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Abstract

To reconstruct a black box multivariate sparse polynomial from its floating point
evaluations, the existing algorithms need to know upper bounds for both the number
of terms in the polynomial and the partial degree in each of the variables. Here we
present a new technique, based on Rutishauser’s qd-algorithm, in which we overcome
both drawbacks.
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1 Introduction

The reconstruction of a multivariate polynomial

p(x1, . . . , xn) =
∑

(j1,...,jn)∈J

cj1...jnxj1
1 · · · xjn

n , J ⊂ Nn

from some function evaluations is easy if the support J is known. It suffices
to have as many function evaluations as the cardinality of J and to write
down a linear system of interpolation conditions. In this paper we focus on
the situation where neither J nor its cardinality is known, in other words
neither the number of non-zero monomials in p(x1, . . . , xn) nor their exponents
(j1, . . . , jn) is known, and the evaluations of p(x1, . . . , xn) are performed in
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floating point arithmetic. We remark that in exact arithmetic the number of
non-zero terms in the polynomial can be detected using a probabilistic strategy
called early termination [9; 8], but this technique is not applicable here.

A number of techniques are available in a floating point context. Our presen-
tation order is at the same time chronological and increasing in generality.
The first sparse interpolation algorithm was given in 1979 by Zippel [11]. We
depart from a floating point technique [4] based on the 1988 algorithm by
Ben-Or and Tiwari [2; 7], which assume that upper bounds pk for the partial
degrees of p in each of the variables xk and (an estimate of) the cardinality
of the support are known. A reformulation of the problem as a generalized
eigenvalue problem by Golub, Milanfar and Varah in 1999 [5], under the same
assumptions, eliminates the computation of some intermediate values and of-
fers a stable numerical algorithm. We present an alternative algorithm which
does not require the knowledge of the cardinality of the support J nor of a
bounding box J ⊂ [0, p1]× · · · × [0, pn] ∩ Nn.

Let us explain the basic theory underlying all algorithms in [2; 7; 4]. We
denote the evaluation of the black box polynomial p(x1, . . . , xn) at the point
(x1, . . . , xn) = (ξs

1, . . . , ξ
s
n) by

πs = p(ξs
1, . . . , ξ

s
n), s = 0, 1, . . . .

Note that the evaluation points are s-th powers of some (suitably chosen)
vectors (ξ1, . . . , ξn). Let us enumerate the t multi-indices in J as

(
j
(i)
1 , . . . , j(i)

n

)
, i = 1, . . . , t

and introduce for i = 1, . . . , t the abbreviate notations βi = ξ
j
(i)
1

1 · · · ξj
(i)
n

n , ci =
c
j
(i)
1 ...j

(i)
n

. Let us assume that all βi are distinct. We have

πs =
t∑

i=1

ciβ
s
i .

Now set

zt + at−1z
t−1 + · · ·+ a0 =

t∏

i=1

(z − βi).

Since the βi are the zeros of this monic polynomial, we find

0 =
t∑

i=1

ciβ
s
i

(
βt

i + at−1β
t−1
i + · · ·+ a0

)

=
t∑

i=1

ciβ
s+t
i +

t−1∑

j=0

aj

t∑

i=1

(
ciβ

s+j
i

)
= πt+s +

t−1∑

j=0

ajπj+s .
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Hence the sequence of polynomial evaluations πs at the s-th powers is linearly
generated. Since the βi are distinct, one can prove that the monic polynomial
zt +at−1z

t−1 + · · ·+a0 is the polynomial of minimal degree with this property.

2 A numeric Ben-Or/Tiwari algorithm

In a floating point context, a suitable choice for the vectors (ξ1, . . . , ξn) means
a choice that keeps the involved linear systems well-conditioned. Since s-th
powers of these vectors are taken, we place them on the unit circle to avoid
a growth of magnitude [4]. Let the positive integers pk for k = 1, . . . , n be
mutually prime and bound the partial degree of p in the variable xk, hence
pk > ∂xk

p. Set

m = p1 · · · pn, ω = exp(2πi/m), ωk = ωm/pk , k = 1, . . . , n. (1)

Let the cardinality t of J be given (or an upper bound estimated). Evaluate

πs = p(ωs
1, . . . , ω

s
n), 0 ≤ s ≤ 2t− 1

at the roots of unity and solve for the coefficients of the monic polynomial
zt + at−1z

t−1 + . . . + a0 from the Hankel system




π0 π1 . . . πt−1

π1 π2 . . . πt

...
...

. . .
...

πt−1 πt . . . π2t−2







a0

a1

...

at−1




= −




πt

πt+1

...

π2t−1




.

The algorithm is based on the fact that the sequence of evaluations πs is
linearly generated by

πs + at−1πs−1 + · · ·+ a0πs−t = 0.

From [2], it is known that the t roots of this monic polynomial are of the form
ωj(i) where

j(i) = j
(i)
1

m

p1

+ · · ·+ j(i)
n

m

pn

, (j
(i)
1 , . . . , j(i)

n ) ∈ J, i = 1, . . . , t.

Consequently the values j(i) can be retrieved from the roots ωj(i) and the

individual j
(i)
k can be obtained from j(i) through a reverse application of the

Chinese remainder theorem [4]. Note that the values j(i) are integers, which
simplifies their computation since rounding errors are present in ωj(i). To know
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the polynomial p(x1, . . . , xn) it suffices to determine the coefficients cj1...jn from
the solution of a classical Vandermonde system.

In exact arithmetic the black box polynomial p is evaluated at (ξ1, . . . , ξn)
with the ξk pairwise relatively prime integer numbers. When picking them
randomly and computing the so-called discrepancy ∆s where

∆s+1 = πs + at−1πs−1 + · · ·+ a0πs−t

the guess for the cardinality t of J can be updated with high probability
when the next element π2t does not fit the current linear recursion [9]. In a
floating-point context however, this strategy does not work.

3 A generalized eigenvalue algorithm

Now let us denote the Hankel matrices

H
(s)
t =




πs · · · πs+t−1

... . . . πs+t

...

πs+t−1 · · · πs+2t−2




, s ≥ 0, t ≥ 1,

the polynomials

H
(s)
t (z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

πs · · · πs+t−1 πs+t

... . . .

...
...

πs+t−1 · · · πs+2t−1

1 . . . zt−1 zt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, H
(s)
0 (z) = 1

and the linear functional γ that associates

γ(zs) = πs.

Then the monic polynomial

zt + at−1z
t−1 + · · ·+ a0 =

H
(0)
t (z)

det H
(0)
t

. (2)

4



It is a formally orthogonal polynomial satisfying [3, pp. 40–41]

γ
(
ziH

(0)
t (z)/ det H

(0)
t

)
= 0, i = 0, . . . , t− 1

and is called a Hadamard polynomial [6, pp. 625]. More generally one can
define the monic Hadamard polynomials

p
(s)
0 (z) = 1, p

(s)
t (z) =

H
(s)
t (z)

det H
(s)
t

, s, t = 1, 2, . . .

It is proved in [5] that the t roots of the monic polynomial (2) can be obtained
by solving the generalized eigenvalue problem

H
(1)
t v = zH

(0)
t v, v ∈ Ct.

Hence the explicit computation of the coefficients a0, . . . , at−1 and the cor-
responding root finding can be skipped. The roots can be obtained directly
from the generalized eigenvalue problem. The sequel remains as above, de-
ducing the multi-indices (j

(i)
1 , . . . , j(i)

n ) in the support J from the polynomial
roots and the coefficients cj1...jn from an interpolation problem. When a wrong
estimate for t is made, one can verify a posteriori whether the evaluations of
the reconstructed polynomial p(x1, . . . , xn) match some new function values
obtained from the black box probe.

In [6, p. 635] it is also pointed out that the roots of p
(s)
t (z) are the eigenvalues

of a particular tridiagonal matrix, a result that we make use of in the next
section.

4 Sparse interpolation using the qd-algorithm

With the sequence {πs}s∈N we can also set up the qd-scheme, where subscripts
denote columns and superscripts denote downward sloping diagonals [6]. Its
initialization is given by

e
(s)
0 = 0, s = 1, 2, . . .

q
(s)
1 =

πs+1

πs

, s = 0, 1, . . .

and the rhombus rules for continuation of the scheme by

e(s)
u = q(s+1)

u − q(s)
u + e

(s+1)
u−1 , u = 1, 2 . . . , s = 0, 1 . . .

q
(s)
u+1 =

e(s+1)
u

e
(s)
u

q(s+1)
u , u = 1, 2 . . . , s = 0, 1, . . . (3)
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In its more stable progressive form the same qd-scheme is initialized with

e
(s)
0 = 0, s = 1, 2, . . .

q(0)
u =

det H
(0)
u−1 det H(1)

u

det H
(0)
u det H

(1)
u−1

, e(0)
u =

det H
(0)
u+1 det H

(1)
u−1

det H
(0)
u det H

(1)
u

, u = 1, 2, . . .

and continued with

q(s+1)
u = e(s)

u − e
(s+1)
u−1 + q(s)

u , s = 0, 1, . . .

e(s+1)
u =

q
(s)
u+1

q
(s+1)
u

e(s)
u , s = 0, 1, . . .

In [6, pp. 634–636] it is subsequently shown that

p
(s)
t (z) = det(zI − A

(s)
t )

where A
(s)
t denotes the matrix

A
(s)
t =




q
(s)
1 + e

(s)
0 q

(s)
1 e

(s)
1 0

1 q
(s)
2 + e

(s)
1 q

(s)
2 e

(s)
2

. . . . . . . . .

1 q
(s)
t−1 + e

(s)
t−2 q

(s)
t−1e

(s)
t−1

0 1 q
(s)
t + e

(s)
t−1




.

Hence the zeros of the Hadamard polynomials are the eigenvalues of the matrix
A

(s)
t , or equivalently of the matrix B

(s)
t where

B
(s)
t =




q
(s)
1 + e

(s)
0 −q

(s)
1 0

−e
(s)
1 q

(s)
2 + e

(s)
1 −q

(s)
2

. . . . . . . . .

−e
(s)
t−2 q

(s)
t−1 + e

(s)
t−2 −q

(s)
t−1

0 −e
(s)
t−1 q

(s)
t + e

(s)
t−1




.
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In [10, p. 467] we read that the inverses of these eigenvalues are the poles of
the function

g(s)(z) =
z

1 +
−q

(s)
1 z

1 +
−e

(s)
1 z

1 + . . .
1 +

−q
(s)
t z

1

.

And in [6, p. 626] it is proved that for fixed t, the function g(s)(z) is independent

of the superscript s. Hence, for each s, the polynomials p
(s)
t (z) have the same

roots which can be determined as the inverses of the poles of g(s)(z).

The next theorem [6, Theorems 7.6a-b, 7.7d-f] is a combination of all these

facts. It tells us that the qd-algorithm, when initialized with the column e
(s)
0

and the diagonal consisting of q(0)
u and e(0)

u , can be an ingenious way to obtain
the zeros of the Hadamard polynomials and detect t at the same time. None
of the previously discussed methods (Sections 2 and 3) can deliver the value
of t, the number of non-zero terms in the polynomial p(x1, . . . , xn).

Theorem 4.1 Let the roots zj of H
(0)
t (z)/ det H

(0)
t be numbered such that

|z1| ≥ |z2| ≥ . . . ≥ |zt| > 0 = |zt+1|

each root occurring as many times in this sequence as indicated by its multi-
plicity. Then the qd-scheme has the following properties:

(a) for each u with 0 < u ≤ t and |zu| > |zu+1|, it holds that

lim
s→∞ e(s)

u = 0 ;

(b) for each u with 0 < u ≤ t and |zu−1| > |zu| > |zu+1|, it holds that

lim
s→∞ q(s)

u = zu ;

(c) for each u and ` > 1 such that 0 < u < u + ` ≤ t and |zu−1| > |zu| =

. . . = |zu+`−1| > |zu+`|, it holds that for the polynomials ρ
(s)
i defined by

ρ
(s)
0 (z) = 1,

ρ
(s)
j+1(z) = zρ

(s+1)
j (z)− q

(s)
u+j+1ρ

(s)
j (z), s ≥ 0, j = 0, 1, . . . , `− 1,

there exists a subsequence that converges to

(z − zu) . . . (z − zu+`−1) ;

(d) for u = t we have

e
(s)
t = 0, s > 0.
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Theorem 4.1 gives sufficient conditions to guarantee that the qd-table is di-
vided into subtables by e-columns that tend to zero. Any q-column corre-
sponding to a simple zero of isolated modulus is flanked by such e-columns
and converges to the corresponding zero. If a subtable contains ` > 1 columns
of q-values, the presence of ` zeros of equal modulus is indicated. While the e-
values in the columns 1, . . . , t−1 can be small, the values e

(s)
t are actually zero

(up to rounding errors). This difference is easily distinguishable and allows us
to detect the value of t. Moreover, in [1] a combination of the qd-algorithm
with a deflation technique leads to necessary conditions to come to the same
conclusion. Hence t does not need to be found by trial and error anymore.

There remains the problem of choosing the evaluation points (ξ1, . . . , ξn) suit-
ably. When taken equimodular, such as in Section 2 where ξk = ωk, then we
need case (c) of Theorem 4.1. The advantage is that none of the intermediate
columns e(s)

u , 1 ≤ u ≤ t− 1, converges to zero and hence the continuation rule

(3) need not be unstable (no small values in the denominator of q
(s)
u+1). But an

upper bound pk for the partial degree in each variable xk, as in (1), is required
in the input. In addition, one has to solve a polynomial root finding problem.

When taking all ξk, 1 ≤ ξk ≤ n, relatively prime or equal to the reciprocals
of relatively prime numbers, then their powers (ξs

1, . . . , ξ
s
n) are different in

modulus. The roots of H
(0)
t are all simple and also different in modulus and

(a) and (b) in Theorem 1 apply. Here each pole is clearly delivered individually
as the limit lims→∞ q(s)

u , 1 ≤ u ≤ t, which is an advantage. But each q-column is
now flanked by an e-column which converges to zero, which may be considered
as a slight disadvantage. Anyway, the user of the algorithm has the freedom
of choice for the points (ξ1, . . . , ξn).

The second choice for (ξ1, . . . , ξn) can provide the upper bounds pk needed in
the first choice. Also a wrong guess for pk can easily be invalidated. In both
cases the retrieved zeros zu have to be rounded. In case (c) we round to an
integer power of ω given by (1). In case (a) and (b), we round to an integer (or
its reciprocal), which is a product of the chosen ξk. The multivariate exponent
can be recovered as described. Both choices are illustrated in Section 5. In
[1] a breakdown free version of the qd-algorithm is described. As mentioned
earlier, it combines the continuation rules with a deflation technique.

5 Numerical illustration

We illustrate the above with the reconstruction of

p(x, y, z) = π x5y7z − e yz11 −
√

2

10
x9z3 + 100 z3 .
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The floating point version of the Ben-Or/Tiwari algorithm [4] requires esti-
mates for t and a degree upper bound pk in each variable as input. The purpose
of this paper is to show that alternatives exist where none is required. There-
fore we illustrate what happens when a wrong guess for t is made.

Let us choose p1 = 17, p2 = 11, p3 = 13 and hence

ω1 = exp(2πi/17), ω2 = exp(2πi/11), ω3 = exp(2πi/13).

When we guess t = 3 then the four terms in p(x, y, z) with real coefficients
collapse into

−(1.4656+0.6645i)x13y2z12+(1.7008+0.9511i)x2yz10+(100.04−0.2866i)z3 .

Of course, additional a posteriori evaluations of this reconstruction for p(x, y, z)
quickly invalidate the model.

Let us now run the qd-algorithm, for a start with the same data. The mag-
nitude of the top few values in the first three e-columns varies between 10−2

and 10 while it drops to the order of 10−10 in the fourth e-column. This is
a clear indication that t = 4. It is not difficult to find the four equimodu-
lar roots which round to (as required by the theory) ω2278, ω1848, ω561, ω18 for
ω = exp 2πi/m with m = 17 · 11 · 13. To recover the multivariate exponents
from the integer exponents of ω we write modulo m:

1848 = 9(m/p1) + 3(m/p3),

561 = 3(m/p3),

2278 = 1(m/p2) + 11(m/p3),

18 = 5(m/p1) + 7(m/p2) + 1(m/p3) .

The corresponding coefficients are found to be

p(x, y, z) ≈ 3.1415 x5y7z − 2.7182 yz11 − 0.1414 x9z3 + 99.999 z3 .

Here we have neglected any imaginary parts in the coefficients of the order of
10−13 and smaller.

We conclude and show that essentially neither t nor pk is required in the input.
When evaluating the black box polynomial p(x, y, z) at the non-equidistant
s-th powers of ξ1 = 1/3, ξ2 = 1/5, ξ3 = 1/2, in which 3, 5, 2 are pairwise
relatively prime, then the magnitude of the values in the first three e-columns
drops from 10−2 to machine precision, while all values in the fourth e-column
are of the order of machine precision. Hence again clearly t = 4 and now the
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multi-indices in the support J are directly obtained from the q-values:

1/q
(s)
1 → 8 = 23,

1/q
(s)
2 → 10240 = 211 51,

1/q
(s)
3 → 157464 = 39 23,

1/q
(s)
4 → 37968750 = 35 57 21 .

In this way the non-zero terms z3, yz11, x9z3, x5y7z are retrieved and the re-
construction of the coefficients in p(x, y, z) is as above.
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