvn−1)∗A,

where with the notation of (3.6) we have ∂vn = δlvn−1
.

Now we discuss the case n = 1. The boundary maps

∂0, ∂1 : B(k)1 −→ B(k)0
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are obtained from

∂u0 : P(fu)∗B,u,f∗A −→ Pf∗B,1U ,f∗A,

∂u1 : P(fu)∗B,u,f∗A −→ P(fu)∗B,1V ,(fu)∗A.

These are respectively given by δru and δlu.
Let M be a fibered bimodule and fix an element x ∈ M1W (B,A). Then

since M corresponds to a bimodule over the corresponding k-linear prestack on
U we have corresponding restricted elements ρf (x) ∈ M1U (f

∗B, f∗A) and
ρfu(x) ∈ M1V ((fu)

∗B, (fu)∗A). One checks that the following identity holds in
Mu((fu)∗B, f∗A):

(3.10) ρf (x) · δu,f∗B = δu,f∗A · ρfu(x).

Let

εfx : Pf∗A,1U ,f∗B −→ M

correspond to ρf (x) ∈ M1U (B,A). Then (3.10) combined with the discussion in
§3.7 yields a commutative diagram

(3.11) Pf∗B,1U ,f∗A

εfx

&&"
"""

"""
""

"""

P(fu)∗B,u,f∗A

∂u
0

''#############

∂u
1 (($$

$$$
$$$

$$$
$$

M

P(fu)∗B,1V ,(fu)∗A.
εfu
x

))%%%%%%%%%%%%

We use this to define an augmentation

ε : ΦA,B,!(B(k)0) −→ P fib
B,W,A.

For every f : U −→ W in N0(U/W ), we have to define a map

εf : Pf∗B,1U ,f∗A −→ P fib
B,W,A.

Let M = P fib
A,W,B . Then

P fib
A,W,B(A, 1W , B) = BimodU (a, b)(P

fib
B,W,A, P

fib
A,W,B)

contains a canonical element x given by the identity morphism. We put εf = εfx.
Then by (3.11) we obtain

εf∂u0 = εfu∂u1 .

Now we show that for every u′ : V ′ → U ′ in U and for every B′ ∈ bV ′ , A′ ∈ aU ′

the augmented simplicial object S
def
= (ΦA,B,!(B(k))u′(B′, A′), ε) is left contractible

in the sense of [12, §8.4.6]. That is, we have to produce contracting homotopies

hn : Sn −→ Sn+1

for n ≥ −1 such that

(3.12)
∂0hn = IdSn ,

∂ihn = hn−1∂i−1 (i > 0),

where ∂0 : S0 → S−1 should be interpreted as ε.
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We start by defining a map

h−1 : S−1 = (P fib
B,W,A)u′(B′, A′) −→

⊕

f :U→W∈N0

(Pf∗B,1U ,f∗A)u′(B′, A′) = S0.

We have (see §3.8)

(P fib
B,W,A)u′(B′, A′) :

⊕

f :V ′→W

b1V ′ (B
′, f∗B)⊗ au′(f∗A,A′)

and
(Pf∗B,1U ,f∗A)u′(B′, A′) =

⊕

pq=u′

bq(B
′, f∗B)⊗ ap(f

∗A,A′).

We send the part of (P fib
B,W,A)u′(B′, A′) given by

b1V ′ (B
′, f∗B)⊗ au′(f∗A,A′)

via the identity morphism to the identical part of Pf∗B,1V ′ ,f∗A corresponding to
q = 1V ′ , p = u′.

Before continuing we will check

(3.13) εh−1 = IdS−1 .

To do this we need to make explicit ε : S0 → S−1. One verifies that ε sends an
element

b⊗ a ∈ bq(B
′, f∗B)⊗ ap(f

∗A,A′) ⊂ (Pf∗B,1U ,f∗A)u′(B′, A′)

to the element of

b1V ′ (B
′, (fq)∗B)⊗ au′((fq)∗A,A′) ⊂ (P fib

B,W,A)u′(B′, A′)

given by
δ−1
q,f∗B · b⊗ a · δq,f∗A,

where we have committed a slight abuse of notation (cartesian arrows are not
invertible but left multiplying with them is). So if q = 1V ′ , then ε(b ⊗ a) = b ⊗ a.
From this one deduces immediately that εh−1 = IdS−1 .

For use below we also compute the other composition h−1ε. Let b ⊗ a be as
above. Then

(3.14)
h−1ε(b⊗ a) = h−1(δ

−1
q,f∗B · b⊗ a · δq,f∗A)

= δ−1
q,f∗B · b⊗ a · δq,f∗A.

Next we define hn. This is a map

hn :
⊕

(u,f)∈Nn

(P(f |u|)∗B,|u|,f∗A)u′(B′, A′) −→
⊕

(u,f)∈Nn+1

(P(f |u|)∗B,|u|,f∗A)u′(B′, A′).

The summand on the left attached to

(u, f) = (U0 −→ . . . −→ Un −→ W ) ∈ Nn(U/W )

is given by ⊕

u′=p|u|q

bq(B
′, (f |u|)∗B)⊗ ap(f

∗A,A′).

We send an element b⊗ a ∈ bq(B′, (f |u|)∗B)⊗ ap(f∗A,A′) to the element of

b1V ′ (B
′, (f |uq|)∗B)⊗ ap(f

∗A,A′) ⊂ (P(f |uq|)∗B,|uq|,f∗A)u′(B′, A′)
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given by δ−1
q,(f |u|)∗Bb⊗a. Here (P(f |uq|)∗B,|uq|,f∗A)u′ is considered as being attached

to

(• q−→ U0 −→ . . . −→ Un −→ W ) ∈ Nn+1(U/W ).

We now check that h has the required properties. Let b⊗a be as in the previous
paragraph. We compute for n ≥ 0,

(3.15)

∂0hn(b⊗ a) = δrq(δ
−1
q,(f |u|)∗Bb⊗ a)

= δq,(f |u|)∗Bδ
−1
q,(f |u|)∗Bb⊗ a

= b⊗ a.

If 0 < i < n+ 1, then

(3.16) ∂ihn(b⊗ a) = δ−1
q,(f |u|)∗Bb⊗ a

and if i = n+ 1, n > 0, then

(3.17)
∂n+1hn(b⊗ a) = δlun−1

(δ−1
q,(f |u|)∗Bb⊗ a)

= δ−1
q,(f |u|)∗Bb⊗ aδun−1,f∗A.

If n = 0, i = 1, then the same computation yields

(3.18) ∂1h0(b⊗ a) = δ−1
q,f∗Bb⊗ aδq,f∗A.

Now assume n > 0. We compute

(3.19)

hn−1∂0(b⊗ a) = hnδ
r
u0
(b⊗ a)

= hn(δu0,(f |∂0u|)∗Bb⊗ a)

= δ−1
u0q,(f |∂0u|)∗Bδu0,(f |∂0u|)∗Bb⊗ a

= δ−1
q,(f |u|)∗Bb⊗ a

and for 0 < i < n,

(3.20)
hn−1∂i(b⊗ a) = hn−1(b⊗ a)

= δ−1
q,(f |u|)∗Bb⊗ a.

Finally

(3.21)

hn−1∂n(b⊗ a) = hnδ
l
un−1

(b⊗ a)

= hn(b⊗ aδun−1,f∗A)

= δ−1
q,(f |u|)∗Bb⊗ aδun−1,f∗A.

The conditions (3.12) now follow by combining (3.13), (3.14), (3.15), (3.16), (3.17),
(3.18), (3.19), (3.20) and (3.21). !

4. The cohomology comparison theorem

4.1. Main result. Let A and B be k-linear prestacks on U with associated fibered
graded categories a and b. The following is our main result.

Theorem 4.1. The functor Π∗ : Bimod(A,B) −→ BimodU (a, b) induces a fully
faithful functor

Π∗ : D(Bimod(A,B)) −→ D(BimodU (a, b)).
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In particular, for M,N ∈ Bimod(A,B), there are isomorphisms

ExtiBimod(A,B)(M,N) ∼= ExtiBimodU (a,b)(Π
∗M,Π∗N)

for all i.

Proof. According to Proposition 3.4 we may replace Bimod(A,B) by BimodfibU (a, b).
As before we denote the inclusion BimodfibU (a, b) → BimodU (a, b) by I.

For all objects M,N ∈ D(BimodfibU (a, b)) we have to prove that the canonical
map

(4.1) RHomBimodfibU (a,b)(M,N) −→ RHomBimodU (a,b)(IM, IN)

is an isomorphism. We claim that it is sufficient to check this for M = P fib
B,W,A.

To see this note that the projective objects P fib
A,W,B form a system of compact

generators for D(BimodfibU (a, b)). If we fix N , then the M for which (4.1) is an
isomorphism is a triangulated subcategory of D(Bimodfib(a, b)). If this subcategory
contains the generators P fib

B,W,A, then it is everything.

We now assume M = P fib
B,W,A. Then we have

RHomBimodfibU (a,b)(P
fib
B,W,A, N) = N1W (B,A).

On the other hand we have

RHomBimodU (a,b)(IP
fib
A,W,B , IN)

= RHomBimodU (a,b)(LΦA,B,!k, IN) (Lemma 3.13)

= RHomNat(U/W )(k,Φ
∗
A,BIN) (Adjointness)

= RHomNat(U/W )(k, IΨ
∗
A,BN) (Prop. 3.5)

= RHomPr(U/W )(k,Ψ
∗
A,BN) (Prop. 3.11)

= (Ψ∗
A,BN)(1W ) (1W is the final object of U/W )

= N1W (B,A) (3.3),

which is the same. !

The following corollary was announced in [5]:

Corollary 4.2. Let A be a k-flat k-linear prestack on U with associated fibered
category a, and let C(A) = C(a) be the Hochschild complex of A defined in [5].
Then there is a quasi-isomorphism

C(A) ∼= RHomBimod(A)(A,A).

Proof. It was shown in [5, Proposition 3.13] that

C(a) ∼= RHomBimodU (a)(a, a).

To obtain the desired result, it suffices to apply Theorem 4.1 with b = a and note
that Π∗(A) = a. !
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5. The special cohomology comparison theorem revisited

In this section, we deduce the original Special Cohomology Comparison Theo-
rem [4] from Theorem 4.1.

If a is a k-linear category, then we define ā to be the endomorphism ring of the
generator P =

⊕
A a(−, A) of Mod(a). I.e. by Yoneda,

ā =
∏

B∈a

⊕

A∈a

a(B,A).

Elements of ā can be represented by column-finite matrices with (row, column)
indices given by (A,B). We denote the idempotent corresponding to 1A ∈ a(A,A)
by eA.

Lemma 5.1. Let a and b be linear categories. Then the functor

D(Bimod(a, b)) −→ D(Bimod(ā, b̄)) : M %→
∏

B∈a

⊕

A∈a

M(B,A)

is fully faithful.

Proof. This follows from the fact that a left inverse is given by

N %→ ((B,A) %→ eANeB). !
Let U be a poset. If a is a U-graded category, then we denote by ã the underlying

k-linear category of a. More precisely

ã(BV , AU ) =

{
aV≤U (BV , AU ) if V ≤ U,

0 otherwise,

for BV ∈ bV , AU ∈ aU .

Lemma 5.2. The functor

D(BimodU (a, b)) −→ D(Bimod(ã, b̃)) : N −→ Ñ

with

Ñ(BV , AU ) =

{
NV≤U (BV , AU ) if V ≤ U,

0 otherwise,

for BV ∈ bV , AU ∈ aU is fully faithful.

Proof. A left inverse is given by associating to N ∈ D(Bimod(ã, b̃)) the object Ň in
D(BimodU (a, b)) such that ŇV ≤U (BV , AU ) = N(BV , AU ). In other words the left
inverse simply forgets the values of N(BV , AU ) for V *≤ U .

If A is a k-linear prestack on U , then we write A! = ¯̃a, where a is the U-graded
category associated to A. Concretely

A! =
∏

V ∈U,AV ∈A(V )

⊕

V≤U,AU∈A(U)

A(V )(AV , AU |V ).

Theorem 5.3. Let A and B be k-linear prestacks on a poset U . The canonical
functor

(−)! : Bimod(A,B) −→ Bimod(A!,B!) : M −→ M !

with
M ! =

∏

V ∈U,BV ∈B(V )

⊕

V≤U,A∈A(U)

M(V )(BV , AU |V )

induces a fully faithful functor between the respective derived categories.
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Proof. Let a, b be the U-graded categories associated to A, B.
The functor D(−)! is the composition of the following fully faithful embeddings:

D(Bimod(A,B)) Thm. 4.1−−−−−−→D(BimodU (a, b))

Lem. 5.2−−−−−→ D(Bimod(ã, b̃))
Lem. 5.1−−−−−→ D(Bimod(¯̃a, ¯̃b)). !

The following corollary is the Special Cohomology Comparison Theorem in the
sense of Gerstenhaber and Schack.

Corollary 5.4. Let A be a presheaf of k-algebras on a poset U . Put

A! =
∏

V ∈U

⊕

V≤U

A(V ).

The canonical functor

(−)! : Bimod(A) −→ Bimod(A!) : M −→ M !

with
M ! =

∏

V ∈U

⊕

V≤U

M(V )

induces a fully faithful functor between the respective derived categories.

Proof. If we view a presheaf as a prestack, then the categories A(V ) contain only
one object which is left out of the notation. This gives the simplified form of A!
and M ! is the statement of this corollary. !

Appendix A. Relation with universal localization

Let a, b be U-graded fibered categories equipped with a normalized cleavage. Let
u : V → U , p : U → U ′, B ∈ aV , A′ ∈ aU ′ . The natural transformation between
the functors

M %→ Mu(B, p∗A′),

M %→ Mpu(B,A′),

corresponding to δlp is given by left multiplication by δp,A′ (see §3.7). Hence M
is fibered if and only if for all u, p,B,A′ as above BimodU (a, b)(−,M) inverts the
corresponding δlp. Thus if we denote the collections of such morphisms by Σ, then
we get

BimodfibU (b, a) = {M ∈ BimodU (b, a) | M inverts all morphisms in Σ}.
Using the description of BimodU (b, a) as a module category in Remark 3.8 we also
obtain

BimodfibU (b, a) = Mod(Σ−1t).

This shows that the relation between BimodfibU (b, a) and BimodU (b, a) is controlled
by a universal localization (which is given by Π : t −→ r as in Remark 3.10).
Unfortunately this is not an Ore localization. The homological behavior of a general
universal localization seems difficult to understand. See e.g. [9, 10] for partial
results.

Theorem 4.1 may be interpreted as saying that Σ−1t/t is stably flat (see [8]).
This implies for example that the K-theory of the categories of bimodules and
fibered bimodules are related by a long exact sequence [7, Thm. 0.1].
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