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Abstract

This paper continues the development of the deformation theory of abelian categories intro-
duced in a previous paper by the authors. We show first that the deformation theory of abelian
categories is controlled by an obstruction theory in terms of a suitable notion of Hochschild
cohomology for abelian categories. We then show that this Hochschild cohomology coincides
with the one defined by Gerstenhaber, Schack and Swan in the case of module categories over
diagrams and schemes and also with the Hochschild cohomology for exact categories introduced
recently by Keller. In addition we show in complete generality that Hochschild cohomology
satisfies a Mayer–Vietoris property and that for constantly ringed spaces it coincides with the
cohomology of the structure sheaf.
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1. Introduction

In the rest of this paper k is an arbitrary commutative base ring but for simplicity
we will assume in this introduction that k is a field.

Motivated by our work on the infinitesimal deformation theory of abelian categories
[30] our aim in this paper is to develop a theory of Hochschild cohomology for
abelian categories and ringed spaces. The corresponding theory for Hochschild (and
cyclic) homology is by now well established [21,26,41]. The theory for Hochschild
cohomology has a rather different flavour since it is less functorial, but nevertheless it
still has good stability and agreement properties.
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We start with the case of k-linear categories. The Hochschild complex C(a) of a
k-linear category a is defined by

Cp(a) =
∏

A0,...,Ap∈Ob(a)

Homk(a(Ap−1, Ap)⊗k . . .⊗k a(A0, A1), a(A0, Ap)) (1.1)

with the usual differential (see [31]). As in the case of associative algebras, the
Hochschild complex of a carries a considerable amount of “higher structure” con-
taining in particular the classical cup-product and the Gerstenhaber bracket. This extra
structure may be summarized conveniently by saying that C(a) is an algebra over the
so-called B∞-operad [16,19].

Let A be a k-linear abelian category. In this paper we define the Hochschild complex
of A as

Cab(A) = C(InjInd(A)), (1.2)

where IndA is the abelian category of Ind-objects over A [3, Expose I] and InjInd(A)

denotes the full subcategory of injective objects in Ind(A). It is understood here that
IndA is computed with respect to a universe in which A is small. In the rest of this in-
troduction, for the purpose of exposition, we will ignore such settheoretic complications
(see §2.1, §2.5 below).

As indicated above the initial motivation behind (1.2) is the infinitesimal deforma-
tion theory of k-linear abelian categories developed in [30] (see §3 below). We prove
(Theorem 3.1):

• the deformation theory of a k-linear abelian category A is controlled by an obstruction
theory involving HC2

ab(A) and HC3
ab(A).

In §6 we prove basic results about the Hochschild cohomology of k-linear abelian
categories. In particular we show (Theorem 6.6 and Corollaries 6.8,6.9):

• If A has itself enough injectives then Cab(A)�C(InjA)) (where here and below �
means the existence of an isomorphism in the homotopy category of B∞-algebras).
A dual statement holds of course if A has enough projectives.
• In general we have Cab(A)�Cab(IndA).
• If A is a k-algebra then the Hochschild cohomology of the abelian category Mod(A)

coincides with the Hochschild cohomology of A.

We also show that the Hochschild complex of an abelian category A is the same as the
Hochschild complexes of suitable DG-categories [20] associated to A. The definition
of the Hochschild complex of a DG-category is an obvious extension of (1.1) (see §2.4
below). Let C(IndA) be the category of cochain complexes of IndA-objects. Let eA
be the full DG-subcategory of C(IndA) spanned by all positively graded complexes
of injectives whose only cohomology is in degree zero and lies in A and let eDb(A)

be the full DG-subcategory of C(IndA) spanned by all left bounded complexes of
injectives with bounded cohomology in A. Then eDb(A) is an exact DG-category such
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that H ∗(eDb(A)) is the graded category associated to the bounded derived category
Db(A) of A. Hence eDb(A) is a DG-“enhancement” [7,8] for the triangulated category
Db(A).

We prove (Theorem 6.1)

Cab(A)�C(eA)�C(eDb(A)). (1.3)

Using (1.3) we may construct a homomorphism of graded rings (see Proposition 4.5)

�A : HC∗ab(A) −→ Z(Db(A)),

where we view Db(A) as a graded category. The homogeneous elements of Z(Db(A))

consist of tuples (�M)M with M ∈ Ob(Db(A)) and �M ∈ Ext∗A(M, M) satisfying
a suitable compatibility condition (see §4.5). Thus we may think of �A as defining
“universal” elements in Ext∗A(M, M) for every M ∈ Db(A). These universal elements
are closely related to Atiyah classes in algebraic geometry. See for example [9].

The isomorphisms in (1.3) also connect Cab(A) to Keller’s recent definition of the
Hochschild complex of an exact category [19]. If E is an exact category then by
definition Cex(E) = C(Q) for a DG-quotient [22,19,10] Q of Acb(E) −→ Cb(E),
where Cb(E) is the DG-category of bounded complexes of E-objects and Acb(E) is
its full DG-subcategory of acyclic complexes. If we equip an abelian category A with
its canonical exact structure then eDb(A) is a DG-quotient of Acb(E) −→ Cb(E) (see
Lemma 6.3). Hence Cab(A)�Cex(A).

In §7 we specialize to ringed spaces. If (X, O) is a ringed space then we define

C(X, O) = C(X) = Cab(Mod(X)),

where Mod(X) = Mod(X, O) is the category of sheaves of right O-modules. Note that
in this definition the bimodule structure of O does not enter explicitly. We show that
HC∗(−) defines a “nice” cohomology theory for (X, O) in the sense that it has the
following properties (§7.4 and Theorem 7.9.1).

• HC∗(−) is a contravariant functor on open embeddings.
• Associated to an open covering X = U ∪ V there is a Mayer–Vietoris sequence

· · · → HCi−1(U ∩ V )→ HCi (X)→ HCi (U)⊕HCi (V )→ HCi (U ∩ V )→ · · ·

• If O is the constant sheaf k with values in k then

HC∗(X, k)�H ∗(X, k), (1.4)

where the right-hand side is the usual derived functor cohomology of k.
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In [5] Baues shows that the singular cochain complex of a topological space is a B∞-
algebra. Thus (1.4) suggests that C(X, Z) should be viewed as an algebraic analog of
the singular cochain complex of X.

We also show that under suitable conditions HC∗(X) coincides with the Hochschild
cohomology theories for ringed spaces and schemes defined by Gerstenhaber, Schack
and Swan. More precisely we show:

• Assume that X has a basis B of acyclic opens, i.e. for U ∈ B: Hi(U, OU) = 0 for
i > 0. Then HC∗(X) coincides with the Gerstenhaber–Schack cohomology [13,14]
of the restriction of O to B, considered as a diagram over the partially ordered
set B.
• If X is a quasi-compact separated scheme then HC∗(X) coincides with the Hochschild

cohomology for X as defined by Swan in [39].

We recall that for a smooth scheme the Hochschild complex defined by Swan is quasi-
isomorphic to the one defined by Kontsevich [23] in terms of differential operators (see
[39,42]).

Now let X be a quasi-compact separated scheme and denote by Qch(X) the category
of quasi-coherent sheaves on X. If X is in addition noetherian then let coh(X) be the
coherent sheaves on X. We prove that there are isomorphisms (see Theorem 7.5.1 and
Corollaries 7.7.2,7.7.3)

C(X)�Cab(Qch(X))�Cab(coh(X)) (1.5)

whenever the notations make sense.
The first isomorphism in (1.5) is proved by relating the Hochschild cohomology of X

to that of a finite open affine covering of X. To be more precise let X = A1 ∪ · · · ∪An

be such a covering and let A be the closure of {A1, . . . , An} under intersections. Since
X is separated, A consists of affine opens. We define a linear category a with the same
objects as A by putting

a(U, V ) =
{

�(U, OU) if U ⊂ V,

0 otherwise.

We construct an isomorphism (Corollary 7.7.2)

C(X)�C(a).

In particular if X = SpecR is itself affine then C(X)�C(R).
We are extremely grateful to Bernhard Keller for freely sharing with us many of his

ideas and for making available the preprint [19]. While preparing the current manuscript
the authors had independently discovered the main result of [19] (with the same proof)
but nevertheless the presentation in [19] made it possible to clarify and generalize many
of our original arguments.
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The second author learned about the connection between Hochschild cohomology
and Atiyah classes in an interesting discussion with Ragnar-Olaf Buchweitz at a sushi
restaurant in Berkeley during the workshop on non-commutative algebraic geometry at
MSRI in February 2000.

2. Preliminaries, conventions and notations

2.1. Universes

The results in this paper are most conveniently stated for small categories. However
we sometimes need non-small categories as well, for example to pass from a category
to its category of Ind-objects. Therefore, we take the theory of universes as our set
theoretical foundation since this basically allows us to assume that any category is
small. For a brief introduction to the theory of universes and to some related terminology
which we will use in this paper, we refer the reader to [30]. Our convention is that we fix
a universe U , and all terminology (small, Grothendieck, . . .) and all constructions (Ab,
Mod, Ind, . . .) are implicitly prefixed by U . Unless otherwise specified all categories
will be U-categories, i.e. their Hom-sets are U-small. Individual objects such as rings
and modules are also assumed to be U-small.

2.2. DG-categories

We will assume that the reader has some familiarity with DG-categories and model
categories. See for example [20,18].

Throughout we fix a commutative ring k and we assume that all categories are k-
linear. Unadorned tensor products and Hom’s are over k. On first reading one may
wish to assume that k is a field as it technically simplifies many definitions and proofs
(see for example the next section).

Let a be a DG-category. Associated to a is the corresponding graded category (for
which we use no separate notation), which is obtained by forgetting the differential
and the categories H 0(a) and H ∗(a) with Ob(H 0(a)) = Ob(H ∗(a)) = Ob(a) and

H 0(a)(A, B) = H 0(a(A, B)),

H ∗(a)(A, B) = H ∗(a(A, B)).

H 0(a) is sometimes referred to as the homotopy category of a.
Now assume that a is small. We consider the DG-category

Dif(a) = DGFun(a
op

, C(k))

of (right) DG-modules. The derived category D(a) is the localized category

Dif(a)[�−1],
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where � is the class of (pointwise) quasi-isomorphisms [20]. In order to work conve-
niently with D(a) it is useful to introduce model structures [18] on Dif(a).

It turns out that Dif(a) is equipped with two canonical model structures for which the
weak equivalences are the quasi-isomorphisms [17]. For the projective model structure
the fibrations are the pointwise epimorphisms and for the injective model structure the
cofibrations are the pointwise monomorphims.

We say M ∈ Dif(a) is fibrant if M −→ 0 if a fibration for the injective model
structure and we call M cofibrant if 0 −→ M is a cofibration for the projective model
structure.

As usual D(a) is the homotopy category of cofibrant complexes and also the ho-
motopy category of fibrant complexes and this makes it easy to construct left- and
right-derived functors.

Let b be another small DG-category and let f : a −→ b be a DG-functor. f is a
quasi-equivalence if H ∗(f ) is fully faithful and H 0(f ) is essentially surjective and it
is called a quasi-isomorphism if H ∗(f ) is an isomorphism.

The functor f induces the usual triple of adjoint functors (f ∗, f∗, f !) between Dif(a)
and Dif(b). We denote the corresponding adjoint functors between D(a) and D(b) by
(Lf ∗, f∗, Rf !).

Proposition 2.2.1 (Keller [20]). The functors (Lf ∗, f∗, Rf !) are equivalences when f
is a quasi-equivalence.

For M, N ∈ Dif(a), Homa(M, N) denotes Dif(a)(M, N) ∈ C(k). There is a corre-
sponding derived functor

RHoma : D(a)
op ×D(a) −→ D(k).

Lemma 2.2.2. If f is a quasi-equivalence then the induced map

f∗ : RHomb(M, N) −→ RHoma(f∗M, f∗N)

is a quasi-isomorphism.

Proof. After replacing M by a cofibrant resolution, f∗ is defined as the composition

RHomb(M, N) = Homb(M, N) −→ Homa(f∗M, f∗N)
can−→ RHoma(f∗M, f∗N)

and looking at homology we see, using Proposition 2.2.1, that this is a quasi-
isomorphism. �

2.3. Bimodules and resolutions

An a−b-(DG-)bimodule X is an object of Dif(a
op ⊗ b) which will be denoted by

(B, A) 
−→ X(B, A), where X(B, A) is contravariant in B and covariant in A. The
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a−a-bimodule (A, A′) 
−→ a(A, A′) will be denoted by a. For a−b-bimodules X and
Y, we define the a−a and b−b-bimodules

Homb(X, Y )(A, A′) = Homb(X(−, A), Y (−, A′)),

Homaop (X, Y )(B, B ′) = Homaop (X(B ′,−), Y (B,−)). (2.1)

For G ∈ Dif(b) and F ∈ Dif(b
op

), there is also a tensor product G⊗b F ∈ C(k) with
in particular b(−, B)⊗b F = F(B) and G⊗b b(B,−) = G(B) (see for example [10,
14.3, 14.4]). For X ∈ Dif(a

op⊗b) and Y ∈ Dif(b
op⊗c), we define X⊗bY ∈ Dif(a

op⊗c)
by

(X ⊗b Y )(C, A) = X(−, A)⊗b Y (C,−)

(see also [10, 14.5]).
If k is not a field then in the derived setting the tensor product a

op ⊗ b is philosoph-

ically wrong! Instead one should use something like “a
op L⊗ b” but of course this has

no immediate meaning. Thus when working with bimodules we should assume that
our categories satisfy an appropriate flatness assumption. It turns out that it is most
convenient to assume that our categories are k-cofibrant in the following sense [19]:

Definition 2.3.1. A DG-category is k-cofibrant if all its Hom-sets are cofibrant in C(k).

Recall that if M ∈ C(k) is cofibrant then it has projective terms and the functors
Hom(M,−) and M ⊗− preserve acyclic complexes. This is technically very useful.

That Definition 2.3.1 is a good definition follows from the following result.

Proposition-Definition 2.3.2. (1) Let a be a small DG-category. There exists a quasi-
isomorphism a −→ a with ā k-cofibrant which is surjective on Hom-sets (in the graded
category). We call such a −→ a a k-cofibrant resolution of a.

(2) If f : a −→ b is a DG-functor between small DG-categories and b −→ b is a
k-cofibrant resolution of b then there exists a k-cofibrant resolution a −→ a together
with a commutative diagram

a
f−−−−→ b⏐⏐� ⏐⏐�

a −−−−→
f

b

Proof. (1) We may take ā to be a “semi-free” resolution of a. See [10, Lemma
13.5; 17].

Again we let ā −→ a be a semi-free resolution. The result now follows from [10,
Lemma 13.6]. �
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If a, b are small DG-categories then the derived category of a-b-modules should be
defined as

D(a
op ⊗ b) (2.2)

for k-cofibrant resolutions a −→ a, b −→ b. Propositions 2.2.1 and 2.3.2 insure that
this definition is independent of the chosen resolutions (up to equivalence). We use this
definition in principle, but to make things not overly abstract we will always indicate
the resolutions a and b explicitly in the notations.

Proposition 2.3.3. Assume that a and b are k-cofibrant. The derived functors

RHomb : D(a
op ⊗ b)op ×D(a

op ⊗ b) −→ D(a
op ⊗ a),

RHomaop : D(a
op ⊗ b)op ×D(a

op ⊗ b) −→ D(b
op ⊗ b).

of (2.1) may be computed pointwise in the sense

RHomb(X, Y )(A, A′) = RHomb(X(−, A), Y (−, A′)),

RHoma◦(X, Y )(B, B ′) = RHoma◦(X(B ′,−), Y (B,−)). (2.3)

Proof. Easy. �

2.4. Hochschild cohomology of DG-categories

Let a be a small k-cofibrant DG-category and let M be an a-bimodule. The Hochschild
complex C(a, M) of a with coefficients in M is the product total complex of the double
complex D(a, M) with pth column given by

∏
A0,...,Ap

Homk(a(Ap−1, Ap)⊗k . . .⊗k a(A0, A1), M(A0, Ap)) (2.4)

and the usual horizontal Hochschild differential. The Hochschild complex of a is C(a) =
C(a, a). There is an isomorphism in D(k)

C(a, M)�RHomaop⊗a(a, M). (2.5)

The Hochschild complex satisfies a “limited functoriality” property. If j : a −→ b is a
fully faithful map between small k-cofibrant DG-categories then there is an associated
map between Hochschild complexes

j∗ : C(b) −→ C(a)

given by restricting cocycles. We will usually refer to j∗ as the restriction map.
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It is well known that C(a) carries a considerable amount of “higher structure” con-
taining in particular the classical cup-product and the Gerstenhaber bracket. This extra
structure is important for deformation theory. A convenient way of summarizing the
extra structure is by saying that C(a) is an algebra over the B∞-operad [16,19] which is
an enlargement of the A∞-operad. The map j∗ introduced above is trivially compatible
with the B∞-structure.

As the Hochschild complex involves bimodules, according to the principles outlined
in §2.3, its definition should be modified for non k-cofibrant DG-categories. The ap-
propriate modification was introduced by Shukla and Quillen [33,37] in the case of
DG-algebras.

Let a be a small DG-category which is not necessarily k-cofibrant and let M be in
Dif(a◦⊗a). We fix a k-cofibrant resolution ā −→ a and we define the “Shukla”-complex
[37] of a as

Csh(a, M) = C(ā, M)

and as usual Csh(a) = Csh(a, a).

Proposition 2.4.1. Csh(a, M) is independent of a in D(k).

Proof. This follows from (2.5) (applied to a) together with Lemma 2.2.2 and Propo-
sition 2.3.2. The detailed proof is left to the reader. �

Proposition 2.4.1 implies that Csh(a) is well-defined in D(k) which is rather weak.
In §4.2 we will use results of Keller [19] to explain why Csh(a) is well-defined in the
homotopy category Ho(B∞) of B∞-algebras and enjoys some functoriality properties
extending the “limited functoriality” mentioned above.

2.5. Non-small categories

The definition of Csh(a, M) involves products of abelian groups which are indexed
by tuples of objects of a. This creates a minor set theoretic problem if a is not U-small.
Therefore, in such a situation we will (implicitly) select a larger universe V ⊃ U such
that a is V-small. It is clear from (2.4) that the resulting Hochschild complex is, up to
isomorphism, independent of the universe V .

Remark 2.5.1. In the situations we encounter below Csh(a, M) will always have U-
small cohomology even if a is not U-small (although this will not always be obvious).
Hence Csh(a, M) will always be U-small in a homotopy theoretic sense.

3. Hochschild cohomology and deformation theory of abelian categories

If u is a small linear category then Mod(u) = Add(u
op

, Mod(k)) is the category of
right u-modules.1

1 In [30] Mod(u) was used to denote the category of left u-modules. The category of right u-modules
was denoted by Pr(u).
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Assume that A is a small k-linear abelian category and let M be an object in
Mod(Aop ⊗A). The category C = IndA is the formal closure of A under filtered small
colimits. We extend M to an object M̃ in Mod(Cop ⊗ C) by

M̃(colimi∈IAi, colimj∈J Bj ) = limi∈I colimj∈J M(Ai, Bj ).

It is well known that C is a Grothendieck category and in particular it has enough
injectives. Let i = Inj(C) be the category of injectives of C. We restrict M̃ to an
i-bimodule M and we define the Hochschild complex of M as

Cab(A, M) = Csh(i, M) (3.1)

and Cab(A) = Cab(A, A) (note that i is not U-small!) Definition (3.1) is motivated
by the deformation theory of abelian categories which was introduced in [30]. For the
convenience of the reader we now sketch this theory in order to show its relation to
(3.1).

Below we assume that k is coherent. The coherentness assumption is necessary in
deformation theory for technical reasons (see [30]) but it is not necessary for the
definition of the Hochschild complex (3.1).

To start we need a notion of flatness. We say that A is flat if the injectives in
C are k-flat in Cop

. We refer to [30, §3] for several equivalent (but more technical)
characterizations of flatness which are intrinsic in terms of A (in particular from one
of those characterizations it follows that flatness is self dual). Below we assume that
A is flat.

Let Rng0 be the category whose objects are coherent rings and whose morphisms are
surjective maps with finitely generated nilpotent kernel and let � : l −→ k be an object
in Rng0/k. A flat l-deformation of A is an l-linear flat abelian category B together
with an equivalence Bk�A. Here Bk is the full-subcategory of B whose objects are
annihilated by ker�.

Let DefA(l) be the groupoid whose objects are the flat l-deformations of A and
whose morphisms are the equivalences of deformations (in an obvious sense) up to
natural isomorphism. Let Gd denote the category of groupoids. The following result
shows that Hochschild cohomology describes the obstruction theory for the functor

DefA : Rng0/k −→ Gd.

Theorem 3.1. Let � : l′ −→ l be a map in Rng0/k such that I = ker� is annihilated
by ker(l′ −→ k). Let B ∈ DefA(l) and let DefA(�)−1(B) be the groupoid whose
objects are flat l′-deformations of B.

(1) There is an obstruction o(B) ∈ HC3
ab(A, I ⊗ A) such that Ob(DefA(�)−1(B)) �=

� ⇐⇒ o(B) = 0
(2) If o(B) = 0 then Sk(DefA(�)−1(B)) is an affine space over HC2

ab(A, I ⊗A)
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We now sketch the proof of this theorem. The proof will be complete in the case
where k is a field (and this is already sufficient motivation for (3.1)). In the general
case the proof depends on some results concerning the deformation theory of DG-
categories which are well known to experts but which do not seem to have appeared
in the literature yet. We refer to [12,27].

Assume that u is a k-linear category. We say that u is flat if all Hom-sets of u are k-
flat. Assume that u is flat. A flat l-deformation of u is a flat l-linear category v together
with an equivalence v⊗l k�u where v⊗l k is obtained by tensoring the Hom-sets of v
with k. As above the morphisms between deformations are equivalences, up to natural
isomorphism. The corresponding groupoid is denoted by defu(l). The groupoid defs

u(l)

of strict deformations of u is defined similarly except that we replace “equivalence”
by “isomorphism” everywhere.

We recall the following:

Proposition 3.2 (Lowen and Van den Bergh [30, Theorem B.4]). The natural functor
defs

u(l) −→ defu(l) defines a bijection between the corresponding skeletons.

As above let i be the category of injectives in C. The following is one of the main
results of [30]:

Theorem 3.3 (Lowen and Van den Bergh [30, Theorems 8.8, and 8.17]). The category
i is flat as linear category and there is an equivalence of categories between DefA(l)

and def i(l).

It follows that the deformation theory of abelian categories reduces to the deformation
theory of linear categories.

Let u be a flat k-linear category as above. If k is a field then it is well known
that (as in the algebra case) the strict deformation theory of u is controlled by the
Hochschild cohomology of u. Let � : l′ −→ l be a map in Rng0/k such that I =
ker � is annihilated by ker(l′ −→ k) and let v be a flat l-deformation of u. Then it
follows from Proposition 3.2 (replacing k by l and l by l′) that there is a bijection
Sk(defs

u(�)−1(v))�Sk(defu(�)−1(v)). Hence the non-strict deformation theory of u
is controlled by Hochschild cohomology as well and this then leads to a proof of
Theorem 3.1.

If k is not a field then there is a technical difficulty in the sense that when the Hom-
sets of u are not projective over k, the naive Hochschild cohomology of u, HC∗(u, I⊗u)
does not lead to the correct obstruction theory for the deformations of u. This problem
is rather serious since the linear category i = Inj(C) will have flat, but not in general
projective Hom-sets.

Nevertheless it is true that the deformation theory of u is controled by HC∗sh(u)

[27]. To prove this one replaces u by an appropriate semi-free resolution [10, Lemma
13.5] ū and one studies the deformations of ū in the homotopy category of DG-categ-
ories which turns out to be controlled by the homology of Der(ū, I ⊗ ū) in degree 1
and 2.
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There is an exact triangle

Der(u, I ⊗ ū)[−1] −→ C(u, I ⊗ u) −→ I ⊗ u −→

and therefore in degrees �2, C(u, I⊗u) and Der(u, I⊗ū)[−1] have the same homology
which finishes the proof.

Remark 3.4. If u is flat and M is a u-bimodule then it is not hard to see that there is
a quasi-isomorphism in D(k)

Csh(u, M) = RHomuop⊗u(u, M).

This “more elementary” interpretation of Shukla cohomology does not seem to be
useful for deformation theory however.

Remark 3.5. If k is a field of characteristic zero then it follows from Proposition 3.2
and Theorem 3.3 that there is a bijection between Sk(DefA(l)) and the solutions of the
Maurer–Cartan equation in Cab(A)[1] with coefficients in ker(l −→ k), modulo gauge
equivalence [23]. Hence Cab(A)[1] is the DG-Lie algebra controling the deformation
theory of A.

Remark 3.6. Assume that k is a field. If dim HC2
ab(A) < ∞ then A has a (formal)

versal deformation [2,38, Chapter 6]. Or in equivalent terms: the functor

Sk(DefA(−)) : Rng0/k −→ Set

has a hull [36]. I.e. there is a noetherian local ring (R, m) with residue field k together
with compatible flat deformations An of A over R/mn such that the formal object
limnAn in DefA(R) satisfies the versality condition. Using the existence criterion in
[36] this can be shown by translation to the linear case using Proposition 3.2 and
Theorem 3.3.

Of course one actually wants an R-linear abelian category Ã representing the formal
object limnAn. This is possible under certain conditions. See [28].

Remark 3.7. In the rest of this paper we restrict ourselves to the study of Cab(A)

as this is the most interesting case. And in any case this is sufficient for deformation
theory in case k is a field.

4. More background on Hochschild cohomology of DG-categories

As we have seen the Hochschild cohomology of an abelian category is basically
the Hochschild cohomology of a suitable DG-category. So we need techniques for
computing the Hochschild cohomology of DG-categories. A powerful tool in this respect
was provided by Keller [19].
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4.1. Keller’s results

All results in this section are due to Keller. See [19]. Suppose we have small k-
cofibrant DG-categories a and b and suppose that X is a cofibrant a

op⊗b-module. Then
by functoriality, we get a map of a−a-bimodules

� : a −→ Homb(X, X) = RHomb(X, X)

and an induced map

�∗ : C(a) −→ C(a, Homb(X, X)).

Similarly,

� : b −→ Homaop (X, X) = RHomaop (X, X)

induces

�∗ : C(b) −→ C(b, Homaop (X, X)).

Below, in case X is variable, we will adorn � and � by a subscript X.
Let c be the DG-category such that

Ob(c) = Ob(a)
∐

Ob(b)

and such that

c(U, V ) =

⎧⎪⎪⎨
⎪⎪⎩

a(U, V ) if U, V ∈ a,
b(U, V ) if U, V ∈ b,
X(U, V ) if U ∈ b, V ∈ a,
0 otherwise.

Below we will sometimes use the notation (a
X←− b) for the category c and we refer

to c as an “arrow category”.
Consider the canonical inclusions ia : a −→ c and ib : b −→ c.

Theorem 4.1.1 (Keller [19, §4.4, 4.5]). (1) There is a quasi-isomorphism C(a,

RHomb(X, X))�C(b, RHomaop (X, X)).
(2) If �∗ is a quasi-isomorphism, i∗

b
: C(c) −→ C(b) is a quasi-isomorphism of

B∞-algebras.
(3) If �∗ is a quasi-isomorphism, i∗a : C(c) −→ C(a) is a quasi-isomorphism of

B∞-algebras.
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So in particular if �∗ is a quasi-isomorphism then we have an induced map in
Ho(B∞)

�X : C(b) −→ C(a)

given by i∗a(i∗b)
−1. If �∗ is a quasi-isomorphism then �X is an isomorphism.

Theorem 4.1.2 (Keller [19]). (1) �X depends only on the isomorphism class of X in
D(a

op ⊗ b).
(2) If j : a −→ b is fully faithful and X is given by X(B, A) = a(B, j (A)) then � is

a quasi-isomorphism and �X = j∗ in Ho(B∞).

Proof. (1) is proved as [19, Theorem 4.6a]. (2) is [19, Theorem 4.6c]. �

Theorem 4.1.3 (Keller [19, Theorem 4.6b]). If −⊗aX induces a fully faithful functor
D(a) −→ D(b) then � is a quasi-isomorphism and hence there is a well defined asso-
ciated “restriction” morphism �X : C(b) −→ C(a). If −⊗a X induces an equivalence
then �X is an isomorphism.

There is also a transitivity result for the maps �X.

Theorem 4.1.4 (Keller [19]). Let X be a cofibrant a
op ⊗ b-module such that (�X)∗ is

a quasi-isomorphism and let Y be a cofibrant b
op ⊗ c-module inducing a fully faithful

functor D(b) −→ D(c). Then (�X⊗bY )∗ is an isomorphism and �X⊗bY = �Y ◦ �X.

Proof. This is proved as [19, Theorem 4.6d]. �

Remark 4.1.5. If j : a −→ b is fully faithful then instead of the a − b-module X
defined in Theorem 4.1.2 it is just as natural to use the b − a bimodule Y defined
by Y (A, B) = Homb(j (A), B). One may dualize all arguments for this bimodule. The

relevant arrow category is now c′ = (b
Y←− a) where the arrow is just the inclusion.

It turns out that now �Y is a quasi-isomorphism. Thus we obtain a morphism in
Ho(B∞) given by i∗

b
(i∗a)−1. Dualizing the proof of Theorem 4.1.2.2 above we still find

i∗
b
(i∗a)−1 = j∗ in Ho(B∞). Hence the “bimodule interpretation” of limited functoriality

is unambigous.

4.2. The functoriality of the Shukla complex

Now we do not assume that our DG-categories are k-cofibrant. Using the results
in §4.1 we can explain why the Shukla complex is well-defined and functorial. More
precisely we show that Csh(−) : a −→ Csh(a) defines a contravariant functor on a
suitable category of small DG-categories with values in Ho(B∞).

Let F be the category whose objects are small DG-categories. If a, b ∈ Ob(F) then
F(a, b) is defined as the set of equivalence classes of triples (ā, X, b̄) where ā −→ a,
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b̄ −→ b are k-cofibrant resolutions and X is a cofibrant ā
op⊗ b̄-module such that −⊗āX

induces a fully faithful functor D(a)�D(ā) −→ D(b̄)�D(b). Two triples (ā, X, b̄),
(ā′, X′, b̄′) are equivalent if X and X′ correspond under the canonical equivalence
between D(ā

op ⊗ b̄) and D(ā′op ⊗ b̄′).
If ā −→ a, ā′ −→ a are k-cofibrant resolutions then we define Cāā′ to be a cofibrant

ā
op⊗k ā

′ resolution of a considered as ā
op−ā′-bimodule. (ā, Cāā′ , ā

′) defines a canonical
equivalence class of objects in F(a, a) which we denote by ida since Cāā′ induces the
identity on D(a).

Composition of triples is defined as

(ā, X, b̄) ◦ (b̄
′
, Y, c̄) = (ā, X ⊗b̄ C

b̄b̄
′ ⊗

b̄
′ Y, c̄).

It is easy to see that this is compatible with equivalence. Furthermore the maps idx for
x ∈ Ob(F) behave as identities for this composition.

Now for every a ∈ Ob(F) fix a k-cofibrant resolution ā and define Csh(a) = C(ā).
We will make Csh(−) into a functor on F . Assume we have a triple (ā′, X′, b̄′). Then
we have an equivalent triple of the form (ā, X, b̄), with X = Cāā′ ⊗ā′ X′ ⊗b̄′ Cb̄′b̄. To

the triple (ā′, X′, b̄′) we now associate the map �X : C(ā) −→ C(b̄). Using Theorems
4.1.2, 4.1.4 it is easy to see that the assignment (ā′, X′, b̄′) 
→ �X is compatible with
equivalence, compositions and sends ida to the identity. In this way we have reached
our goal of making Csh(−) into a functor.

Remark 4.2.1. The functor Csh(−) inverts quasi-equivalences. This follows from the
corresponding result in the k-cofibrant case (see Theorem 4.1.3).

Remark 4.2.2. If we choose another system of resolutions q : ā′ −→ a then we have
a canonical isomorphism C(ā) −→ C(ā′) induced by Cāā′ which defines a natural
isomorphism between the functors a 
−→ C(ā) and a 
−→ C(ā′). So the functor Csh(−)

is well defined up to a canonical natural isomorphism.

Remark 4.2.3. If j : a −→ b is a fully faithful functor and if b̄ −→ b is a k-cofibrant
resolution of b then we may restrict this resolution to a k-cofibrant resolution of a. So
j extends to a fully faithful functor j̄ : ā −→ b̄. Thus j̄ defines a morphism of Shukla
complexes

Csh(b) −→ Csh(a)

which we will denote by j∗. This notation is natural by Remark 4.1.5.

4.3. The “Cosmic Censorship” principle

Assume that a and b are small k-cofibrant DG-categories. It follows from Theorem
4.1.1 that C(a)�C(b) in Ho(B∞) if � and � are quasi-isomorphims (and indeed this
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is the way the result is explicitly stated in [19]). � and � being quasi-isomorphisms is
equivalent to

�(A, A′) : a(A, A′) −→ RHomb(X(−, A), X(−, A′)),

�(B, B ′) : b(B, B ′) −→ RHomaop (X(B ′,−), X(B,−))

being quasi-isomorphisms for all A, A′ ∈ Ob(a) and B, B ′ ∈ Ob(b).
The extra generality of Theorem 4.1.1 will be essential for us when we study ringed

spaces, for it turns out that sometimes �∗ or �∗ are quasi-isomorphisms when this is
not necessarily the case for � or �.

In the application to ringed spaces Ob(a) will be equipped with a non-trivial transitive
relation R such that a(A, A′) = 0 if (A, A′) /∈ R. We will call such R a censoring
relation. Note that any a has a trivial censoring relation given by R = Ob(a)×Ob(a).
We have the following result:

Proposition 4.3.1. Assume that a has a censoring relation R and let M be an a−a-
bimodule. Define M0 by

M0(A, A′) =
{

M(A, A′) if (A, A′) ∈ R,

0 otherwise.

Then M0 is a subbimodule of M and furthermore

C(a, M) = C(a, M0). (4.1)

Proof. That M0 is a submodule is clear. The equality C(a, M) = C(a, M0) follows
immediately from the definition of the Hochschild complex. �

Proposition 4.3.2. Assume that a has a censoring relation R and

�(A, A′) : a(A, A′) −→ RHomb(X(−, A), X(−, A′))

is an isomorphism for all (A, A′) ∈ R. Then �∗ is a quasi-isomorphism.

So in a sense the zero Hom-sets in a censor possible “bad parts” of RHomb(X, X).
See Remark 7.3.2 below for an application of this principle.

Proof of Proposition 4.3.2. Our hypotheses imply that � factors as

a(A, A′) −→ Homb(X, X)0 −→ Homb(X, X)
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and the first map is quasi-isomorphism. Hence �∗ factors as a composition of a quasi-
isomorphism and an isomorphism

C(a(A, A′)) −→ C(a, Homb(X, X)0) −→ C(a, Homb(X, X))

finishing the proof. �

Now assume that a and b be are arbitrary small (not necessarily k-cofibrant) DG-
categories which are equipped with (possibly trivial) censoring relations R and L and
let X be an object in Dif(a

op ⊗ b). We will use the following criterion to compare the
Shukla complexes of a and b.

Proposition 4.3.3. Assume that the compositions

�A,A′ :a(A,A′)−→Homb(X(−,A),X(−,A′)) can−→RHomb(X(−,A),X(−,A′)),

�B,B′ :b(B,B ′)−→Hom
a
op (X(B ′,−),X(B,−))

can−→RHom
a
op (X(B ′,−),X(B,−)), (4.2)

are quasi-isomorphisms for all (A, A′) ∈ R and (B, B ′) ∈ L. Then Csh(a)�Csh(b) in
Ho(B∞).

Proof. Let ā −→ a and b̄ −→ b be k-cofibrant resolutions. By replacing ā and b̄ by ā0
and b̄0, respectively, we may and we will assume that R and L are censoring relations
for ā and b̄.

Now let X̄ −→ X be a cofibrant resolution of X in Dif(a
op ⊗ b). We may apply

Theorem 4.1.1 and Proposition 4.3.2 to the triple (a, X, b). Thus we need to check
that the appropriate �(A, A′) and �(B, B ′) are quasi-isomorphisms.

For A, A′ ∈ Ob(a) we have a commutative diagram in D(k)

a(A, A′)
�(A,A′)

��

�
��

Hom
b
(X̄(−, A), X̄(−, A′))

�

a(A, A′)
�A,A′

�� RHomb(X(−, A), X(−, A′))

in which the quasi-isomorphism to the right is justified by Lemma 2.2.2. Hence �(A, A′)
is a quasi-isomorphism if this is true for the corresponding map in (4.2). A similar
observation holds for �(B, B ′). This finishes the proof. �

We sometimes use the following compact criterion to see if a fully faithful map
induces an isomorphism on Shukla cohomology.
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Proposition 4.3.4. Let j : a −→ b be fully faithful and assume that b has a (possibly
trivial) censoring relation L such that for all (B, B ′) ∈ L the canonical maps given
by functoriality

b(B, B ′) −→ RHomaop (Homb(B
′, j (−)), Homb(B, j (−)))

are isomorphisms. Then j∗ : Csh(a) −→ Csh(b) is an isomorphism in Ho(B∞).

Proof. As in Remark 4.2.3 we may lift j : a−→ b to a fully faithfully map j̄ : ā−→ b̄

between k-cofibrant resolutions of a and b. Let X̄ be a ā − b̄-bimodule which is a
cofibrant resolution of the bimodule given by X(B, A) = Homb(A, j (B)). Then by
Theorem 4.1.2 �X̄ = j̄∗ and � is a quasi-isomorphism. So we have to check that
�∗ is a quasi-isomorphism. As in the proof of Proposition 4.3.3 we may do this by
checking that the �B,B ′ are quasi-isomorphisms for (B, B ′) ∈ L. But this is precisely
the assertion of the current proposition. �

In other words (for the previous proposition to apply) the contravariant representable
functors corresponding to objects in b should have the same RHom’s as their restrictions
to a. Note that Proposition 4.3.4 has a dual version using contravariant representable
functors which we will also use below.

Convention. Below, unless otherwise specified, if we write C1�C2 for B∞-algebras
C1 and C2 we mean that C1 and C2 are isomorphic in Ho(B∞).

4.4. DG-categories of cofibrant objects

In this section we give an easy but rather spectacular application of Proposition 4.3.4.
A weak version of it will be used afterwards to compare the Hochschild cohomology
of an abelian category and its bounded derived category (viewed as a DG-category).

Let a be a small DG-category and let

a −→ Dif(a) : a −→ a(−, A)

be the Yoneda embedding. We have the following:

Theorem 4.4.1. Let b be any DG-subcategory of Dif(a) which consists of cofibrant
objects and which contains a. Then the restriction map Csh(b) −→ Csh(a) is a quasi-
isomorphism.

Proof. Let j : a −→ b be the inclusion functor. By the dual version of Proposition
4.3.4 we need to prove

RHoma(b(j (−), B), b(j (−), B ′)) = b(B, B ′) = Homa(B, B ′) (4.3)
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for B, B ′ ∈ b. Since b(j (−), B) = Homa(j (−), B) = B for B ∈ b (recall Dif(a) =
DGFun(a

op
, C(k))), (4.3) follows from the fact that B is cofibrant. �

4.5. Hochschild cohomology as a derived center

It is well known that the Hochschild cohomology of a ring may be regarded as a
kind of non-additive derived version of the center. In this section we show that this
generalizes trivially to Shukla cohomology of DG-categories. That is, we will construct
for a small DG-category a a canonically defined map

�a : HC∗sh(a) −→ Z(H ∗(a)),

where Z(H ∗(a)) is the center of the graded category H ∗(a).
Assume that u is a small k-linear Z-graded category. The center Z(u) of u is by

definition the ring of graded endomorphisms of the identity functor on u. More con-
cretely the center of u is a graded ring whose homogeneous elements consist of tuples
of homogeneous elements (�U)U ∈ ∏

U∈u u(U, U) such that for any homogeneous
f ∈ u(U, V ) one has f �U = (−1)|f ||�U |�V f . In particular Z(u) is (super) commuta-
tive.

Assume that a is a k-cofibrant DG-category. Let

�a : C(a) −→
∏
A∈a

a(A, A)

be the map associated to the morphism of double complexes which sends D(a) to its
first column. An easy computation with the explicit formulas for the cup product [16]

shows that �a
def= H ∗(�a) is a graded ring map which maps HC∗(a) to the center of

H ∗(a).
Now let a be an arbitrary small DG-category and let ā −→ a be a k-cofibrant

resolution of a. We define �̄ā : HC∗sh(a) −→ Z(H ∗(a)) as the composition

Csh(a) = C(ā)
�ā−→Z(H ∗(ā))�Z(H ∗(a))).

Let ā′ −→ a be another k-cofibrant resolution of a and let Cāā′ be as in §4.2. Let

c̄ = (ā
Cāā′←− ā′). Then

H ∗(c̄) = (H ∗(ā)
H ∗(Cāā′ )←− H ∗(ā′)).

Now by construction we have canonical compatible isomorphisms H ∗(ā)�H ∗(a),
H ∗(ā′)�H ∗(a), and H ∗(Cāā′)�H ∗(a). Put c = (a

a←− a).
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We then have the following commutative diagram:

Z(H ∗(a)) ←−−−− Z(H ∗(c)) −−−−→ Z(H ∗(a))∥∥∥
∥∥∥

∥∥∥
Z(H ∗(ā)) ←−−−− Z(H ∗(c̄)) −−−−→ Z(H ∗(ā′))

�ā

�⏐⏐ �c̄

�⏐⏐ �ā′
�⏐⏐

HC∗(ā) ←−−−−
�

HC∗(c̄) −−−−→
�

HC∗(ā′)

Using the definition of c it is trivial to see that the topmost horizontal arrows are
isomorphisms and compose to the identity isomorphism Z(H ∗(a)) −→ Z(H ∗(a)). In
this way we obtain a commutative diagram

Z(H ∗(a)) Z(H ∗(a))

�̄a

�⏐⏐ �⏐⏐�̄a′

HC∗(ā) −−−−→
�

HC∗(ā′)
(4.4)

where the bottom horizontal arrow is coming from the canonical Ho(B∞) isomorphism
between C∗(ā) and C∗(ā′). We now put �a = �ā. Diagram (4.4) shows that �a is
indeed well-defined in the appropriate sense.

5. Grothendieck categories

It follows from definition (3.1) that we need to be able to understand the Hochschild
cohomology of the category of injectives in a Grothendieck category. In this section
we will prove the relevant technical results.

5.1. A model structure

We assume throughout that C is a k-linear Grothendieck category and as usual C(C)

denotes the category of complexes over C. In this section we construct a generalization
of the usual injective model structure on C(C) [1,6,11]. It is used for some of the
proofs below, but not for the statement of the results.

For a small k-DG-category a consider the category Dif(a, C) = DGFun(a
op

, C(C)).

Proposition 5.1. (1) Dif(a, C) has the structure of a model category in which the
weak equivalences are the pointwise quasi-isomorphisms and the cofibrations are the
pointwise monomorphisms.

(2) Suppose a is k-cofibrant. If F ∈ Dif(a, C) is fibrant, then so is every F(A) in
C(C).
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If a = k then we obtain the usual injective model structure on C(C). A very efficient
proof for the existence of the latter has been given in [6] by Beke. Our proof of
Proposition 5.1 is based on the following result which is an abstraction of the method
used for C(C) by Beke.

Proposition 5.2 (Beke [6]). Let (H i)i∈Z : A −→ B be additive functors between
Grothendieck categories such that

(1) Hi preserves filtered colimits;
(2) (H i)i is effaceable (i.e. every A ∈ A admits a mono m : A −→ A′ with Hi(m) = 0

for every i ∈ Z, or, equivalently, Hi(Inj(A)) = 0 for every i ∈ Z);
(3) (H i)i is cohomological (i.e. for every short exact 0 −→ A′ −→ A −→ A′′ −→ 0 is

A there is a long exact . . . −→ Hi(A′) −→ Hi(A) −→ Hi(A′′) −→ Hi+1(A′) −→
. . . in B)

Let isoB be the class of isomorphisms in B and monoA the class of monomorphisms
in A. There is a model structure on A such that

(1) monoA is the class of cofibrations;
(2) ∩i∈Z(H i)−1(isoB) is the class of weak equivalences.

Proof. Our notations in this proof are the ones used in [6]. We use [6, Theorem 1.7]
which is attributed to Jeffrey Smith. By Beke [6, Proposition 1.12], monoA = cof(I )

for some set I ⊂ monoA. We check the hypotheses for theorem [6, Theorem 1.7] with
W = ∩i∈Z(H i)−1(isoB). (c0) and (c3) are automatic (using [6, Proposition 1.18]). For
(c2), we are to show that inj(monoA) ⊂ W . So consider f : X −→ Y in inj(monoA).
It is easily seen using the lifting property of f that f is a split epimorphism with an
injective kernel K. The result follows from the long exact sequence associated to 0 −→
K −→ X −→ Y −→ 0 in which each Hi(K) = 0. For (c2), monoA∩∩i∈Z(H i)−1(isoB)

is easily seen to be closed under pushouts using the long exact sequence, and under
transfinite composition using that filtered colimits are exact in A and that Hi preserves
them. �

Proof. [Proof of Proposition 5.1] The forgetful functor

Dif(a, C(C)) −→ C(C) : F 
−→ F(A)

has a left adjoint

LA : C(C) −→ Dif(a, C(C)) : C 
−→ (A′ 
−→ a(A, A′)⊗k C).

Since every a(A, A′) has projective components, LA preserves monomorphisms. Since
a(A, A′)⊗− preserves acyclic complexes LA preserves weak equivalences and hence
LA preserves trivial cofibrations. It now easily follows that if F has the lifting property
with respect to trivial cofibrations then so does every F(A).
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Hence (2) follows if we prove (1). For (1), we use Proposition 5.2 for

Hi : Dif(a, C(C)) −→ C|a| : M 
−→ (H iM(A))A.

To see that (H i)i is effaceable, we can take for A ∈ Dif(a, C) the monomorphism
A −→ cone(1A). �

5.2. The derived Gabriel–Popescu theorem

The results in this section are probably well known but we have not been able to
locate a reference.

Let j : u −→ C be a k-linear functor from a small k-linear category inducing a
localization

c : C −→ Mod(u) : C 
−→ C(j (−), C). (5.1)

By this we mean that c is fully faithful and has an exact left adjoint. By the Gabriel–
Popescu theorem [32] c is a localization if j is fully faithful and generating. However
in our applications to ringed spaces j will not be fully faithful. Necessary and sufficient
conditions for c to be a localization were given in [29].

We start with the following easy result:

Theorem 5.2.1. The functor

D(C) −→ D(u)

which sends a fibrant object A ∈ C(C) to HomC(j (−), A) preserves RHom.

Proof. We need to prove that for fibrant A, B we have a quasi-isomorphism

HomC(A, B) = RHomu(HomC(j (−), A), HomC(j (−), B)).

Since c is fully faithful we have

HomC(A, B) = Homu(HomC(j (−), A), HomC(j (−), B)).

And since c has an exact left adjoint we easily deduce that Homu(−, HomC(j (−), B))

preserves acyclic complexes. Thus

Homu(HomC(j (−), A), HomC(j (−), B)) = RHomu(HomC(j (−), A),

HomC(j (−), B)).

This finishes the proof. �
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Now we discuss a more sophisticated derived version of the Gabriel–Popescu theo-
rem. Let l : f −→ C(C) be any fully faithful DG-functor such that:

(1) l(f) consists of fibrant complexes;
(2) every object in j (u) is quasi-isomorphic to an object in l(f);
(3) the only cohomology of an object in l(f) is in degree zero and lies in j (u).

For example f could consist of injective resolutions for the objects j (U).

Theorem 5.2.2. The functor

D(C) −→ D(f)

which sends a fibrant object A ∈ C(C) to HomC(l(−), A) preserves RHom.

The rest of this section will be devoted to the proof of this theorem. Along the way
we introduce some notations which will also be used afterwards.

To start we note the following:

Lemma 5.2.3. It is sufficient to prove Theorem 5.2.2 for one particular choice of f.

Proof. Let f1 be the full DG-subcategory of C(C) of all fibrant complexes satisfying
(3). Then f −→ f1 is a quasi-equivalence, hence the corresponding functor Dif(f1) −→
Dif(f) preserves RHom (Lemma 2.2.2). Therefore, if Theorem 5.2.2 is true for one f,
it is true for f1 and then it is true for all f. �

Ideally we would want to choose f in such a way that there is a corresponding
DG-functor u −→ f. It is not clear to us that this is possible in general. However, as
we now show, it is possible after replacing u by a k-cofibrant resolution.

Let r : u −→ u be a k-cofibrant resolution of u. Let i : C −→ C(C) be the canonical
inclusion and let ijr −→ E be a fibrant resolution for the model-structure on Dif(u

op
, C)

of §5.1. By Proposition 5.1 this yields fibrant replacements ij (U) −→ E(U) natural in
U ∈ u. We define a new DG-category u with the same objects as u and

u(U, V ) = HomC(E(U), E(V )).

By construction we have the following (non-commutative) diagram of DG-functors:

u
ij−−−−→ C(C)

r

�⏐⏐ �⏐⏐E(−)

ū −−−−→
f

u

where r is a quasi-equivalence and E(−) is fully faithful.
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Proof of Theorem 5.2.2. We will prove the theorem with f = u.
Step 1: Let A ∈ C(C) be fibrant. We first claim that the canonical map

HomC(E(−), A) −→ Rf !f∗HomC(E(−), A)

is a quasi-isomorphism in Dif(u). The proof is based on the following computation for
U ∈ Ob(u):

HomC(E(U), A) � RHomu(HomC(j (−), E(U)), HomC(j (−), A))

� RHomu(HomC(jr(−), E(U)), HomC(jr(−), A))

� RHomu(u(−, U), HomC(E(−), A))

= (Rf !f∗HomC(E(−), A))(U).

The first line is Theorem 5.2.1. In the second line we use the fact that u −→ u is a
quasi-equivalence together with Lemma 2.2.2. The third line is a change of notation
and the fourth line is an easy verification.

Step 2: Now we finish the proof of the theorem. We compute for fibrant A, B ∈ C(C)

RHomu(HomC(E(−), A), HomC(E(−), B))

� RHomu(HomC(E(−), A), Rf !f∗HomC(E(−), B))

� RHomu(f∗HomC(E(−), A), f∗HomC(E(−), B))

� RHomu(HomC(j (−), A), HomC(j (−), B))

� RHomu(HomC(j (−), A), HomC(j (−), B))

= HomC(A, B),

where we have once again used Theorem 5.2.1 and the fact that u −→ u is a quasi-
equivalence. �

Remark 5.2.4. If u is already k-cofibrant then we may take ū = u. By letting E be an
injective resolution of ij we obtain injective resolutions U −→ E(U) of j (U) natural
in U.

5.3. Hochschild complexes

Let i = Inj(C) be the category of injectives in C and let l : f −→ C(C) be as in §5.2.
In this section we prove the following comparison result:

Theorem 5.3.1. There is a quasi-isomorphism Csh(i)�Csh(f).
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Corollary 5.3.2. Csh(i) has small cohomology.

Proof. It is clear that we may take f to be small. �

Proof of Theorem 5.3.1. We define the i−f-bimodule

X(U, E) = HomC(l(U), E).

By Lemma 2.2.2 and the derived Gabriel–Popescu theorem (Theorem 5.2.2)

RHomf(X(−, E), X(−, F )) � HomC(E, F )

� i(E, F ).

On the other hand,

RHomiop (X(V,−), X(U,−)) � RHomiop (C(l(V ),−), C(l(U),−))

� RHomC(l(U), l(V ))

� f(U, V ),

where the first line is a consequence of Lemma 5.3.3 below. The result now follows
from Proposition 4.3.3. �

Lemma 5.3.3. Suppose a small abelian category A has enough injectives in add(j) for
j ⊂ Inj(A) (i.e., for every object in A there is a mono into a finite sum of injectives
in j). Consider Aop −→ Mod(j) : A 
−→ A(A,−). For A, B ∈ A, we have

RHomA(A, B)�RHomjop (A(B,−), A(A,−)).

Proof. Let B −→ I · be an injective resolution of B in add(j). Then A(I ·,−) −→
A(B,−) is a resolution in Mod(j), and every object A(I i,−) = A(⊕n

k=1J
i
k ,−) =

⊕n
k=1j(J

i
k ,−) is projective. �

In the proof of Theorem 5.3.1 we have used this lemma in the case j = Inj(A). The
added generality will be used in §7.7.

5.4. A spectral sequence

We keep the same notations as in §5.2. The main theorem of this section is an
interesting spectral sequence which relates the Hochschild cohomology of u to that of
i = Inj(C).



198 W. Lowen, M. Van den Bergh / Advances in Mathematics 198 (2005) 172–221

Theorem 5.4.1. There is a convergent, first quadrant spectral sequence

E
pq

2 : HCp

sh(u, ExtqC(j (−), j (−))⇒ HCp+q

sh (i). (5.2)

The proof of Theorem 5.4.1 depends on the following technical result:

Lemma 5.4.2. There is a (non B∞-)quasi-isomorphism C(u, u)�Csh(i).

Proof. By Theorem 5.3.1 it is sufficient to construct a quasi-isomorphism C(u, u)�
Csh(u). Let v be a cofibrant resolution of u as a u−u-bimodule.

Of course

RHom
u

op (v(V ,−), v(U,−))�RHom
u

op (u(V ,−), u(U,−))�u(U, V ) (5.3)

so we compute

RHomu(v(−, U), v(−, V )) � RHomu(u(−, U), u(−, V ))

� RHomu(HomC(jr(−), E(U)), HomC(jr(−), E(V )))

� RHomu(HomC(j (−), E(U)), HomC(j (−), E(V )))

� HomC(E(U), E(V ))

� u(U, V ),

where we have use that u −→ u is a quasi-isomorphism, together with Theorem 5.2.1.
The result now follows from Theorem 4.1.1.1. �

Proof of Theorem 5.4.1. We use Lemma 5.4.2. Let ū be a semi-free [10, §13.4]
resolution of u. This is in particular a k-cofibrant resolution ū −→ u concentrated in
non-positive degree. The latter implies that the truncations 	�nu and 	�nu = u/	<nu

are ū-bimodules. Recall that the homology of u is Ext∗C(j (−), j (−)) so it lives in

non-negative degree. So up to quasi-isomorphism we may replace u by w = 	�0u. We
put the ascending filtration (	�nw)n on w. This filtration is positive since 	<0w = 0.

We claim that the obvious map

⋃
n

C(ū, 	�nw) −→ C(ū,w)

is a quasi-isomorphism. To prove this it is sufficient to show that for a fixed i the map

HCi (ū, 	�nw) −→ HCi (ū,w)
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is a quasi-isomorphism for large n. Equivalently by the long exact sequence for
Hochschild cohomology, HCi (ū, 	�nw) should be zero for large n. Now by (2.5)
we have

HCi (ū, 	�nw) = RHomū◦⊗ū(ū, 	�nw[i]).

Since a cofibrant ū
op ⊗ ū-resolution of ū may also be chosen to live in non-positive

degree it is clear that this is zero for n > i.
So the spectral sequence associated to the filtered complex

⋃
n C(ū, 	�nw) converges

to HC∗∗(i). The associated graded complex is

⊕
n

C(ū, ExtnC(j (−), j (−))[−n])

and the homology of this graded complex is

⊕
mn

HCm−n
sh (u, ExtnC(j (−), j (−))).

After the appropriate reindexing we obtain the desired result. �

5.5. Application of a censoring relation

Lemma 5.4.2 has the following useful variant:

Proposition 5.5.1. Assume that u is equipped with a (possibly trivial) censoring rela-
tion R (see §4.3) such that

ExtiC(j (U), j (V )) = 0 for i > 0 and (U, V ) ∈ R.

Then there is a quasi-isomorphism

Cab(C)�Csh(u).

Proof. We define the i−u-bimodule

X(U, E) = HomC(j (U), E).

By Theorem 5.2.1

RHomu(X(−, E), X(−, F )) � HomC(E, F )

� i(E, F ).
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On the other hand for (U, V ) ∈ R

RHomiop (X(V,−), X(U,−)) � RHomiop (C(j (V ),−), C(j (U),−))

� RHomC(j (U), j (V ))

� u(U, V ),

where the first line is a consequence of Lemma 5.3.3. The result now follows from
Proposition 4.3.3. �

6. Basic results about Hochschild cohomology of abelian categories

Let A be a small abelian category. By definition we have Cab(A) = Csh(i) with
i = Inj Ind(a) (see §3). The embedding A −→ Ind(A) satisfies the hypotheses on j
in §5 so the results of that section apply. We will now translate them to the current
setting.

The first result below relates the Hochschild cohomology of A to that of suitable
small DG-categories. Let eA be the full DG-subcategory of C(Ind(A)) spanned by all
positively graded complexes of injectives whose only cohomology is in degree zero
and lies in A and let eDb(A) be spanned by all left bounded complexes of injectives
with bounded cohomology in A. Note that for example by Lowen and Van den Bergh
[30, Proposition 2.14] we have

H 0(eDb(A))�Db(A)

so eDb(A) is a DG-enhancent for Db(A).

Theorem 6.1. There are quasi-isomorphisms

Cab(A)�Csh(
eA)�Csh(

eDb(A)).

Proof. The first quasi-isomorphism follows from Theorem 5.3.1. For the second quasi-
isomorphism put a = eA and let b be the closure of a in C(IndA)) under finite
cones and shifts. Then b −→ eDb(A) is a quasi-equivalence. Furthermore the functor
B 
−→ HomC(IndA)(−, B) defines an embedding b −→ Dif(a) whose image consists of
cofibrant objects. We may now invoke Theorem 4.4.1. �

In [19], Keller defines the Hochschild complex Cex(E) of an exact category E as
Csh(Q) for a DG-quotient Q of Acb(E) −→ Cb(E), where Cb(E) is the DG-category
of bounded complexes of E-objects and Acb(E) is its full DG-subcategory of acyclic
complexes. We endow the abelian category A with the exact structure given by all
exact sequences.



W. Lowen, M. Van den Bergh / Advances in Mathematics 198 (2005) 172–221 201

Theorem 6.2. There is a quasi-isomorphism

Cab(A)�Cex(A).

Proof. This follows from Theorem 6.1 and Lemma 6.3 below. �

Lemma 6.3. eDb(A) is a DG-quotient of Acb(A) −→ Cb(A).

Proof. We sketch the proof. Let c be the following DG-category: the objects of c
are quasi-isomorphisms f : C −→ I with C ∈ Cb(A) and I ∈ eDb(A). Morphisms
from f to g : D −→ J are maps cone(f ) −→ cone(g) with zero component I −→
D[1]. The two projections yield a diagram Cb(A)←− c −→ eDb(A), for which it is
easily seen that Cb(A) ←− c is a quasi-equivalence and c −→ eDb(A) induces the
exact sequence of associated triangulated categories H 0(Acb(A)) −→ H 0(Cb(A)) −→
Db

A(Ind(A))�Db(A). By [22,10], this proves the statement. �

Remark 6.4. Since Cex is easily seen to satisfy Cex(E)�Cex(Eop
) (in D(k)) if Eop

is
endowed with the opposite exact sequences of E , by Theorem 6.2 we have in particular
that Cab(A)�Cab(Aop

). It is a pleasant excercise to derive this result directly from our
definition.

The following result, of theoretical interest, is a restatement of a special case of the
spectral sequence (5.2). It compares the Hochschild cohomology of A as linear and as
abelian category.

Proposition 6.5. There is a convergent, first quadrant spectral sequence

E
pq

2 : HCp

sh(A, ExtqA(−,−))⇒ HCp+q

ab (A). (6.1)

Proof. We only need to remark that Yoneda-Ext computed in A and IndA is the same.
See for example [30, Proposition 2.14].

The following result shows that if A has enough injectives then there is no need to
pass to IndA.

Theorem 6.6. Assume that A has enough injectives and put i = InjA. There is a
quasi-isomorphism

Cab(A)�Csh(i).

Proof. Let k be the full DG-subcategory of C(A) spanned by all positively graded com-
plexes of i-objects whose only cohomology is in degree zero. Then the inclusion k−→eA
is a quasi-equivalence so using Theorem 6.1 it is sufficient to show that k and i have iso-
morphic Hochschild complexes. We embed k in Dif(i) via the functor E 
→HomC(−, E).



202 W. Lowen, M. Van den Bergh / Advances in Mathematics 198 (2005) 172–221

Then k is mapped to right-bounded projective complexes. Such complexes are cofibrant
and hence we may use Theorem 4.4.1 to deduce Csh(k)�Csh(i). �

The following corollary will be used in §7.7.

Corollary 6.7. Assume that A has enough injectives in add(j). There is a quasi-
isomorphism

Cab(A)�Csh(j).

Proof. Put i=Inj(A). By Lemma 5.3.3, the inclusion j−→i satisfies the hypotheses of
Proposition 4.3.4, hence Csh(i)�Csh(j). The result now follows from Theorem 6.6. �

Corollary 6.8. If A is a small abelian category then there is a quasi-isomorphism

Cab(A)�Cab(Ind(A)).

Proof. Immediate from Theorem 6.6 and the definition. �
Theorem 6.6 applies in particular if A is a Grothendieck category. So the results in

§5 (with C replaced by A) may be reinterpreted as being about the Hochschild complex
of a Grothendieck category. We mention in particular Theorem 5.3.1 and Proposition
5.5.1 which shows how to compute Cab(A) in terms of generators, Corollary 5.3.2
which shows that Cab(A) has small homology and the spectral sequence (5.2) abutting
to HC∗ab(A).

The following corollary to Proposition 5.5.1 was our original motivation for starting
this project.

Corollary 6.9. Let a be a small k-category. There is a quasi-isomorphism

Cab(Mod(a))�Csh(a).

In particular, for a k-algebra A, there is a quasi-isomorphism

Cab(Mod(A))�Csh(A).

Proof. We apply Proposition 5.5.1 with the Yoneda embedding j : a −→ Mod(a). �
The following proposition shows that HC∗ab(A) defines elements in the center of

Db(A).

Proposition 6.10. There is a homomorphism of graded rings

�A : HC∗ab(A) −→ Z(Db(A)),

where on the right-hand side we view Db(A) as a graded category in the usual way.
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Proof. Put a = eDb(A). Then by §4.5 there is a homomorphism of graded rings

�A : HC∗sh(a) −→ Z(H ∗(a)).

We define �A as the composition

HC∗ab(A)�HC∗sh(a)
�a−→Z(H ∗(a))�Z(Db(a)),

where the first isomorphism comes from Theorem 6.1. �

Remark 6.11. We may think of �A as defining “universal” elements in Ext∗A(M, M)

for every M ∈ Db(A). These universal elements are closely related to Atiyah classes
in algebraic geometry. See for example [9].

7. Hochschild cohomology for ringed spaces and schemes

7.1. Discussion and statement of the main results

Below let (X, O) be a k-linear possibly non-commutative ringed space. We define
the Hochschild complex of X as

C(X) = Cab(Mod(X)),

where Mod(X) is the category of sheaves of right modules over X. For the purpose
of clarity we will sometimes use the notation C(X, O) for C(X). Note that in the
definition of C(X) the bimodule structure of O does not enter explicitly.

As Mod(X) has enough injectives an equivalent definition (using Theorem 6.6) for
C(X) would be

C(X) = Csh(InjMod(X)).

Recall that C(X) describes the deformation theory of the abelian category Mod(X) (as
explained in §3) but not of the ringed space (X, O). This is a related but different
problem.2

We now summarize some of the results we will prove about C(X). We would like to
think of HC∗(X) as defining a (generalized) cohomology theory for ringed spaces. A
first indication for this is that C(−) is a contravariant functor on open embeddings of
ringed spaces and associated to an open covering X = U ∪V there is a corresponding

2 To obtain the correct correspondence we should deform (X, O) in the category of pre-stacks of
algebroids over X, see [24].
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Mayer–Vietoris long exact sequence (see §7.9)

· · · → HCi−1(U ∩ V )→ HCi (X)→ HCi (U)⊕HCi (V )→
HCi (U ∩ V )→ · · · . (7.1)

Let k be the constant sheaf with values in k. Our next interesting result is an isomor-
phism between Hochschild cohomology and ordinary cohomology

HC∗(X, k)�H ∗(X, k). (7.2)

In [5] Baues shows that the singular cochain complex of a topological space is a B∞-
algebra. Thus (7.2) suggests that C(X, Z) should be viewed as an algebraic analog of
the singular cochain complex of X.

Now we discuss some more specific results for Hochschild cohomology. For any
subposet U of Open(X) let u = u(U) be the linear category with Ob(u) = U and

u(U, V ) =
{ O(U) if U ⊂ V,

0 otherwise.

First assume that B is a basis of X of acyclic opens, i.e. for U ∈ B: Hi(U, OU) = 0
for i > 0. Put b = u(B). Our first result (see §7.3) is that there is a quasi-isomorphism

C(X)�Csh(b). (7.3)

In [13,15] Gerstenhaber and Schack define the k-relative Hochschild complex of a
presheaf of rings. In order to make a connection with our setting let us assume that k
is a field. Let B be an acyclic basis as above and let OB be the restriction of O to B,
considered as a presheaf of rings. It is implied in [13,15] that

CGS(OB)
def= RHomOop

B ⊗OB
(OB, OB) (7.4)

is a reasonable definition for the Hochschild complex of X. We will show that this is
true. Indeed it follows from combining (7.3) with (7.8), (7.9) below that

C(X)�CGS(OB).

Let k be general again. We now specialize to the case where X is a quasi-compact
separated scheme over k.

Let X = ∪n
i=1Ai be a finite affine open covering of X and let A be the closure of

this covering under intersections. Put a = u(A). Of course a is not a basis for X but
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nevertheless we have the following analog of (7.3) (see §7.5):

C(X)�Csh(a). (7.5)

Let Qch(X) be the category of quasi-coherent O-modules. We will prove (see § 7.7)

C(X)�Cab(Qch(X))

and if X is noetherian we even have

C(X)�Cab(coh(X)),

where coh(X) is the category of coherent O-modules.
If k is a field then in [39], Richard G. Swan defines the Hochschild complex of

(X, O) to be

CSwan(X)
def= RHomX×X(O�, O�),

where � ⊂ X ×X is the diagonal. We prove

C(X)�CSwan(X). (7.6)

This is known in the finite type case since in that case by [39, §3]

CSwan(X)�CGS(OB), (7.7)

where B is the acyclic basis of all affine opens.

7.2. Presheaves of modules over presheaves of rings

Let B be a poset and let O be a presheaf of k-algebras on B. Let Pr(O) be the
category of O-modules.

Associated to O is a small k-linear category b with Ob(b) = B and

b(U, V ) =
{ O(U) if U ⊂ V,

0 otherwise.

Proposition 7.2.1. There is a quasi-isomorphism

Cab(Pr(O))�Csh(b). (7.8)

Proof. For V ∈ B let PV = b(−, V ) be the extension by zero of O | V . The (PV )V
form a system of small projective generators for Pr(O) and b −→ Pr(O) : V 
−→ PV
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yields an equivalence of categories

Mod(b)�Pr(O).

Hence the result is just a rephrasing of Corollary 6.9. �

We now discuss the relation with the papers [13,15] by Gerstenhaber–Schack. These
authors work with relative Hochschild cohomology which makes it somewhat difficult
to translate their results to our situation. So for simplicity we assume that k is a field.
The Hochschild complex of O according to [13,15] is

CGS(O)
def= RHomOop⊗O(O, O).

Theorem 7.2.2. There is a quasi-isomorphism

Cab(Pr(O))�CGS(O). (7.9)

Proof. Let the (PV )V be as in the proof of the previous proposition and let O! be the
endomorphism algebra of the projective generator P = ∐

L PL of Pr(O). The main
result of [15] is the difficult “Special Cohomology Comparison Theorem”:

RHomOop⊗O(O, O)�RHomO!op⊗O!(O!, O!).

By Proposition 5.5.1 and (2.5) we have

RHomO!op⊗O!(O!, O!)�Cab(Pr(O)).

This finishes the proof. �

7.3. Sheaves of modules over sheaves of rings

Let (X, O) be a ringed space. We prove (7.3).

Theorem 7.3.1. Suppose B is a basis of X of acyclic opens and put b = u(B). There
is a quasi-isomorphism

C(X)�Csh(b).

Proof. Consider the composition

j : b −→ Pr(O) −→ Mod(O) : U 
−→ iU !OU ,
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where iU !OU is the sheafification of PU . Since U is a basis for the topology, j induces
a localization (see for example [29]). For U ⊂ V , we have

ExtiO(iU !OU , iV !OV ) = ExtiOU
(OU , (iV !OV )|U) = Hi(U, OU)

and hence

(1) b(U, V ) −→ Mod(O)(iU !OV , iV !OV ) is an isomorphism,
(2) ExtiO(iU !OV , iV !OV ) = 0 for i > 0.

So if we endow Ob(b) with the censoring relation

(U, V ) ∈ R ⇐⇒ U ⊂ V

we see that the result follows from Proposition 5.5.1. �

Remark 7.3.2. The use of the censoring relation R is essential in the above proof as
we have no control over ExtiO(iU !OU , iV !OV ) when U �⊂ V .

7.4. Constant sheaves

In this section we prove (7.2). I.e. for a topological space X there is an isomorphism
HC∗(X, k)�H ∗(X, k). The proof is basically a concatenation of some standard facts
about cohomology of presheaves and sheaves.

If C is a small category and F is a presheaf of k-modules on C then the (presheaf!)
cohomology H ∗(C, F ) of F is defined as the evaluation at F of the right-derived functor
R∗lim of the inverse limit functor over Cop

. It is well known that H ∗(C, F ) can be
computed with simplicial methods [25,34,35]. To be more precise put

Fn =
∏

Ci0

fi1−→··· fin−→Cin

F (Ci0),

where, as the notation indicates, the product runs over all n-tuples of composable
morphisms. Then F • = (F n)n is a cosimplicial k-module and H ∗(C, F ) is the homology
of the associated standard complex

0 −→ F 0 −→ F 1 −→ F 2 · · · ,

where the differentials are the usual alternating sign linear combinations of the boundary
maps in F •.

Now let kC be the k-linear category with the same objects as C and Hom-sets
given by

(kC)(C, D) = k⊕C(C,D).
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It is clear that C 
→ kC is the left adjoint to the forgetful functor from k-linear categories
to arbitrary categories. The formula for Fn may be rewritten as

Fn =
∏

Homk((kC)(Cin, Cin+1)⊗k · · · ⊗k (kC)(Ci0 , Ci1), F (Ci0)),

where now the product runs over n+ 1 tuples of objects in C.
To simplify even further assume that C is a poset. We make F into a kC − kC

bimodule in the following way:

F(C, D) = F(C).

The dependence of F(C, D) on D is as follows: if f : D −→ D′ is a map in C
and 
 ∈ k then 
f is the map from F(C, D) = F(C) to F(C, D′) = F(C) given by
multiplication by 
. With this definition we may rewrite Fn once again as

Fn = Cn(kC, F ).

Now let X be a topological space and put C = Open(X), ordered by inclusion. In
addition put c = kC. Let kp be the constant presheaf on X with values in k and
let O = k be its sheafification. We put Mod(X) for Mod(X, O) = Mod(X, kp), and
similarly Pr(X) = Pr(X, kp). Let � : Mod(X) −→ Pr(X) be the inclusion functor.

Convention. To avoid some confusing notations in this section, the sections of a
(pre)sheaf G on an open U will always be denoted by �(U, G) and not by G(U).

If F ∈ Pr(X) then we have

RlimCop (F) = limCop (F) = �(X, F)

since Cop = Open(X)
op

has an initial object X. Applying this to an injective resolution
0 −→ G −→ I · of an object G in Mod(X) we find

R�(X, G) = �(X, I ·) = �(X, �I ·) = Rlim(�I ·)

and hence

H ∗(X, G) = H ∗(C(c, I ·)),

where we have suppressed the �. We will construct an isomorphism

H ∗(C(c, I ·))�H ∗(Cab(Mod(X))) (7.10)

for a specific choice of I ·.
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Since Mod(c)� Pr(X), the functor

j : c −→ Mod(X) : U 
→ iU !OU

defines a localization and hence the results from §5.1 apply. For U ∈ Ob(c) we choose
functorial injective resolutions U 
→ E(U) of iU !OU as in Remark 5.2.4.

For U, V ∈ C put

¯̄c(U, V ) = HomMod(X)(E(U), E(V )).

According to Lemma 5.4.2 we have

Cab(Mod(X)) = C(c, ¯̄c).

We prove the isomorphism (7.10) for I · = E(X). To this end it is sufficient by Propo-
sition 4.3.1 to construct a quasi-isomorphism between the complexes of c-bimodules
E(X)0 and ¯̄c0. I.e. for U ⊂ V we must construct quasi-isomorphisms between E(X)

(U, V ) and ¯̄c(U, V ) which are natural in U, V . Recall that in the current setting

E(X)(U, V ) = �(U, E(X)).

We have quasi-isomorphisms

¯̄c(U, V ) = HomX(E(U), E(V ))
�−→HomX(iU !OU , E (V ))

�−→

�(U, E(V ))
�−→�(U, E(X)).

The last arrow is obtained from the map E(V ) −→ E(X) which comes from the map
V −→ X by functoriality. To see that it is a quasi-isomorphism note that iV !(OV ) |
U�O | U implies that E(V ) | U −→ E(X) | U is a quasi-isomorphism. Since
E(V ) | U and E(X) | U consist of injectives we obtain indeed a quasi-isomorphism
between �(U, E(V )) and �(U, E(X)).

7.5. Sheaves of modules over a quasi-compact, separated scheme

In this section we prove (7.5). Let X be a quasi-compact separated scheme and
let X = ⋃n

i=1 Ai be a finite affine covering of X. For J ⊂ I = {1, 2, . . . , n}, put
AJ =⋂

i∈J Ai . Each AJ is affine since X is separated. Put A = {AJ |� �= J ⊂ I }.

Theorem 7.5.1. There is a quasi-isomorphism

C(X)�Csh(u(A)).
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Proof. Let X be the collection of all open subsets in X and fix once and for all
a k-cofibrant resolution u(X ) −→ u(X ) with u(X )(U, V ) = 0 if U is not in V (recall
that we can achieve this by replacing an arbitrary k-cofibrant resolution u(X ) by
u(X )0).

All resolutions will be chosen to be restrictions of u(X ) −→ u(X ). If C, D are
collections of opens and c is the k-cofibrant category corresponding to C, cD contains
the opens U ∈ C with U ⊂ D for some D ∈ D, and cD = c{D}. We write C�D (or
c�D) if for every C ∈ C, there is a D ∈ D with C ⊂ D.

Let B be a basis of affine opens and A′ a collection of affine opens with A ⊂ A′ ⊂ B.
Let a, a′ and b denote the corresponding k-cofibrant categories. We will prove that the
induced map C(b) −→ C(a′A) is a quasi-isomorphism. Taking A′ = A, the result then
follows from Theorem 7.3.1. The proof goes by induction on the number n of affine
opens in the covering used to produce A.

For n = 1, the statement follows from the Lemma 7.5.2 below. For arbitrary n, put
E = {Ai}ni=2 and F = {A1∩Ai}ni=2. For any c�A, we get an exact sequence of double
complexes (cf. §2.4)

0 −→ D(c) −→ D(cA1)⊕ D(cE ) −→ D(cF ) −→ 0

since c(Cp−1, Cp) ⊗ · · · ⊗ c(C0, C1) can be different from zero only if C0 ⊂ C1 ⊂
· · · ⊂ Cp−1 ⊂ Cp. Applying this with c = b, a′, we obtain a commutative
diagram:

0 �� C(bA) ��

��

C(bA1)⊕ C(bE ) ��

��

C(bF ) ��

��

0

0 �� C(a′A) �� C(a′A1
)⊕ C(a′E ) �� C(a′F ) �� 0

It suffices to prove that the arrow to the left is a quasi-isomorphism. This follows from
the induction hypothesis applied to the three maps to the right. �

Lemma 7.5.2. Suppose X is affine and let C be a collection of affine subsets with
X ∈ C. Then u({X}) −→ u(C) induces a quasi-isomorphism C(u(C)) −→ C(u({X}))
for restrictions of u(X ) −→ u(X ).

Proof. Put c = u(C) and y = u({X}). We endow c with a censoring relation (U, V ) ∈
R ⇐⇒ U ⊂ V and we use Proposition 4.3.4 for the inclusion y ⊂ c.

For U ⊂ V ∈ C, we compute

RHomyop (c(V ,−), c(U,−)) � RHomO(X)
op (O(V ), O(U))

� RHomQch(OX)(iV,∗OV , iU,∗OU)
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� RHomMod(OX)(iV,∗OV , iU,∗OU)

� RHomMod(OU )((iV,∗OV )|U , OU)

� RHomMod(OU )(OU , OU)

� O(U)

� c(U, V ),

where the first line follows from the fact that �(X,−) defines an equivalence between
Mod(O(X)) and Qch(X) and the third line follows from the separatedness of affine
schemes [40, Appendix B]. �

7.6. Computing RHom’s using a covering

Let X be a quasi-compact quasi-separated scheme and let X = ∪n
i=1Ai be as

in the previous section. We use the same associated notations. Let Qch(X) be the
category of quasi-coherent sheaves on X. In this section we prove that the functor
Qch(X)−→Pr(OA) preserves RHom. The actual reason for this is that one may show
that the simplicial scheme S• defined by Sn = ∐

i1 � ···� in
Ai1 ∩ · · · ∩ Ain satisfies

“effective cohomological descent” [4, Exposé Vbis] for the obvious map � : S• −→ X,
even though it is not quite a hypercovering in the sense of [4, Exposé V7] (to obtain
a hypercovering we need to take all sequences (i1, . . . , in) and not just the ordered
ones). For the convenience of the reader we will give a direct proof of the preservation
of RHom in our special case.

Before giving the proof let us give a quick sketch. Let �∗ : Qch(X) −→ Pr(OA) be
the exact inclusion functor. It is easy to see that �∗ has a right adjoint �∗, which is
some kind of global section functor, satifying �∗�∗ = id.

We then prove that �∗ sends injective objects in Qch(X) to acyclic objects for �∗.
Thus we obtain R�∗ ◦ �∗ = id and hence �∗ is fully faithful for RHom.

For convenience, let �̃ be the poset {I | I ⊂ {1, . . . , n}} ordered by reversed inclusion
and let � be its subposet of all J �= �. For I ∈ �̃ put AI =⋂

i∈A Ai (with A� = X).
We have maps � −→ �̃ −→ Open(X) : I 
−→ AI (with A� = X) which allow us to
consider the restrictions O�̃ and O� of O. We will think of Pr(O�) as (equivalent to)
the “category of (presheaf) objects in the stack of abelian categories Qch : � −→ Cat :
I 
−→ Qch(AI )”.

In order to abstract the reasoning we will formulate our results in the following
somewhat more general setting. S̃ will be a stack of Grothendieck categories on �̃
with exact restriction functors possessing a fully faithful right adjoint, and S will be
its restriction to �.

For I ⊃ J , we write

i∗IJ : S(J ) −→ S(I )
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for the exact restriction functor and

iIJ∗ : S(I ) −→ S(J )

for its fully faithful right adjoint. We will put i∗
I�
= i∗I and iI�∗ = iI∗. Besides the

above-mentioned properties we will also use the following properties:

(C1) (Base Change) i∗I iJ∗ = iI∪J,I∗i∗I∪J,J .

(C2) If E ∈ S̃(�) is injective, then for every K ∈ �, i∗KE is acyclic for iK∗.

It is not clear to us if (C1) does not follow from the other properties. (C2) will be
only used in the proof of Theorem 7.6.6 which is the main result of this section. The
additional conditions are clearly satisfied for the stacks U 
→ Mod(U) on a finite cover
of a ringed space and for U 
→ Qch(U) on a finite affine cover of a separated scheme.

A (presheaf) object in S consists of objects (MI )I with MI ∈ S(I ) and maps
(�IJ )I⊃J with �IJ : i∗IJ MJ −→ MI for I ⊃ J satisfying the obvious compatibilities.
Presheaf objects in S and the obvious compatible morphisms constitute a Grothendieck
category Pr(S).

Proposition 7.6.1. The exact functor

j∗I : Pr(S) −→ S(I ) : (MK)K 
−→ MI

has a right adjoint jI∗ with

(jI∗M)J =
{

iIJ∗M if I ⊃ J,

0 otherwise.

Proposition 7.6.2. The exact functor

�∗ : S̃(�) −→ Pr(S) : M 
−→ (i∗I M)I

has a right adjoint

�∗ : Pr(S) −→ S̃(�) : (MK)K 
−→ limK(iK∗MK).

Proof. For M ∈ S̃(�), (NK)K ∈ Pr(S), we have

HomS̃(�)
(M, �∗(NK)K) = HomS̃(�)

(M, limK(iK∗NK))

= limKHomS̃(�)
(M, iK∗NK)

= limKHomS̃(�)
(i∗KM, NK)

= HomPr(S)(�
∗M, (NK)K). �
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For every K ∈ �, we obtain two commutative diagrams:

S̃(�)

�∗

����������
i∗K

��

Pr(S)
j∗K

�� S(K)

S̃(�)

Pr(S)

�∗ ����������

S(K)

iK∗

��

jK∗
��

The arrows in the left triangle are exact left adjoints to the corresponding arrows in
the right triangle, which consequently preserve injectives.

Let e denote the full subcategory of Pr(S) spanned by the objects jK∗E for E
injective in S(K) and K ∈ �. Let add(e) be spanned by all finite sums of objects
in e.

Proposition 7.6.3. Pr(S) has enough injectives in add(e).

Proof. For M = (MK)K in Pr(S), we can choose monomorphisms MK −→ EK in
S(K) for each K. The corresponding maps M −→ jK∗EK yield a map

M −→
⊕
K

jK∗EK,

which is a monomorphism since every image under j∗K is. �

We will now describe R�∗ for certain N ∈ Pr(S). To N = (NK)K in Pr(S), we
associate the following complex S(N) in C(S̃(�)):

∏
p

ip∗Np −→
∏
p<q

ipq∗Npq −→ · · · −→ i1...n∗N1...n −→ 0

with
∏
p

ip∗Np in degree zero and with the usual alternating sign differentials d0
N,

d1
N, . . . .

Proposition 7.6.4. For N = (NK)K in Pr(S), we have

�∗N = H 0(S(N)).

If for every K, NK is acyclic for iK∗, we have in D(S̃(�))

R�∗N = S(N).
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Proof. First note that it is clear from the shape of � that if (FK)K∈� is a func-
tor � −→ S̃(�), then limKFK = lim|K|∈{1,2}FK . Hence the first statement follows
from Proposition 7.6.2. For the second statement, first consider N = jK∗E ∈ e. By
Proposition 7.6.1, the complex S(N) is given by

∏
p∈K

iK∗E −→
∏

p<q∈K
iK∗E −→ · · · −→ iK∗E −→ 0.

This complex is acyclic, except in degree zero where its homology is iK∗E = �∗N . It
follows that for all E ∈ add(e), S(E) = �∗E = R�∗E. Now consider N with every NK

acyclic for iK∗. Take a resolution N −→ E· of N in add(e). Consider S(E·) as a first
quadrant double complex with the complexes S(Ei) vertical. Looking at columns first,
we find a quasi-isomorphism Tot(S(E·))��∗E·�R�∗N . Since for E ∈ add(e), the EK

are obviously acyclic for iK∗, it follows from our assumption on N that iK∗(NK −→
E·K) is exact. Hence looking at rows, we find a quasi-isomorphism Tot(S(E·))�S(N),
which finishes the proof. �

Proposition 7.6.5. For M ∈ S̃(�), we have

(i) �∗�∗M = M;
(ii) S(�∗M) = M in D(S̃(�));

Proof. To prove the two statements, it suffices that the complex

0 −→ M −→
∏
p

ip∗i∗pM −→
∏
p<q

ipq∗i∗pqM −→ · · · −→ i1...n∗i∗1...nM −→ 0

is acyclic. This follows from the fact that for every r ∈ {1, . . . n}, the image of the
complex under i∗r has a contracting chain homotopy. �

Theorem 7.6.6. The functor �∗ : S̃(�) −→ Pr(S) induces a fully faithful functor �∗ :
D+(S̃(�)) −→ D+(Pr(S))

Proof. It is sufficient to prove that R�∗ ◦ �∗ is the identity on D+(S̃(�)). To this end
it is sufficient to prove that �∗�∗ is the identity and that �∗ sends injectives to acyclic
objects for �∗. The first part is Proposition 7.6.5(1). The second part follows from
Proposition 7.6.5(1), the extra condition (C2) on S and Proposition 7.6.4. �

7.7. Quasi-coherent sheaves over a quasi-compact, separated scheme

We keep the notations of the previous section. The following theorem is still true in
the general setting exhibited there:
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Theorem 7.7.1. There is a quasi-isomorphism

Cab(S̃(�))�Cab(Pr(S)).

Proof. Let e be as before and let i(�) be the category of injectives in S̃(�). Consider
the e−i(�)-bimodule X with

X(I, jK∗E) = HomPr(S)(�
∗I, jK∗E) = HomS̃(�)

(I, iK,∗E).

For I, J ∈ i(�), we compute:

RHomeop (X(J,−), X(I,−)) = RHomeop (HomPr(S)(�
∗J,−), HomPr(S)(�

∗I,−))

= RHomPr(S)(�
∗I, �∗J )

= RHomS̃(�)
(I, J )

= HomS̃(�)
(I, J ),

where the second step follows from Lemma 5.3.3 and the third step is Theorem 7.6.6.
For jK∗E and jL∗F in e, first note that

HomPr(S)(jK∗E, jL∗F) = HomS(L)(j
∗
LjK∗E, F),

which equals zero unless L ⊂ K , and equals

HomS(L)(iKL∗E, F) = HomS̃(�)
(iK∗E, iL∗F)

= Home(iK∗E, iL∗F)

if L ⊂ K since iL∗ is fully faithful. For L ⊂ K , we now compute

RHomi(�)(HomS̃(�)
(−, iK∗E), HomS̃(�)

(−, iL∗F)) = Homi(�)(iK∗E, iL∗F)

= Home(jK∗E, jL∗F)

= Homc(iK∗E, iL∗F).

We endow e with the censoring relation (jK∗E, jL∗F) ∈ R ⇐⇒ jK∗E �= 0 �=
jL∗F and L ⊂ K . By Proposition 4.3.3 and Corollary 6.7 we obtain the desired quasi-
isomorphism. �
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Specializing to quasi-coherent sheaves on a quasi-compact separated scheme we get

Corollary 7.7.2. There is a quasi-isomorphism

Cab(Qch(X))�Cab(Pr(OA)).

In the case of a noetherian separated scheme we get

Corollary 7.7.3. There is a quasi-isomorphism

Cab(coh(X))�Cab(Pr(OA)).

Using Corollary 6.8, since Qch(X) = Indcoh(X).

Remark 7.7.4. By combining the above results we obtain an isomorphism in Ho(B∞)

Cab(Qch(X))�Cab(Mod(X)) (7.11)

for a quasi-compact separated scheme X, but our proof of this fact is far from straight-
forward and goes through the auxiliary categories Pr(OA) and Pr(OB). It would be
interesting to see if a more direct proof could be obtained.

7.8. Relation to Swan’s definition

In [39], Swan defined the Hochschild cohomology of a separated scheme X to be

ExtiX×X(OD, OD),

where OD = �∗OX for the diagonal map � : X −→ X × X. Put CSwan(X) =
RHomX×X(OD, OD).

We prove that Swan’s definition coincides with ours. As was already mentioned this
in the finite type case could be deduced from [39, §3] and the above results.

Theorem 7.8.1. Let X be a quasi-compact, separated scheme over a field k with an
affine covering A given by X = ∪n

i=1Ai . There is a quasi-isomorphism

CSwan(X)�CGS(OA).

Proof. Consider the factorization of � : X −→ X × X over �′ : X −→ X′ where
X′ = ∪n

i=1Ai × Ai is the open subscheme of X × X with OX′(U) = OX×X(U) and
in particular OX′(Ai × Ai) = OX(Ai) ⊗ OX(Ai). Put OD′ = �′∗OX. In particular,
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OD′(Ai × Ai) = OX(Ai). If we identify the collection A′ associated to the covering
∪n

i=1Ai ×Ai of X′ with A, we have OX′A′ = OXA⊗OXA and OD′A′ = OXA. Since
X is separated, we have sup(OD) ⊂ �(X) ⊂ X′, hence we may compute

RHomX×X(OD, OD) = RHomX′(OD′ , OD′)

= RHomQch(X′)(OD′ , OD′)

= RHomPr(OA⊗OA)(OA, OA),

where we have used that X is quasi-compact, separated in the second step and we have
used Theorem 7.6.6 in the last step. �

Corollary 7.8.2. We have

C(X)�CSwan(X).

Proof. We have

CSwan(X)�CGS(OA)�C(Pr(Oa))�C(u(a))�C(X).

The first isomorphism is Theorem 7.8.1, the second isomorphism is (7.9), the third
isomorphism is (7.8) and the fourth isomorphism is Theorem 7.5.1. �

7.9. The Mayer–Vietoris sequence

Let (X, O) be a ringed space and let X = U ∪ V . In this section we prove (7.1).
If W1 ⊂ W2 are open embeddings of ringed spaces then the pushforward functor
iW2,W1∗ is fully faithful and preserves injectives. Hence it induces a restriction map
C(W2) −→ C(W1) (see Remark 4.2.3). It is clear that the restriction map is compatible
with compositions. So C(−) defines a contravariant functor on open embeddings of
ringed spaces.

Theorem 7.9.1. There is an exact triangle of complexes

C(X) −→ C(U)⊕ C(V ) −→ C(U ∩ V ) −→ (7.12)

where the maps are the restriction maps defined above (in particular they are B∞-
maps).

Taking homology in (7.12) yields the Mayer–Vietoris sequence.

Proof of Theorem 7.9.1. We use notations as in §7.6. Put U1 = U , U2 = V and
� = {{1}, {2}, {1, 2}}. Let S be the stack of abelian categories Mod(−) associated to
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the covering X = U1 ∪U2. Let e be the full subcategory of Pr(S) consisting of jK∗E
for E injective in S(K) and K ∈ �.

Let eI = InjMod(UI ) for I ⊂ {1, 2}. As mentioned above the functors iI,�∗ :
eI −→ e� are fully faithful. Choose a k-cofibrant resolution ē� −→ e� and let
ēI −→ eI be the restrictions of this resolution. Let ē be the category with Ob(ē) =∐

J∈� Ob(eJ ) and Hom-sets between E ∈ eI and F ∈ eJ given by

ē(E, F ) =
{
ē�(E, F ) if J ⊂ I,

0 otherwise.

Then ē is a k-cofibrant resolution of e.
Let ēI be the full-subcategory of ē consisting of objects in ēJ with I ⊂ J . We have

ē{1,2} = ē{1,2} and ē{j} is the arrow category (e{1,2} −→ e{j}) where the arrow is the
inclusion.

Then by using restriction maps we obtain a commutative diagram of complexes

0 −−−−→ C(ē) −−−−→ C(ē{1})⊕ C(ē{2}) −−−−→ C(ē{1,2}) −−−−→ 0⏐⏐� ⏐⏐�
C(ē{1})⊕ C(ē{2}) −−−−→ C(ē{1,2}) −−−−→ 0

The vertical maps are isomorphisms by Remark 4.1.5 and the top row is an exact
sequence of complexes. Thus we obtain a triangle

C(ē) −→ C(ē{1})⊕ C(ē{2}) −→ C(ē{1,2}) −→

By Theorem 7.7.1, Proposition 7.6.3 and Corollary 6.7 we have C(X)�C(ē�)�C(ē).
This means that we are almost done, except for the fact that we still need to show that
the composition

C(ē�)
�−→C(ē) −→ C(ē{j})

for j = 1, 2 is the restriction map. To this end we recall that the isomorphism

C(ē�)
�−→C(ē) was constructed in the proof of Theorem 7.7.1 using the ē − ē� bi-

module X where

X(E, F ) = HomPr(S)(�
∗E, F) for E ∈ ē�, F ∈ ē.
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We have a commutative diagram of inclusions:

ē�
�−−−−→ (ē�

X−→ ē)
�←−−−− ē∥∥∥

�⏐⏐
�⏐⏐

ē� −−−−→
iē�

(ē�

Xj−→ ē{j}) ←−−−− ē{j}

where “�” means inducing an isomorphism in Hochschild cohomology. Here Xj is
the restriction of X to an ē{j} − ē� bimodule. It is easy to see that Xi is the bimodule
associated to the inclusion i{j},�∗ : ē{j} −→ ē� (as introduced in Theorem 4.1.2.2).
Thus in the above diagram iē�

induces an isomorphism on Hochschild cohomology
and we obtain a commutative diagram:

C(ē�)
�−−−−→ C(ē)∥∥∥ ⏐⏐�

C(ē�) −−−−→ C(ē{j})

where now the lower and the rightmost maps are restriction maps. This finishes the
proof. �
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