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Abstract— Parametric methods for modeling sinusoidal sig-
nals with line spectra have been studied for decades. In
general, these methods start by representing each sinusoidal
component by means of two complex exponential functions,
thereby doubling the number of unknown parameters. Recently,
a Hankel-plus-Toeplitz matrix pencil method was proposed
which directly models sinusoidal signals with discrete spectral
content. Compared to its counterpart, which uses a Hankel
matrix pencil, it halves the required number of time-domain
samples and reduces the size of the involved linear systems.

The aim of this paper is twofold. Firstly, to show that this
Hankel-plus-Toeplitz matrix pencil also applies to continuous
spectra. Secondly, to explore its use in the reconstruction of
real-life signals. Promising preliminary results in the recon-
struction of correlated multichannel electroencephalographic
(EEG) activity are presented. A principal component analysis
preprocessing step is carried out to exploit the redundancy
in the channel domain. Then the reduced signal representa-
tion is successfully reconstructed from fewer samples using
the Hankel-plus-Toeplitz matrix pencil. The obtained results
encourage the future development of this matrix pencil method
along the lines of well-established spectral analysis methods.

I. INTRODUCTION

Nowadays, there is the possibility of recording an almost
unlimited amount of biomedical signals (MRI, EEG, ECG).
Additionally, there is the desire to record this data in a mobile
setting [5], which is often associated with wireless settings.
However, the limited battery life is a bottleneck in continuous
wireless transmission and therefore interest is raised in
compression techniques and sparse methods. The goal is
to efficiently reduce the number of data samples without
reducing the information content. The general framework of
Compressed Sensing (CS) exploits the sparse nature of the
signals for this purpose, and has gained a lot of attention
in signal processing [6]. Several attempts have been made
to explore the possibility of using CS techniques in EEG
[2], [1]. As EEG is not sparse in the original time nor the
frequency domain, it is still a topic of ongoing debate if EEG
can be sparsily represented in any domain [14].

Many spectral analysis tools can be used to efficiently
capture the information content of a signal, e.g., [13], [12],
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[8]. But these methods normally represent each sinusoidal
component by a sum of two complex exponentials, thereby
doubling the number of unknown parameters and the re-
quired number of samples.

This paper presents a novel sampling technique based on
a modified matrix pencil method [7], which directly reflects
the damped sinusoidal components and thus halves the
number of samples, as well as the size of the corresponding
linear systems. We combine a Principal Component Analysis
(PCA)-based compression step with the new sampling tech-
nique and illustrate its performance with an epileptic EEG
example.

II. MATHEMATICAL BACKGROUND

We outline the two mathematical tools that facilitate the
experiments in Section III. Section II-A recapitulates the
established statistical technique of PCA. Section II-B applies
an existing matrix pencil method [8], [11], [7] for sparse
polynomial interpolation to trigonometric interpolation. The
resulting matrix structure becomes a more complicated
Hankel-plus-Toeplitz structure.

A. Principal component analysis
Let the matrix X ∈ Cd×n denote a dataset, consisting

of n samples each having d dimensions. We assume that
the centre of mass of our dataset lies in the origin, i.e. the
mean of each row of X is zero. Principal component analysis
is widely used to reduce the dimensionality d of a dataset
to its intrinsic dimension d̃, i.e. the number of independent
variables that allows for a satisfactory representation of the
dataset. It constructs d̃ orthonormal vectors u1, . . . , ud̃ ∈ Cd,
the principal components, such that the data have maximal
spread in the subspace spanned by these components. For-
mally the i-th principal component is the solution to the
constrained optimization problem

arg max
u∈Cd,‖u‖2=1

∥∥uTX∥∥2
2

s.t. uTuj = 0 for all j < i.

Equivalently, ui is the i-th left singular vector of X with cor-
responding singular value σi. Define the matrix U ∈ Cd×d̃

whose columns are the principal components. A dimension
reduced representation of the original dataset in terms of
projections on the principal components is given by Y =
UTX ∈ Cd̃×n. An approximation of the original dataset
by a linear combination of the principal components is
X̃ = UY ∈ Cd×n. Finally, in order to decide on the intrinsic
dimension d̃ of X one can observe the so-called retained
variance

∑d̃
i=1 σ

2
i /
∑d

i=1 σ
2
i and require this to exceed a

certain threshold (see, e.g. [9]).
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B. Sparse trigonometric interpolation

In this section we apply a matrix pencil method to recon-
struct a K-sparse trigonometric sum from 2K samples in the
time domain. Let

y(t) =

K∑
i=1

ciφ(αi; t) (1)

where φ(α; t) = cos (2παt). The problem is to determine
ci ∈ C\{0} and the pairwise distinct αi ∈ C. We restrict
ourselves to the case where Re (αi) ∈ [0, B] for some
known B ∈ R+. The basic method was first proposed in
[7] for the reconstruction of K-sparse trigonometric sums
with integer frequencies (αi ∈ N ∩ [0, B]) and derived as a
special case of sparse interpolation in the Chebyshev basis
[11], [10]. We show that the frequencies may take values
in a real interval (αi ∈ [0, B]) or even complex values
(Re (αi) ∈ [0, B]). The latter implies that the above matrix
pencil method applies to an even broader class of functions,
since cos (it) = cosh (t) where i =

√
−1.

The presented algorithm involves two stages. At first the
frequencies α1, . . . , αK are obtained by solving a structured
generalized eigenvalue problem. Once the frequencies are
known, the coefficients c1, . . . , cK are found by solving a
classic linear interpolation problem. These 2K unknowns
are determined from 2K samples {ys = y(ts)}2K−1s=0 , where
ts = s∆ for some ∆ ∈ ]0, 1/ (2B)[.

When downsampling the signal even further, below the
Nyquist rate, an additional structured linear system needs
to be solved to identify the most appropriate frequencies
αi in (1). The total computational complexity remains
O(K2) which compares favorably to other methods [3]. The
full mathematical details of this new sparse interpolation
technique are described in a forthcoming paper [4].

(i) Determining α1, . . . , αK . In what follows we denote
φi,s = φ(αi; ts). The following Lemmata will provide a way
to determine φ1,1, . . . , φK,1. Since 0 ≤ 2πRe (αi)∆ < π
we can subsequently determine αi uniquely from φi,1 as
arccos (φi,1)/ (2π∆).

Lemma 1: The matrix Φ = [φk,l−1]
K
k,l=1 ∈ CK×K is

nonsingular.
Proof: Note that the values φ1,1, . . . , φK,1 are mutually

distinct due to the choice of ∆. Now suppose there exists a
vector a = [a1, . . . , aK ]

T ∈ CK such that Φa = 0. Then for
all i = 1, . . . ,K

K∑
s=1

asTs−1(φi,1) =

K∑
s=1

asφi,s−1 = 0

where Ti denotes the i-th Chebyshev polynomial of the first
kind. Since a polynomial of degree K − 1 cannot have K
distinct roots, this proves our Lemma.

Lemma 2: The Hankel-plus-Toeplitz matrices Y1, Y2 ∈
CK×K given by

Y1 = [yk+l−2 + yk−l]
K
k,l=1

Y2 =
1

2

(
[yk+l−1 + yk−l+1]

K
k,l=1

+ [yk+l−3 + yk−l−1]
K
k,l=1

)
satisfy

Y1 = ΦTCΦ Y2 = ΦTCEΦ

where C = diag (2c1, . . . , 2cK) and E =
diag (φ1,1, . . . , φK,1). The matrix Y1 is nonsingular.

Proof: The above matrix decompositions follow from
the relation 2φi,kφi,l = φi,k+l+φi,k−l. Looking at the (k, l)-
th entry of the first matrix equality, we have

(
ΦTCΦ

)
(k,l)

=

K∑
i=1

2ciφi,k−1φi,l−1

=

K∑
i=1

ci (φi,k+l−2 + φi,k−l) = (Y1)(k,l) .

Analogously this can be done for Y2. The nonsingularity of
Y1 follows from the fact that both matrices Φ and C are
nonsingular.

The values φ1,1, . . . , φK,1 are the eigenvalues of the struc-
tured generalized eigenvalue problem

Y2v = λY1v. (2)

This follows from the Lemmata 1 and 2, since

Y2Φ−1 = Y1Φ−1E

implies that the i-th column of Φ−1 is an eigenvector of (2)
with corresponding eigenvalue φi,1.

(ii) Determining c1, . . . , cK . Once the frequencies
α1, . . . , αK are known, the matrix Φ can be constructed
explicitly. Solving the Vandermonde-like system of linear
equations

ΦT c = y (3)

with y = [y0, . . . , yK−1]
T , leads to the coefficients c =

[c1, . . . , cK ]
T . In general, any subset of K interpolation

conditions from {ys = y(ts)}2K−1s=0 suffices to obtain the
coefficient vector c.

Remark 1: The problems (2) and (3) only involve the
samples {ys = y(ts)}2K−1s=0 , because ys = y−s.

III. EXPERIMENT

Section III-A demonstrates the immediate application of
the outlined matrix pencil method in the approximation of
one channel of an EEG signal. In Section III-B we first ex-
ploit the redundancy in the channel domain of a multichannel
EEG by a PCA preprocessing step, the matrix pencil method
is afterwards used to approximate the dimension reduced
signal representation.
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A. Modeling singlechannel activity

Given 2K equidistant data points {yk}2K−1k=0 with
sampling period ∆, the presented matrix pencil method
constructs a complex-valued K-sparse trigonometric
interpolant of the form (1). Such an interpolant exists when
Y1 is nonsingular and all eigenvalues of (2) have multiplicity
one. Note that in (3) we only impose interpolation in the
first K data points, the remaining interpolation conditions
are then automatically fulfilled.

To compare an approximation {x̃s}N−1s=0 to a discrete-time
signal {xs}N−1s=0 we observe the cross-correlation defined as

CC =

∑N−1
s=0 (xs −Mx) (x̃s −Mx̃)√∑N−1

s=0 (xs −Mx)
2
√∑N−1

s=0 (x̃s −Mx̃)
2

where Mx = 1
N

∑N−1
s=0 xs and Mx̃ = 1

N

∑N−1
s=0 x̃s.

The presented method can be used to obtain a continuous
approximation of a discrete-time signal or spectral analysis.
As an illustration we consider a 30-second neonatal EEG
fragment xs with original sampling period T = 1/256
given in Figure 1a, which is band limited between 1 and
B = 20 Hz. We construct an approximation based on
the downsampled signal ys = x5s with sampling period
∆ = 5T = 5/256. Each set of 16 consecutive samples is
interpolated with a sparse model of the form (1) with K = 8.
In total 106 interpolants are computed, these are connected
in a continuous manner as the samples x75s are used both
as ending and starting point of different interpolants. Figure
1b shows a discrete version of the computed approximation
with sampling period T . Compared to the original signal the
discrete approximation has CC = 0.9988.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
−100

−50

0

50

100

(a) original
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(b) approximation

Fig. 1: Approximation of a 30-second neonatal EEG fragment by
use of sparse trigonometric interpolation.

B. Modeling correlated multichannel activity

Video-EEG was recorded on 21-channel OSG EEG
recorders (Rumst, Belgium) during a presurgical evaluation.
Sampling frequency was 250 Hz and an average reference

montage was used. The EEG was digitally filtered with
a low-pass filter (0-20 Hz). A notch filter was applied to
suppress the 50 Hz power-line interference. A 70-second
long period containing seizure activity was selected for
studying the performance of the new sparse representation
method.

(i) PCA preprocessing step. To reduce the redundancy
in the channel domain PCA was performed on submatrices
containing consecutive one second fragments of the original
recording. A fixed intrinsic dimension of d̃ = 11 was
decided on, which guaranteed an overall retained variance
above 0.99. Figure 2a (top) shows a signal approximation
in terms of the principal components for the second
half of the recording. Figure 2a (bottom) visualizes the
cross-correlation of this approximation with respect to the
original signal, computed separately for each second and
each channel. This cross-correlation never falls below 0.965
demonstrating that the morphology of the original signal
was preserved in the PCA step.

(ii) Sparse trigonometric interpolation step. After per-
forming PCA we are left with 770 discrete one-dimensional
signals of one second with sampling period T = 1/250.
Similar to the treatment in Section III-A we ran four different
reconstructions for each of these signals with fixed ∆ =
5T , but different K. Choosing a fixed ∆ but different K
implies the use of the same downsampled signal for all
four approximations. The following heuristic was adopted
to guarantee a satisfactory approximation. For each discrete
one-dimensional signal we compute the cross-correlation of
the high-term approximations (K1 = 23, K2 = 24 and K3 =
25) with respect to the low-term approximation (K0 = 2).
When two or more of these cross-correlations were below
0.85 we kept the low-term approximation. In the other cases
we kept the high-term approximation with the highest cross-
correlation. Table I shows how many times Ki (i = 0, 1, 2, 3)
was used to come up with the final approximation.

K0 K1 K2 K3

55 151 168 396

TABLE I

After performing this heuristic the cross-correlations with
respect to the 770 discrete signals were partitioned as given
by Table II. We notice that 712 out of the 770 one-
dimensional signals of one second were reconstructed with
a cross-correlation of at least 0.99.

CC > 0.99 0.99− 0.95 0.95− 0.90 < 0.90

712 54 2 2

TABLE II

The trigonometric approximations were then substituted
in the reverse PCA step to obtain an approximation to the
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original recording. Figure 2b (top) shows the final result
for the second half of the recording. Figure 2b (bottom)
visualizes the cross-correlation of this approximation with
respect to the original signal, computed separately for each
second and channel and shows that it never falls below
0.95. It is observed that the trigonometric approximation step
introduces an additional comparable loss in the accuracy of
the approximation.

IV. CONCLUSION AND CURRENT RESEARCH

We present the application of a new matrix pencil method,
that models activity directly as a sum of damped cosines, to
the sparse reconstruction of EEG. The method reconstructs
activity from 2K equidistant samples in a computationally
efficient manner: the solution is obtained by solving K ×K
linear systems. This method is not restricted to EEG, but fur-
ther validation is required on a broader range of biomedical
signals, and in comparison with other methods. The Hankel-
plus-Toeplitz matrix pencil can be further developed along
the line of well-established spectral analysis methods.

REFERENCES

[1] A.M. Abdulghani, A.J. Casson, E. Rodriguez-Villega. Compressive
sensing scalp EEG signals: implementations and practical perfor-
mance. Med & Biol. Eng. & Comp. 1-9, 2011.

[2] S. Aviyente. Compressed sensing framework for EEG Compression.
14th Workshop on statistical signal processing 181-184, 2007.

[3] E. J. Candes, M. B. Wakin. An introduction to compressive sampling.
IEEE Signal Proc. Magazine 25(2):21-30, 2008.

[4] A. Cuyt, W.-s. Lee, S. Peelman. Sparse trigonometric interpolation. In
preparation, 2013.

[5] S. Debener, F. Minow, R. Emkes, K. Gandras, M. de Vos. How about
taking a low-cost, small, and wireless EEG for a walk? Psychophysi-
ology 49:1617-1621, 2012.

[6] D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory
52(4):1289-1306, 2006.

[7] M. Giesbrecht, G. Labahn, and W.-s. Lee. Symbolic-numeric sparse
polynomial interpolation in Chebyshev basis and trigonometric in-
terpolation. In Proc. Workshop on Computer Algebra in Scientific
Computation (CASC) 195-204, 2004.

[8] Y. Hua, T.K. Sarkar. Matrix pencil method for estimating parameters
of exponentially damped/undamped sinusoids in noise. IEEE Trans.
Acous, Speech and SP. 38:814-824, 1990.

[9] I. T. Jolliffe. Principal component analysis (second edition). Springer,
2002.

[10] E. Kaltofen and W.-s. Lee. Early termination in sparse interpolation
algorithms. Journal of Symbolic Computation, 36(3-4):365-400, 2003.

[11] Y.N. Lakshman and B.David Saunders. Sparse polynomial interpola-
tion in nonstandard bases. SIAM J. Comput., 24(2):387-397, 1995.

[12] R. Roy and T. Kailath. ESPRIT-estimation of signal parameters via
rotational invariance techniques. IEEE Trans. Accoustics, Speech and
Signal Proc., 37(7):984-995, 1989.

[13] R.O. Schmidt. Multiple emitter location and signal parameter estima-
tion. IEEE Trans. Antennas and Propagation, AP-34(3):276-280, 1986.

[14] Z. Zhang, T-P. Jung, S. Makeig, B.D. Rao. Compressed sensing of
EEG for wireless telemonitoring with low energy consumption and
inexpensive hardware, IEEE Trans. Biomed. Eng., 60(1):221-224,
2013.

35 40 45 50 55 60 65 70

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Time (sec)

time (s)

ch
an

ne
l

cc

 

 

5 10 15 20 25 30 35 40 45 50 55 60 65 70

1 
2 
3 
4 
5 
6 
7 
8 
9 

10
11
12
13
14
15
16
17
18
19
20
21 0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

(a)

35 40 45 50 55 60 65 70

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Time (sec)

time (s)

ch
an

ne
l

cc

 

 

5 10 15 20 25 30 35 40 45 50 55 60 65 70

1 
2 
3 
4 
5 
6 
7 
8 
9 

10
11
12
13
14
15
16
17
18
19
20
21 0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

(b)

Fig. 2: (a) Approximation of EEG measurements (35s-70s) after the PCA step [top], CC with original measurements per second per
channel [bottom]. (b) Approximation of EEG measurements (35s-70s) after the PCA step combined with sparse interpolation [top], CC
with original measurements per second per channel [bottom].
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