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WITH AN APPLICATION TO SCHEMES
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Abstract. After presenting Grothendieck abelian categories as linear sites
following [9], we present their basic deformation theory as developed in [14] and

[10]. We apply the theory to certain categories of quasi-coherent modules over

Z-algebras, which can be considered as non-commutative projective schemes.
The cohomological conditions we require constitute an improvement upon [5].

1. Introduction

This overview consists of two main sections. In §2, we introduce Grothendieck
categories as the abelian categories closest to module categories. We explain how
to extend the famous Gabriel-Popescu theorem in order to obtain other interest-
ing representations of Grothendieck categories as linear sheaf categories. As an
example, we give a sheaf theoretic description of categories of quasi-coherent mod-
ules, considered as non-commutative replacements of projective schemes in the
approach to non-commutative algebraic geometry due to Artin, Tate, Stafford,
Van den Bergh and others. In [3], Z-algebras were used in order to describe non-
commutative planes. In [22] and [23], Van den Bergh obtained explicit descriptions
of the Grothendieck categories representing non-commutative planes, quadrics and
P1-bundles over commutative schemes. The stability of these descriptions under de-
formation motivated the general development of a deformation theory for abelian,
and in particular Grothendieck categories, which was started in [14]. In §3, we
present the basics of this theory, and the application to quasi-coherent module cat-
egories. The details of this application can be found in [5]. In the current paper,
we fine tune the approach in order to obtain applicability to all projective schemes
with H1(X,OX) = H2(X,OX) = 0.

2. Grothendieck categories

2.1. Linear categories. In algebra, rings and algebras over fields or more general
commutative ground rings are among the most basic objects of study. The algebraic
geometry of affine schemes is entirely encoded in commutative ring theory. To model
projective schemes, we will make use of an algebraic structure which is only slightly
more general than that of an algebra. Throughout, let k be a commutative ground
ring.

Definition 2.1. A k-linear category or k-category a is a small category such that
the hom-sets a(A,B) = Hom(A,B) for objects A,B ∈ a are k-modules and the
composition is k-bilinear.

Linear categories can be thought of as algebras with several objects, a point of
view due to Mitchell [15].
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Examples 2.2. (1) If A is a k-algebra, it can naturally be considered as a k-
linear category with a single object ∗ and End(∗, ∗) = A.

(2) Let A and B be k-algebras and AMB an A-B-bimodule. Then there is
a corresponding k-linear category with two objects ∗A and ∗B and with
End(∗A) = A, End(∗B) = B, Hom(∗A, ∗B) = AMB and Hom(∗B , ∗A) = 0.

(3) The opposite category a
op

of a k-linear category a is again k-linear.

Remark 2.3. Linear categories offer alternative ways to organize algebraic structures
that are classically organized into matrix algebras. For instance, Example 2.2 (2)
corresponds to the matrix algebra(

A AMB

0 B

)
.

Let Mod(k) denote the category of k-modules.

Definition 2.4. A k-linear functor f : a −→ b between k-linear categories is a
functor such that every fA,A′ : a(A,A′) −→ b(f(A), f(A′)) is k-linear. A right (resp.

left) module over a or right (resp. left) a-module is a k-linear functor a
op −→ Mod(k)

(resp. a −→ Mod(k)).

Remark 2.5. In this paper, we will always work with right modules and call them
simply modules.

The category of a-modules is denoted by Mod(a).

Example 2.6. If a is the k-linear category associated to an algebra A as in Example
2.2 (1), then a-modules correspond precisely to right A-modules and Mod(a) ∼=
Mod(A).

2.2. Grothendieck categories. Grothendieck categories are the large abelian cat-
egories that are somehow closest to module categories. In this section we recall the
definition and basic facts. For excellent introductions to the subject we refer the
reader to the books [17] by Popescu and [21] by Stenström.

Definition 2.7. Let C be a cocomplete category and g a set of objects in C. We say
that g is a set of generators for C or that g generates C or that g is (a) generating
(set) (for C) if for every object C ∈ C, there is an epimorphism ⊕i∈IGi −→ C with
I some index set and Gi ∈ g. A generating set consisting of a single object is simply
called a generator.

Definition 2.8. A Grothendieck category is a cocomplete abelian category with
exact directed colimits (i.e., directed colimits commute with finite limits) and a
generating set.

Remark 2.9. (1) In the original definition [8], Grothendieck used the “AB ax-
ioms” to define additional properties for abelian categories. In this termi-
nology, cocompleteness is axiom AB3 and cocompleteness combined with
exactness of directed colimits is axiom AB5.

(2) The fact that we require the collection of generators to be a set is crucial.
Indeed, if we would allow classes of generators, then every category trivially
has the collection of all its objects as a generating class.

(3) If a cocomplete category C has a set g of generators, it also has a single
generator G′ obtained as

G′ = ⊕G∈gG.
Examples 2.10. (1) The first and foremost examples of Grothendieck categories

are module categories. Indeed, for a small linear category a, the repre-
sentable functors

a(−, A) : a −→ Mod(k) : B 7−→ a(B,A)
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for A ∈ a consitute a generating set for Mod(a), and, just like in ordinary
module categories over rings, directed colimits are exact.

(2) For a ringed space (X,OX), the category Mod(X) of scheaves of OX -
modules on X is a Grothendieck category.

(3) For a quasi-compact, semi-separated scheme X, the category Qch(X) of
quasi-coherent sheaves on X is Grothendieck.

The following theorem, due to Mitchel, characterizes module categories among
Grothendieck categories:

Theorem 2.11. Let C be a Grothendieck category and a ⊆ C a linear subcategory.
The following are equivalent:

(1) C −→ Mod(a) : C 7−→ C(−, C)|a is an equivalence of categories.
(2) a is a set of finitely generated projective generators of C.

2.3. Gabriel-Popescu. Let C be a Grothendieck category with a generator G, and
put A = C(G,G), the endomorphism algebra of G in C. By the famous Gabriel-
Popescu theorem [18], C is a localization of Mod(A), more precisely the functor

C −→ Mod(A) : C 7−→ C(G,C)

is fully faithful and its left adjoint is exact. It follows that Grothendieck categories
are precisely the localizations of module categories over algebras.

Of course, using different generators for C, we can realize C as a localization of
module categories over different rings. As we will see later on, it will be useful to also
consider more general realizations of C as a localization of module categories over
small linear categories. More precisely, we are interested in the following general
setup:

Let u : a −→ C be a k-linear functor from a small k-category a to a Grothendieck
k-category C. Consider the adjoint pair (a, i) with

i : C −→ Mod(a) : C 7−→ C(u(−), C)

and a : Mod(a) −→ C its left adjoint extending u over the Yoneda embedding
a −→ Mod(a).

We will say that the functor u is localizing provided (a, i) is a localization, i.e. i
is fully faithful and a is exact.

2.4. Linear topologies. Let a be a small k-category. Consider a representable
a(−, A) ∈ Mod(a) and a subobject R ⊆ a(−, A) in Mod(a). The subobject (also
called subfunctor) corresponds to a sieve

∐
A′∈aR(A′) of a-morphisms landing in

A.
A covering system on a consists of collections T (A) of subobjects of a(−, A) in

Mod(a) for every A ∈ a. The subfunctors R ∈ T (A) are called coverings of A. The
definition of a topology on a is a linearized version (obtained by replacing Set by
Mod(k) and enrichement over k of all involved notions, for instance replacement
of the presheaf category Fun(a

op

,Set) by Mod(a)) of the notion of a Grothendieck
topology on a small category [1] [4]. Consider the following conditions for a covering
system T on a:

(1) T satisfies the identity axiom if a(−, A) ∈ T (A) for every A ∈ a.
(2) T satisfies the pullback axiom if for every f : B −→ A in a and R ∈ T (A),

the pullback f−1R ⊆ a(−, B) is in T (B).
(3) T satisfies the glueing axiom if S ∈ T (A) as soon as there exists an R ∈
T (A) and for every f : Af −→ A in R(A) an Rf ∈ T (Af ) with Rf ⊆ f−1S.

(4) T is a topology if it satisfies the identity, pullback and glueing axioms.
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With respect to a covering system T on a, a module F : a
op −→ Mod(k) is called

a sheaf provided every cover R ⊆ a(−, A) induces a bijection

F (A) ∼= Hom(a(−, A), F ) −→ Hom(R,F ).

Remark 2.12. For a covering R ⊆ a(−, A), a morphism R −→ F corresponds to
the datum of elements (xf )f∈R with xf ∈ F (Af ) for f : Af −→ A in R, such
that for g : Afg −→ Af we have xfg = F (g)(xf ). Thus, just like for an ordinary
Grothendieck topology, morphisms R −→ F correspond to compatible collections
of elements in F , and the sheaf property expresses that a compatible collection has
a unique glueing x ∈ F (A) with F (f)(x) = xf for every f ∈ R.

Let T be a topology on a, and let Sh(a, T ) be the category of sheaves on a with
respect to T . Then the inclusion i : Sh(a, T ) ⊆ Mod(a) is part of a localization,
and the exact left adjoint is given by “sheafification” with respect to T . In fact, if
T is a covering system which satisfies the identity and pullback axiom, there is a
smallest topology T ′ on a containing T , and for this topology Sh(a, T ) = Sh(a, T ′).
Imposing the glueing axiom rigidifies the situation in the following sense:

Proposition 2.13. Let a be a k-linear category. Taking sheaf categories defines a
1-1-correspondence between:

(1) Topologies on a;
(2) Localizations of Mod(a) (up to equivalence of categories).

For a given localization i : C −→ Mod(a) with left adjoint a : Mod(a) −→ C,
the corresponding topology TC on a consists of the C-epimorphic subfunctors R ⊆
a(−, A), i.e. the subfunctors R for which

⊕f∈R(Af )u(Af ) −→ u(A)

is an epimorphism in C. This defines an inverse to the map sending a topology T
to the localization Sh(a, T ) of Mod(a) (see [4] for details in a more general enriched
setup).

Before stating the main theorem of this section, we introduce relative versions
of some familiar notions.

Definition 2.14. Let T be a covering system on a and let f : M −→ N be a
morphism in Mod(a).

(1) f is a T -epimorphism if the following holds: for every y ∈ N(A) there is an
R ∈ T (A) such that N(g)(y) ∈ N(Ag) is in the image of fAg

: M(Ag) −→
N(Ag) for every g : Ag −→ A in R.

(2) f is a T -monomorphism if the following holds: for every x ∈ M(A) with
fA(x) = 0 ∈ N(A), there is an R ∈ T (A) such that M(g)(x) = 0 ∈M(Ag)
for every g : Ag −→ A in R.

Definition 2.15. Consider a linear functor u : a −→ C from a small k-linear
category a to a Grothendieck category C and a covering system T on a.

(1) u is generating if the images u(A) for A ∈ a are a collection of generators
for C.

(2) u is T -full if for everyA ∈ a the canonical morphism a(−, A) −→ C(u(−), u(A))
is a T -epimorphism.

(3) u is T -faithful if for every A ∈ a the canonical morphism a(−, A) −→
C(u(−), u(A)) is a T -monomorphism.

(4) u is T -projective if for every C-epimorphism c : X −→ Y , the morphism

i(c) : C(u(−), X) −→ C(u(−), Y )

is a T -epimorphism.
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(5) u is T -finitely presented if for every filtered colimit colimiXi in C the canon-
ical morphism

φ : colimiC(u(−), Xi) −→ C(u(−), colimiXi)

is a T -epimorphism and a T -monomorphism.
(6) u is T -ample if for every R ∈ T (A), the canonical morphism

⊕f∈R(Af )u(Af ) −→ u(A)

is a C-epimorphism.

Theorem 2.16. [5] Consider u : a −→ C as above and let T be a topology on a.
The following are equivalent:

(1) u induces a localization and i : C −→ Mod(a) factors through an equivalence
C ∼= Sh(a, T ).

(2) u is generating, T -full, T -faithful, T -projective, T -finitely presented and
T -ample.

Remarks 2.17. (1) Theorem 2.16 can be decomposed into two parts. First,
the case where we take T = TC (we know by Proposition 2.13 that this is
actually the only possibility for T in (1)). In this case, we automatically get
TC-projectivity, TC -finitely presentedness and TC-ampleness. The resulting
characterization of localizing functors u was first obtained in [9]. Second,
if the T we start from is arbitrary, these additional conditions are intended
to ensure that T = TC .

(2) If we take T = Ttriv the trivial topology on a, for which the only coverings
are the representable functors, Theorem 2.16 becomes Theorem 2.11.

2.5. Quasi-coherent modules. Next we look at some applications of §2.4 to
schemes.

First, let us recall the situation for affine schemes. For a scheme X = Spec(A)
with A a commutative ring, we have

Qch(X) ∼= Mod(A).

Thus, the relevant Gothendieck categories are precisely module categories over com-
mutative rings.

Next, we look into the situation for projective schemes. Consider a projective
scheme X = Proj(A) for some positively graded algebra A = (Ai)i∈Z with Ai = 0
for i < 0. By Serre’s theorem [19], we have

Qch(X) ∼= Qgr(A),

Where Qgr(A) = Gr(A)/Tors(A) is the quotient of the category Gr(A) of graded
right A-modules by the category Tors(A) of torsion modules, i.e filtered colimits of
right bounded modules.

Our aim is to describe Qgr(A) in terms of the tools of §2.4.
First, we look at Gr(A). Let A be a Z-graded k-algebra and let Gr(A) be the

category of Z-graded right A-modules. Let (1) be the shift to the left on Gr(A),
(n) = (1)n, and consider the shifted objects (A(n))n∈Z in Gr(A). For any M ∈
Gr(A), we have

Gr(A)(A(n),M) ∼= M−n

and consequently the objects A(n) constitute a set of finitely generated projective
generators of Gr(A). Let a = a(A) be the full linear subcategory of Gr(A) spanned
by the (A(n))n∈Z, and rename the object A(−n) by n. We then have

a(n,m) = Gr(A)(A(−n), A(−m)) = An−m.
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There is an induced equivalence of categories

Gr(A) ∼= Mod(a) : M 7−→ Gr(A)(A(−?),M) = M?

by Theorem 2.11.
A linear category with Ob(a) = Z is called a Z-algebra in [3]. If moreover

a(n,m) = 0 unless n ≥ m, then a is called a positively graded Z-algebra. Thus for a
positively graded algebra A, the associated a(A) is a positively graded Z-algebra.

From now on, we let a be an arbitrary positively graded Z-algebra. We will now
define a localization Qmod(a) of Mod(a) by means of a linear topology on a, which
recovers Qgr(A) for a = a(A).

For m ∈ Z, consider the subobject

a(−,m)≥n ⊆ a(−,m)

defined by

a(k,m)≥n =

{
a(k,m) if k ≥ n
0 otherwise.

We first define the covering system Ltails on a for which R ∈ Ltails(m) if and only
if a(−,m)≥n ⊆ R for some m ≤ n ∈ Z.

It is easy to see ([5, Proposition 3.9]) that Ltails satisfies the identity and pullback
axioms. We define the tails topology Ttails on a to be the smallest topology on a
containing Ltails. The category of quasi-coherent modules over a is by definition

Qmod(a) = Sh(a, Ttails) = Sh(a,Ltails).

Remark 2.18. In general, Ltails fails to be a topology (see [5, Example 3.12]), but
in many cases of interest, it actually is a topology. These cases include the case
where a is noetherian and the case where a is positively graded, connected (i.e.
a(n, n) = k for all n) and finitely generated in the sense of [5, §3.2]. In particular,
this last case includes the a(A) for positively graded, connected finitely generated
graded algebras A, and moreover we then have Qmod(a(A)) ∼= Qgr(A).

2.6. A characterization. Let C be a Grothendieck category and let (O(n))n∈Z
be a collection of objects in C. Furthermore, let ν : Z −→ Z be a function with
ν(n) ≥ n for all n ∈ Z.

We define a Z-algebra a with Ob(a) = Z and

a(n,m) =

{
C(O(−n),O(−m)) if n ≥ ν(m)

0 otherwise

so that we obtain a natural functor

u : a −→ C : n 7−→ O(−n).

The case where ν = 1Z is contained in [5]. The refinement of the results involving
an arbitrary ν is almost for free, and will be important when we discuss deformations
in §3.

Lemma 2.19. [5, Lemma 3.13] The functor u : a −→ C is Ttails-full and Ttails-
faithful.

Proof. The functor u is faithful by construction, whence certainly Ttails-faithful.
Consider the canonical maps

ϕn,m : a(n,m) −→ C(O(−n),O(−m)).

For n ≥ ν(m), ϕn,m is an isomorphism by construction and nothing needs to be
checked. So take n < ν(m) and consider a map c : O(−n) −→ O(−m) in C.
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Consider the Ttails-covering a(−, n)≥ν(m). For every 0 6= x ∈ a(k, n)≥ν(m), with
consequently k ≥ ν(m), we look at the composition

cu(x) : O(−k) −→ O(−m).

Since k ≥ ν(m), we have cu(x) in the image of ϕk,m, as desired. �

Theorem 2.20. [5, Theorem 3.15] Let C be a Grothendieck category, (O(n))n∈Z a
collection of objects in C, and u : a −→ C as defined above. Suppose Ltails = Ttails
on a. The following are equivalent:

(1) The functor u : a −→ C induces an equivalence C ∼= Qmod(a).
(2) The following conditions are fulfilled:

(a) the objects O(n) generate C, i.e. for every C ∈ C there is an epimor-
phism

⊕iO(ni) −→ C.

(b) u is Ltails-ample, i.e. for every m ≤ n, there is an epimorphism

⊕iO(−ni) −→ O(−m)

with ni ≥ n for every i.
(c) u is Ltails-projective, i.e for every element ξ ∈ Ext1C(O(−m),M) with

m ∈ Z and M ∈ C, there is an n0 ≥ m such that for every mor-
phism O(−n) −→ O(−m) with n ≥ n0, the natural image of ξ in
Ext1C(O(−n),M) is zero.

(d) u is Ltails-finitely presented, i.e. for every filtered colimit colimiXi in C
and morphism f : O(−m) −→ colimiXi, there is an n0 ≥ m such that
for every n ≥ n0 every composition O(−n) −→ O(−m) −→ colimiXi

factors through O(−n) −→ O(−m) −→ Xi for some i. Moreover
if a morphism f : O(−m) −→ Xi becomes zero when extended to
colimiXi, then there is an n0 ≥ m such that for every n ≥ n0 every
composition O(−n) −→ O(−m) −→ Xi becomes zero when composed
with a suitable Xi −→ Xj.

Proof. This follows from Theorem 2.16 and Lemma 2.19. �

When we restrict the situation a bit, we recover the classical geometric notion
of ampleness (condition (ab)):

Corollary 2.21. [5, Corollary 3.16] Let C be a locally finitely presented Grothendieck
category, (O(n))n∈Z a collection of finitely presented objects in C, and u : a −→ C
as defined above. Suppose Ltails = Ttails on a. The following are equivalent:

(1) The functor u : a −→ C induces an equivalence C ∼= Qmod(a).
(2) The following conditions are fulfilled:

(ab) (O(n))n∈Z is ample, i.e. for every finitely presented object C ∈ C,
there is an n0 such that for every n ≥ n0, there is an epimorphism

⊕iO(−ni) −→ C

with ni ≥ n for every i.
(c) u is Ltails-projective, i.e for every element ξ ∈ Ext1C(O(−m),M) with

m ∈ Z and M ∈ C, there is an n0 ≥ m such that for every mor-
phism O(−n) −→ O(−m) with n ≥ n0, the natural image of ξ in
Ext1C(O(−n),M) is zero.

To end this section, let us briefly return to the most classical geometric setup
where X is a projective scheme over a noetherian base ring S, and see how Serre’s
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original result fits in. The category C = Qch(X) of quasi-coherent sheaves is lo-
cally finitely presented and has the category coh(X) of coherent sheaves as finitely
presented objects.

Recall that an invertible sheaf L on X is called ample if for every coherent sheaf
M , there is an n0 such that for every n ≥ n0 there is an epimorphism

⊕iL−n −→M.

Hence, putting O(n) = Ln, the collection (O(n))n∈Z satisfies condition (ab) in
Corollary 2.21. Furthermore, by the cohomological criterion for ampleness, L is
ample if and only if for every coherent sheaf M there is an n0 such that for each
i > 0 and for each n ≥ n0,

Exti(L−n,M) = 0.

Thus, the collection also satisfies condition (c) and we recover Serre’s original result.

Remark 2.22. Note that in the results of this section, as well as in the versions in [5],
the main novelty is the sheaf theoretic approach to the proofs (by invoking Theorem
2.16). Indeed, Serre’s original result was first generalized to the non-commutative
setting using graded algebras by Artin an Zhang in [2], and later to Z-algebras by
Stafford and Van den Bergh [20] and Polishchuk [16].

3. Deformations of Grothendieck categories

In this section, we present the basic deformation theory of Grothendieck abelian
categories as developed in [14] and [10] and discuss the application to categories of
quasi-coherent modules and thus to projective schemes.

Our deformation setup is the following. Undeformed objects live over a commu-
tative ground ring k, and we deform in the direction of artin local k-algebras R
with maximal ideal m. Deformations in the direction of the dual numbers k[ε] with
ε2 = 0 are called first order deformations.

3.1. Algebras. Every non-commutative algebraic deformation theory is somehow
based upon the deformation theory of algebras due to Gerstenhaber [6, 7]. The
fundamental notions are the following.

Definition 3.1. Let A be a k-flat k-algebra. An R-deformation of A is an R-flat
R-algebra B with an isomorphism k ⊗R B ∼= A of k-algebras. An equivalence of
R-deformations B and B′ is an isomorphism B −→ B′ of R-algebras which reduces
to the identity 1A : A −→ A via the isomorphisms k ⊗R B ∼= A and k ⊗R B′ ∼= A.

Through deformation, commutative algebras can be turned into non-commutative
algebras. For example, the commutative k-algebra k[x, y] has non-commutative first
order deformations given by

k〈x, y〉/(xy − yx− f(x, y)ε)

with f(x, y) ∈ k[x, y].
From the geometric point of view, a commutative k-algebra corresponds to

the affine scheme Spec(A), and this leads us to consider non-commutative R-
deformations of A as “non-commutative affine R-schemes”.

The deformation theory of a k-algebra A is controlled by its Hochschild com-
plex. In particular, first order deformations of A are parameterized by the second
Hochschild cohomology group HH2(A) = Ext2A−A(A,A).
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3.2. Linear categories. After having argued in §2.1 that linear categories can be
considered as algebras with several objects, it is no surprise that a good deformation
theory for these objects follows this philosophy. First, a k-linear category a is k-flat
provided all the Hom modules a(A,A′) for A,A′ ∈ a are k-flat. The reduction
k⊗R b of an R-linear category is the category with the same object set and reduced
Hom modules.

Definition 3.2. Let a be a k-flat k-linear category. An R-deformation of a is
an R-flat R-linear category b with an isomorphism k ⊗R b ∼= a of k-algebras. An
equivalence of R-deformations b and b′ is an isomorphism b −→ b′ of R-linear
categories which reduces to the identity 1a : a −→ a via the isomorphisms k⊗Rb ∼= a
and k ⊗R b′ ∼= a.

Note that deformations of linear categories preserve the object set of the category.
Completely analogous to the algebra case, one can define a Hochschild complex

for linear categories which controls their deformation theory (see [13] for the details).

3.3. Abelian categories. Although abelian categories are special cases of linear
categories, the notion of linear deformation of §3.2 is not appropriate for abelian
categories. To come up with a good notion for abelian categories, we first look at
module categories over algebras. The main requirement for a deformation theory
of abelian categories is the existence of a natural map

Defalg(A) −→ Defab(Mod(A)) : B 7−→ Mod(B)

from algebra deformations of A to abelian deformations of Mod(B). Clearly, if
we compare Mod(A) to Mod(B), we observe that the object set is changed, and
actually the relation can be described in the following way:

Mod(A) ∼= {M ∈ Mod(B) | mM = 0}.

This brings us to the following natural definition. For an abelian R-category B, we
define the k-reduction to be the full (abelian!) subcategory

Bk = {B ∈ B | mB = Im(m⊗R B −→ B) = 0}.

Furhermore, in [14, Definition 3.2], we introduce a notion of flatness for abelian
categories which is such that a k-algebra A is k-flat if and only if its module category
Mod(A) is abelian flat.

Definition 3.3. Let A be a flat abelian k-category. An abelian R-deformation of
A is a flat abelian R-category B with an equivalence A ∼= Bk. An equivalence of
abelian R-deformations B and B′ is an equivalence B −→ B′ of R-linear categories
whose reduction is naturally isomorphic to the identity 1A : A −→ A via the
equivalences A ∼= Bk and A ∼= B′k.

We have the following basic result:

Proposition 3.4. [14] For a linear category a, there is a deformation equivalence

Def lin(a) −→ Defab(Mod(a)) : b −→ Mod(b)

from linear deformations of a to abelian deformations of Mod(a).

The main point in the proof is to associate a linear deformation of a to a given
abelian deformation D of C = Mod(a). Considering the objects A ∈ a as objects of
C, we make essential use of the following two facts:

(1) Ext1C(A,X ⊗k A) = Ext2C(A,X ⊗k A) = 0 for all A ∈ a and X ∈ mod(k) (in
order to obtain unique flat lifts of the individual objects of a along the left
adjoint k ⊗R − of the embedding C −→ D);
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(2) Ext1C(A,X⊗kA′) = 0 for all A,A′ ∈ a and X ∈ mod(k) (in order to organize
the lifted object as a linear deformation b ⊆ D of a).

Proposition 3.4 tells us that the non-commutative deformation theory of affine
schemes is entirely controlled by Gerstenhaber’s deformation theory for algebras.

For general abelian categories, an appropriate notion of Hochschild cohomology
controling abelian deformations was introduced and studied in [13].

3.4. Grothendieck categories. In [14, Theorem 6.29], it was proven that abelian
deformations of Grothendieck categories remain Grothendieck. In the proof, the
axioms of a Grothendieck category are lifted one by one to a deformation, given that
the original category is Grothendieck. The proof does not make use of representa-
tions of the original Grothendieck category as a localization of a module category.
If we compare this result with Proposition 3.4 for module categories, clearly the
latter contains a lot more information. For a given Grothendieck category, a first
step in the good direction is to look for a set of generators and a localizing functor
u : a −→ C such that there results a deformation equivalence between linear defor-
mations of a and abelian deformations of C. In this respect we have the following
key result from [14]:

Theorem 3.5. [14, Theorem 8.14] Let u : a −→ C be a localizing functor from a
small k-linear category a to a Grothendieck k-category C such that the objects u(A)
are k-flat in C. Suppose Ob(a) is endowed with a transitive relation R such that

(1) For all A ∈ a and X ∈ mod(k), we have

Ext1C(u(A), X ⊗k u(A)) = Ext2C(u(A), X ⊗k u(A)) = 0;

(2) (A,A′) /∈ R implies a(A,A′) = 0;
(3) (A,A′) ∈ R implies that u(A,A′) : a(A,A′) −→ C(u(A), u(A′)) is an isomor-

phism and that Ext1C(u(A), X ⊗k u(A′)) = 0.

Then there is an equivalence of deformation functors Def lin(a) ∼= Defab(C).

In fact, [14, Theorem 8.14] is more precise and describes both arrows constituting
the deformation equivalence. This makes use of the fact that deformations can be
“induced” upon localizations [14, §7].

3.5. Quasi-coherent modules. In this section, we apply Theorem 3.5 to the cat-
egories of quasi-coherent modules introduced in §2.5. We adopt the setup of §2.6.

Let C be a Grothendieck category and let (O(n))n∈Z be a collection of objects in
C. Let ν : Z −→ Z be a function with ν(n) ≥ n for all n ∈ Z. Define the Z-algebra
a with Ob(a) = Z and

a(n,m) =

{
C(O(−n),O(−m)) if n ≥ ν(m)

0 otherwise

and consider the natural functor

u : a −→ C : n 7−→ O(−n).

Theorem 3.6. Suppose the functor u induces an equivalence C ∼= Qmod(a), suppose
the objects O(n) are flat and suppose for all n and X ∈ mod(k) we have

Ext1C(O(n), X ⊗k O(n)) = Ext2C(O(n), X ⊗k O(n)) = 0

and for all n ≥ ν(m) and X ∈ mod(k) we have

Ext1C(O(−n), X ⊗k O(−m)) = 0.

Then

Def lin(a) −→ Defab(C) : b 7−→ Qmod(b)
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is an equivalence of deformation functors. More precisely, for every deformation D
of C there is a linear deformation b of a and a functor b −→ D satisfying the same
conditions as a −→ C.

Proof. This is an application of Theorem 3.5. Clearly, the relation

(n,m) ∈ R ⇐⇒ n ≥ ν(m)

on Ob(a) is transitive and satisfies the requirements (1) to (3) of the theorem by
construction of u and by the assumptions. The given description of the deformation
equivalence was proven in [5]. �

To end this section and overview, let us look at the geometric scope of the the-
orem. Let X be a projective scheme over a noetherian base ring with an ample
invertible sheaf L. Put O(n) = Ln. As discussed at the end of §2.6, the cohomolog-
ical criterion of ampleness yields for every m ∈ Z a ν(m) ≥ m such that for every
n ≥ ν(m), we have

Exti(O(−n),O(−m)) = 0.

Thus, conditions (2) and (3) in the theorem hold for this choice of ν. Unfortunately,
condition (1) - which is independent of ν - will not hold in general. It does hold
under the additional condition that

H1(X,OX) = H2(X,OX) = 0.

Thus, for the class of projective schemes satisfying this restraint on their cohomol-
ogy, all deformations can be described as “non-commutative projective schemes”
over some deformed Z-algebra.

Remarks 3.7. (1) There exist other natural choices apart from taking O(n) =
Ln. For instance for quadrics, a natural sequence of objects is given by

. . . ,O(n, n),O(n+ 1, n),O(n+ 1, n+ 1),O(n+ 2, n+ 1), . . .

See [23] for a detailed geometric treatment of this case.
(2) The condition of the existence of a function ν making the necessary Ext’s

vanish naturally follows from a sort of “strong tails projectivity” condition.
In [22], the combination of this condition and ampleness is called “stong
ampleness”.

(3) An approach to non-commutative deformations of schemes (and more gen-
eral ringed spaces) based upon twisted deformations of the structure sheaf
was developed in [11]. The relation between this approach and the one dis-
cussed in this paper, and a unified treatment of the two approaches based
upon map-graded categories in the sense of [12], is work in progress.

Acknowlegdement. The papers [22, 23] motivated the development of a general
deformation theory for abelian categories. The author is most grateful to Michel
Van den Bergh for sharing these beautiful ideas.
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Différentielle Catég. 37 (1996), no. 2, 145–162. MR MR1394507 (97g:18008)
[5] O. De Deken and W. Lowen, Abelian and derived deformations in the presence of Z-generating

geometric helices, J. Noncommut. Geom. 5 (2011), no. 4, 477–505. MR 2838522

[6] M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. (2) 79 (1964),
59–103. MR MR0171807 (30 #2034)

[7] , On the deformation of rings and algebras. II, Ann. of Math. 84 (1966), 1–19.

MR MR0207793 (34 #7608)
[8] A. Grothendieck, Sur quelques points d’algèbre homologique, Tôhoku Math. J. (2) 9 (1957),
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