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The notations used in this document are in line with the papers Structured
Markov chains solver [2, 3]. These notations are slightly different from the
MATLAB help files. General references to the issues addressed in this doc-
ument can be found in the books [5, 6, 4, 1].

1 Quasi-Birth-Death (QBD) Markov chains

Continuous time Markov chains (CTMC)

The focus in the original paper was on discrete-time Markov chains only.
Therefore, QBD Markov chains were defined by a transition matrix P of the
form

P =


B0 B1 0
B−1 A0 A1

A−1 A0 A1

A−1 A0
. . .

0
. . . . . .

 ,

where A−1, A0, A1 ∈ Rm×m, B0 ∈ Rmb×mb , B−1 ∈ Rm×mb and B1 ∈ Rmb×m,
are nonnegative matrices such that A−1 +A0 +A1, B−1 +A0 +A1 and B0 +B1

are stochastic (where B1 = A1 in the default mode of operation).

The CTMC extension allows the user to solve continuous time QBD problems
using the same set of MATLAB functions (i.e., QBD CR, QBD FI, QBD IS,
QBD LR, QBD NI and QBD pi). In the continuous time case, the rate ma-
trix Q characterizing the QBD has the same form as P except that the row
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sums of Q equal zero, while P is stochastic. Moreover, the only negative
entries of Q appear on the main diagonal of A0 and B0.

In the continuous time case the R, G and U matrices solve the following set
of equations:

0 = A−1 + A0G+ A1G
2,

0 = A1 +RA0 +R2A−1,

U = A0 + A1(−U)−1A−1.

(1)

Furthermore, one has G = (−U)−1A−1, R = A1(−U)−1. When the input is
a continuous time QBD, it is automatically transformed to a discrete time
problem (via a uniformization) such that the G̃, R̃ and Ũ solution of the
discrete time problem obeys: G = G̃, R = R̃ and U = λ(Ũ − I) (with
λ = max(−diag(A0))). The G, R and U matrix of the continuous time prob-
lem are returned as output.

If the continuous time QBD is positive recurrent, the following set of equa-
tions hold

πn = π1R
n−1,

π0B0 + π1B−1 = 0,

π0B1 + π1(A0 +RA−1) = 0,

π0e+ π1(I −R)−1e = 1,

for n > 1. The QBD pi function automatically detects the continuous nature
of the problem and will solve it by transforming it to a discrete time problem,
having π̃ as a solution, such that π̃ = π.

2 M/G/1-type Markov chains

Alternate Shift: ShiftType option

The computation of the G matrix is accelerated (in the default mode) by the
MG1 CR, MG1 NI and MG1 FI functions by applying the shift technique.
Assume that Ai = 0 for (i > M). The default shift technique (ShiftType =

’one’) makes use of the following blocks Ãi, i ≥ −1. If the chain is positive
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recurrent, set

Ã−1 = A−1(I −Q),

Ãi = Ai − (
∑i

j=−1Aj − I)Q, 0 ≤ i ≤M,

where Q = euT and u is any vector such that eTu = 1. Otherwise, set

Ã−1 = A−1

Ã0 = A0 + EA−1

Ãi = Ai − E(I −
∑i−1

j=−1Aj), 1 ≤ i ≤M,

where E = uvT , with u being any nonzero vector, and v such that vTu = 1
and vT (

∑M
i=−1Ai) = vT .

It has been proved that the roots of the polynomials ã(z) = det(λI −∑M
i=−1 z

i+1Ãi), and a(z) = det(λI −
∑M

i=−1 z
i+1Ai), are the same except

for the root z = 1 of a(z) which is shifted to zero or to the infinity for ã(z)
according to the recurrent or transient nature of the chain under considera-
tion.

We can also accelerate the convergence by shifting the largest root 0 ≤ τ <
1, τ ∈ R to zero (in the transient case) or the smallest root τ̂ > 1, τ̂ ∈ R
to infinity (in the positive recurrent case). Setting the ShiftType = ’tau’,
causes this type of shift operation. The τ and τ̂ roots are computed effi-
ciently through a bisection algorithm. Whether the ’one’ or ’tau’ shift is the
most effective depends on the numerical example at hand.

Finally, the double shift (activated by setting the ShiftType option to ’dbl’)
combines both the ’one’ and the ’tau’ shift and typically requires the least
number of iterations. In the positive recurrent case, the smallest root τ̂ >
1, τ̂ ∈ R is first shifted to infinity, afterwards the zero in z = 1 is shifted to
zero. In the transient case, we first shift the zero in z = 1 to infinity and
next shift the the largest root 0 ≤ τ < 1, τ ∈ R to zero.

Newton iteration

The computation of the matrix G via a Newton iteration is now also sup-
ported (via the function MG1 NI) and relies on a fast version of Newton’s
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iteration for M/G/1-type Markov chains [7]. At each iteration a linear system
of the following form needs to be solved

M+1∑
j=1

BjXA
j−1 = C,

where M is the the largest integer such that AM > 0 and m is the block size.

Such a system can be solved using a direct sum approach (which happens
when the option Mode is set to DirectSum), but this results in a time com-
plexity of O(m6 +m4M), as is the case for the Newton iteration discussed in
[1]. By relying on a Schur decomposition of A in the linear system above, the
time complexity per iteration can be reduced to O(Mm4). The modes Re-
alSchur and ComplexSchur implement this approach using a real and complex
Schur decomposition, respectively. Additionally, each of these modes can also
be combined with a shift operation, the RealSchurShift mode is the default
mode for the MG1 NI function.

Two more functions: MG1 NI LRA0 and MG1 NI LRAi further exploit po-
tential low rank properties of the matrices Ai. The MG1 NI LRA0 function
reduces the time complexity per iteration to O(Nm2r2 +m3r) when A−1 can
be decomposed as A−1 = Â−1Γ, where Â−1 is of size m × r and Γ of size
r×m, with r < m. The MG1 NI LRAi function reduces the time complexity
per iteration to O(Nm2r2 + Nm3) when Ai, for i ≥ 0, can be decomposed
as Ai = ΓÂi, where Âi is of size r ×m and Γ of size m× r.

3 GI/M/1-type Markov chains

New parameter ’Dual’

In the first edition of this tool, the R matrix of a GI/M/1-type Markov chain
was computed by computing the G matrix of its Ramaswami dual, from
which R can be obtained easily. In the current version of the tool, the user
can select one of two duals: the Ramaswami or Bright dual, by setting the
’Dual’ parameter to ’R’ or ’B’, respectively. Setting the ’Dual’ parameter
to ’A’ (Automatic) causes the software to select the Bright dual for positive
recurrent chains and the Ramaswami dual for transient ones as this choice is
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typically the most efficient (for null recurrent chains, both duals are identi-
cal).

The Ramaswami dual of a GI/M/1-type Markov chain characterized by
(Ai)i≥−1 is an M/G/1-type Markov chain characterized by the series of ma-

trices (A
(r)
i )i≥−1 with

A
(r)
i = (∆(r))−1A′i(∆

(r)),

for i ≥ −1 and ∆(r) = diag(π), where π is the stochastic left-invariant vector
of A =

∑
i≥−1Ai.

The Bright dual of a GI/M/1-type Markov chain characterized by (Ai)i≥−1 is

an M/G/1-type Markov chain characterized by the series of matrices (A
(b)
i )i≥0

with

A
(b)
i = (∆(b))−1A′i(∆

(b))τ i,

for i ≥ −1 and ∆(b) = diag(w), where w is the positive stochastic left-
eigenvector of A(τ) with eigenvalue τ , where A(z) =

∑∞
i=0Ai−1z

i. The scalar
τ depends on whether the chain is positive recurrent or transient. In the pos-
itive recurrent case we have: τ = sp(R) < 1 the spectral radius of R, while
in the transient case τ > 1 is the smallest zero of det(zI −A(z)) outside the
unit circle.

The G matrix of the Ramaswami or Bright dual, denoted as G(r) and G(b)

respectively, satisfy the following relation with the R matrix of the original
GI/M/1-type Markov chain:

R = (∆(r))−1(G(r))′(∆(r)) = (∆(b))−1(G(b))′(∆(b))τ,

allowing us to obtain R from the G matrix of its dual.

Newton iteration

As for the M/G/1-type Markov chains, a fast Newton iteration is also incor-
porated into the tool. It can be used to compute R by calling the GIM1 R
function with the Algor parameter set to NI.
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The two new functions GIM1 NI LRA0 and GIM1 NI LRAi exploit potential
low rank properties of the matrices Ai. These functions rely on their M/G/1-
type counterparts using either the Bright or Ramaswami dual. Notice, in
order to use the GIM1 NI LRAi function the matrices Ai must be expressed
as ÂiΓ, for i ≥ 0 (as opposed to ΓÂi as in the M/G/1-type case).
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[2] D. A. Bini, B. Meini, S. Steffé, and B. Van Houdt. Structured Markov
chains solver: algorithms. In SMCtools Workshop, Pisa, Italy, 2006. ACM
Press.
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