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Introduction

This thesis focuses on the performance evaluation of a family of algorithms used to solve
the so-called multiple access problem present in nearly all communication and computer
networks. In order to define the multiple access problem consider two nodes part of a
communication network. Such two nodes are connected with each other by a succession of
communications links, the physical media of which can be coaxial cable, copper wire, fiber
optics and radio spectrum. Broadly speaking, two types of communication network links
exist. A point-to-point link consist of a single sender on one end of the link, and a single
receiver at the other end of the link. The second type of link, a shared link, can have
multiple sending and receiving nodes all connected to the same, single, shared link, e.g.,
wired and wireless local area networks (LANS), cellular access networks (GSM,GPRS),
passive optical networks (PONs) and hybrid fiber coaxial networks (HFCs). Whenever
a network solely consists of point-to-point links, there is no multiple access problem.
However, if one or more shared links are present, a problem of central importance is how
to coordinate the access of multiple sending and receiving nodes to a shared link. This
problem is known as the multiple access problem. Protocols, or algorithms, designed to
solve this problem are known as multiple access protocols.

An important subclass of multiple access protocols are so-called random access protocols
(a definition is given in Chapter 1). The most commonly used random access protocols
are the ALOHA protocols and the carrier sense multiple access (CSMA) protocols, e.g.,
Ethernet. Within this thesis we analyze the performance of another family of random
access algorithms commonly known as tree algorithms and this both from a theoretical
and a more practical point of view. Tree algorithms were developed during the late 1970s
and since then a large body of literature has been devoted to them, especially during the
1980s. During the last five years they experienced yet another boost in attention with the
development of hybrid fiber coaxial (HFC) and wireless (broadband) access networks.

Before we proceed with providing an overview of the contents of this thesis, it is useful to
take a step back and first elaborate a bit about tree algorithms and their relation to the
most important of all computer networks: the public Internet. We already indicated in the
previous paragraph that tree algorithms received a lot of attention with the development of
broadband access networks. Access networks are generally categorized into residential and
company access networks. Nowadays, company access networks are completely dominated
by Ethernet LANs. Until a few years ago, residential users were connected to the public
Internet by means of a dialup modem over a POTS (plain old telephone system) or by
means of an ISDN “telephone” line, which can be though of as a “better modem” [33]



i INTRODUCTION

that supports rates up to 128 Kbps compared to the 56 Kbps dialup modems.

Two new technologies, asymmetric digital subscriber line (ADSL) and hybrid fiber coax-
ial cable (HFC) have been deployed during the last few years. ADSL runs over existing
twisted-pair telephone lines and supports data rates between 2 and 8 Mbps from the Inter-
net service provider (ISP) to a home. In the reverse direction the data rate is much smaller
(between 16 and 640 Kbps). From the MAC perspective it is important to note that the
uplink bandwidth, that is, from a home to the ISP, is not shared among different homes.
HFC access networks differentiate themselves from ADSL, ISDN and dialup modems be-
cause they are an extension of the current cable networks used for broadcasting cable
television. HFC access rates are comparable to ADSL, e.g., Motorola’s CableCOMM sys-
tem offers speeds downstream of up to 30 Mbps of which up to 10 Mbps is available to an
individual modem and it runs smoothly upstream at a rate of up to 768 Kbhps. However,
with HFC, the upstream rates are shared among the homes. Therefore, a multiple access
protocol is required. Due to the limited upstream bandwidth, upstream transmissions are
reservation based, that is, a user has to reserve a part of the uplink bandwidth whenever
it wants to transmit data. A mechanism, referred to as the access mechanism, that allows
a user to reserve this bandwidth can be rather complicated [21, 35, 36]. However, a central
feature of the access mechanism is a random access channel.

Formed in May 1994 by several vendors, the IEEE 802.14 Working Group (WG) devel-
ops international standards for data communications over cables, that is, HFC networks.
Important for our discussion is that, after significant deliberations, the group selected a
tree based algorithm for the random access channel [20,21]. However, due to the delayed
progress of the IEEE 802.14 WG, four major cable operators, Comcast Cable Commu-
nications, Cox Communications, Tele-Communications Inc., and Time Warner Cable,
established the Multimedia Cable Network System (MCNS) Partners Ltd. in December
1995 to create the DOCSIS standard. The differences between the DOCSIS standard and
the 802.14 draft were driven by organizational priorities. MCNS was aiming at keeping
costs and market development to a minimum while IEEE was looking for a future-proof
standard. The two standards differ the most in the medium access control (MAC) layer.
Moreover, the DOCSIS standard replaced the tree algorithm by a simple binary exponen-
tial backoff (BEB) algorithm®. Extensive simulation studies, conducted by the National
Institute of Standards and Technology (NIST), have indicated that the tree algorithm
proposed by the IEEE 802.14 significantly outperforms the BEB algorithm in terms of
delay and cell delay variation [20,21]. Given these results the MCNS nevertheless se-
lected the BEB algorithm for its simplicity. Knowing that “time is money” for the MCNS
Partners, this came as no surprise.

DOCSIS v1.0 was approved as a standard by the I'TU on March 19, 1998, and currently
dominates the market. In addition, DOCSIS v1.1, whose major feature is supporting
QoS service, was released on July 31, 1999. In contrast, the IEEE 802.14 Working Group
was disbanded in March 2000, and IEEE 802.14a will remain as a draft afterward. The

!'The BEB algorithm has been very successful in Ethernet LANs, however, the efficiency of Ethernet
LANSs is mainly guaranteed by the carrier sense and collision detection (CSMA /CD) mechanism combined
with the limitations put on the length of a LAN segment. In HFC networks home users cannot sense nor
detect collisions on the channel.
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group has careful intentions and its specification is undoubtedly better than that devel-
oped by MCNS from a technological perspective [36]. Considering the European cable
environment, the European Cable Communication Association (ECCA) started to create
the EuroModem specification in December 1998. The EuroModem v1.0 was approved by
the European Telecommunications Standard Institute (ETSI) on May 12, 1999. The con-
tention resolution algorithm used in the EuroModem specification is the BEB algorithm.

Having discussed the relevance of tree algorithms in nowadays communication networks,
we proceed with an overview of the contents of this thesis. The thesis is subdivided into
two parts. The first analyzes the maximum stable throughput of tree algorithms, often
referred to as their efficiency, under a number of idealized conditions. These conditions are
used as the standard model of a multiple access link within the IEEE Information Theory
Society [8]; hence, the multiple access problem is viewed from a theoretical perspective.
A large body of papers has been written on this topic. Chapter 1 provides an overview of
the most significant results and also includes a short discussion on other random access
protocols not belonging to the class of tree algorithms. The main difference with all prior
work is that we have significantly relaxed the assumptions made on the arrival process
an arrival process is a stochastic process that specifies how new packets are generated by
the users (senders) connected to the shared link. Instead of Poisson arrivals we consider
a rich class of tractable Markovian arrival processes, which lend themselves very well
to modeling bursty arrival processes arising in computer and communication networks
namely, we consider discrete time batch Markovian arrival processes (D-BMAPs). Tree
algorithms can be further categorized into three subclasses: the blocked access, free access
and grouped access class. The methods used to analyze the first subclass—see Chapter
2—are fairly common and originated in the early 1980s [41]. To a certain extent the same
can be said about the grouped access class (although some complications do arise, see
Chapter 5). The free access class is by far the most difficult to analyze (given the current
state of the art results) and requested a very different and new approach, Chapters 3
and 4 are devoted to them. The key result is to view a tree algorithm with free access
as a tree structured quasi-birth-death (QBD) Markov chain, the theory of which was
developed during the late 1990s, and to study the stability of the algorithm by means of
the recurrence of the Markov chain. The main conclusion drawn from the first part of the
thesis is that the good stability characteristics of tree algorithms under Poisson arrivals
are maintained under this rich class of arrival processes, thereby further extending the
established theoretical foundation of tree algorithms. More detailed conclusions and key
results are found at the end of each chapter.

In the second part of the thesis, we study tree algorithms from a more practical per-
spective. Many access systems—for instance, wireless broadband systems, hybrid fiber
coaxial (HFC) networks or passive optical networks (PONs) have a point-to-multipoint
architecture. The single end point, referred to as the access point (AP), operates as a
centralized controller, that is, it decides which of the end nodes gets to transmit a packet
to the AP. To make this decision, end nodes need to declare their bandwidth requirements
to the access point (AP). This information is then used by the AP to schedule all uplink
transmissions, that is, transmissions from an end node to the AP, according to the traffic
characteristics and the quality of service (QoS) agreed upon. A problem of central impor-
tance is how the end nodes inform the AP about their bandwidth needs, a problem that
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has received considerable attention of the IEEE Communication Society. In the second
part of this thesis, we address this problem in the context of wireless broadband access
networks and we provide a detailed analysis of the Identifier Splitting Algorithm combined
with Polling (ISAP). The Identifier Splitting Algorithm is a tree algorithm that was intro-
duced during the European RACE project 2067 on Mobile Broadband Systems (MBS).
We have enhanced this algorithm with a polling mechanism and studied the influence of
its parameters on the delay and throughput characteristics by means of several analytical
models. These models combine elementary probability theory, queueing theory, combi-
natorics and the theory of Markov chains. The ISAP scheme is introduced in Chapter 6.
Several analytical models that allow its evaluation are presented in Chapter 7, whereas in
Chapter 8 we discuss the influence of the different protocol parameters by means of the
analytical models presented in Chapter 7.

Before we proceed, there are a few people I would like to thank. First of all, I thank my
promotor Chris Blondia for giving me the oppertunity to write a PhD (and to “act” like
an assistant at the UTA for the past few years) and for introducing me to a number of
mathematical approaches such as the matrix analytical methods. David Vazquez Cortizo
for the useful discussions we had during his stay at the University of Antwerp. Moreover,
I would like to express my gratitude to a number of international researchers for providing
me with the necessary study material, especially P. Flajolet, J.M. Massey, M. Sidi, Q. He
and M. Neuts. I also like to thank most of my colleagues at the University of Antwerp
for the nice working atmosphere (in alphabetical order): David, Dennis, Floris, Hector,
Joeri, Johan, Kathleen, Marc, Nico, Peter, Raf, Sandra, Stefan, Stijn, Tim, Toon and
many more. Finally, I'm very grateful for the support I got from Lesley, my family and
friends.
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Chapter 1

An Introduction to Random Access
Algorithms

In this chapter we present a general introduction to random access algorithms. It is not
our intention to provide a complete overview of all existing random access algorithms,
nor to present them in a chronological order. Extensive overviews of random access
algorithms can be found in [3,63]. The emphasis of this introduction is on a family of
random access algorithms commonly known as tree or splitting algorithms and on their
stability characteristics. Before introducing the concept of a tree algorithm, we discuss
the first, and one of the most popular, of all random access algorithms: the notorious
ALOHA protocol. Some attention is also paid to acknowledgement-based, backoff and
age-based algorithms. The chapter starts with a simple description of what a medium
access control (MAC) protocol, or more specific a random access algorithm, is supposed
to do.

1.1 Medium Access Control (MAC)

Broadly speaking, two types of network communication links exist. A point-to-point link
consist of a single sender on one end of the link, and a single receiver at the other end of
the link. The second type of link, a shared link, can have multiple sending and receiving
nodes all connected to the same single, shared link. A shared link is often referred to as a
shared medium. In the first scenario—that of the point-to-point link—there is no medium
access control (MAC) layer present in the corresponding protocol stack. In the second
scenario that of the shared medium multiple nodes might transmit simultaneously on
the same link. A problem of central importance, to the data link layer, is how to coordinate
the access of multiple sending and receiving nodes to a shared channel—the so-called
multiple access problem. It is the task of the medium access control layer to regulate all
transmissions on the shared link; i.e., to solve the multiple access problem. The Medium
Access Control (MAC) sublayer is part of the data link layer in the ISO-OST model [33, 63].

Since the early 1970s many MAC protocols have aroused. Most of them can be catego-
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rized as either being contention protocols or contention free protocols. Consider a shared
link with a rate of R bits per second. In a contention protocol, or random access protocol,
nodes always transmit at the full rate R of the link and are allowed to transmit simulta-
neously, although simultaneous transmissions seldom lead to a successful reception (the
capture effect of a wireless channel is one of the few exceptions [49]). These simultane-
ous transmissions are referred to as collisions. Contention free protocols avoid collisions.
There are two main protocol classes that avoid collision [33]. The first partitions the chan-
nel among all nodes sharing the link, e.g., time-division multiplexing (TDM), frequency-
division multiplexing (FDM) or code-division multiplexing (CDM). The second class is
known as the taking-turns protocols and allows nodes to use the channel during its turn,
e.g., polling protocols and token-passing protocols. The main disadvantage of many con-
tention free protocols is the low utilization of the network link. Both categories have
proven their worth in a myriad of multiple access applications. More details are provided
in the next few sections. In the remainder of this chapter an X channel refers to a channel
upon which the MAC protocol X is being used (in literature the term ALOHA channel
is sometimes also used for a channel that has certain characteristics).

Much attention has been paid to the stability of random access algorithms. A random
access scheme is said to be stable if the mean time until a packet is transmitted successfully
is finite. Underlying all the work done in this area are the following key assumptions [63]:

e New arrivals occur according to a Poisson process with rate \.

e The number of nodes or stations is assumed to be infinite. In practice, the number
of nodes is always finite. Assuming an infinite number provides us with an upper
bound to the delay [3]. In particular, each finite set of nodes can regard itself as
an infinite set of virtual stations, one for each arriving packet. This situation is
equivalent to the infinite node assumption and allows a station with backlogged
packets to compete with itself.

e A single error free contention channel provides immediate binary (collision or not)
or ternary (collision, success or empty) feedback.

A lot can be and has been said about these assumptions and they are far from being
the most realistic ones, but at least they provide us with a common framework in which
we can make a fair comparison among different random access algorithms. When we
discuss the stability of an algorithm under Poisson input traffic we actually refer to this
common framework.

1.2 The ALOHA Protocols

This section is based on [3,16,41,42,63]. During the early days of communication net-
works (i.e., the old telephone networks) nodes were always connected using point-to-point
connections. It was not until 1968, around the same period of time the first nodes of the
ARPANET [32] were connected, that the first random access protocol, known as pure
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ALOHA [1], came into existence. At the University of Hawaii researches were planning
to interconnect a number of data terminals (stations), located on different isles, with the
central computer by means of radio communication. The radio channel was to be shared
among all stations. They proposed the following scheme to regulate all transmissions on
the shared radio channel.

A station simply transmits whenever it has data to send. As stations send their frames
at arbitrary times, there will be collisions. Frames involved in a collision are considered
as destroyed and need to be retransmitted. The overlap between the colliding frames is
irrelevant, namely, in all cases the checksum will fail and indicate that a retransmission is
required. In order to reduce the number of collisions, stations retransmit a frame after a
random delay between 0 and a predefined parameter d. Stations that need to retransmit
their frame are referred to as backlogged stations.

Assuming fixed length frames, pure ALOHA has a vulnerable period of 2 frames. Abram-
son indicated that the maximum throughput of a pure ALOHA channel (under Poisson
traffic) is 1/2e, i.e., about 18%, under what is called the equilibrium hypothesis. This
hypothesis actually expresses the hope that the ALOHA channel is stable, i.e., that the
mean waiting time of a packet is finite or in other words that the queue of frames awaiting
retransmission is not growing steadily. As it turns out, ALOHA’s simplicity causes it to
be unstable for every arrival rate A > 0 under Poisson input.

Roberts modified the ALOHA system by introducing the notion of “time slotting”, this
modified version is known as slotted ALOHA. Assuming fixed length frames, we choose
this length as the unit of time. Stations are only allowed to start transmitting at a
multiple of the time unit, thereby reducing the vulnerable period to a single frame and
augmenting the maximum achievable throughput to 1/e, i.e., about 36%, under the equi-
librium hypothesis. Again, slotted ALOHA turned out to be unstable for all arrival rates
A > 0. There is also a geometric variant of Slotted ALOHA, where backlogged stations
retransmit in each time slot with a probability p (p = 1/J). A simple proof that the
geometric variant of the slotted ALOHA system is unstable for all arrival rates A > 0 is
given below.

In a slotted ALOHA system backlogged stations retransmit their frame in each slot with a
probability p. Let a; be the probability that i new arrivals occur in a slot. The number of
new arrivals occurring in slot 7 and slot 7 + 1 are independent and identically distributed.
N(t), the number of backlogged stations during time slot ¢, is therefore a Markov chain
on the state space {n | n > 0} with the following transition probabilities Py

Pip1 = apkp(l —p)* ',

Pir = ap(1—kp(1—p)* Y +a (1 —p)h,
Pegr1 = ai(1—(1—p)"),
Pigrj = a; (j 2 2).

For 0 < p <1 and ag+a; <1, N(t) is an aperiodic irreducible Markov chain and slotted
ALOHA is stable if and only if this Markov chain is ergodic. Obviously, for k large enough,
Por1<l—ay—a = Zj>2 Py, ;1 because Py, ;1 decreases to zero. Moreover, P, = 0
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for i > 1. Therefore, the Markov chain N(t) does not have a stationary distribution as
a result of the Instability Lemma by Kaplan [3, p265]|. This is sufficient to prove slotted
ALOHA’s instability for every arrival process with ay + a; < 1, in particular for the
Poisson arrival process with a mean A > 0 (a; = \/il e ).

Kelly further improved this result by showing that the number of successful transmissions
on an AHOLA channel is finite with probability 1. In conclusion, eventually an ALOHA
channel becomes jammed with collisions. The time that elapses before this occurs can
however be very large. For instance, Greenberg and Weiss have shown that for p = 0.01
and A = 0.1 it takes about €3¢ time slots before the channel is “jammed” with collisions.
Numerous proposals have been made to stabilize ALOHA, each one proposing a different
method on how to estimate the number of backlogged stations. None of them succeed in
keeping the virtue of the original ALOHA schemes: their simplicity.

ALOHA systems are nevertheless often implemented in practice, although most of them
appear in fact to be unstable. In order to cope with the instability, they implement some
kind of “time out” feature that clears the system if totally jammed with collisions. This
solution works fine when the traffic intensity—that is, the rate of the new arrivals—and
the retransmission probability p is low.

1.3 Acknowledgement-based, Backoff and Age-based
Algorithms

Another important random access scheme, known as Ethernet, was introduced in 1979
by Metcalfe (Harvard) [45]. Stations making use of an Ethernet channel postpone the
i-th retransmission attempt for a random time between 0 and 2 time units, as opposed
to 0 and  on an ALOHA channel. Ten years after the introduction of Ethernet, Aldous
(Berkeley) [2] proved that Ethernet was unstable for all arrival rates A > 0 under Poisson
arrivals. The instability of Ethernet is not as severe as that of ALOHA. For instance,
Kelly and MacPhee [30] have shown that the number of successful transmissions is finite,
resp. infinite, with probability 1 if A > In2 = .69, resp. A < In2 = .69, for the slotted ver-
sion of Ethernet. Whereas the number of successful transmissions on an ALOHA channel
is finite with probability 1 for all A > 0. In practice, Ethernet frames are dropped if the
number of retransmission attempts reaches a predefined threshold. ALOHA and Ether-
net both belong to a class of algorithms known as acknowledgement-based algorithms'.
In an acknowledgement-based algorithm, users make retransmission decisions using only
the history of their own transmission attempts—that is, users only receive feedback from
the channel indicating whether their own transmission attempts are successful or not.
Other algorithms that listen to the feedback of every slot are referred to as full-sensing
algorithms (examples are the tree algorithms presented in the next section). Recently,
Goldberg et al [19] have shown that all acknowledgement-based algorithms are unstable

Notes on contention resolution written by L.A. Goldberg from the Warwick University were very
useful in writing the remainder of this section. The notes are unpublished and a copy can be found at
her webpage: http://www.dcs.warwick.ac.uk/~leslie.
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for A > .530045 under Poisson input. Moreover, not even one acknowledgement-based
algorithm is known so far to be provably stable for any arrival rate A > 0 under Poisson
traffic.

An important subclass of the acknowledment-based algorithms are the backoff algorithms.
A backoff algorithm is associated with a sequence of probabilities p;, 7 > 0. In a given time
slot of the corresponding algorithm, every station that has a packet ready for transmis-
sion and that has been unsuccessful in transmitting this packet on 7 occasions transmits
(independently) with probability p;. Obviously, slotted ALOHA and Ethernet are back-
off algorithms with p; = p and p; = 27 respectively. It has been shown that backoff
algorithms are always unstable under Poisson traffic for A > .42 [19]. Tree algorithms
are therefore superior to backoff algorithms—from the stability point of view—because
there are many tree algorithms known that support higher input rates (up to .48776, see
Section 1.4). In 1989 MacPhee posed the question whether there exists a backoff algo-
rithm that is stable for any A > (0. The answer to this question is still unknown. Kelly,
et al [30] have shown that all backoff algorithms with slower than exponential backoff
result in a finite number of successful transmissions with probability 1. For instance,
setting p; = (i + 1) %,k > 1, results in a finite number of successful transmissions (with
probability 1).

Another interesting subclass are the age-based algorithms. An age-based algorithm is
associated with a sequence of probabilities p;,7 > 0. In a given time slot of the corre-
sponding algorithm, every station (re)transmits (independently) with probability p; if the
packet was generated 7 time slots ago. Kelly and MacPhee have shown that the number
of successful transmissions is finite if and only if Zlep,;, i.e., the expected number of
transmissions that a packet endures in the first ¢ slots after being generated, is Q(log(¢))?
(2 this is a footnote mark). Ingenoso has shown that age-based algorithms are unstable if
pi,© > 0, is monotonically decreasing. For instance, setting p; = a/i results in an infinite
number of successes because Y2/ 1/i = logt + O(1), but the algorithm is nevertheless
unstable.

1.4 Tree Algorithms

The breakthrough in searching for a random access scheme that was provably stable was
made by Capetanakis [7] in 1977 and independently by Tsybakov and Mikhailov [64] and
to some extent by Hayes [3]. The basic idea behind this scheme was already used by
Dorfman during the Second World War for testing soldiers for syphilis [12,63] and is an
algorithm for what is known as the group testing problem. The group testing problem
studies algorithms to find d defects in a population of size N as fast as possible. A single
test on a group of n indicates whether there is at least one defect in the group of size
n. For instance, the syphilis soldiers are the defects among all soldiers. Dorfman used
the following method: take a blood sample from N soldiers and mix a portion of each
sample into a single sample. Next, test this sample for syphilis. If negative, all soldiers are

2A function f(t) = Q(g(t)) if Ve > 0 3N : f(t) > cg(t) for t > N.
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cleared. Otherwise create two samples: one by mixing a portion of the first N/2 soldiers
together, the second using the portions of the last N/2 soldiers. This algorithm is applied
recursively until the identity of all the syphilis soldiers is known. Whether this algorithm
minimizes the number of tests required, for d > 1, is still an open issue. For d = 1 it is
proven to be the fastest possible.

When translated to a computer network this algorithm goes as follows: whenever a group
of n stations collides, they split into 2 groups. Each station draws a pseudo random
number to decide whether it joins the first or the second group. Stations joining the first
group retransmit in the next slot and resolve a possible collision recursively, while the
other stations wait until the first group is resolved before applying the same algorithm.
A station joins the first, resp. the second, group with probability p;, resp. po = 1 — p;.
Whenever a station selects a group it is said to flip a coin. For p; = 1/2 the coin is said
to be fair, otherwise it is referred to as biased. The collision resolution algorithm (CRA)
described above is known as the basic binary Capetanakis-Tsybakov-Mikhailov (CTM)
or tree algorithm. It can be combined with different channel access protocols (CAPs). A
channel access protocol indicates when a newly arrived packet is allowed to transmit for
the first time.

For now we discuss the following two CAPs:

e Blocked Access: After an initial collision of n stations, all new arrivals postpone their
first transmission attempt until the n initial stations have resolved their collision.
The time elapsed from the initial collision until the point where the n stations have
transmitted successfully is called the collision resolution interval (CRI). Suppose
that m new packets are generated during the CRI. Then, a new CRI starts (with m
participants) when the previous CRI (with n stations involved) ends. In conclusion,
when the blocked access mode is used new arrivals are blocked until the CRI during
which they arrived has ended. They will participate in the next CRI.

e Free Access: New arrivals transmit the moment they are generated, i.e., at the first
slot boundary following their arrival time. Thus, if £ new arrivals occur during slot
and the n stations that transmitted in slot ¢ split into a group of n; and ny stations,
n; + k stations will transmit in slot ¢ + 1.

Different terminology is used when these channel access protocols (CAPs) are combined
with a tree algorithm. For instance, the blocked access schemes are also referred to as
tree-search algorithms, the free access schemes as stack algorithms [35]. Implementation
details and examples are provided in Chapter 3. Binary feedback (collision or not) suffices
in order to implement the basic binary tree algorithm with blocked or free access. Many
other tree algorithms have aroused from this initial one. An overview is presented Sections
1.4.1 to 1.4.5.

An important result for the Poisson input traffic that applies to any random access scheme
implementing a blocked access strategy is the following [22,41]. If a conflict resolution
algorithm (CRA) has an expected running time 7'(n), to resolve n participants, then
the corresponding random access algorithm with blocked access is stable for all A <
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liminfn/T(n) and is unstable for A > limsupn/T(n). The expression for T'(n) depends
upon the conflict resolution algorithm. Whatever happens for an arrival rate A between
the liminf and the limsup of n/T(n) is unclear (although in some particular cases some
light was shed on this gray area, see [43]). For some CRAs n/T(n) does have a limit? for
n — oc, i.e., the gray area disappears, but this is not always the case? (although the size
of the gray area tends to be rather small in such cases). In Chapter 2 we will generalize
this result to a more general class of arrival processes.

The key result in studying the stability of the basic CTM algorithm with blocked access
was, strangely enough, already obtained by Knuth in 1973 [17]. The reason is the general-
ity of the recursive process based on random choices that turns out to be the exact model
for a variety of searching algorithms in computer science. Let [y denote the expected
number of slots required to solve a collision of N stations. Knuth showed that [ satisfies
the following equation asymptotically (for p; = 1/2, i.e., fair coins):

2
Iy =N+ NP(log, N) +O(VN), (1.1)

with P(-) a periodic function with an amplitude < 10°°. Combining this result with
the property mentioned in the previous paragraph, shows that the CTM algorithm with
blocked access (and fair coins) is stable for A < In2/2 — 10~° and unstable for A\ >
In2/2 4+ 1075 under Poisson traffic. In Chapter 3, we prove that this result is not merely
valid for the Poisson arrival process. Knuth’s result was however not commonly known at
the time. For instance, in 1981 Massey [41] showed that the CTM algorithm with blocked
access was stable under Poisson input for A < .3465 and unstable for A > .3471. In this
paper Massey mentions that W. Sandrin of the Comsat Laboratories pointed out that
In2/2 ~ .3465735. In 1985 Mathys and Flajolet [13,43] showed that the best stability
results for the Poisson input traffic are obtained with fair coins, i.e., p; = 1/2.

In general, studying the stability of a random access scheme with free access is more
difficult compared to a blocked access scheme. In 1985 Mathys and Flajolet [13,43]
eventually showed that the basic binary CTM algorithm with free access, also referred
to as the binary stack algorithm, is stable under Poisson input traffic (and fair coins) for
A < .360. Moreover, for the Poisson traffic fair coins are the optimal coins; that is, they
achieve the highest maximum stable throughput. In Chapter 3, we show that both these
results are not valid for other arrival processes. Chapter 3 presents analytical methods
that allow us, among other things, to determine the stability of the basic binary CTM
algorithm with free access for a variety of arrival processes.

3For instance, when slotted ALOHA is combined with blocked access, it is easy to show
limy, 00 n/T(n) < lim, o n?p e(»~ D02} = 0 Therefore, slotted ALOHA with blocked access is
unstable for all arrival rates A > 0, whatever the value of the retransmission probability p.

“In 1980 Vvedenskaya [41] was the first to prove that lim,_,o, n/T(n) does not exist for many tree
algorithms. However, a lot of the Russian results were unknown to the Western world for quite some
time.
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1.4.1 The Basic -ary CTM or Tree Algorithm

A first of many generalizations of the basic binary tree algorithm is the basic Q-ary
tree algorithm. This generalization consists of splitting the set of stations involved in a
collision into ()—instead of two—groups. Stations part of the i-th group postpone any
retransmission attempts until the first 7 — 1 groups have been resolved. A station selects
the i-th group with a probability p;. Whenever p; = ps = ... = pg = 1/Q one talks
about fair coins, otherwise about biased coins. For the new packet arrivals one can either
use free or blocked access. The stability properties of the basic Q-ary tree algorithm were
revealed by Mathys and Flajolet [43] in 1985 and can be summarized as follows.

We start with the basic Q-ary tree algorithm with blocked access. Let [y denote the
expected number of slots required to solve a collision of N stations. Then, [y /N satisfies
the following equation asymptotically:

Q
- 2?21 Di In Di

with fi(N) a fluctuating function of small amplitude, between 10~* and 107%. Due to the
property of any blocked access algorithm we find that the basic ()-ary tree algorithm is
stable for A < —> p;Inp;/Q — € and unstable A > —> " p;Inp;/Q + ¢, for some € small,
under Poisson input traffic. The sum — Z?Zl pi In p; reaches a maximum equal to InQ/Q
for p; = 1/Q, 1 < i < Q. Therefore, the basic Q-ary tree algorithm (with fair coins) is
stable for arrival rates up to A &~ In()/Q. The highest arrival rates (up to .3662) can
be supported by the ternary scheme, i.e., ) = 3, followed by the binary and quaternary
schemes who both support rates up to .3466. For () = 5 we get .3218 and the maximum
achievable throughput In @)/Q further decreases for higher splitting factors @ (see Table
1.1 and Figure 1.1).

In/N = + fi(N)+O(N), (1.2)
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Figure 1.1: Influence of the Splitting Factor on the Mazimum Stable Throughput for the
Basic Q-ary CTM Algorithm

As noted before, the maximum achievable throughput of a random access scheme with
blocked access (under Poisson traffic) is found by studying the asymptotic behavior of
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@ basic blocked access basic free access mod. blocked access mod. free access

2 .3466 .3602 3754 3872
3 -3662 -4016 3741 -4070
4 .3466 .3992 3496 4007
5 3219 3872 3233 3878
6 .2986 3734 2994 3736
7 2780 3997 2784 3998
8 .2600 3470 2602 3471
9 2441 3353 2443 3353
10 .2303 .3246 2304 .3246

Table 1.1: Maximum achievable throughput for the basic and the modified Q-ary tree
algorithm with fair coins

n/T(n), where T'(n) is the expected runtime of the conflict resolution algorithm (CRA)
required to resolve the contention between n participants. This runtime 7'(n) is also
referred to as the expected length of a collision resolution interval (CRI) initiated by
n participants. For free access algorithms a CRI is generally defined as the time that
elapses between two successive time instances for which none of the stations has a packet
ready for transmission. A random access algorithm with free access is stable whenever
the expected length of an arbitrary CRI is finite, otherwise it is unstable (an asymptotic
analysis of the length of a CRI is not required). The results for the basic @Q-ary CTM
algorithm with free access are presented in Table 1.1. Fair coins achieve the best stability
results.

1.4.2 The Modified Q-ary CTM or Tree Algorithm

The basic @Q-ary tree algorithm exploits binary feedback (collision or not). It can be
improved by exploiting ternary (collision, success or empty) feedback whenever available
[3,41]. The algorithm that exploits ternary feedback is referred to as the modified Q-
ary tree algorithm. It can be combined with both blocked and free access and works
as follows. If, after a collision, the next () — 1 slots turn out to be empty that is, all
stations involved in the collision chose the last group and no new arrivals occurred if the
free access strategy is used—the next slot must contain a collision if the basic -ary CTM
algorithm is used as the conflict resolution algorithm. This otherwise doomed slot can be
skipped by having all stations act as if the collision had occurred. Obviously, the modified
scheme performs at least as well as the basic algorithm. Surprisingly, Capetanakis failed
to notice the existence of certain-to-occur collisions in his algorithm. Massey [41] was the
first to point this out, whereas Tsybakov and Mikhailov discovered this independently; as
a consequence the modified CTM algorithm is also referred to as the CMTM (Cap-Mas-
Tsy-Mik) algorithm.

In practice, this improvement has a slight problem, when combined with the blocked access
strategy, in that if an idle slot is incorrectly perceived by the receiver as a collision—this
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might happen in an environment in which errors occur the algorithm continues splitting
indefinitely. Let us explain this phenomenon. Suppose that an empty slot is perceived
as a collision due to an error in the channel. As a result all stations, including those
generating new arrivals, wait until the set of stations involved in this collision is resolved,
but this set is an empty set. Therefore, the next () — 1 slots are empty (new arrivals
are blocked) and the modified algorithm kicks in and skips the slot following these @ — 1
empty slots (because it believes that this slot necessarily contains a collision). Notice, if
the basic algorithm were to be used the next slot would have turned out empty and the
“collision” would have been resolved. As for the modified algorithm, the next () — 1 slots
are again empty and another slot will be skipped by the modified scheme. As a result
the algorithm becomes deadlocked as it continues splitting indefinitely; that is, none of
the stations ever succeed in transmitting their packet. In practice, after some predefined
number A times () — 1 empty slots, where every () — 1 slots are followed by a split, the
algorithm should allow the next subset to transmit without first splitting it. The value
of h depends upon the reliability of the medium.

The stability characteristics of the modified algorithm under Poisson traffic were also
revealed by Mathys and Flajolet [43]. The corresponding equation for the blocked access
scheme (with fair coins) for I /N is

QUL-AN) - [T+ (1 -Q )In(1 - Q") — fo(N)]
InQ

were fi(N) and fo(N) are fluctuating functions of small amplitude, between 10~% and
105, Numerical values for Q = 2 to 10 are found in Table 1.1. This table also represents
the results for the free access scheme. Fair coins are, for both the blocked access and
free access strategy, no longer the optimal coins. It turns out that increasing the prob-
ability pg, while keeping the others equal to each other, slightly improves the maximum
achievable throughput. For instance, the modified ternary tree algorithm with free access
supports input rates up to .407614 for p; = py, = .314544 and p3; = .370911. The modified
binary tree algorithm with blocked access achieves a stability of .381260 for p; = .4174
and py, = .5826.

In/N = +O(NTY),  (1.3)

1.4.3 Estimating the Multiplicity of Conflicts to Speed Their
Resolution

The highest stability result under Poisson traffic we encountered, so far, when exploiting
binary, resp. ternary, feedback is .401599, resp. .407614. Higher stability results, up to
487 for ternary feedback, have been achieved in a variety of ways. The first, discussed
in this section, can be used in combination with a blocked access strategy and exists
in estimating the number of participants at the start of the collision resolution interval
(CRI). If the estimated multiplicity is equal to m, all stations taking part in the CRI split
into m groups at the start of the CRI. Next, each of the m groups is resolved using a
collision resolution algorithm (in our case a tree algorithm). This idea was first introduced
by Capetanakis in his dynamic tree protocol, under the assumption that the multiplicity
of the conflict was a Poisson distributed random variable [3,22]. Several procedures have
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a basic binary tree  modified binary tree  modified biased binary tree
2 4025 4341 .4402
1.1 4202 .4526 4589
1.01 4256 .4581 .4644
1.001 4275 4602 4665
1.0001 4282 .4609 4672

Table 1.2: Maximum achievable throughput for the basic, modified and the biased modified
(p1 = .4174) binary tree algorithm when combined with the base a estimation method

been proposed for estimating the conflict multiplicity. A summary of those whose accuracy
does not depend on the stochastic assumptions about the arrival process is presented in
this section.

Greenberg, et al [22] proposed the following estimation method known as the base a
estimation algorithm. The base a estimation algorithm searches for a power of a that is
close to n, the conflict multiplicity. The following probabilistic test of the hypothesis that
n > a’is used. Let each of the n conflicting stations transmit in a slot with probability a~".
A collision supports the hypothesis that n > a*. This test is executed with i =1,2,3, ...
until no collision occurs. If this procedure leads to a series of j collisions, n is estimated
as a’. The estimation therefore requires 1 + log, n* = O(log, n) time slots, where n* is
the estimate for n [22]. The closer we choose a to one, the better the estimate turns out
to be.

Greenberg, et al [22] determined the asymptotic behavior of the expected time [y required
to resolve a CRI with N participants when the basic binary tree algorithm, the modified
binary tree algorithm and the modified biased binary tree algorithm (p; = .4174) is used as
the contention resolution algorithm. Combining this with the Poisson property for blocked
access schemes provides us with the maximum achievable throughput. Numerical results
are presented in Table 1.2. The results indicate that stability up to .4282, resp. .4672,
can be achieved by exploiting binary, resp. ternary, feedback.

Cidon and Sidi [8] further experimented with the estimation ideas of Greenberg et al [22].
They proposed the following estimation procedure. Suppose that there are n contenders
in the CRI. Each of the n stations transmits in the first slot of the CRI with a probability
p > 0. Thus, the n stations are split into two sets £ and D, where E consists of those
stations that transmitted and D of the others. If this first slot holds a collision that
is, |[E| > 2 then the stations in E use the modified binary CTM or tree algorithm to
resolve the collision. When the set E is resolved we know the number of participants |E|
in E. The estimate for n, denoted as n*, is computed as |F|/p and the estimate for |D)|
is n* — |E|. Next, m is defined as max{1, [a(n* — |E|) — f]}. The parameter § has no
effect on the stability of the algorithm, whereas « is used to optimize the stability. Next,
the stations belonging to the set D are split into m sets and each set is resolved using the
modified binary CTM algorithm. Cidon and Sidi [8] have shown that the liminfn /7T (n)
of this conflict resolution algorithm is equal to .468 for @ = .786 and p < 1075. Using
this idea they constructed a more complex variation on this conflict resolution algorithm
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and found one for which liminfn/T(n) = .487 that is, a CRA that resolves conflicts of
multiplicity n, for n large, in expected time of approximately 2.054n time slots.

1.4.4 Grouping on Arrival Times

Another natural way to devise a random access algorithm that achieves a high stable
throughput is to “decouple” transmission times from arrival times®. This was first sug-
gested by Gallager [3] and his Russian counterpart Federov [41]. A description by Massey
[41] is given below. Suppose that the random access scheme is activated at time ¢t = 0.
The unit of time is defined as the length of a slot, so that the i-th transmission slot is the
time interval (7,7 + 1]. A second time increment A is chosen and the i-th arrival epoch is
defined as the time interval (iA,iA + A] (A is not necessarily an integer value). The first
transmission rule used by this algorithm is as follows: transmit a new packet that arrived
during the i-th arrival epoch in the first “utilizable” slot following the collision resolution
interval (CRI) for new packets that arrived during the (i — 1)-th arrival epoch. The mod-
ifier “utilizable” reflects the fact that the CRI for new packets that arrived during the
(2 —1)-th arrival epoch might end before the i-th arrival epoch has ended. If so, a number
of transmission slots are skipped until the ¢-th arrival epoch ends. One could improve the
algorithm by shortening the ¢-th arrival epoch. This both complicates the analysis and
the implementation and has no influence on the maximum stable throughput.

Each of the groups is resolved using either the basic binary or the modified binary tree
algorithm, depending on whether we have binary or ternary feedback (the order in which
they are resolved is of no importance). Conflict resolution algorithms that use a higher
splitting factor (@ > 2) are not considered for resolving the groups. The reason is the
following. When grouping arrivals based on the arrival epochs, it is important to have
a collision resolution algorithm that performs well for groups with very few contenders
(because these appear the most frequent if A is small). The basic Q-ary tree algorithm
performs best in resolving groups with n < 3 participants for ¢ = 2. The same can
be said about the modified algorithm for n < 7. This causes higher splitting factors to
achieve worse stability results (if A is small).

Massey [41] has proven that the maximum stable throughput achieved by this algorithm
under Poisson input is .4294, resp. .4622, when exploiting binary, resp. ternary, feedback
by setting A equal to 2.6712, resp. 2.7066. Notice, the expected number of arrivals
in an arrival epoch is 1.147, resp. 1.251. Gallager [3] further improved this algorithm
by making the result of the coin flip depend upon the arrival times. Thus, packets
generated during the first half of the interval, which is being resolved, are considered as
flipping “0”, the others as flipping “1”. An important consequence is that the resulting
algorithm is a first-come-first-served (FCFS) algorithm, namely, the order in which the
stations are successful is identical to the order of arrival. Gallager also indicated a second
improvement that increases the maximum achievable throughput and greatly simplifies
the analysis. Consider what happens when a collision is followed by another collision in

5The idea of grouping has been reintroduced more recently in wireless local area networks (LANSs)
with delayed feedback [9, 10]
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the tree algorithm. Let n be the number of stations involved in the first collision and
assume that n, of the n stations select the first group; thus, no = n —n, select the second.
Let nq1, resp. nia, be the number of stations that select the first, resp. second, group after
the second collision. The second collision indicates that n; > 2. Due to the first collision
we have n = n; + ny > 2, therefore we know nothing about ny (for Poisson arrivals).
Gallager therefore suggested to add the ny stations to the group of the ns stations. The
analysis of this algorithm is much easier compared to other tree algorithms because the
status of all backlogged stations (those who do not belong to the set that is currently
being resolved) is identical. Gallager proved that this algorithm, referred to as the FCFS
splitting algorithm, supports rates up to .4871 (when exploiting ternary feedback). Mosely
and Humblet [28] further refined the algorithm for rates up to .48776.

1.4.5 The Deterministic Tree Algorithm

Capetanakis, Hayes, and Tsybakov and Mikhailov [22] independently proposed a de-
terministic tree algorithm. A deterministic tree algorithm is used as a random access
algorithm in an environment with a finite set of K stations. Each of these K stations is
identified by a unique number, written as a @Q-ary number and referred to as the MAC
address of the station (K is chosen as a power of ). It differs from the basic Q-ary
tree algorithm with blocked access in the sense that stations are no longer split into )
sets using a probabilistic method, but use their MAC address in a deterministic fash-
ion. A station selects the i-th group after the j-th collision in a CRI if the j-th digit
of its MAC address equals i. As a result the maximum length of a CRI is reduced to
(QK —1)/(Q — 1), corresponding to a full Q-ary tree of height k, where K = QF, that
develops when all K stations are active. The maximum delay for a message is therefore

bounded by 2(QK —1)/(Q — 1) < 4K.

The conditions under which the stability analysis of an algorithm operating in a finite
population of K stations is done, are very different from those operating in an infinite pop-
ulation. For a finite population one assumes that each station generates traffic according
to a Poisson process with rate A\/K, resulting in a global rate A [17]. A station attempts
to transmit one packet at a time, while the other packets are buffered until a successful
transmission takes place. The algorithm is said to be stable if the expected delay of a
packet is finite. Obviously, stability is maintained for all rates A < (Q — 1)K/(QK — 1).
(Q —1)K/(QK — 1) decreases as K increases and reaches a limit of (Q — 1)/@Q for K to
infinity.

1.5 Upper Bounds on the Maximum Achievable
Throughput

This section is based on [38,41,42|. Much work has gone into determining upper bounds
on the maximum achievable throughput that can be supported by a full-sensing algorithm
under Poisson input traffic. In a full-sensing algorithm, all users receive feedback infor-
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mation at the end of each slot (as opposed to the acknowledgement-based algorithms).
Pipperger was the first to improve the obvious upper bounds® using information-theoretic
arguments. He showed that all algorithms are unstable for A > .744. Humblet improved
this bound in 1979 to .704. The next improvement was made by Molle in 1980: all algo-
rithms are unstable for A > .6731. Kelly (1985) introduced a new boundary for algorithms
that allow new arrivals to transmit immediately. The argument went as follows. Suppose
that an algorithm is operating stable under Poisson arrivals. Define p, as the fraction of
the slots in which retransmissions take place. Then, because the number of new senders
in any slot is independent of the number of retransmitted packets in that slot, it follows
that the fraction of slots with exactly one packet (i.e., the throughput 7) satisfies

<X M1 —-p,)+pe? (1.4)

with equality when at most 1 packet is retransmitted in a slot. The stability implies 7 = \.
It is readily” seen that setting p, = 1 maximizes )\ for which the equation can be satisfied;
thus, A < e™*. The largest \ that satisfies this equation is A\ = .5671. Notice, even if
the stations were to communicate among each other in order to implement a collision free
retransmission scheme, but do not exchange information about the new arrivals which
are transmitted immediately, one cannot achieve a throughput above .5671. Tsybakov
and Mikhailov (1987) used similar but more intricate arguments to prove that all random
access algorithms are unstable for A > .5683. The best algorithms known achieve a
throughput of .4492, resp. .4877, when binary, resp. ternary, feedback is exploited.

In 1979 Mosely gave some convincing arguments (but no proof) that random access
schemes for which the order of the successful transmissions is identical to the order of
the arrivals, i.e., FCFS algorithms, cannot achieve a throughput above .48785. Recently,
in 1998, Loher has proven that FCFS algorithms are always unstable for A > .4906. The
FCFS splitting algorithms of Gallager and Mosely are stable for rates up to .4871 and
A877.

61t is easy to show that random access algorithms that allow new arrivals to transmit immediately are
unstable under Poisson traffic for A\/(1 4+ X) < e ?,i.e., A > .802.

"Equation (1.4) can be rewritten as g(\) = (e* — 1)A/(1 — \) < p,., with g(0) = 0,g(\) > 0 for
0<A<landg' (N >0for 0 <A< 1. Asaresult one maximizes the solution by setting p, = 1.



Chapter 2

D-BMAPs and Random Access
Algorithms with Blocked Access

The objective of this chapter is threefold. First, we describe a class of arrival processes
commonly known as discrete time batch Markovian arrival processes (D-BMAPs), discuss
some of its properties and present some examples. Second, we motivate why it is useful
to study the stability of random access schemes under D-BMAP input traffic. Finally, we
prove that the Poisson results presented in Chapter 1 for the random access algorithms
with blocked access are also valid for most D-BMAPs. Blocked access is one of the channel
access protocols (CAPs) presented in Chapter 1. The other two, namely, free access and
grouping, are discussed in Chapters 3 5. That is, the stability of tree algorithms with free
access under D-BMAP input traffic is addressed in Chapter 3 and 4; while tree algorithms
that make use of grouping (see Section 1.4.4) are discussed in Chapter 5.

2.1 D-BMAPs: Definition, Properties and Examples

The D-BMAP is the discrete time counterpart of the BMAP [39,40] and was first intro-
duced in [4]. D-BMAPs form a class of tractable Markovian arrival processes, which, in
general, are non-renewal and which include the discrete time variants of the Markov mod-
ulated Poisson process, the PH-renewal process and superpositions of such processes as
particular cases. Because of its versatility, it lends itself very well to modeling bursty ar-
rival processes commonly arising in computer and communications applications [5, 47, 48].

2.1.1 A Definition

A definition by Daniéls [11] is given below. Formally, a D-BMAP is defined by an infinite
set of positive [ x | matrices (B, )o<n<oo, With the property that

B=> B, (2.1)
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is a transition matrix. A D-BMAP is denoted by (B,,),, which completely determines it.
By definition the Markov chain J; associated with B and having {i; 1 < i <[} as its state
space, is controlling the actual arrival process as follows. Suppose J is in state 7 at time .
By going to the next time instance ¢ + 1, there occurs a transition to another or possibly
the same state, and a batch arrival may or may not occur. The entries (B,); ; represent
the probability of having a transition from state ¢ to j and a batch arrival of size n. So, a
transition from state i to j without an arrival will occur with probability (By); ;. Define
by X; the number of arrivals generated at time ¢.

D-BMAPs are generally defined with [, the size of the square matrices B,, finite. It is
possible to extend their theory for [ infinite [11]. However, the D-BMAPs studied in
this thesis are assumed to have a finite number of states. Some of the properties we
prove with respect to random access schemes, make explicit use of the finiteness of [. We
also assume that the transition matrix B is an aperiodic irreducible matrix. Aperiodic
irreducible matrices are often referred to as primitive matrices [58]. Thus, whenever we
refer to a primitive D-BMAP we mean to say that its transition matrix B is aperiodic and
irreducible. For B primitive the Markov chain .J; has a unique stationary distribution.
Let (3 be the stationary probability vector of the Markov chain .J;, i.e., 6B = f and e =1
with e a column vector of 1’s. The mean arrival rate A = E[X;] of the D-BMAP (B,,),, is
given by

A=[ (Z an> e. (2.2)
n=1
Due to the Ergodic Theorem for primitive Markov Chains [58] we have
-1 :
lim B} i Xewi | Je =]

L—oo L

for 1 < j <[l. D-BMAPs for which B,, = 0, for n > 2, are referred to as discrete time
Markovian arrival processes (D-MAPs).

— (2.3)

2.1.2 Some Properties

The following properties have been shown to hold for an arbitrary D-BMAP (B,,),. Ad-
ditional properties and discussions can be found in [4 6]. First, a superposition of two
D-BMAPs (B}), and (B2), is again a D-BMAP (B,),. The B, matrices of the newly
created D-BMAP are calculated as a sum of Kroncker products between the B} and B?
matrices, see [4,11]. Second, the autocorrelation function r(k) = Cov(X;, X)/Var(X;)
is found as [4]

s [ZZO:] nB,) B* [ZZO:] nB,le — \?
B2 n?B,le— \? '

The index of dispersion for counts (IDC), a measure for the burstiness of an arrival process,
at time k, is defined as

CVar(ShL X5 ECov(Xy, X1) 42570 (k - f)Cov(X), X )

r(k) = (2.4)

(k) (2.5)
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Another measure that is often used for the burstiness is the index of dispersion for intervals
(IDI). The IDI is the sequence c; defined as

L WVt §)
-
By 5P

where S; represents the j-th interarrival time. For a renewal process [61] we have ¢} = ¢3,
where ¢? is the squared coefficient of variation, i.e., the variation divided by the square
of the mean, of the number of arrivals in a slot. In particular, for the Poisson process

I(k)=c =1.

: (2.6)

2.1.3 Some Examples
The Discrete Time Poisson Process

The discrete time Poisson process is obtained by observing the continuous time Poisson
process at the slot boundaries. Arrivals that occurred in the interval (¢,¢ + 1] are now
assumed to arrive on the boundary of slot £ and ¢t+1, i.e., at time ¢+ 1. We can model the
discrete time Poisson process as a D-BMAP with a single state by letting B, = e *\"/n!,
for n > 0. The autocorrelation function r(k) = 0, while the index of dispersion for counts
(IDC) I(k) = 1. Whether we use the continuous time or discrete time variant of the
Poisson process makes no difference to the stability of a time slotted algorithm. The
mean delay is slightly different (at most 1). For later reference, we abbreviate the Poisson
process as PP()).

The Discrete Time Erlang Process

We define the continuous time Erlang process as follows. The continuous time Erlang
process has independent and identically distributed interarrival times that obey an Erlang
distribution [23] with parameters k and A, (this A, is not to be confused with the arrival
rate A of the corresponding D-BMAP). Clearly, for £ = 1 the Erlang process is reduced
to the Poisson process. By observing the Erlang process at the slot boundaries we obtain
the discrete time Erlang process (arrivals are assumed to occur on slot boundaries). The
discrete time Erlang process can be modeled as a D-BMAP in the following way. Let
Yo = e *A"/nl,n >0, and let B,,n > 0, be k x k matrices defined as

(Bn)i,j = VYnk+j—i nk > j —1, (2-7)

The arrival rate A of this D-BMAP! is \,/k. For later reference, we abbreviate the Erlang
k process as ER(\., k).

'The matrix B = )", B, is a circulant matrix [60]. Therefore, it is possible to determine the eigen-
values of B explicitly as a function of A\, and k. Which allows us to get an explicit expression for the
decay rate of the autocorrelation function [11].
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The Discrete Time Markov Modulated Poisson Process

We restrict ourselves to the discrete time Markov modulated Poisson processes with two
states. These processes are characterized by two parameters A;, Ay and a 2 x 2 matrix
T. The process will generate arrivals according to a Poisson process with a mean rate \;
when the current state is 7. Transitions from one state to another can occur at the end
of each time slot according to a 2 x 2 transition matrix T
11 1
T—( 1 1il>' (2.9)
b b

The expected sojourn time in state 1, resp. state 2, is a, resp. b, time slots. The matrices
B,, are found as

Met(-ly et
By, = nﬁ\gefnl ’ )\E‘efkgl. ‘ 1) : (2.10)

(1-3

Notice, Y B, = B = T. The arrival rate X is calculated as (Aja + Ayb)/(a + b). By
means of the spectral decomposition [11] of 7" and Equation (2.4) it is not too difficult to
find the autocorrelation function r(k)

(1—2 =51 —Xy)?

a
A 22b A Ay 4 (A — Ag)?
For later reference, we abbreviate the Markov Modulated Poisson process with parameters
A1, Ag,a and b as M (A, Az, a,b).

n! b n!

r(k) = (2.11)

The Bulk Arrival Process

The Bulk arrival process is defined as a discrete time arrival process characterized by a
1 x m vector v and a length L. The arrival pattern of this process consists of a repetition
of identical cycles. The first part of each cycle consists of a set of batches, characterized
by v. For instance v = [2,3,2] means that we first have a batch of size 2, in the next
time slot we have a batch of size 3, followed by a batch of size 2. The second part of the
cycle is a silent period with a geometrically distributed length with average L. The Bulk
arrival process can be described by the following D-BMAP. Let v = [vy,...,v,,] and let
B,,,n >0, be a set of (m+ 1) x (m + 1) matrices with

(BU]‘)]'JJH =1 (1 <J< m)a (2'12)
(Bo)m+11 = 1/L, (2.13)
(Bo)ms1m+1 = 1 —1/L. (2.14)

The other components of the matrices B, are equal to zero. The arrival rate A of a
Bulk arrival process equals ). v;/(L + m). For m = 1 one easily obtains that the
autocorrelation function r(k) obeys the following equation:
(_l)ka(k72)
r(k) = ———=—. 2.15
(k) =~ (215)
For later reference, we abbreviate the Bulk arrival process with parameters v and L as

B(v, L).



2.2. D-BMAPS AS ACCESS NETWORK INPUT TRAFFIC 21

2.2 D-BMAPs as Access Network Input Traffic

It has been pointed out in literature [8,22,42] that the stability of a random access algo-
rithm under a more general class of arrival processes also referred to as the robustness
of an algorithm [8,42] or, equivalently, the insensitivity to the statistics of the arrival
process—is an attractive practical feature. The reason is obvious: in practice, an access
network, e.g., a local area network (LAN), operates with a finite number of users and
traffic generated on such a network tends to be more bursty and correlated compared
to Poisson arrivals. The class of D-BMAPs allows us to incorporate burstiness and cor-
relation and is therefore, to some extent, better suited to match access network input
traffic. As with the Poisson arrivals we assume that the D-BMAP traffic is generated by
an infinite number of users, this provides us with an upper bound to the delay.

The fact that we limit ourselves to discrete time arrival processes is of no importance.
The stability under a continuous time batch Markovian arrival process can be studied
by creating a discrete time variant with the same stability properties. The discrete time
variant is found by observing the continuous time process at the slot boundaries and by
assuming that the arrivals that occurred in the interval (¢,¢ + 1] actually occur at time
t 4+ 1, i.e., on the boundary of time slot ¢ and ¢ + 1 (e.g., the discrete time Poisson and
Erlang processes described in Section 2.1.3). Notice, the time interval (,¢ + 1] is referred
to as slot ¢. Suppose that the D-BMAP (B,),, is used as input traffic and assume that
the D-BMAP is in some state i, 1 <4 </, at time ¢. Then, with a probability (B,,); ;, the
state at time £+ 1 is j and n new packets are generated at the boundary of slot ¢t —1 and t.
In a random access algorithm with free access these n new packets are transmitted for
the first time—in time slot ¢ by their corresponding stations. In a blocked access scheme
each of these n stations defers the first transmission attempt until the current collision
resolution interval (CRI) has finished. Whereas in a grouping algorithm, they postpone
the transmission attempt until all prior groups have been resolved (unless the groups are
not resolved in a FCFS order).

2.3 D-BMAPs and Blocked Access Algorithms

Recall from Chapter 1, that if the input traffic is Poisson with a mean A and if a conflict
resolution algorithm (CRA) has an expected running time 7'(n), to resolve n participants,
then the corresponding random access algorithm with blocked access is stable for all
A < liminfn/T(n); unstable for A > limsupn/T(n). The expression for T'(n) depends
upon the CRA. Therefore, it is sufficient to study the asymptotic behaviour of n/T(n) for
n to infinity in order to determine the stability of a blocked access scheme under Poisson
input. This behaviour is, obviously, independent of the arrival process. Thus, in order
to generalize the stability results of any blocked access scheme, presented in Chapter 1,
it suffices to generalize the above-mentioned Poisson property to the arrival process of
interest.

Comments that this property can be generalized to other arrival processes are often found
in literature [14, 22,42, 43]. For instance, Massey [42] states that “This stability holds not
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only for the assumed Poisson arrival process, but for wvirtually any arrival process that
can be characterized by an average arrival rate \.” Massey [41] proves the property for
Poisson arrivals and gives an intuitive argument for other arrival processes. Cidon and
Sidi [8, Theorem 8| have proven the following theorem. Let ¢ = liminfn/T(n) and let
Ny i1, be the number of packets arriving to the system in the interval (¢,¢ + L]. Then,
the system is stable if there exists a § > 0 and an L* such that E[N, ;1] < (¢ — §)L for
all t and L > L*. For instance, assuming Poisson arrivals, E[N; ;] is nothing but AL for
all t . Hence, by setting L* = 1, it suffices to find a § > 0 such that A\ < (0 — d), where
o = liminfn/T(n). In conclusion, we have stability if A < liminfn/T(n).

From Section 2.1.1 we know that the expected number of arrivals of a primitive D-BMAP
that occur in an interval of length L approaches AL as L approaches infinity, where A is
the mean arrival rate (whichever the state at the start of the interval is). Provided that
the number of states of the D-BMAP [ is finite, we find that for any ¢ > 0 there exists an
L* such that E[Ny;.p] < (A +¢€)L for all t and L > L*. Thus, when A + € < o, it suffices
to choose § equal to (0 — A) — € > 0 to fulfill the required equation (e is chosen to be
smaller than o — \). Hence, we have the following theorem:

THEOREM 2.1 A random access algorithm with blocked access, corresponding to a conflict
resolution algorithm (CRA) that resolves conflicts of multiplicity n in expected time T'(n),
is stable under primitive D-BMAP (B,,), input traffic if

1. A < liminfn/T(n), with X the mean arrival rate,

2. (B,)n has a finite number of states 1.

The aperiodicity of the D-BMAP (B,,),, is not really a requirement, i.e., the theorem is also
valid under irreducible D-BMAP traffic. We did not find a proof in the literature showing
that the system becomes unstable for A > limsupn/T(n) (except for Poisson arrivals).
Therefore, we now prove the following theorem. The proof method is a generalization of
Massey’s proof for the Poisson arrivals [41].

THEOREM 2.2 A random access algorithm with blocked access, which corresponds to a
collision resolution algorithm (CRA) that solves collisions of multiplicity n in an expected
time T'(n), is unstable under primitive D-BMAP traffic if

1. X > limsupn/T(n), with X the mean arrival rate,

2. (Bn)n has a finite number of states [,

3. (Bpn)n is not a D-MAP, that is there exists a n > 1 such that B, # 0.

We start with the following definitions. Let (B,), be a primitive D-BMAP with a finite
number of states, i.e., with [ finite. Let Y; and X; denote the length and the number of
participants of the i-th collision resolution interval (CRI), where X, and Yj correspond
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to the CRI beginning at time ¢ = 0. Let Z; denote the state of the D-BMAP at the start
of the i-th CRI, where 7, is the state at time ¢ = 0. Let T(n) be the expected time
required by the conflict resolution algorithm (CRA) to resolve a set of n contenders, i.e.,
T(n) = E[Y; | X; = n]. Using the law of total probability, we have

E[Y;] =) P[X;=n]E[Y; | X; =n]. (2.16)
n=0
Let 7 = lim supn /T (n), then for any €; > 0 there exists an N(e;) such that n/T'(n) < 7+€;
for n > N(ey). In other words, T'(n) > n/(7 + €;) for n > N(e;). Therefore, we can write
Equation (2.16) as

1
ElY] >
T+ €

> nPX;=n]+ Y EY;|X;=n]P[X;=n]. (2.17)
n>N(el) n<N(er)

Let T'(n) = n/(7 + e1) + g(n), where g(n) is a correction that can be either positive or
negative. Therefore,

1
EYi] >
T+ €

E[X]+ > g(nP[X;=n] (2.18)

n<N(er)

Whenever g(n) > 0 we use 0 as a lower bound for g(n)P[X; = n|; otherwise, we use g(n)
as an lower bound for g(n)P[X; = n]. Hence,

1
B[] >
T+ €

E[Xi] + e(e), (2.19)

where ¢, > 0, e(e;) < 0 is a fixed number? that does not depend upon i and 7 =
limsupn/T(n). We know from Section 2.1.1 that for any primitive D-BMAP the expected
number of arrivals in an interval of length L approaches AL as L approaches infinity, where
A is the arrival rate of the D-BMAP (independent of the state at the start of the interval).
Thus, because the number of states of the D-BMAP (B,,),, is finite, we have that for any
€9 > 0 there exists a K (ey) such that F[X;,, | Y; = L] > (A —€3)L for L > K(ey). Hence,
by means of the law of total probability

EXin]> (A=) Y LPY;=Ll+ > PY,=LEX|Y;=1]. (220)
L>K(€2) L<K(e2)

Recall Z; is the state of the D-BMAP at the start of the i-th CRI. Obviously,
EX;n Y=L >minE[X;, |Y;=LNZ =j] (2.21)
j

The expression min; F[X;y; | Y; = L N Z; = j] is nothing but the expected number of
arrivals generated by the input D-BMAP during an interval of length L, provided that
the state at the start of the interval is j. Hence, we can write it as (A — €))L + h(L),
where h(L) is a correction that is either positive or negative, to obtain

BlXin] > (A~ e)EN]+ S W(L)PY; = L. (2.22)

L< K(Ez)

2The value e(¢;) also depends on the CRA being used and not solely on €;.



24 CHAPTER 2. D-BMAPS AND BLOCKED ACCESS

For h(L) negative, resp. positive, we replace h(L)P[Y; = L] by h(L), resp. 0, to find that
E[Xi] > (A~ ) BV + f(es). (2.23)

where f(€3) < 0 is a fixed number? that does not depend upon i. Combining Equations
(2.19) and (2.23) provides us with the following equation:

)\—62

ElX; >
[ +]] T+ €

E[X;]+ (A —e)e(er) + f(ea), (2.24)

for i > 0. When the equality is taken in Equation (2.24), we have a first-order linear
recursion whose solution for the initial condition Xy = N and 7, = j is a lower bound on
E[X;]. This lower bound can be rearranged to the following form:

E[X;] > (N A= eefe) + .f(62)]) <A - €2>i P (CSVIGVRD () e

_Aze _ Ae
1 T+€1 T + €1 1 T+€1

with e(e;) < 0 and f(eg) < 0. Define Kﬁ:&ig‘;/)(ti(:f)ﬂ as In*. For (A —e) > (T + ¢) we
find Ty > 0 (€3 is chosen such that A > €3). Thus, for (A —€;) > (7 + ¢;) the lower bound
for E[X;] presented in Equation (2.25) grows without a bound as i goes to infinity if N is
large enough—that is, larger than Iy. For N smaller than Iy the lower bound for E[X}]

decreases to minus infinity and we know nothing from Equation (2.25).

Notice, Equation (2.25) actually states that if a CRI with more than Iy participants
occurs, E[X;] grows without bound—that is, the algorithm is unstable under D-BMAP
(B,)n traffic—for A > 7. Next, we prove that a CRI with more than Iy contenders occurs
with probability one if (B,,), is not a D-MAP. Consider the Markov chain (X;, Z;) on the
state space {(n,j) | n > 0,1 < j < l}. From this Markov chain, we construct a finite
state Markov chain W; with an absorbing state w by replacing the states {(n,j) | n >
In,1 < j <} by a single absorbing state w. The state space of W; is = Q; U Q, U Q3,
with Q; ={(n,7) [ n=00r 1,1 <j <[}, Q ={(n,j) | 2<n<Iy1<j<I}and
Q3 = {w}. Hence, Q consists of (Iy + 1)l + 1 states. Denote the transition matrix P of
W, as

A
p=|cC (2.26)
0

=Wl
=

where the 2/ x 2] matrix A, resp. 2l x (Iy — 1)l matrix B, represents the transition
probabilities from the states in € to those in €, resp. Qs. Whereas, the (Iy — 1)l x 21
matrix C, resp. (Iy —1)lx (Iy —1)l matrix D, represents the transition probabilities from
the states in €25 to those in €2y, resp. (5. Finally, let the vectors a, resp. b, represent the

3Obviously, f(ez) also depends on the D-BMAP (B,,), being used as the input process and on the
conflict resolution algorithm (CRA) being used because K (e2) depends on €3 and the CRA.

4Notice, the value of Iy depends upon €, €3, the collision resolution algorithm (CRA) that is used
(because t, e(e1) and f(es2) depend on the CRA) and the D-BMAP (because A and f(e2) depend on the
D-BMAP).
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probabilities that a transition is made from the states in 2y, resp. )5, to the absorbing
state w. Moreover, denote the k-th power of P as

(k)
k) 1. (2.27)

D
=
Sy
==
S

The states in €, U, are transient [31] if for some & > 0: a®) > 0 and b¥) > 0 for k > k.
In which case a transition to the absorbing state eventually occurs with probability one.
That is, a CRI with more than Iy contenders occurs with probability one.

First, we have b > 0; hence, b®) > 0 for any £ > 0. Indeed, if a CRI has n > 2 contenders,
then for each ¢ > 0 there exists a non zero probability p,; that the CRA needs ¢ or more
time slots to resolve the contention between n participants (because the CRA works with
an infinite population). Also, for ¢ large enough, there exists a non zero probability that
more than Iy arrivals occur in an interval of length ¢ (whatever the state at the start of
the interval). As a result, there exists a non zero probability that a CRI with two or more
contenders is followed by a CRI with more than Iy contenders. Second, in order to show
that there exists a k' > 0 such that a*) > 0 for k > k', it suffices to show that each of
the 21 rows of the 21 x (Iy — 1)l + 1 matrix [B®a®] with k& > &' has at least one entry
that defers from zero (because b > 0). Suppose that the Markov chain (X;, Z;) is in state
(n1,71) € ;. The input D-BMAP (B,), is not a D-MAP; hence, there exists an i*, j*
and m > 1 such that (B,,);- j- # 0. Moreover, due to the irreducibility of B = )" B, we
know that for some k,, j,) > 0 there exists a non zero probability that the Markov chain
(Xi, Z;) makes a kq,, j,)-step transition from state (ny,j1) to a state of the form (ny, i*)
that is, a state of the form (ny,i*) is reached after k,, ;) transitions with a non zero
probability. From the state (ny,i*) there is a non zero probability (because (B,,);- j» # 0)
that the Markov chain (X;, Z;) makes a transition to a state of the form (ns, j;) with
ng > m > 1. Hence, from the state (ny, j;) there is a non zero probability that a state of
the form (ns, jo) is reached in k,, ;) + 1 steps, with ng > m > 1. Thus, if the Markov
chain W; is in the state (nq,j;) € €y, there exists a nonzero probability that W; reaches
a state in Qy N € after k(,, ;) + 1 steps. Therefore, choosing k' = max(,, j,yeo, kn, 1) +1
completes the proof.

In conclusion, the algorithm corresponding to the conflict resolution algorithm that solves
conflicts of multiplicity n in an expected time T'(n), is unstable under the D-BMAP (B,,),,
if A > limsupn/T(n) and if (B,), does not belong to the class of D-MAPs. As far as
the D-MAPs are concerned, Equation (2.25) also states that the algorithm is unstable
for D-MAPs with A > limsupn/T(n) if the number of participants in the first CRI is
sufficiently large. This may seem somewhat counter intuitive. For instance, for each CRI
there exists a non zero probability that no new arrivals occur during the CRI (except for
A > 1 and some periodic D-MAPs). If this happens we obviously get stability because
all subsequent CRIs have either zero or one participants. Notice, Equation (2.25) states
that such an event does not happen with a probability one. In conclusion, starting
with a CRI with more than Iy participants, with D-MAP input traffic with an arrival
rate A > limsupn/T(n), results in an unstable algorithm because the expected delay is
infinite. Often there is however a non zero probability that stability is obtained along the
way (this probability should be equal to one in order to obtain a finite expected delay).
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2.4 Conclusion

In this chapter we introduced the class of D-BMAP arrival processes and motivated why
it is useful to study the stability of a random access algorithm under D-BMAP input
traffic. We also demonstrated that it is fairly easy to prove that the stability /unstability
of a blocked access algorithm under primitive D-BMAP traffic (with a finite number of
states and not belonging to the class of D-MAPs) is identical to the stability /unstability
under Poisson traffic. This is a very positive characteristic of a blocked access scheme.
Obviously, this does not imply that the delay is in the same order of magnitude for different
arrival processes. The objective of Part I of this thesis is to study the stability of most of
the tree algorithms presented in Section 1.4, with the exception of some of the grouping
algorithms of Section 1.4.4, under D-BMAP input traffic. Having dealt with the blocked
access schemes, the basic and modified Q)-ary CTM algorithms with free access and a
number of grouping algorithms remain to be studied. Indeed, the estimation algorithms
presented in Section 1.4.3 are also of the blocked access type. In the next chapter we
introduce a method to study the stability of the basic binary CTM algorithm with free
access under D-BMAP input traffic. In Chapter 4 we generalize this method to the basic
and modified QQ-ary CTM algorithm with free access; whereas Chapter 5 deals with tree
algorithms that make use of a grouping strategy.



Chapter 3

Analysis of the Basic Binary CTM
Algorithm with Free Access

In this chapter we indicate how to determine whether the basic binary CTM algorithm
with free access is stable under D-BMAP (B,,),, input traffic. We start with a more detailed
description of the algorithm to be studied in order to get a good grasp of the problem
and how the mathematics relate to the problem. Afterwards, we introduce a class of
Markov chains known as Quasi-Birth-Death (QBD) Markov chains with a tree structure
and indicate how to construct such a Markov chain that is recurrent, resp. transient,
whenever the basic binary CTM algorithm (with free access) is stable, resp. unstable. An
algorithm that determines whether this Markov chain is recurrent or not is also provided.
Furthermore, using this Markov chain we can calculate the mean delay experienced by a
packet and many other performance measures of interest. Numerical results are presented
at the end of the chapter. It is important to notice that to our best knowledge tree
structured Markov chains have never been used in order to study a medium access control
protocol. So far, applications of tree structured Markov chains have been limited to the
study of last come first serve (LCFS) queueing systems with multiple classes of customers,
each class having a different service requirement [24-26,62,78,79]. The work presented
in this chapter was published in [68].

3.1 The Basic Binary CTM Algorithm with Free Ac-
cess

From Chapter 1 we know that the basic binary CTM algorithm is a collision resolution
algorithm (CRA) for which each user strives to retransmit its colliding packet till it is
correctly received. The users have to resolve this contention without the benefit of any
additional information on other users’ activity. The algorithm separates, in a recursive
way, users that collide into two groups. The separation is done according to some ran-
domization procedure. The users that select the first group attempt a retransmission in
the next slot, while the users that select the second group wait until the first group is
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resolved.

INACTIVE

Successful Transmission

CO/q co/1 co/1
co( [ o S0y LS

NC/1 NC/1 NC/1

Message Arrival

INACTIVE

Figure 3.1: State Diagram: CO = collision, NC = no collision

In correspondence with the framework used to study the stability under Poisson input
(see Chapter 1), we have an infinite number of users, i.e., stations, each holding zero or
one packets. Users that hold a packet (at time ¢) are referred to as active users (at time
t). The basic binary CTM protocol is conveniently implemented by letting each active
user maintain an integer value, referred to as the current stack level. The current stack
level held by a station can be seen as a representation of the number of “groups” that
need to be resolved before a station is allowed to (re)transmit. At the end of each time
slot the current stack level is updated according to the following rules (see Figure 3.1):

e A user that became active, i.e., generated a new packet, during slot ¢ — 1 initializes
its current stack level for slot ¢ at zero. A user is allowed to transmit in time slot
t whenever its current stack level for slot ¢ is zero. Therefore, users that became
active during slot ¢ — 1 transmit in slot ¢ (together with other stations that have
their current stack level for slot ¢ at zero).

e Suppose that slot ¢ does not hold a collision, i.e., at most one user has its current
stack level for slot ¢ at zero. Then, users with a current stack level for slot ¢ equal to
i,i > 0, set their current stack level for slot ¢4 1 at i — 1 (while a possibly successful
user becomes inactive).

e If slot £ however does hold a collision, users with a current stack level for slot ¢ equal
to 7,72 > 0, set their current stack level for slot t + 1 at 2 + 1. While, users with a
current stack level for slot ¢ equal to zero split into two groups: a user joins the first
group with a probability p and the second group with a probability ¢ =1 — p. All
the users that join the first group set their current stack level for slot ¢ 4+ 1 at zero,
while the users that join the second group set their current stack level for slot ¢ 41
at one.

An example of the transmission process is shown in Figure 3.2. Figure 3.2 also includes
a list of group numbers (1 or 2) for each packet to indicate which group the packet joins
after each collision (in which it is involved). Thus, the list 1,2,... for packet E indicates
that packet E joins the first group as a result of its first collision and the second as a
result of its second collision.
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Figure 3.2: FExample of the Transmission Process: CSL = Current Stack Level

3.2 Markov Chain of the Quasi-Birth-Death Type
with a Tree Structure

In this section we briefly describe a tree structured Quasi-Birth-Death (QBD) Markov
chain. This type of Markov chain was first introduced in Takine, et al [62] and Yeung,
et al [78,79]. The theory of tree structured QBD Markov chains is a generalization of
the well-known theory of matrix analytical methods introduced by Neuts [47,48]. The
generalization exists in considering the discrete time bivariate Markov chain {(X;, N;),t >
0}, in which the values of X, are represented by nodes of a Q-ary tree, and where V; takes
integer values between 1 and m. X, is referred to as the node and N; as the auxiliary
variable of the Markov chain at time ¢. A description of the transitions of the Markov
chain is given below. A Q)-ary tree is a tree for which each node has @ children. The root
node is denoted as (). The remaining nodes are denoted as strings of integers, with each
integer between 1 and (). For instance, the k-th child of the root node is represented by
k, the [-th child of the node k is represented by kl, and so on. Throughout this chapter
we use lower case letters to represent integers and upper case letters to represent strings
of integers when referring to nodes of the tree. We use '+’ to denote concatenation on
the right. For example, if J=108,k=6then J+k=1086.

The Markov chain (X3, IV;) is called a Markov chain of the QBD-type with a tree structure
if at each step the chain can only make transitions to its parent, children of its parent
(including itself), or to its children, see Figure 3.3. Moreover, if the chain is in state
(J + k,i) at time ¢ then the state at time ¢ + 1 is determined as follows:

1. (J,7) with probability d2’ k=1,...,Q,
2. (J + s, j) with probability aﬁc"’i, k,s=1,...,Q,

3. (J + ks, j) with probability v’/ s =1,...,Q.
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Figure 3.3: A tree structured Markov chain and its transitions

Define m x m matrices Dy, Ay s and U, with respective (i, 7)™ elements given by dfc’j, 022
and u%/. Notice that transitions from state (J+k, i) do not dependent upon .J, moreover,
transitions to state (J + ks, j) are also independent of k. When the Markov chain is in

the root state (),7) at time ¢ then the state at time ¢ + 1 is determined as follows:

1. (0, ) with probability fu

2. (k, j) with probability v}’ k=1,...,Q.

Define the m x m matrix F' with corresponding (i, )" element given by f*. A funda-
mental period of a tree structured QBD Markov chain that starts in the state (J 4k, i) is
defined as the first passage time from the state (J + k,7) to one of the m states (.J, j) for
j=1,...,m. In general, () and m are assumed to be finite. The theory of tree structured
QBD Markov chains can be extended for () and m infinite. However, in order to solve the
Markov chain numerically both () and m need to be finite. For a more detailed description
of the notations and algebra see Yeung, et al [78].

3.3 Markovian Model for the Basic Binary CTM Al-
gorithm with Free Access

New packets are generated according to a D-BMAP (see Chapter 2) as follows. Assume
that the D-BMAP is in some state 7, 1 < ¢ < [, at time ¢. Then, with a probability
(Bn)ij, the state at time £+ 1 is j and n > 0 new packets are generated at the boundary
of slot ¢ — 1 and ¢t. Due to the free access these n new packets are transmitted (for the
first time) in time slot ¢ by their corresponding stations.
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3.3.1 A First Attempt

The system at time slot ¢ is fully specified by the state of the D-BMAP at the boundary
of slot ¢ and £+ 1 and by the current stack level for slot ¢ of each active station. The
value of all these current stack levels can be specified by a single string sgsg 1 ... 5150,
where s; specifies the number of active stations with a current stack level for slot ¢ equal
to i. Therefore, the system is fully characterized by the Markov chain (V;, W;), where W,
denotes the state of the D-BMAP at the boundary of slot ¢t and ¢t + 1 and V; represents
the string that holds the current stack level for slot ¢ of all active stations. It is easy to
see that (V;, W;) is a tree structured Markov chain. Indeed, the node sgsg 1...$18¢ is
the parent of the nodes spsi_; ...s150s for s > 0. Each node, including the root node 0,
contains [ states (the [ states of the D-BMAP) and has an infinite number of children.
The root node, denoted as ), represents the case when there are no active stations.

The chain (V;, W;) is not of the Quasi-Birth-Death type. For instance, suppose that the
chain is in the state (J,7) with J = 2 5 at time t. Therefore, 5 active stations have their
current stack level for slot £ at zero, i.e., transmit in slot ¢, and 2 active stations have their
current stack level for slot ¢ at one. Next, suppose that 3 out of the 5 stations increase
their current stack level to one as a result of the coin flip procedure. When a colliding
station determines to join either the first or the second group, it is said to flip a coin
(if p = 1/2 a fair coin). The coin flipping of all colliding stations is referred to as the
coin flipping procedure. Then, at time ¢ + 1, the Markov chain is in the state (K, j) with
K =23 (2+ s) with probability (B;);; (i.e., s new arrivals occurred on the boundary of
slot ¢ and slot ¢+ 1). This type of transitions (to the grandchildren of the parent node) is
not allowed in a tree structured QBD Markov chain. Also, the Markov chain is no longer
of the GI/M/1 type (see Yeung, et al [79]) and there is no simple or explicit solution for
its stationary distribution.

3.3.2 The Actual Model

In order to solve the problem indicated in the previous section we make the number of
stations with a current stack level for slot ¢ equal to zero a part of the auxiliary variable.
Active stations that have a current stack level for slot ¢ larger than zero are referred to as
backlogged stations (at time ¢). Consider the following Markov chain (Xy, N;). Let X; be
the string holding the current stack level for slot ¢ of all backlogged stations (at time ).
For instance, when X; = s, ... sss; there are Zle s; backlogged stations, of which s; > 0
have their current stack level for slot ¢ equal to 7. In this example there are no stations
with a current stack level for slot ¢ larger than k. The sample space of the random variable
Xeis O ={0yu{J:J=s,...5,5 >0,1 <j<kk>1}. Notice, the string .J is
allowed to have a number of leading zeros (see Note 1 for more comments on this issue).
The random variable X; has a tree structure. For instance, the children of s;...s; are
Sg...818,8 > 0. Thus, each node in the tree has an infinite number of children. N; holds
both the number of active stations with a current stack level for slot ¢ equal to zero and
the state of the D-BMAP at the boundary of slot ¢ and £ + 1. The sample space of the
random variable N, is Qo = {(4,5) |1 > 0,1 < j <[}
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It is easy to see that (X;, N;) is a Markov chain. The state space of the Markov chain is
)y x 5. In order to solve this Markov chain the nodes of X; should have a finite number
of children and the auxiliary variable N; should have a finite number of states. Therefore,
the Markov chain (X, NV;) is approximated by another bivariate Markov chain (X2, Nf).
(X2, NT) is obtained by setting a maximum d on the number of stations that can have
the same current stack level for slot ¢ (including stack level zero). If a situation occurs
in which d + k,k > 0, stations have the same current stack level for slot ¢, £ stations
are assumed to drop their packet. Thus, introducing d can cause stations to drop their
packet. Packets are otherwise never dropped by a station. Nevertheless, provided that d
is chosen sufficiently large there should hardly be any difference between the performance
measures of (X¢, N?) and (X;, N;) (the difference between the recurrence of both Markov
chains is discussed in Section 3.5). We state that d is chosen sufficiently large if the
ratio of dropped packets due to the introduction of d is smaller than 1077, i.e., if less
than one in a billion packets is dropped. The introduction of the parameter d is the only
approximation required to evaluate the basic binary CTM algorithm with free access.
There is no obvious relationship between a sufficiently large value for d and the maximum
n for which B,, # 0 (also such an n does not necessarily exist). For instance, a sufficiently
large d for the Bulk arrival process with v = [4], as defined in Section 2.1.3, is found for
d> 18 for L =10, d > 12 for L = 80 and d > 10 for L = 800 (whereas B,, = 0 forn > 5
in each of the three cases).

Let us now consider (X&, N%) in more detail. X¢ is the string that holds the current stack
level for slot ¢ of all backlogged stations. For instance, when X{ = s, ... 55, then for s;
backlogged stations the current stack level for slot ¢ equals i. The sample space of the
random variable X/ is Qf = {0}U{J : J =s;...5,0<s; <d,1 <j<kk>1}. X?has
a tree structure, e.g., sp...s15,0 < s < d, are children of s, ...s;. Therefore, each node
in Q¢ has d+1 children. As opposed to the general description of the tree structured QBD
Markov chain (see Section 3.2) we represent the children of a node by 0 to d instead of 1 to
d+1. Ntd represents the number of stations that transmit in slot ¢ (i.e., the current stack
level for slot ¢ of these stations is zero) and the state of the D-BMAP at the boundary of
slot t and ¢ + 1. The sample space of N is Qd = {(i,7) |0 <i < d,1 < j <I}. It is easy
to see that (X¢, N{) is a Markov chain and the state space of the Markov chain (X&, N2)
is Q4 x Q.

We now prove that transitions made by the Markov chain (X¢, N?) are either transitions
to a child or a parent node (except from the root node )). Assume that the Markov chain
(X2, N%) is in node J + k at time ¢, i.e., X2 = J + k. If slot ¢ contains a collision of ¢ > 2
stations—that is, N is of the form (¢, j) with ¢ > 2,1 < j < [—all backlogged stations
increment their current stack level by one. Thus, the integers in the string .J + & shift one
position to the left and X, = J+ks with 0 < s < ¢ (s of the ¢ colliding stations set their
current stack level for slot ¢ + 1 at one as a result of the coin flip). Nf, is determined
by j,c and the probability that a station selects the first group p. Thus, a collision in
slot ¢ causes the Markov chain to make a transition to a child node (this is also the case
for X¢ = (). If slot ¢ does not hold a collision, all backlogged stations decrement their
current stack level by one, i.e., shift one position to the right. Hence, if slot ¢ does not
hold a collision, the chain will be in the parent node J at time slot ¢ + 1 (for X2 = @ the
chain remains in the root node). In conclusion, the chain can only make transitions from
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a node to either its parent node or to one of its children.

In order for the Markov chain (XZ, N?) to be a tree structured QBD Markov chain the
following two additional conditions have to be satisfied. First, the probability of making a
transition from state (J+k, (i, 7)) to state (J, (¢, j')) may not dependent upon .J. As noted
above, such a transition takes place whenever slot ¢ does not hold a collision. Clearly, j',
the new state of the D-BMAP, is solely determined by 7, the old state of the D-BMAP,
and thus independent of .J. While, ', the number of stations that transmit in slot ¢+ 1, is
determined by k, the number of stations that decrease their current stack level from one
to zero, and j, the old state of the D-BMAP (because this state j determines the number
of new arrivals on the boundary of slot ¢ and slot ¢+ 1). Second, the probability of making
a transition from state (J + k, (4, )) to state (J + ks, (i, ')) may not dependent upon J
and k. Such a transition occurs whenever slot ¢ does hold a collision. Again, j', the new
state of the D-BMAP, is determined by j, the old state of the D-BMAP. While, s, the
number of stations that increase their current stack level to one (as a result of the coin
flipping), is determined by ¢ and the probability p. Finally, ¢, the number of stations that
transmit in slot ¢ + 1, is determined by 7, p and j, the old state of the D-BMAP (because
this state j determines the number of new arrivals).

In conclusion, the Markov chain (X, Nf) is a tree structured QBD Markov chain. A tree
structured QBD Markov chain is fully characterized by the matrices Dy, Us, Ay s and
F (see Section 3.2). The matrices Ay ¢ hold the transition probabilities that the chain
(X2, NT) goes from state (J + k, (i, 7)) to the state (J + s, (7', 5')). These transitions are
transitions between sibling nodes. Two nodes are referred to as sibling nodes if they have
the same parent node. Remember that the chain (X¢, N%) can only make transitions to
its parent or to its children, therefore, the entries of the matrices Ay ; are zero. This fact
reduces the memory and time requirements of the algorithm that calculates the steady
state probabilities of (X2, N{) when it is ergodic (for details see Section 3.4).

The matrices Dy hold the transition probabilities that the chain (X¢, N{) goes from state
(J + k,(i,7)) to the state (J, (', j")). This happens when slot ¢ does not hold a collision.
Therefore, the state 7, the number of stations that transmit in slot #, must be equal to
zero or one. Moreover, the state i’, the number of stations that transmit in slot ¢ + 1,
equals k, the number of stations that decrease their current stack level from one to zero,
plus some possible new arrivals. Hence,

(Bi’fk)j,j’ 1 <1, i > I{J,i’ < d,
Dk((zvﬂv (ila.j’)) = Zndek(Bn)j,j' i< 1,4d > ki =d, (3'1)
0 otherwise,

where (B,);; holds the probability that n new arrivals occur and that the input D-BMAP
changes its state from j to j'.

The matrices U, hold the transition probabilities that the chain (X2, N?) goes from state
(J + k,(i,7)) to the state (J + ks, (¢',7")). This happens when slot ¢ holds a collision.
Therefore, the state i, the number of stations that transmit in slot ¢, must be larger than
or equal to 2. Moreover, the state 7', the number of stations that transmit in slot ¢ + 1,
equals 7, the number of stations that transmitted in slot ¢, minus s, the number of stations
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that increase their current stack level to one (as a result of the coin flipping), plus some
possible new arrivals. Clearly, s can never be larger than 7. Hence,

Cipiisqs(BiI,(i,S))jvjl 7> 1,2 Z S, ’il Z 17— S, ’il < d,
Ur‘i((iv.j)v (ilv.jl)) = Cipiisqs and*(ifs)(Bn)jyj' i>1i2s0 20— =d, (3'2)
0 otherwise,

where (B,,);; holds the probability that n new arrivals occur and that the input D-BMAP
changes its state from j to j' and C? denotes the number of different possible combinations
of s from i different items.

Assume that the Markov chain is in node .J = () at time ¢, i.e., X = (). Then the transi-
tions to the nodes s, 0 < s < d, are governed by the matrices U,, whereas the transitions
to the root node () are as follows. The matrix F holds the transition probabilities that
chain (X¢, N{) goes from state (0, (i, 7)) to the state (@, (', 5')). This happens whenever
slot ¢ does not hold a collision, i.e., i < 1. The state i, the number of stations that
transmit in slot ¢ 4+ 1, equals the number of new arrivals (occurring on the boundary of
slot ¢ and slot £+ 1). Hence,

(Bir) i i< 1,7 <d,
F((7a])a (7’a]’)) = and(Bn)j,j’ S 1a i = da (33)
0 otherwise,

where (B,);; holds the probability that n new arrivals occur and that the input D-BMAP
changes its state from j to j'.

Note 1: It is possible that a string J has a number of leading zeros. The semantics of
such a string .J is identical to that of the string .J without the leading zeros. For instance,
J =004 05 has the same meaning as K =4 0 5. Strings with leading zeros arise from
the following situation. When the Markov chain (X¢, N¢) is in the root state J = 0,
i.e., X = (), a transition might occur to state 0. For instance, suppose that N = (¢, 5),
with ¢ > 2,1 < j < [, and assume that the current stack level for slot ¢ 4+ 1 is set at
zero for each of the ¢ colliding stations (as a result of the coin flip procedure). Then,
at time ¢t + 1, according to Equation (3.2), the Markov chain (XZ Ng) is in the node
0. Tt might seem more appropriate to remain in the root node .J = ) in such cases, or
equivalently to avoid strings with leading zeros. If we exclude this type of transitions;
that is, eliminate such strings, the node variable Xtd’ would have a tree structure where
every node has d + 1 children except for the root node () (who has d children). In Yeung,
et al [79] this type of Markov chain is called a Markov chain with a forest structure and
algorithms to calculate the steady state are provided. Both approaches lead to the same
steady state probabilities (after rearranging the states appropriately). The advantage of
allowing this type of transitions is that we get a slightly faster algorithm because the
boundary condition is slightly less complicated.



3.4. THE STATIONARY DISTRIBUTION OF THE QUEUE STRING 35

3.4 The Stationary Distribution of the Queue String

According to Yeung and Alfa [78], a matrix geometric solution exists for an ergodic QBD
Markov chain with a tree structure. The Markov chain (X, N{) is aperiodic whenever
the D-BMAP modeling the input traffic is aperiodic. The irreducibility is not always
inherited from the input D-BMAP, e.g., D-BMAPs with B; = 0 or B, = 0,n > 2. In
Section 3.5 we address the problem of determining whether the Markov chain (X{, N7) is
positive recurrent. Define, for each string J € Qf, 0<i1<dand 1< <

m(J, (i.5)) = lim P{(X}, N}') = (/. (i, 5))]. (3.4)

Denote by n(J,i) = (n(J, (i,1)),...,7(J, (i,1))) and by 7(J) = (x(J,0),...,7(J,d)). In
order to calculate the 1 x I(d+1) vectors 7(.J) the following three sets of [(d+1) x I(d+1)
matrices play an important role [78].

Let G, 0 < k < d, denote the matrix whose (i,v)" element is the probability that the
Markov chain (X2, N{) is in state (J,v) at the end of the fundamental period given that
this period starts from state (J + k, 7). These matrices are stochastic for recurrent QBD
Markov chains with a tree structure (Takine, et al [62]). Let Ry, 0 < k < d, denote the
matrix whose (7,v)™ element is the expected number of visits to (J + k,v) given that
(X3, N&) = (J,i) before visiting node J again. Let V,,0 < k < d, denote the matrix
whose (i,v)" element is the taboo probability that starting from (J + k, i), the chain
eventually returns to a node with the same length as .J + k by visiting (.J + k&, v), under
the taboo of the node .J and the sibling nodes of J + k, i.e., the nodes J + s, s # k.

Yeung and Alfa [78] have shown that the matrices Gy and Ry, can be expressed in terms of
Vi. Moreover, if a tree structured QBD Markov chain does not allow transitions between
sibling nodes, they were able to shown that the following simple expressions hold:

Gr = (I =Vi)"'Dy, (3.5)
R, = Ui(I -V, (3.6)
d
s=0

If however transitions between sibling nodes were allowed it would still be possible to solve
the chain but the equations would be more complicated and the resulting iterative scheme
more time consuming [78,79]. Notice that the matrices V;,0 < k < d, are identical if
the matrices Ay, 0 < k < d, are identical. For the Markov chain (X, N/) the matrices
Ak, 0 < k < d, are equal to zero, therefore the matrices Vi, 0 < k£ < d, are identical.
In the remaining part of this section we drop the subscript £ if we refer to Vj. Using
equations (3.5) and (3.7), we obtain

V=) Ul V)'D, (3.8)

s=0
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As a special case of Theorem 2 in Yeung and Alfa [78], the matrix V' can be obtained as
limy o V[N] from the recursion

VIN +1] = zd: U,(I — V[N])"'D,, (3.9)

s=0

where V[0] = 0. Also, the matrices G,[N] = (I —V[N]) "' D, converge to the substochastic
matrices G,. Since we do not know in advance whether the Markov chain (X{, Nf) is
recurrent, we do not use the possible stochastic nature of the matrices G, as a stopping

criterion for the recursion in (3.9). We simply repeat the recursion until all matrices
G4[N],0 < s < d, have stabilized.

Next, the matrices Ry, 0 < k < d, are calculated from the matrix V' using equation (3.6).
The steady state vectors m(.J) are then calculated as follows [78]:

7(J+ k) =n(J)Ry, (3.10)

where 7(() is the left invariant vector of the matrix F'+ V', i.e., 7(0)(F + V) = 7(0), and
7(0) is normalized as 7(0)(I — R) ‘e = 1. The matrix R is defined as % R,. In order
to clarify the subsequent steps required to calculate the steady state probabilities we have
summarized them in the following algorithm:

Algorithm:

e INPUT: A sequence of matrices B,,n > 0, that characterize the D-BMAP input
traffic.

e STEP 1: Calculate the matrices Dy, 0 < k < d, U;,0 < s < d, and F' by making
use of formulas (3.1), (3.2) and (3.3).

e STEP 2: Determine the matrix V' using the iterative formula presented in (3.9).
e STEP 3: Calculate the matrices Ry, 0 < k < d, by means of equation (3.6).

e STEP 4: Determine the vector m(() as follows: w(0) = 7(0)(F + V'), where () is
normalized as 7(0)(I — R) 'e = 1.

e STEP 5: Calculate de steady state probabilities of interest using the equation 7 (J +
k) = 7(.J)Ry.

REMARK: At the end of STEP 4 one can determine whether the parameter d was chosen
sufficiently large (see Note 2), if not, d has to be increased and the first four steps have
to be repeated, i.e., everything has to be recalculated. For many numerical examples
setting d as small as 10 was sufficient (see Section 3.7). Thus, one starts with d = 2 and
repeats the first 4 steps until d is sufficiently large. It is however possible to reduce the
the computational effort by making a first estimate for the starting value of d (instead of
d = 2). If we estimate the value of d larger than the smallest possible d for which d is
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sufficiently large, we are finished after one run. One must however note that the larger
we choose d, the more time it requires to compute the first four steps. Therefore, one
should try to limit the margin of overestimation. During the numerical trials we noticed
that there exists a strong relationship between a sufficiently large d and the burstiness,
i.e., the variation of the number of arrivals in a time slot, of the input process. We used
the following heuristic method to reduce the computation times: if d = x was sufficiently
large for a specific D-BMAP and the next D-BMAP we are about to evaluate is more,
resp. less, bursty we make use of a larger, resp. smaller, first estimate for a sufficiently
large d.

Note 2: We can make use of the following test to determine whether d was chosen suf-
ficiently large. Let p be the load, i.e., arrival rate A, of the D-BMAP modeling the aggre-
gated input traffic. From the steady state probabilities we can calculate Y ;7 (J, (1, j)).
This sum is, due to the law of total probability, equal to the probability that there is
exactly one active station with a current stack level for slot ¢ equal to zero. Therefore,
this sum matches the probability of having a successful transmission. We can now com-
pare this with the arrival rate A, i.e., load p, of the D-BMAP to get a value for the ratio
of dropped packets. In conclusion, we state that d is chosen sufficiently large whenever

(p = 325;m((1,4)))/p <1077

3.5 Stability Issues

In Chapter 1 we mentioned that Mathys and Flajolet [43] have shown that the basic
binary CTM algorithm with free access is stable under a Poisson flow of arrivals if the
arrival rate A < .360177 (using fair coins, i.e., for p = 1/2). In this section we indicate how
to determine whether the basic binary CTM algorithm with free access is stable under
D-BMAP traffic. Define S as the set of all (primitive) D-BMAPs. S can be split into two
subsets §; and S, such that the CTM algorithm with free access is stable for s € §; and
is unstable for s € S,. For instance, the CTM algorithm is stable for all D-MAPs, i.e.,
D-BMAPs with B,, =0 for n > 2.

A D-BMAP s belongs to S; if and only if the Markov chain (X, IV;) is stable, i.e., positive
recurrent. To test whether the Markov chain (X;, IV;) is positive recurrent, we study the
stability of the Markov chain (X2, N%). Clearly, the chain (X;, ;) is transient whenever
the chain (X¢, N{) is transient. Indeed, (X2, N?) behaves identical to (X;, N;) except that
it drops a packet from time to time. Clearly, this only improves the expected delay suffered
by an arbitrary packet. The stability of the chain (X, N{) is however not sufficient to
prove that the chain (X;, IV;) is stable. For instance, for every s € S, (X}, N}) is stable.
Even when d is chosen sufficiently large, it is still possible that the dropping of these
rare packets (even when we lose less than one in a billion) causes the chain (XZ N¢) to
become stable while (X, V;) is not. Hence, it is possible that we slightly overestimate
the stability point of a particular arrival process. There exists only one case we can use
to get an idea of the margin of overestimation: the Poisson result. Numerical results (not
included in Section 3.7) have indicated that for d = 10 the overestimation is less than
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.000003 (the chain was unstable for A = .36018 while the exact result by Flajolet states
.360177). Further increasing d would result in even smaller overestimation errors.

The Markov chain (X¢, N is recurrent if and only if the matrices G;,0 < k < d, are
stochastic (HE [25]). Provided that the Markov chain (X N¢) is recurrent, we define
a heuristic measure d; for its stability as follows. Let 7(i,7),0 < i < dand 1 < j <,
be the probability that the auxiliary variable NZ is equal to (i,j). Hence, 7(i,j) =
>oym(J(i,7) = 7(0)(I — R)™" (see Section 3.4). Let d, = >, 7(0,5) + >, 7(L, ) —
> iis1 (i J). ds can be seen as the difference between the drift towards the root node
and the drift away from the root node. Indeed, Zjﬂ(O,j) is equal to the probability
that slot ¢ is empty, i.e., no transmission takes place in slot ¢, and Zjﬂ'(l,j) is the
probability that slot ¢ holds a successful transmission. Therefore, Zj 7(0,7) + Zj (1, 7)
is the probability that the Markov chain makes a transition to a parent node. While,
Zj’b] (i, j) represents the probability that a collision takes place in slot t—that is, the
chain makes a transition to a child node. The difference between these two probabilities
is used as a measure for the stability.

3.6 Performance Measures

Although we mainly focus on the stability characteristics of the basic binary CTM algo-
rithm, we can also obtain a number of other interesting performance measures. As far as
the numerical results are concerned we restrict ourselves in this chapter to the stability.
Numerical results on the mean delay and other performance measures are presented in
Chapter 4 in order to compare the performance of the basic QQ-ary CTM algorithm with
free access for different values of the splitting factor Q).

3.6.1 The Fundamental Period and Mean Delay

Define ®(7,7),0 <i < dand 1 < j <[, as the expected length of a fundamental period
given that this period starts from state (J + k, (4, j)). Notice that these expected values
do not depend upon J and k. ®,(,7) is the expected number of time slots necessary
to resolve a collision of i stations provided that the D-BMAP is in state j (at the end
of the time slot in which the i stations collide). Let ®1(i) = (P;(i,1),...,P1(4,1)) and
®; = (1(0),...,P1(d)). Then, the column vector ®} (z' denotes the transposed vector
of z) obeys the following equation:

d
Ol =e+ Y UJ[P) +G,). (3.11)

s=0

This equation is obtained as follows. The expected length of the fundamental period
equals one if the first slot of the period is collision free, i.e., if i equals zero or one (the
first 2(d + 1) rows of Uy are zero, i.e., ®;(4,j) = 1 for i = 0 or 1). Otherwise, the first slot
holds a collision and the expected length of the fundamental period equals one (the first
slot) plus the expected time required to resolve the first group plus the expected time
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required to resolve the second group. In order to calculate the expected time required to
resolve the first group we apply the law of total probability on the state of the D-BMAP
at the boundary of the second and third slot of the fundamental period (the state at the
boundary of the first and second is ), on the number of colliding stations that select the
second group and on the number of new arrivals occurring on the slot boundary of the
first and second slot of the fundamental period. In matrix form this leads to ) U,®!.
For the expected time required to resolve the second group we also apply the law of total
probability on the state of the D-BMAP at the end of the slot following the fundamental
period initiated by the first group and on the number of new arrivals on the boundary
of the last slot of the fundamental period initiated by the first group and the first of the
period initiated by the second group. In matrix form this leads to > U;G;®!. Equation
(3.11) can be solved as a set of linear equations or using an iterative method.

Define Y(k,j),1 < k < dand 1 < j <[, as the probability that N? = (k, j) at an arrival
instant. Details on how to calculate Y(k,j) are provided in Section 3.6.3. Thus, the
probability that the transmission of a packet is successful at its first attempt is 3, T(1, j).
Let U(delay) be

d l

Uldelay) =3 3 T(i,j)®i(i. j). (3.12)

Then U(delay) is an upper bound on the mean delay experienced by an arbitrary packet.
It is possible to calculate the mean delay F(delay) as follows.

Define ®5(i,7),1 < i < dand 1 < j <, as the expected delay suffered by an arbitrary
packet provided that the first transmission of the packet coincided with the transmission of
i—1 other packets and provided that the D-BMAP is in state j after the first transmission.
Let ®9(i) = (Po(iy1),...,Py(i, 1)) and &y = ($3(0),...,Po(d)). The column vector P
obeys the following equation (this equation is obtained in a similar manner as Equation

(3.11)):

d
Oh=e+ > (MU, + N,U,[®} + G,h]) (3.13)

s=0

where M, and N are the following (d + 1)l x (d + 1) diagonal matrices:

M, = diag(0', ai(s)e, ..., aq(s)e"), (3.14)
N, = diag(0', b,(s)e’,..., by(s)e"), (3.15)

with a;(s) = 0 for i < s, a;(s) = (i —s)/i for i > s, bi(s) = 0 for i < s, b;(s) = s/i for
i > s, 0" alxl vector with all elements zero and e’ a 1 x | vector with all elements
equal to one. Remark that a;(s), resp. b;(s), represents the probability that our arbitrary
packet selects the first, resp. second, group after a collision knowing that s of the colliding
stations select the second group. Equation (3.13) can be solved as a set of linear equations
or using an iterative method. The expected delay experienced by a packet E(delay) is
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found as

d
E(delay) = ZZT i,7)®a(i, 7). (3.16)

i=1 j=1

3.6.2 Other Performance Measures

Define ©(k,i,7),k > 0,0 < i < d and 1 < j < [, as the probability that the highest
current stack level held by a station equals k£ and that the auxiliary variable of the
Markov chain (X¢, N¢) equals (i, j). Let O(k,j) = (O(k,i,1),...,0(k,i,1)) and O(k) =
(©(k,0),...,0(k,d)). Recall that it is possible that a string J € €, starts with a sequence
of zeros (see Note 1 in Section 3.3.2). Therefore, ©(k) = 3=, ;) 7(J) with L(k) C Q,
where L(k) is the collection of strings .J with a length m, m > k, and with exactly m — k
leading zeros. Define R as Z;:i:o R;, then due to Equation (3.10)

Ok) =m(0)(I — Ry) " k=0, (3.17)

O(k) = O(k — 1)(R— Ry) = n(0)(I — Ry) (R — Ry) k=1, (3.18)

O(k) =O0(k — )R =7(0)(I — Ry) (R — Ro)RF! k> 1. (3.19)
The matrix (I — Ryt =3, R} exists because R = Y, Ri, Ry > 0 for 0 < i < d
and (I — R)™' = 3, R/ exists. Define ['(k,i,j),k > 0,0 <i < dand 1< j <1, as
the probability that the number of backlogged stations equals k£ and that the auxiliary
variable of the Markov chain (X%, N%) equals (4, 7). Let ['(k, j) = (I'(k,4,1),...,T(k,4,1))
and T'(k) = (T'(k,0),...,T(k,d)). Then, due to Equation (3.10)

(k) =n(0)(I — Ry) ' k=0, (3.20)

min(k,d)
P(k)= > T(k—i)R(I— Ro)" k> 0. (3.21)
i=1

Next, define A(k),k > 0, as the expected number of backlogged stations with a current
stack level equal to k. The probability of having 7,7 > 0, stations with a current stack
level equal to k,k > 0, is 3 ;cp) m(J)e, where the subset T'(k) C € is the collection of
strings J for which the k-th integer from the right equals 7. Hence,

d
=Y in(0)(I - R)'RiR" e (3.22)

=1

Define E|r| as the expected number of transmissions required to transmit a packet success-
fully. Elr] is significantly smaller than F(delay) because an active station only transmits
whenever its current stack level is equal to zero. Let 7(0)(I — R)™! = («(0),...,a(d)),
where a(i),0 < i <d,is a1l x [ vector. Then, E[r] is found as the ratio of the expected
number of transmissions in slot ¢ and the expected number of successful transmissions in
slot ¢

Efy] = 2= Fotkle

= (3.23)
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Finally, let p,, resp. ps, resp. p., be the probability that a time slot is empty, resp. holds
a successful transmission, resp. holds a collision. Then,

Pe = OL(U)G, (324)
ps = a(l)e, (3.25)
pe = Za(i)e. (3.26)

3.6.3 The State of the Auxiliary Variable at Arrival Times

Basically, Y(k,7),1 < k < d and 1 < j < [, equals the probability that the first trans-
mission of a packet coincides with the transmission of & — 1 other packets and that
the state of the D-BMAP modeling the input traffic is j after this first transmission. Let
a; =m(0)(I—R)'R,,0 < s <d,and a = 7(0)(I—R)"'. Clearly, o, and v are 1 x[(d+1)
vectors. Thus oy can be written as ay = (a5(0),. .., as(d)), where a,(i),0 < i < d, are
1 x [ vectors. Similarly, o = ((0), ..., a(d)) and 7(0) = (7o (D), . .., m4(D)).

Both equations presented below are a natural extension of the common method used
in an M/G/1 type of Markov chain to calculate the steady state probabilities of the
Markov chain at an arrival instant given the steady state probabilities at an arbitrary
time instant (see, e.g., [4]) and by observing that the packets that are dropped (due to d)
are dropped before their first transmission attempt (see Equations (3.1), (3.2) and (3.3)).
Let Y(k) = (Y(k,1),...,Y(k,1))". For k < d, we get

T(k) = i[z (m@)wﬁz%u)(k—swks> ;

Ds

i=0
d min(i k) ' '|

D ali) > Cip(1—p) (k- S)BksJ : (3.27)
=2 s=0

where p, was defined in Section 3.6.2. For k = d, we have

1

T(d) = S [Z (m(ﬁ)dZBj +) (i) (d - S)ZB,,-S> +

Ps |50 i>d 5= i>d

d min(i,k) -|

Sa) Y - d-5) S By | (3.28)
i=2 s=0 j>d

3.7 Numerical Examples

To test whether the Markov chain (Xtd, Nt‘i) is stable, we calculate the matrices Gy, 0 <
k < d, and check whether they are stochastic. The matrices G are determined by an
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iterative algorithm which is performed in a floating point environment; hence, the resulting
matrices are never “truely” stochastic. Therefore, if all the row sums of GG; are between
1-10"? and 1, we conclude that G}, is stochastic. If there is a row in G}, for which the row
sum is below 1 — 10~* we conclude that the matrix Gy, is not stochastic. If the smallest
row sum of G}, is between 1 — 107* and 1 — 102 we conclude that the stochastic nature
of Gy is undetermined (i.e., the recurrence of the chain (X2, N?) is unclear). Notice that
if (X2, N%) is transient we can use the value of the smallest row sum d; as a heuristic
measure of instability.

As with many of the iterative formulas used in the matrix analytical approach [18,34,
46,55, 75 77|, the number of iterations required by formula (3.9) increases significantly
when the Markov chain (X7, Nf) is close to instability (e.g., 10 to 100 iterations suffice
for many stable and unstable Markov chains, while the number of iterations can become
as large as a few thousands when the chain is (very) close to the instability point). This
limits the precision by which instability points can be determined.

Next, we determine the instability point of a number of D-BMAP arrival processes pre-
sented in Section 2.1.3 for p = 1/2. The issue of using biased coins (p # 1/2) is briefly
discussed at the end of this section. In the remainder of this chapter, the instability point
is also referred to as the stability point as this is the point where the CTM algorithm
switches between being stable and unstable. For most of the numerical results presented
below the parameter d was sufficiently large for d > 10 (see Section 3.3.2 and Note 2 in
Section 3.4).

3.7.1 The Discrete Time Poisson Process

From Chapter 1 it follows that the basic binary CTM algorithm with free access is stable
for A < .360177147 under Poisson input traffic. We start by confirming this result using
our analytical model. The results are presented in Table 3.1. The first column of Table
3.1 represents the arrival rate of the input D-BMAP A, the second indicates whether
the chain (X7, N{) is stable or not (S = stable, U = unstable) and the last column
represents the heuristic stability measure d; or the instability measure d; depending on
whether the Markov chain was stable or not. According to Table 3.1 the Markov chain
(X2, N%) becomes unstable for A somewhere between .36015 and .3602. This is in complete
correspondence with the results obtained by Mathys and Flajolet [43]. Additional runs
have shown that the stability point is found in the interval [.36015, .36018].

3.7.2 The Discrete Time Erlang Process

The discrete time Erlang process was introduced in Section 2.1.3. The stability points
for the Erlang process with £ = 2,3 and 4 have been determined and the results are
presented in Table 3.2. The results indicate that increasing the parameter £ results in
a higher stability point. This is not surprising because the Erlang distribution becomes
more deterministic when increasing k. As a function of k, the growth of the stability
point decreases as k increases (this seems logical as the variance of the Erlang distribution
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A SJU  d,/d, N=\/k k S/U d,/d,
10000 S 9745 3625 2 S 1035
30000 S 5207 3650 2 S 0199
35000 S 1215 3655 2 S 0017
35500 S .0617 3656 2 U 9965
36000 S .0023 3658 2 U 9835
36010 S .0010 3660 3 S5 1203
36015 S .0003 3670 3 S 0468
36020 U .9991 3675 3 S .0059
36030 U .9951 3676 3 U 9973
36050 U 9872 3680 3 U 9646
36100 U  .9678 3675 1S 1313
36250 U .9120 3682 4 S 0246
37000 U 6791 3684 4 U 9955
40000 U 2169 3690 4 U 9384

Table 3.1: Stability under Poisson traffic. Table 3.2: Stability under Erlang k traffic.

decreases linearly in k). For instance, the stability point of the Erlang process with k£ = 15
is below .37. Therefore, the difference between the stability point for the Erlang process
with £ = 1 and k£ = 15 is less than .01, while the variance of the interarrival times is 15
times as large for k£ = 1 as opposed to k = 15.

3.7.3 The Discrete Time Markov Modulated Poisson Process

The discrete time Markov modulated Poisson process was introduced in Section 2.1.3. For
the numerical examples we restrict ourselves to the interrupted Poisson processes (IPPs).
An IPP is an MMPP with two states and the arrival rate corresponding to one of the
states, say Ay, is zero. The IPPs are the most bursty of all MMPPs with two states
and are therefore expected to produce the most deviating results from the Poisson result.
For instance, the algorithm under M(-,2A;, 30, 30) input is stable for A = 3\;/2 < .359;
unstable A > .36. That is, the stability point is found in the interval [.359, .36].

N=\/2 S/U d,/d, N= /8 S/U d,/d,
0.3250 S 0.0673 0.3400 S 0.0202
0.3400 S 0.0222 0.3450 S 0.0056
0.3450 S 0.0072 0.3460 S 0.0027
0.3466 S 0.0025 0.3466 S 0.0009
0.3480 U 0.9965 0.3480 U 0.9952
0.3500 U 0.9843 0.3500 U 0.9856
0.3600 U 0.9279 0.3600 U 0.9449

Table 3.3: Stability under M(0,-,300, 300) Table 3.4: Stability under M(0,-,210, 30)
input traffic. nput traffic.
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A=u/(L+1) o S/U 4,4, A=Su/(L+2) S S/U d,jd
0.344800 2 S 0.0161 0.348800 241 S 0.0046
0.347826 2 S 0.0026 0.349854 2+1 S 0.0005
0.348432 2 U 0.9987 0.350050 2+1 U 0.9969
0.350900 2 U 0.9008 0.350400 241 U 0.9803
0.342800 3 S 0.0259 0.348400 3+1 S 0.0017
0.349040 3 S 0.0024 0.348735 3+1 S 0.0006
0.349854 3 U 0.9926 0.349040 3+1 U 0.9953
0.352900 3 U 0.8446 0.350900 3+1 U 0.9330
0.347800 4 S 0.0033 0.344800 242 S 0.0090
0.348432 4 S 0.0012 0.346620 242 S 0.0026
0.349040 4 U 0.9916 0.347826 242 U 0.9838
0.350900 4 U 0.9287 0.348400 242 U 0.9631

Table 3.5: Stability under the Bulk arrival Table 3.6: Stability under the Bulk arrival
Process. Process.

Tables 3.3 and 3.4 show that the interval [.3466, .348] includes the stability point of both
the M (0,-,300,300) and M (0,-,210,30). Thus, although the second IPP is by far the
more bursty of the two—because the arrivals are concentrated in 12.5% of the time slots
compared to the 50% their stability point differs less than .0014. As for the influence
of correlation, we found that the interval [.348, .349] contains the stability point of the
IPP with a = b = 30, i.e., the M(0,-,30,30) process. Comparing this with the results
in Table 3.3, we see that correlation slightly decreases the stability of the basic binary
CTM algorithm with free access (in our example less than .0024). This observation was
confirmed by other numerical examples.

3.7.4 The Bulk Arrival Process

The Bulk arrival process is defined in Section 2.1.3. Table 3.5 presents the results for
m = 1 with v = [2],[3] and [4]; whereas Table 3.6 holds the results for m = 2 with
v =12,1],[3,1] and [2, 2]. For each of these processes we gradually decrease L, i.e., increase
the arrival rate A, until the basic binary CTM algorithm with free access becomes unstable.
Perhaps somewhat surprisingly: the v = [2, 2] process is the first of the six processes to
become unstable (A € [.346620, .347826]), then the v = [2] process, followed by either the
v = [4] or the v = [3,1] process (we did not attempt to distinguish these two processes),
next the v = [3] process and finally the v = [2,1] process. From these results it follows
that it is not always the most bursty process that results in the lowest stability point.

3.7.5 Summary for Fair Coins

The stability point of the basic binary CTM algorithm with free access under D-BMAP
input depends upon the exact definition of the input process. For instance, the discrete
time Poisson process, the Erlang processes, the Markov modulated Poisson processes and
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the Bulk arrival processes all result in a different stability point. Moreover, it is often
difficult to state a prior: from the characteristics of the D-BMAPs which of two input
processes results in a higher stability point, i.e., maximum stable throughput. Hence, the
stability results of the basic binary CTM algorithm with blocked access are much more
transparent as opposed to the free access scheme (see Theorems 2.1 and 2.2 in Section
2.3).

On the other hand, the stability point, i.e., maximum stable throughput, of the free access
scheme under D-BMAP input is never far below the stability point under Poisson input
(in our examples: at most .014). Thus, the basic binary CTM algorithm with free access
seems to maintain its good stability characteristics under D-BMAP input traffic. Clearly,
we can always define a D-BMAP with a load 0 < p < 1 for which the CTM algorithm
with free access is stable, for example a D-MAP. Also, although correlation in the input
traffic reduces the stability point somewhat, it does not devastate the stability.

An interesting open problem related to this is whether there exists an arrival rate \,,;,
such that the basic binary CTM protocol with free access (with p = 1/2) is stable under
all primitive D-BMAPs with an arrival rate A < A,,;,,. During the numerical trials, we
did not find a D-BMAP with an arrival rate smaller than A = .34657 = In(2)/2 for which
the basic binary CTM algorithm with free access became unstable. For instance, the
v=12,2,2,2],v=1222272], v =[5], v =[10] Bulk arrival processes, the IPP with
a = b = 3000 and many others turned out to be stable for an arrival rate of In(2)/2. The
value In(2)/2 is no stranger to the basic binary CTM algorithm because in Section 2.3
we have shown that the basic binary CTM algorithm with blocked access under primitive
D-BMAP input traffic is stable for A < In(2)/2 — 107°; unstable for A > In(2)/2 + 107°.
Moreover, the expected length of a busy period initiated by a collision of n stations
increases asymptotically as 2n/1n(2) provided that no new arrivals occur. This result
also indicates that the Bulk arrival process v = [n] with a load smaller than In(2)/2 is
unlikely to cause instability even for large values of n and L. The question raises whether
it is at all possible to find a primitive D-BMAP with an arrival rate A < In(2)/2 that
makes the basic binary CTM algorithm with free access unstable. If not, the basic binary
CTM algorithm with free access results in a maximum stable throughput that is at least
as good as the corresponding scheme with blocked access under primitive D-BMAP traffic.
We therefore formulate the following conjecture:

CONJECTURE 3.1 The basic binary CTM algorithm with free access is is stable under
primitive (B,,), D-BMAP traffic if

1. XA < In(2)/2, with X the mean arrival rate,

2. (By)n has a finite number of states 1.

3.7.6 Using Biased Coins

Fair coins are the optimal coins for the basic binary CTM algorithm combined with
both the free and blocked access strategy provided that the input process is Poisson (see
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PP() M0, -, 30, 30) ER(-,?2)

P a(d,) p a(d;) p a(d;)
6000 351 5500 343 6000 359
5500 358 5000 348 5500 364
5200 359 4800 349 5300 .365 (.0211)
5100 .360 (.0012) 4700 350 (.00047) 5200 365 (.0264)
5000 360 (.0023) 4650 350 (.00062) 5150 365 (.0270)
4900 360 (.0012) 4600 350 (.00060) 5100 365 (.0261)
4800 359 4500 350 (.00011) 5000 365 (.0199)
4500 358 4400 349 4800 364
4000 351 4200 348 4500 362

Table 3.7: The influence of using biased coins on the stability of the basic binary CTM
algorithm with free access.

Chapter 1). Moreover, the stability under primitive D-BMAP traffic is identical to the
Poisson stability (see Section 2.3) if the blocked access strategy is used. Hence, fair coins
are again optimal. In this section, we investigate whether this result is also valid if the
free access strategy is used that is, whether the basic binary CTM algorithm with free
access performs best under D-BMAP input traffic if fair coins are used (p = 1/2).

For each arrival process a considered, we vary the probabilities p and ¢ = 1 — p, and
determine the stability point that corresponds to the couple (a, p). Define v as a multiple
of .001 such that the interval |, &« 4+ 0.001[ that holds the stability point of (a,p). When
the stability point of different couples (a,p) lies within the same interval |a, o + 0.001],
we also add the stability measure d; to determine which value for p performs best. A
larger value for d; implies a more stable Markov chain. Table 3.7 represents the stability
points, i.e., maximum stable throughput, as a function of p for the basic binary CTM
algorithm with free access under Poisson input traffic, Markov modulated Poisson input
traffic and Erlang input traffic. The Poisson result obtained by Mathys and Flajolet [43]
is confirmed by our analytical model.

Table 3.7 indicates that the optimal value for p for the FR(-,2) lies somewhere in the
interval |.51,.52[, whereas the optimal value for the A (0, -,30,30) input traffic is found
in the range ].46,.47[. We already mentioned that the optimum for Poisson input is
p = .5. Thus, the more bursty the input traffic the lower the optimal value of p becomes.
Intuitively, this can be understood as follows: the more bursty the input traffic becomes
the better it is to postpone the retransmission of some of the colliding packets. For
instance, if a collision occurs, in slot £, under Erlang traffic it is more likely that no new
arrivals will occur in the next slot, slot t+1, as opposed to the slots 44,7 > 1. Therefore, it
is better to choose p slightly larger than .5. Whereas for the Markov modulated Poisson
traffic it is more likely that the D-BMAP is transmitting at a higher rate whenever a
collision occurs and therefore it might be interesting to postpone some of the arrivals that
occur during this high rate period to a period where a lower input rate is being used (i.e.,
the probability that new arrivals occur in slot £+ 1 is larger than in slot ¢ +4,7 > 1). This
line of reasoning also corresponds with the Poisson result: if a collision occurs in slot t,
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the probability of having a new arrival in slot ¢ + i is identical for all i > 0 (=1 —e™?).
Therefore, there is no reason to prefer the next slot above any of the other slots, i.e., p = .5
is the optimum. Another remark is that the stability point of a single state D-BMAP
(i.e., [ = 1) arrival process remains identical if we swap the value for p and ¢, e.g., the
Poisson results in Table 3.7. Indeed, swapping both values changes the order in which
the two sets of colliding stations are resolved. The order is unimportant if the number of
arrivals occurring in consecutive time slots is independent.

In conclusion, for bursty and correlated arrival patterns higher throughput results can be
achieved by decreasing p. It is however hard to predict the optimal value for p because it
depends upon the statistical properties of the arrival process.

3.8 Conclusions

In this chapter we demonstrated that the stability of the basic binary CTM algorithm
with free access under D-BMAP input traffic can be determined by constructing a Quasi-
Birth-Death (QBD) Markov chain with a tree structure. The following conclusions were
drawn from the numerical examples. First, the maximum stable throughput achieved
by the basic binary CTM algorithm with free access differs from one arrival process to
the other. Hence, the stability is not as transparent as its blocked access counterpart
(see Theorem 2.1 and 2.2). Second, correlated and bursty arrival processes tend to result
into a smaller maximum stable throughput. However, the maximum stable throughput
is never far below the Poisson result. Moreover, we did not find a primitive D-BMAP
with an arrival rate A < In(2)/2 for which the basic binary CTM algorithm with free
access (p = 1/2) is unstable. The question raises whether it is at al possible to find
such a primitive D-BMAP. If not, the basic binary CTM algorithm with free access (and
fair coins) outperforms its blocked access counterpart (see Section 2.3) under primitive
D-BMAP input traffic. We believe that this is the case because we managed to find many
different arrival processes with a rate A, In(2)/2 = .34657 < A < .348, that resulted in an
unstable algorithm, but none with A < In(2)/2. Moreover, increasing the correlation or
burstiness of a specific arrival process often resulted in a decrease of the maximum stable
throughput that seemed to converge to the value In(2)/2, e.g., the Markov modulated
Poisson processes. Nevertheless, it could be that we have been looking at the wrong set
of arrival processes ©. Finally, fair coins are no longer the optimal coins for the basic
binary CTM algorithm with free access under D-BMAP input, as opposed to the Poisson
input case or the blocked access scheme. The correlation between the number of arrivals
in slot ¢ and ¢t + 1 is an important indication as to which coins are optimal. For instance,
if there is no correlation one expects fair coins to be optimal, e.g., the Poisson process;
while the larger, resp. smaller, the correlation is the smaller, resp. larger, the optimal p
is expected to be.






Chapter 4

The Basic and Modified ()-ary CTM
Algorithm with Free Access

In this chapter we extend the techniques presented in the previous chapter in order to
study the stability of the basic and modified Q-ary CTM algorithm with free access.
Thus, we indicate how to construct a tree structured QBD Markov chain that is recurrent,
resp. transient, whenever the tree algorithm of interest is stable, resp. unstable. We start
with a detailed description of the basic and the modified Q-ary CTM algorithm with
free access. Next, in Section 4.2, we introduce the tree structured QBD Markov chains
of interest. Numerical results are presented in Section 4.3 and conclusions are drawn in
Section 4.4. The work presented in this chapter is to appear in [69]

4.1 The Basic and Modified ()-ary CTM Algorithm

In a first subsection we describe the basic Q-ary CTM algorithm with free access, in a
second the modified Q-ary CTM algorithm with free access. We start with a summary of
the common features of both algorithms. A single channel (bus, cable, broadcast medium)
is shared among many users (sources, nodes, stations) that transmit packetized messages.
Time is slotted and transmissions can only occur at the beginning of a time slot. Each
time slot has a fixed duration equal to the time required to transmit a packet. Each
transmission is within the reception range of every user (in a wireless centralized LAN
environment the Base Station could broadcast the result of each uplink transmission).
The CTM algorithm is a collision resolution algorithm (CRA) for which each user strives
to retransmit its colliding packet till it is correctly received. The users have to resolve
this contention without the benefit of any additional source of information on other users’
activity.

The CTM protocol separates users that collide recursively according to some random-
ization procedure—into distinct groups. The users of the first group retransmit in the
next slot, while the users of the i-th group, ¢ > 1, wait until the first 7 — 1 groups are
resolved. The CTM algorithm is conveniently implemented by letting each user maintain
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a current stack level (that is, an integer value). Users that have a packet ready to transmit
are referred to as active users. Each active user maintains a current stack level (an integer
value) and at the end of each time slot the current stack level is updated. The value of
the current stack level defines when and if a stations is allowed to (re)transmit a packet.
The basic and modified Q-ary CTM algorithms with free access use a different procedure
to update the current stack level.

4.1.1 The Basic @)-ary CTM Algorithm with Free Access

The current stack level, that is maintained by each active user, is updated as follows:

e An active user transmits in a time slot ¢ whenever its current stack level for slot
t is equal to zero. A user that became active during time slot £ — 1 initializes the
current stack level for slot ¢ at zero.

e At the end of a time slot ¢ in which no collision occurs, users with a stack level
i,i > 0, for slot ¢ set their current stack level for slot t 4+ 1 at ¢ — 1 (while a possible
successful user becomes inactive).

e At the end of a time slot ¢ in which a collision occurs, all users with a current stack
level 7,1 > 0, for slot ¢ set their current stack level for slot t + 1 at ¢ + ) — 1. Users
with a current stack level for slot ¢ equal to zero split into @) distinct groups: a user
joins the i-th group with a probability p; ;. Users that join the i-th group set their
current stack level for slot £ + 1 equal to 7 — 1.

Figure 3.1 shows the state diagram for the basic binary, i.e., ) = 2, C'TM algorithm with
free access; whereas Figure 3.2 presents an example of the transmission process for () = 2.
Figure 3.2 also includes a list of group numbers (1 or 2) for each packet to indicate which
group the packet joins after each collision (in which it is involved). Thus, the list 1,2, ...
for packet E indicates that packet E joins the first group as a result of its first collision
and the second as a result of its second collision. Selecting one of the () distinct groups
(after a collision) can be seen as flipping a @-sided coin. A distinction is made between
fair coins, i.e., py = ... = pg_1 = 1/Q, and biased coins. We will consider both fair and
biased coins (we do assume that all the stations use the same coins, either fair or biased).

4.1.2 The Modified @Q-ary CTM Algorithm with Free Access

The modified CTM algorithm is a well-known improvement of the basic CTM algorithm
that skips so-called doomed slots (see Chapter 1). Doomed slots are slots for which all
active stations know a priori that the above-mentioned operation of the basic Q-ary C'TM
algorithm would result in a collision. In order to implement this optimization, ternary
feedback (empty, successful or collision slot) is required. As opposed to the basic CTM
algorithm where only binary feedback (collision or not) is required. The idea is the
following.
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Suppose that a collision is followed by () — 1 empty slots. This means that all the packets
involved in the collision selected the Q-th group. Using the basic C'TM algorithm, these
stations would transmit in the next slot (together with possible newcomers), generating a
guaranteed collision. The modified scheme improves the basic scheme by omitting these
slots and by splitting the set of stations that would otherwise result in a guaranteed
collision into @) subsets. If the next () — 1 slots are again empty, we would get another
guaranteed collision and therefore the next slot is again skipped. Thus, whenever, for
some 7 > 1, the last 1 +4(Q — 1) slots contain a collision followed by i(Q — 1) empty slots,
this otherwise-wasted slot can be skipped by having all stations immediately act as if it
had occurred. This modified scheme is conveniently implemented using a current stack
level and a simple count down counter.

Figure 4.1 presents an example of the transmission process for () = 3, it also includes
a list of group numbers (1, 2 or 3) for each packet to indicate which group the packet
joins after each collision (in which it is involved). Thus, the list 2,3, 1,1, ... for packet D
indicates that packet D joins the second group as a result of its first collision, the third
as a result of its second collision, the first as a result of its third collision (the skipped
collision) and again the first as a result of its fourth collision.

G

L o
LH LH L+ L* L* NEW ARRIVAL TIME AXIS

D C
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—~—— PACKET NAMES

TRANSMISSION TIME AXIS

SKIPSLOT
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THE SEQUENCE OF GROUPS SELECTED BY THE ASSOCIATED TRANSMITTER:

A: ... D:2,3,1,1,... G: ..
B: 3,... E: .. H: 2,...
C:2232,.. F:2,.. 1:1,...

Figure 4.1: Example of the Transmission Process: CSL = Current Stack Level

4.2 Analysis of the Basic and Modified ()-ary CTM
Algorithm

This section is subdivided in four parts. Each part describes a tree structured QBD
Markov chain that is stable, resp. unstable, whenever either the basic or the modified
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CTM algorithm, for specific values of @), is stable, resp. unstable. The four parts are
summarized below:

1. the basic CTM algorithm with @) > 2,
2. the modified CTM algorithm with Q) = 2,
3. the modified CTM algorithm with Q) = 3,

4. the modified CTM algorithm with ) > 3.

With each new part some additional complexity is introduced. In each of these parts new
packets are generated according to a D-BMAP characterized by the matrices (B,), (see
Chapter 2) as follows. Assume that the D-BMAP is in some state i, 1 < i <[, at time
t. Then, with a probability (B,);;, the state at time £ + 1 is j and n new packets are
generated at the boundary of slot £ — 1 and £. Due to the free access these n new packets
are transmitted (for the first time) in time slot ¢ by their corresponding stations.

4.2.1 The Basic CTM algorithm with @ > 2

As in the previous chapter, we construct a tree structured QBD Markov chain that allows
us to study the stability of the basic CTM algorithm with free access, but now for ) > 2.
In the remainder of this section we indicate how to construct this Markov chain and
how to calculate the matrices Dy, Us, Ay and F' (see Section 3.2) that characterize the
Markov chain. These matrices are the input variables of the iterative algorithm described
in Section 4.2.5.

Let ¢;,0 <1 < @ — 1, be the probability that a station increases its current stack level to
1, as a result of the coin flipping procedure, provided that it does not increase its current
stack level to a value above i. Hence,

S (4.1)

qi = )
l 1 - Zj>z’pj

where p;,0 <17 < @ — 1, is the probability that a station increases its current stack level
to 7 as a result of the coin flip.

Consider the stochastic process (Xy,Y:, Z;), where X; denotes the backlogged string con-
sisting of the status of all backlogged stations at time slot ¢, Y; denotes the number of
stations that transmit in time slot £ and Z; denotes the state of the input D-BMAP at the
end of time slot ¢, i.e., at the boundary of slot ¢t and £+ 1. For instance, when X; = s ... s
there are ) . s; backlogged stations, i.e., stations with a current stack level for slot ¢ equal
to i > 0, and for s; > 0 of them the current stack level for slot ¢ equals i. Denote (Y;, Z;)
as the auxiliary variable N;. In the previous chapter we have shown that this stochastic
process (to be correct its approximation (X¢, N¢)) is a tree structured QBD Markov chain
if Q = 2. For () > 2, this process is still a tree structured Markov chain but it is not of
the QBD type. For instance, after each slot in which a collision occurs, ) — 1 integers are
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added to the backlogged string. These ) — 1 integers represent the number of stations
that increase their current stack level to 1,2, ..., @ — 1 as a result of their coin flipping
procedure.

Therefore, we construct an expanded Markov chain (X}, Y, Z;, Q;) and denote (Y, Z;, Q;)
as the auxiliary variable N;. This expanded Markov chain is constructed such that it is
a tree structured QBD Markov chain. The technique used to construct this expanded
Markov chain is similar to the method used by Ramaswami [56] in order to reduce an
M/G/1-type Markov chain to a QBD Markov chain. The idea behind this expanded
Markov chain is that whenever a transition occurs that adds ) — 1 integers to the node
variable X}, we split this transition into () — 1 transitions that each add one integer to
the node variable X.

Assume a given realization (X (w), Ni(w)) of the Markov chain (X}, Ni). The expanded
chain (X, N;) with N; = ()}, Z;, Q;) is constructed as follows (the range of Q, is 0 to
@ — 2). The random variable Q; keeps track of how many integers remain to be added to
the node variable X;.

Initial state: If (Xo(w), No(w)) = (J, (4, 7)), then set (Xo(w), No(w)) = (J, (4,7,0)). Also,
set k =0 and t = 0, k represents the steps of the original chain and ¢ represents the steps
of the expanded chain. We will establish a one-to-one correspondence between the state
(J, (i, 7)) of the original chain and the state (.J, (4, 7, 0)) of the expanded chain.

Transition Rules: We consider three possibilities: Q;(w) =0, Q;(w) > 1 and Q;(w) = 1.

For Q;(w) = 0, consider (X (w), (Yi(w), Zr(w))), and do one of the following:

Case 1: This case corresponds to the situation where the k-th time slot does not hold a col-
lision, i.e., Y (w) < 1. We set X1 (w) = Xgp1(w) and Ny (w) = (Vg1 (w), Zgi1(w), 0).
Thus, transitions that do not correspond to a collision remain identical. Next, both £ and
k are increased by one.

Case 2: This case corresponds to the situation where the k-th time slot does hold a col-
lision, i.e., Yx(w) > 1. Therefore, Xj1(w) can be written as Xy(w) + sg-159—2 - - - S251.
Then, (X1 (w), Npp1(w)) = (Xi(w)+sg-1, YVe(w)—sg-1, Zr(w),Q—2)). Indeed, Q11 (w)
= () —2 because the () —2 integers sg_» ... s; remain to be added to &X;1;. Next, increment
both k£ and t by one.

For Q;(w) > 1, Xj;(w) can be written as J+sg_15¢g_2 - .. 5251, set X1 (w) = X (w)+50,(w)
and N1 (w) = (Vi(w) — sg,(w): Ze(w), Qi(w) — 1). Next, increase ¢ by one and do not
alter the value of k.

For Q;(w) =1, Xi(w) can be written as J + sg_15g—2 . - . S251, set Xpy1(w) = Xp(w) + 54
and Ny (w) = (Yi(w), Zg(w),0). Again, increase ¢ by one and do not alter the value of
k.

The expanded Markov chain (X}, NV;) is a tree structured QBD Markov chain. The only
problem is that every node in (X}, AV;) has an infinite number of children and the auxiliary
variable N; has an infinite number of states. As in the previous chapter, we can resolve
this problem by approximating the expanded chain by the chain (X¢, N?) with N =
(Vi Z;,Q;)) that is obtained by putting a maximum d on the number of stations that
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are allowed to have an identical current stack level.

The expanded Markov chain (X7, V) does not allow transitions between sibling nodes.
Therefore, the entries of the matrices Ay, are zero. Looking at the transition rules
described above, the transition blocks Dy and Uy of the Markov chain (X, N) are the
following.

The matrices Dy, hold the transition probabilities that the chain (X¢, N?) goes from state
(J + k,(i,7,m)) to the state (J, (', j',m')). This can only happen if m = 0, m' = 0 and
1 < 1. Hence,

(Bi’*k)j,j’ m:()’mI:O,Z' S 1,7:’ Z k,il < d,
Dy((i,j,m), (', 5, m") = § 3,54 #(Ba)jyy m=0,m' =0,i <1,i' > ki’ =d, (42)
0 otherwise,

where (B,,); ; holds the probability that n new arrivals occur and that the input D-BMAP
changes its state from j to j' (see Chapter 2). Notice that Equation (4.2) is identical to
Equation (3.1).

The matrices Uy hold the transition probabilities that the chain (X, N?) goes from state
(J+k,(i,7,m)) to the state (J + ks, (¢', j',m')). We separate three different cases. First,
assume that m = 0. Hence,

Clgd, (1 —qo 1)) mM=Q—2i>1,i=i-

U((5.3.0). (8, ') = § (1 = dana) 2yl =@ = 2,02 L= =
0 otherwise,

(4.3)

where [; is an [ x [ unity matrix. We simply add the integer, that denotes the number of
colliding stations that increase their current stack level to Q) — 1, to the backlogged string.

Second, for m =1, we get
Ciai (1 — @) *(Bir—(i-s))j m' =0,
i>s,d>id >i—s,

Cigi (1= q1)"* Yo psa io0y(Bn)jy m' =0,i>s,i' =d,
0 otherwise.

Us((i, 4, 1), (i", j',m')) = (4.4)

We add the integer, that denotes the number of colliding stations that increase their
current stack level to 1, to the backlogged string and allow for new arrivals to join the
scheme.

Finally, for @ —1 > m > 1, we have

Clap, (1= qm)'* (1) .5 mlszl’ilziis’ (4.5)
0 otherwise.

[JS((ia.j; m)? (i’a.jlaml)) = {

We add the integer, that denotes the number of colliding stations that increase their
current stack level to m, to the backlogged string.
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4.2.2 The Modified CTM Algorithm with Q) = 2

Consider the stochastic process (X, Y;, Z;), where X; denotes the backlogged string con-
sisting of the status of all backlogged stations at time slot ¢, Y; denotes the number of
stations that transmit in time slot £ and Z; denotes the state of the input D-BMAP at
the end of time slot ¢, i.e., the boundary of slot ¢ and ¢t + 1. Let N; = (Y}, Z;). For the
modified binary CTM algorithm with free access, the stochastic process (X, V;) is not
Markovian. We illustrate this by means of an example. Let X; = J+k,k > 1 and Y; = 0.
This implies that the ¢-th time slot is empty and that k£ stations have a current stack level
for slot ¢ equal to one. Consider the following two possibilities for X;_;.

First, let X;_1 = J and Y;_; = k, in this case slot ¢ — 1 holds a collision of exactly k
stations. A state with X; = J + k and Y; = 0 is reached if each of the k colliding stations
increments its current stack level to one as a result of the coin flip (and no new arrivals
occur). After seeing that slot ¢ is empty, all stations know that slot ¢+ 1 would result in a
collision if the basic scheme is used, i.e., slot t+1 is a doomed slot. As a result, all stations
immediately act as if the collision did occur. Therefore, it is possible that X,y = J + s
(if s of the k stations decide to set their current stack level for slot £+ 1 to one as a result
of the coin flip).

Second, let X; = J+k+0and Y, ; = 1, in which case slot t — 1 holds a successful
transmission. A state with X; = J+k and Y; = 0 is reached if no new arrivals occur. Due
to the success in slot ¢ — 1, the stations do not consider slot £+ 1 as a doomed slot, and the
collision in slot ¢ + 1 will take place. This implies that X, is equal to .J. In conclusion,
the state of the stochastic process (X;, N;) at time ¢ + 1 is not solely determined by the
state a time ¢, which implies that (X, V;) with N; = (Y}, Z;) is not Markovian.

Nevertheless, from the stochastic process (X;, N;), we can construct a tree structured
QBD Markov chain by adding a value, say —1, to the range of Y;. Y; = —1 then implies
that slot ¢ is empty and that slot 41 would have been a doomed slot (if we were using the
basic scheme). While Y; = 0 implies that slot ¢ is empty and slot £+ 1 is not considered to
be a doomed slot. Denote the stochastic process that is obtain by adding —1 to the range
of Y; as (Xy, M) with M, = (Y}, Z;). The transitions to and from a state with ¥; = —1
are as follows. We enter in a state with Y; = —1 whenever a transition occurs from a
collision slot to an empty slot. We stay in a state with Y; = —1 as long as the subsequent
slots are empty; otherwise we enter a state with Y; # —1.

The stochastic process (X;, M;) can be shown to be a tree structured QBD Markov chain
(with similar arguments as in Section 3.3.2). However (X;, M;) does allow transitions
between sibling nodes. This happens whenever an otherwise doomed slot is skipped. It
is possible to use a more complex (and time consuming) iterative formula (compared to
the one in Section 4.2.5), that determines whether a tree structured Markov chain, that
does allow transitions between sibling nodes, is stable. Instead, we construct a new tree
structured QBD Markov chain (X;, M;) with M; = (), Z;) that only uses transitions
to parent and child nodes. The range of the random variable Y; equals {(0,n) | —1 <
n}U{(1,n)| 2 < n}. We will establish a one-to-one correspondence between the states
(J, (i, 7)) of the Markov chain (X, M;) and the states (J, ((0,4), j)) of (X;, M;). The idea
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behind this expanded chain (X;, M;) is that a transition from a node J + k to a node
J + s is split into two transitions: a first one from node .J + £ to .J, followed by a second
one from node J to J +s. When the transition from node J + k to J takes place we store
the value of k£ in ), by setting ), = (1, k). The fact that the first component of ), is equal
to one indicates that the next transition has to be the second step of a split transition.

Assume a given realization (X (w), My (w)) of the Markov chain (X, My). The expanded
chain (X;, M;) is constructed as follows.

Initial state: Tt (Xo(w), Mo(w)) = (J, (i,7)), then set (Xo(w), Mo(w)) = (J,((0,1),7)).
Also, set k= 0 and t = 0, k represents the steps of the original chain and f represents the
steps of the expanded chain.

Transition Rules: We consider two possibilities: YV;(w) = (0,4) and Yy(w) = (1,1).

For Y, (w) = (0,1i), consider (Xy(w), My(w)) with My (w) = (Yi(w), Zx(w)), and do one of
the following:

Case 1: This case corresponds to the situation where the k-th time slot holds a collision.
We set X1 (w) = Xgpr(w) and My (w) = ((0, Y1 (w)), Zks1(w)). Thus, transitions
that correspond with a collision remain identical. Next, both ¢ and k& are increased by
one.

Case 2: This case corresponds to the situation where the k-th time slot does not hold
a collision. This implies that Y;(w) = 0,1 or —1. First, consider Y;(w) = —1. Then
Xi(w) can be written as Xy(w) = J + s with s > 1 and we get (X1 (w), M1 (w)) =
(J,((1,s), Zr(w))). Second, for Yi(w) # —1, we get (X (w), M1 (w)) = (Xppr (w),
((0, Yiy1(w)), Zgs1(w))). Hence, the transitions remain identical if Yj(w) # —1. Next,
increment both k£ and ¢ by one.

For Y, (w) = (1,1), Xx(w) can be written as J+u, set Xy (w) = Xy (w)+uand My (w) =
((0, Y (w)), Zr(w)). Next, increase ¢ by one and do not alter the value of k.

As in the previous subsection, we make the number of children in each node and the
number of states of the auxiliary variable M, finite by putting a maximum d on the
number of stations that are allowed to have the same current stack level. Looking at the
transitions rules, the transition blocks Dy, 0 < k < d, and U,,0 < s < d, are the following.

The matrices Dy, hold the transition probabilities that the chain (X2, M%) goes from state
(J +k,((m,i),7)) to the state (J, ((m',7"),j")). For m =0 and i # —1, we get

(Bz'l,k)j’jl m' — O,Z S ]_,7:’ 2 k‘, 7:’ < d,
Di(((0,4),5), ((m',i'),3") = § SCpsa s(Ba)jy m =0,i <1,d > ki’ =d, (4.6)
0 otherwise.

Notice, Equation (4.6) is identical to Equation (4.2). For m = 0 and i = —1, we set

(Bi’*k)j,j’ k=0 or 1,m’ = 0,7:’ Z k,il < d,

B,);y k=0or1l,m =0,i>ki =d
De(((0, 1), 7). ((m', i), 7)) = > nsa-k(Bnj ; 2R, ' (47
(0 -1).). (. ).1) = § F e (@.7)

0 otherwise,
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where [) is an | x [ identity matrix. A visit to one of the states (J + k, ((0,—1), 7)),
with & = 0 or 1, can never occur (the states are transient with an expected return
probability equal to 0). Nevertheless, we can still make use of the iterative scheme in
Section 4.2.5 by making sure that the probability of eventually returning to a state of the
form (., ((m,1),j)) equals one. We realize this by making sure that the corresponding
rows of the matrices Dy and D; are stochastic. This explains the somewhat unexpected
first two lines in the equation above (we act as if ¢ = 0, but any stochastic row will do).
For m = 1, all entries of Dy, 0 < k < d, are zero.

The matrices U, hold the transition probabilities that the chain (X2, M%) goes from state
(J+k,((m,1i),7)) to the state (J + ks, ((m',4'),j')). For i # s, we get

Cipiph *(Bi (i) m' =0,i> 1,
i>8,d>1 >0 s,
Capipy * D (ios)(Ba)jy m' =0,i> 10> s, =d,

Us(((m, 1), ), ((m',7"), 7)) =

0 otherwise.
(4.8)
For 1 = s, we get
pi(Bo)jj m' =0,i>1,i' = 1,
N N p;(Bi)jj m =0,i>1,0<i <d,
Uy(((m, ), 5), (0, ), ) = & V20 '=0,2>1,0 (1.9)
by ZnZd(B”)j’j’ m :OJZ > 177' :da

0 otherwise.

Notice that Equation (4.8) and (4.9) are also valid for m = 0,1 and for i = —1.

4.2.3 The Modified CTM Algorithm with () =3

For the basic C'TM algorithm with free access we made use of two different models, one
for Q = 2 and another for () > 2. For the modified CTM algorithm with free access we
make use of three different models. Each model description is only valid for the specified
range of ). Rather than going through the entire process that is used to construct the
remaining two models, i.e., tree structured QBD Markov chains, we restrict ourselves to
a description of the state space of the Markov chains and their corresponding transition
probabilities. The techniques used to construct both models are a combination of the
methods used to construct the previous two models.

The Markov chain (X7, M¢) with M¢ = (Y, Z,), used to study the modified ternary
CTM algorithm, is defined on the state space Q¢ x (Q4 x Q3), where Q¢ = {0} uU{J | J =
Spo..51,0< 8 <d1<j<kk>1} % ={0,0)]-1<i<du{(l,i)]0<:i<
d}U{(2,i) | 2 <i<d}and Q3 = {j |1 <j <I}. The transition matrices Dy, U, and
Ay s are the following. The entries of the matrices Ay ; are all zero. Thus, the chain does
not allow transitions between sibling nodes.
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The matrices D}, hold the transition probabilities that the chain (X2, M%) goes from state
(J+k,((m,1),7)) to the state (J, ((m',7'),j")). For m =0 and i # —1, we get

(Bz'l,k)j’jl m' = O,Z S ]_,7:’ 2 k‘, 7:’ < d,
Dk(((ov 7),]), ((mlv i’)vjl)) = Zlgdfk(Bl)j,j’ m'=0,i <1,i" > k,i" =d, (4'10)
0 otherwise,
For m =0 and ¢+ = —1, we set
((Bo)j,j/ k=0or1l,m =0,i=—1,
(Bil)j,j’ /{ZZOOF 1,m’:0,d>7:’>0,
Di(((0, 1), ), (m', 1), 4")) = { Ssa(B)jy k=0or Lm' =0,i' =d, (4.11)
([l)j’j/ k > l,m' = Q,i' =k,
L0 otherwise,

where [; is a [ x [ identity matrix. For m = 1 and 2, all entries of Dy, 0 < k < d, are zero.

The matrices U, hold the transition probabilities that the chain (X2, M) goes from state
(J +k,((m,i),7)) to the state (J + ks, ((m',7'),')). For m =0 or 2, we get

Cigs(1 — qg)ifs(ll)jvjf m=1,1>1,1>s,1 =1i—s,

Us(((m, 1), ), ((m", 1), 7)) = {

0 otherwise.
(4.12)
For m =1 and 7 > 0, we get
C;q;(]_ — Q])iis(Bil,(i,S))j’j/ m' = O,Z 2 S,
d>1>i—s
Us(((1,4), 5), ((m',4'),4") =< . , - B
Cz(Jf(l — ql)zfs ZlZd*(ifs)(BZ)jJ’ ml = 0, 1 Z S, ’LI = d,
0 otherwise.
(4.13)
While for m = 1 and ¢ = 0, we have
(BO)j,j’ m':i:SZO,’iI:—l,
. N (Bi/)','/ m’:i:S:0,0<i’<d,
Us(((1,0),4), ((m",4'),5") = o , , (4.14)
dsa(B)jy m =i=s=0,i"=d,
0 otherwise.

4.2.4 The Modified CTM Algorithm with ) > 3

The Markov chain (X2, M{) with M{ = (V2 Z,), used to study the modified CTM
algorithm with @) > 3, is defined on the state space Q4 x (24 x Q3), where Q¢ = {P}U{J |
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J=8...51,0< 8, <d1<j<kk>1},QU={mi)]0<m<Q-3-1<i<
dAbUu{(Q—2,1) | 0<i<d}u{(Q@—-1,i) |2<i<d}and Q3 ={j|1<j <1} The
transition matrices Dy, Uy and Ay s are the following. The entries of the matrices Ay  are
all zero. Thus, the chain does not allow transitions between sibling nodes.

The matrices D}, hold the transition probabilities that the chain (X2, M%) goes from state
(J +k,((m,i),7)) to the state (J, ((m',7"),j")). For m =0 and i # —1, we get

(Bz"fk)j,j’ m' = 0,2 < l,i’ >k, i< d,
Di(((0,4), 5), (', i'),3") =  Sysq 1By m'=0,i <1Ld' > ki =d, (4.15)
0 otherwise,
For m =0 and 7+ = —1, we set
((By);.; k=0or1,m =0,i=—1,
(Bi’>j,j’ k=0 or 1,m'=0,d>i'>0,
Dr(((0,-1),7), ((m',4"),5") = led(Bl>.7',.7" k=0or1,m =0,i=d, (4.16)
(Il)j,j’ k > l,m’ = Q -1, i = k,
0 otherwise,

where I; is a [ x [ identity matrix. For m # 0, all entries of Dy, 0 < k < d, are zero.

The matrices U, hold the transition probabilities that the chain (X%, M%) goes from state
(J+k,((m,1i),7)) to the state (J + ks, ((m',4'),7")). Form =0 or @ — 1, we get

Czngq(l —qo 1) (L) m=Q —2,i>1,
Us(((m, ). §), ((m', 1), ")) = i>si =i—s, (4.17)

0 otherwise.

Form =1 and 7 > 0,

C;qf(l - q1)iis(Bi’7(i*S))J}j’ m' = 0,i > s,
d>i>i—s
US(((I,i),j),((m',i'),j')) = ; . - 7.
Cz(Jf(l — ql)zfs ZlZd*(ifs)(BZ)jJ’ ml = 0, 1 Z S, ’LI — d7
0 otherwise.
(4.18)
Form=1and 1= —1,
(Bo)jj m'=s=0,i"=-1,
) N (Byir);.j m =s5s=0,0<17 <d,

Us(((1,—1),9), ((m',d"),5") = § &7 (4.19)

Sisa(Bljy m' =5 =0,i' = d,
0 otherwise.
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While, for m = Q — 2,

( : i .
Ca6 o1 —qq2)" (L) m' =Q —3,i>0,
1> 8,1 =1i—s,

U (Q—=2,1), ), (m',1"),7") = § (1), m =Q — 3, (4.20)
i=s=0,1=-1,
0 otherwise.

\

Finally, for 1 < m < @ — 2, we have

Cigt(1— qn) *(L); 0 m =m—1,i> 1,
i>s,1 =1—s,
(11) 5 m=m-—1,s=0,i=14=—1,
0 otherwise.
(4.21)

4.2.5 Stability of a Tree Structured QBD Markov Chain

In Section 3.4 we argued that the stability of a tree structured QBD Markov chain that
only allows transitions to parent or child nodes can be determined as follows. Define
V[0] = 0 and use the recursion

VIN+1] =) U, V[N])"'D,, (4.22)

s=0

to calculate V[N]. The Markov chain is recurrent if the matrices G,[N] = (I — V[N]) "' D,
converge to a set of stochastic matrices Gg; otherwise, we have a transient chain. The
iterative formula (4.22) can be further optimized by making use of the structural properties
of the matrices D, U, and V[N]. For the basic and the modified binary CTM algorithm
with free access, this optimization was limited to an acceleration of the product of (I —
V[N])~! with the matrices D,, where we made use of the fact that about 80 percent of the
rows of D, contain nothing but zeros. For higher splitting factors ), this percentage is
even higher (90 to 95 percent). The inversion of the matrix I — V[N] was also optimized
for Q > 2. We will demonstrate this for the basic CTM algorithm with ) > 2; the
technique is similar (slightly more complex) for the modified scheme with @ = 3 and

Q > 3.

Consider the I(d+1)(Q —1) x [(d+1)(Q — 1) matrix V (see Section 3.4 for its definition),
that corresponds to the tree structured QBD Markov chain presented in Section 4.2.1, the
(i,v)" element of which is the taboo probability that starting from (.J + k,4), the chain
eventually returns to a node with the same length as J + & by visiting (J + k, v), under
the taboo of the node J and the sibling nodes of J + k. Next, subdivide the matrix V' in



4.3. NUMERICAL RESULTS 61

blocks of size [(d + 1) x I(d + 1).

3

Voo Vo oo Voge
V= L : (4.23)

Vo200 Vo211 ... Vgoogo

where the elements of V,, ,, are the taboo probabilities that starting from (J+k, (i, 7, ¢1)),
the chain (X, N¢) with N = (Y8, Z;, Q;) eventually returns to a node with the same
length as J + k by visiting (J + k, (v, u,¢)), under the taboo of the node J and the
sibling nodes of J + k. Looking at the transition probabilities of (X2, N¢), these taboo
probabilities are equal to zero if g5 # 0. Thus,

Voo 0 ... 0

V= : S (4.24)
VQ7270 0 ... 0

The inverse (I — V)~! of a matrix V with such a structure is found as

(I-Vie)" 00 ... 0
ViolI =Voo)™' T 0 . 0

IT-vV)'=| VeaslI=Voo)™" 0 T ... 0 (4.25)
VQ,Q,U(I — ‘/070)71 00 ... I

Clearly, the matrices 0 < V[N] <V, N > 0, have the same structure as V" and therefore,
we can reduce the complexity of the matrix inversion in (4.22) from O(I*d*Q?) to O(I*d*Q).
Moreover, the structure of V[N] also implies that only the first I(d + 1) columns of the
matrix products between the matrices U, and (I — V[N])~' D, differ from zero, allowing
us to reduce the complexity of these products from O(I*d*Q?) to O(I*d*Q?).

It is not too difficult to generalize the equations presented in Section 3.6. That is, many
interesting performance measures—including the mean delay—can be calculated from the
steady state probabilities of each of these Markov chains. Numerical results that compare
the mean delay and some other measures as well  for different values of () are presented
in the next section.

4.3 Numerical Results

We determine the instability point, i.e., maximum achievable throughput, of the basic
and the modified CTM algorithm for different arrival processes that belong to the class of
the D-BMAP processes. We mainly consider fair coins, i.e., py =p; = ... = pg_1 = 1/Q,
and shortly discuss biased coins for () = 2. The D-BMAP input processes considered were
introduced in Section 2.1.3. We start with the results for the basic CTM algorithm with
fair coins (for different values of Q). Some figures on the average delay and the expected
number of retransmission are also presented.
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4.3.1 The Basic CTM Algorithm with Fair Coins

Maximum Stable Throughput

Table 4.1 presents the stability points, i.e., maximum achievable throughput, of nine dif-
ferent arrival processes: the Poisson process, three Markov modulated Poisson processes,
three Bulk arrival processes and two Erlang processes and this for () = 2, 3,4 and 5. For
the Poisson process, resp. the Erlang processes, we start with A = 0, resp. A\, = 0, and
increase A, resp. A, until instability is reached. For the bulk arrival processes we fix v
and decrease L until instability is reached (we started with a large value of L). Finally,
for the Markov modulated Poisson processes we fix a,b and Ay (the last one possibly as a
function of A;) and increase \; until instability is reached. For each couple (a, @), where
a is an arrival process and ) the splitting factor, Table 4.1 presents two values x and y.
The first = is the lower bound « of the interval o, o + .001[ that holds the instability
point of the arrival process a, i.e., the maximum arrival rate A of the D-BMAP for which
it is stable. The second y indicates the difference between o and  in multiples of .001,
where |3, 4+ .001] holds the instability point of the Poisson process.

Let us study these results in detail. The Poisson results presented in Table 4.1 are in
complete correspondence with the results obtained in [43]. This means that the results
obtained by Mathys and Flajolet [43] lie within the intervals presented in Table 4.1. Re-
placing the input Poisson process by a Markov modulated Poisson process results in an
inferior stability. This implies that more bursty and more correlated (compare the second
MMPP with the third) input traffic results in a worse stability, i.e., a lower maximum
achievable throughput. Moreover, the higher the splitting factor () the larger the through-
put degradation, e.g., replacing the Poisson input by M (-, 0,30, 30) input results in a loss
of .012 for Q = 2, .026 for Q = 3, .035 for = 4 and .041 for () = 5. Therefore,
lower splitting factors () are better equipped to cope with bursty and correlated input
traffic. Intuitively, one can understand this as follows. More bursty and correlated traffic
generally results in more collisions. A collision results in an increment of the current
stack level of all backlogged stations. The higher () the higher the increment. Thus, for
every collision one needs at least ( — 1 empty or successful slots in order to return to the
same current stack level. Therefore, higher splitting factors suffer more under increased
burstiness. Or to state it differently, the basic Q-ary CTM algorithm with free access is
unstable if () times the probability that a slot holds a collision is larger than one; whereas
the number of initial collisions due to simultaneous new arrivals in a time slot are identical
whichever splitting factor @) is being used.

Also, notice that a factor () = 2 performs better, .004, than a factor () = 5 for the
M(-,0,300,300) process (for Poisson input it was the opposite). As a matter of fact, for
any two factors ()7 and (o, within the range [2, 5], one can always find an input process

for which the factor @); outperforms the factor @)y, except for @1 = 2 and Q3 = 3 (see
Table 4.1).

Let us now consider the Erlang results. Replacing the input Poisson process by an Erlang
process results in a superior stability. This result corresponds with the previous result,
i.e., less bursty traffic results in a higher maximum achievable throughput. Moreover, the



4.3. NUMERICAL RESULTS 63

Process Q=2 Q= Q=4 Q=

PP(") 360 +0 401 +0 399 +0 387 40
M(-,2X;,30,30) 358 -2 397 -4 393 -6 .380 -8
M(-,0,30,30) 348 -12 375 -26 364 -35 346 41
M(-,0,300,300) 347 -13 373 -28 361 -38 343 -44
ER(-, 2) 365 +5 419 418 427 428 425 +38
ER(-, 3) 367 +7 427 426 441 442 444 +57
B([2],-) 348 -12 359 -42 327 -T2 291 -96
B([3],-) 349 -11 372 -29 352 A7 325 -62
B([4],") 348 -12 371 -30 355 -44 332 -55

Table 4.1: Stability results for the basic Q-ary CTM algorithm with free access

higher the splitting factor () the larger the increment, e.g., replacing the Poisson input by
ER(-,3) input results in a gain of .007 for ) = 2, .026 for () = 3, .042 for ) = 4 and .057
for Q = 5. Therefore, higher splitting factors () are better equipped to take advantage
of less bursty input traffic (the explanation is the same as before). Finally, the Bulk
arrival processes the most artificial of the processes considered are mainly introduced
to indicate that exotic arrival patterns can seriously deteriorate the stability of the basic
CTM algorithm, especially for higher splitting factors (). For the binary scheme the loss is
only about .012; whereas for () = 5 it varies between .055 and .096. If we were to increase
() even more, things only become worse, e.g., for () = 10 the basic CTM algorithm with
free access is unstable for an arrival rate A = .18 under B([2],-) input traffic.

In conclusion, when implementing the basic CTM algorithm, one should always select a
splitting factor () = 2 or 3 because the throughput degradation due to the introduction
of correlation and burstiness is less severe for a low splitting factor @, e.g., the difference
observed between the worst possible and the best input traffic is .02 for Q = 2 (see Table
4.1). Although, the basic ternary CTM algorithm is more sensitive to the specific nature
of the input process, i.e., the variation of the maximum achievable throughput is higher
compared to the binary scheme, it still remains a practical optimum because, for each of
the nine processes considered, it outperforms the binary scheme.

There is another important conclusion that can be drawn from these results. In the
previous chapter we did not manage to find a primitive D-BMAP with an arrival rate
A < In(2)/2 for which the basic binary CTM algorithm (with free access) is unstable, where
In(Q)/Q is the maximum stable throughput for the basic @Q-ary CTM algorithm with
blocked access (see Section 2.3). That is, for each of the arrival processes considered the
basic binary CTM algorithm with free access outperformed its blocked access counterpart.
Actually, we believe that this might be the case for all the arrival processes belonging to
the class of primitive D-BMAPs. In this section we did however manage to find an arrival
process, e.g., the B([2],-), for which the maximum stable throughput is below In(Q)/Q
for @ = 3,4 and 5 (compare Tables 1.1 and 4.1). Thus, the basic Q-ary CTM algorithm
with free access can be outperformed by its blocked access counterpart for () = 3,4 and
5. Moreover, we can easily prove the following theorem.
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THEOREM 4.1 For any integer value Q) > 2, there exists a primitive D-BMAP (B,,), with
an arrival rate A < In(Q)/Q such that the basic Q-ary CTM algorithm with free access is
unstable under (By,), input traffic.

The proof for @) = 3,4 and 5 is given by Table 4.1. Similarly, we found that the algorithm
with Q = 6, resp. Q = 7, was unstable under B([2],5.78), resp. B([2],6.27), traffic. The
arrival rate A of these two arrival processes is .295 < In(6)/6 and .275 < In(7)/7. Thus,
it suffices to prove the theorem for ¢ > 7. Let (B,), be an arbitrary D-BMAP with
By =0, B, # 0 and B, = 0 for n > 2, e.g., the B([2], L) arrival process. Thus, all new
arrivals occur in groups of two. As a result, the probability p. that a collision occurs is at
least A/2 (if A < 2). Now, looking at the Markov chain constructed to evaluate the basic
Q-ary CTM algorithm with free access, it is clear that the basic Q-ary CTM algorithm
is unstable whenever the probability p. of having a collision is larger than 1/Q). Indeed,
the probability that a transition is made to a parent node (1 — p.) must be larger than
(Q — 1) times the probability p. of making a transition to a child node in order to have
stability because each collision causes the Markov chain to decrease () — 1) levels. Thus,
the scheme is unstable under (B,,), traffic if A > 2/Q. Furthermore, A = 2/Q < In(Q)/Q
if 2 < In(Q), this is true for ) > 7.39. This completes the proof.

In conclusion, for () > 2, there exists a D-BMAP for which the basic Q-ary CTM algorithm
with blocked access outperforms its free access counterpart. Note however that the D-
BMAPs used to prove the theorem are very artificial and have little or no practical
relevance.
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Other Performance Measures

Figures 4.2 and 4.3 present the mean delay and the expected number of transmissions
respectively as a function of the arrival rate A under Poisson input. Figure 4.2 has often
been used to indicate that having a higher stability point implies a better delay for every
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arrival rate A below the maximum achievable throughput. This property is however not
always valid for other arrival processes. For instance, Figure 4.5 clearly indicates that the
expected delay for ) = 5 is (much) smaller than the mean delay for @ = 2 if .2 < A < .33,
whereas the binary scheme has a higher maximum stable throughput. Figure 4.4 presents
the mean delay under FR(\,, 3) traffic. Notice the big difference between the mean delay
under Erlang, Poisson and Markov modulated Poisson traffic.
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Next, we investigate the influence of the correlation between the number of arrivals in
consecutive time slots, on the mean delay and the expected number of transmissions.
Consider the M (A1, 0,30, 30) arrival process. In order to study the influence of correlation
we fix the arrival rate A and gradually increase the mean sojourn time of both states
(starting at a = b = 30).
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Figure 4.6: The influence of correlation
on the mean delay for A = .1

Figure 4.6 and 4.7 present the results for A = .1; Figure 4.8 and 4.9 for A = .2. Figure 4.6
and 4.7 indicate that the influence of correlation is hardly noticeable if the arrival rate
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is small. This is due to the fact that the mean arrival rate of both states is well below
the maximum achievable throughput. On the other hand, Figure 4.8 and 4.9 indicate
that the expected number of transmission remains small even under high correlation and
high arrival rates; whereas the mean delay increases significantly as a result of the strong
correlation. This strong increase follows from the fact that \; = .4, while the maximum
stable throughput of these processes is below .4 (see Table 4.1). Also, the ternary scheme
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Figure 4.8: The influence of correlation on the expected number of transmissions for
on the mean delay for A = .2 = 9

captures the influence of the correlation better than the other schemes. This comes as no
surprise because the ternary scheme has the highest maximum stable throughput for this
type of processes. In conclusion, the higher the maximum stable throughput of a scheme
the better it copes with correlation.

4.3.2 The Modified CTM Algorithm with Fair Coins

Table 4.2 represents the stability results for the same nine arrival processes studied in
the previous subsection. For each couple (a, @), where a is an arrival process and () the
splitting factor, Table 4.2 presents two values x and y. The first = is the lower bound «
of the interval |, @ + .001] that holds the instability point of the arrival process a. The
second y denotes the difference between the lower bounds «a of the modified and the basic
CTM algorithm (in multiples of .001).

The results for the Poisson process are in complete correspondence with the results ob-
tained by Mathys and Flajolet [43]. When we focus on the result for ) = 3, we see that
the Markov chain was unstable for an arrival rate of .407. Mathys and Flajolet [43] showed
that the actual stability point is .40697 (see Table 1.1). This is another strong argument
that the impact of the parameter d is indeed very small. Let us explain this in more
detail. We know that instability of the approximated Markov chain always implies the
instability of the exact Markov chain. The only possible error exists in the fact that the
approximated chain might become stable when the exact chain is not. This might happen
when we choose an arrival rate A that is fractionally larger than the actual stability point.
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Process Q=2 Q=3 Q=14 Q=5

PP() 388 427 406 +5 400 +1 387 40
M(-,2X;,30,30) 384 426 402 +5 395 +2 381 +1
M(-,0,50,30) 371 +23 380 +5 365 +1 346 40
M(-, 0,500, 300) 370 +23 377 +4 362 +1 343 40
ER(-,2) 394 +29 424 45 429 +2 425 40
ER(-, 3) 396 +29 432 45 443 +2 444 +0
B([2],") 377 429 365 +6 328 +1 291 +0
B([3],") 378 +29 378 +6 353 +1 325 40
B([4],") 377 429 378 +7 397 42 333 +1

Table 4.2: Stability results for the modified (Q-ary CTM algorithm with free access

The result for (Q = 3 shows that this is not the case even if the difference between both
values, i.e., the arrival rate A and the stability point, is only .00003.

Table 4.2 indicates that the impact of implementing the modified CTM algorithm is more
or less the same for each of the arrival processes, e.g., for () = 2 the increment varies
between .023 and .027. Table 4.2 also confirms that it is hardly worthwhile to implement
the modified CTM algorithm for ¢) > 3. The reason that doomed slots occur less frequent,
for large @), is twofold. First, the probability that all colliding stations select the last group
is smaller (we use fair coins). Second, even if all colliding stations select the last group,
a doomed slot only occurs if the next ) — 1 slots are unused by new arrivals. Table 4.2
indicates that there are arrival processes for which the modified binary CTM algorithm
outperforms the ternary one, e.g., B([2],").

As noted before, we did not manage to find a primitive D-BMAP with an arrival rate
A < In(2)/2 for which the basic binary CTM algorithm (with free access) is unstable, where
In(Q)/Q is the maximum stable throughput for the basic Q-ary CTM algorithm with
blocked access (see Section 2.3). That is, for each of the arrival processes considered the
basic binary C'TM algorithm with free access outperformed its blocked access counterpart.
For the modified binary CTM algorithm this is not the case. Indeed, the maximum stable
throughput under M (-, 0,300, 300) input is part of the interval [.37,.371] for the modified
binary CTM algorithm with free access, while its blocked access counterpart achieves a
maximum stable throughput of .3754 under primitive D-BMAP input (see Section 2.3
and Table 1.1). Moreover, we have the following theorem, where In(Q)/(Q — [Q ™" + (1 —
Q " In(1 — Q")) is the maximum stable throughput of the blocked access algorithm:

THEOREM 4.2 For any integer value Q > 2, there exists a primitive D-BMAP (B,),
with an arrival rate A < 1n(Q)/(Q — Q'+ (1 —Q ") In(1—Q")]) such that the modified
Q-ary CTM algorithm with free access is unstable under (By,), input traffic.

The proof for ) = 2 follows from the M(-,0,300,300) result in Table 4.2; whereas the
result for @ = 3,4 and 5 follows from the B([2],-) result. For @ = 6 and 7 we made
use of the B([2],5.78) and B([2],6.27) process respectively. Thus, it suffices to prove the
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PP(") M{(-, 0, 30, 30) ER(-,2)

Po O/(ds) Po G’(ds) Po G’(ds)
.5000 387 .5000 371 .5000 394
4500 391 4500 379 4500 397
4300 392 4200 382 .4400 397
4100 .393 (.0023) 3800 .384 (.0018) 4200 .398 (.0083)
4068 .393 (.0024) 3750 .384 (.0019) A175 398 (.0084)
4050 .393 (.0023) 3700 .384 (.0018) 4150 .398 (.0082)
3800 392 3600 .384 (.0013) 4100 .398 (.0073)
.3500 390 .3400 383 .3900 397

Table 4.3: Stability results for the modified binary CTM algorithm with free access and
biased coins

theorem for Q > 7. Now, [Q '+ (1 — Q") In(1 — Q)] is positive for @ > 1. Hence,
In(Q)/Q is smaller than In(Q)/(Q — [Q ' + (1 — Q") In(1 — Q@ ")]). Therefore, it suffices
to prove that there exists a D-BMAP (B,,), with an arrival rate A < In(Q)/Q such that
we get instability. Let (B,,), be an arbitrary D-BMAP with B; =0, By # 0 and B, =0
for n > 2, e.g., the B([2], L) arrival process. Thus, all new arrivals occur in groups of
two. As a result, the probability p. that a collision occurs is at least A/2 (if A < 2). Now,
looking at the Markov chain constructed to evaluate the modified Q-ary CTM algorithm
with free access, it is clear that the algorithm becomes unstable whenever the probability
pe of having a collision is larger than 1/@Q. Indeed, the probability that a transition is
made to a parent node (1 — p.) must be larger than (@) — 1) times the probability p. of
making a transition to a child node in order to have stability because each collision causes
the Markov chain to decrease (@ — 1) levels. Thus, the modified Q-ary CTM algorithm
is unstable under (B,), traffic if A > 2/Q. Moreover, A = 2/0Q < In(Q)/Q if 2 < In(Q),
this is true for () > 7.39. This completes the proof.

In conclusion, for ) > 2, there exists a D-BMAP for which the modified Q-ary CTM
algorithm with blocked access outperforms its free access counterpart (see Equation 1.3
and Theorem 2.1). One must however note that the D-BMAPs used to prove the theorem
are very artificial and have little practical relevance (except for the () = 2 result).

4.3.3 Using Biased Coins

In Section 3.7.6 we discussed the use of biased coins when the basic binary CTM algorithm
with free access is used. In this section we study the influence of biased coins for the
modified binary CTM algorithm. In Section 3.7.6 we saw that the burstier the input traffic
is the lower the optimal value of py becomes whenever the basic binary CTM algorithm is
used. Table 4.3 confirms that this is also the case for the modified binary CTM algorithm.
However, for the modified algorithm the maximum stable throughput that can be achieved
with biased coins differs much more from the maximum stable throughput achieved with
fair coins (compared to the basic CTM algorithm, see Table 3.7). Moreover, the ranges
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of the optimal p,’s are very different from the ones that we found for the basic scheme
(about .09 lower). This can be understood as follows: selecting a smaller value for py
becomes more attractive because a lower penalty is paid when all the colliding stations
select the last (second) group compared to the basic CTM algorithm.

In conclusion, for bursty and correlated arrival patterns higher throughput results can
be achieved by decreasing pg, especially if the modified scheme is used. However, the
optimal value for py is hard to predict (it depends upon the stochastic nature of the
arrival process).

4.4 Conclusions

We have analyzed the throughput characteristics of the basic and modified Q)-ary CTM
algorithm with free access for both fair and biased coins by constructing several tree
structured QBD Markov chains and by determining their stability. As opposed to any
prior work, we did not restrict our study to Poisson arrival patterns but considered a
much more general class of input processes (D-BMAPs). We have shown, by means of
numerical examples, that the binary and the ternary schemes should be preferred above
higher splitting factors () because they suffer much smaller throughput losses under bursty
and correlated input traffic. The maximum stable throughput achieved by the binary and
ternary CTM algorithm under D-BMAP input is not far below the Poisson result, i.e.,
the CTM algorithm with free access maintains its good stability characteristics under D-
BMAP input. Moreover, whenever possible, it is worth to exploit ternary feedback, i.e.,
implement the modified scheme, for a splitting factor () = 2 or 3. We also demonstrated
that it might be very useful to use biased coins when the input traffic is expected to be
highly bursty and correlated. Decreasing the probability that a station selects the first
group (after a collision) results in higher throughput results.

If we compare the blocked access strategy with the free access scheme, we have proven
(see Theorems 4.1 and 4.2) that there exists a primitive D-BMAP for which the basic and
modified Q-ary CTM algorithm with blocked access outperforms its free access counter-
part (except for the basic binary CTM algorithm). The D-BMAPs used to prove these
theorems are however of a rather artificial nature and therefore of lesser practical impor-
tance. For those D-BMAPs that are of a more practical nature, we may conclude that
free access generally results in (slightly) better throughput.

Another important performance characteristic is the mean delay that is experienced when
transmitting a packet. Using the QBD Markov chains that were constructed in this thesis,
it is possible to calculate the mean delay and many other performance characteristics.
Numerical results have indicated that a higher maximum stable throughput does not
necessarily imply a smaller delay for every arrival rate A. This was a hope expressed by
many researchers, e.g., Massey [42] who states “If one algorithm has a larger maximum
stable throughput than another, one hopes that if the first algorithm is reasonably simple
(so that the large maximum stable throughput was not achieved by “trickery” that used
high arrivals rates to a special advantage) then the first algorithm will have a better delay-
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throughput characteristic for all throughputs.” Notice, the delay curves for the Poisson
input seemed to confirm this hope, but the M(-, 0,30, 30) input indicated that this is not
always the case. Nevertheless, if an algorithm has a larger maximum stable throughput,
it is expected to cope better with correlation.

The Bit Error Ratio (BER) and capture effects are important characteristics of a wireless
channel. It is fairly straightforward to see that one can extend the models presented in
this thesis in order to evaluate the CTM algorithm with free access when applied to a
channel with Markovian capture and errors. For instance, one could easily add the state
of the channel as a part of the auxiliary variable of the tree structured QBD Markov
chains.



Chapter 5

Tree Algorithms and Grouping

In this chapter we investigate the stability of tree algorithms that make use of a grouping
strategy. A number of tree algorithms of this type were introduced in Section 1.4.4. We
do not consider Gallager’s optimized version that uses the arrival times to split colliding
stations into two groups (the discrete nature of the D-BMAP arrival process prohibits us
from doing so). The two other algorithms discussed in Section 1.4.4 are introduced again
in the next section and their stability under D-BMAP traffic is discussed in Section 5.2
and 5.3. Conclusions are drawn in Section 5.4.

5.1 Tree algorithms using a Grouping Strategy

A description of the grouping mechanism due to Massey [41] is given below. Suppose
that the random access scheme is activated at time ¢ = (0. The unit of time is defined
as the length of a slot, so that the i-th transmission slot is the time interval (i,7 + 1]. A
second time increment A is chosen and the i-th arrival epoch is defined as the time interval
(1A, iA+A] (A is not necessarily an integer value). The first transmission rule used by this
algorithm is as follows: transmit a new packet that arrived during the i-th arrival epoch
in the first utilizable slot following the collision resolution interval (CRI) for new packets
that arrived during the (i — 1)-th arrival epoch. The modifier “utilizable” reflects the
fact that the CRI for new packets that arrived during the (i — 1)-th arrival epoch might
end before the i-th arrival epoch has ended. If so, a number of transmission slots are
skipped until the i-th arrival epoch ends. One could improve the algorithm by shortening
the i-th arrival epoch. This both complicates the analysis and the implementation and is
expected to have no influence on the maximum stable throughput (because it only alters
the behavior of the algorithm when there are no backlogged groups).

Each of the groups is resolved using either the basic binary or the modified binary CTM
algorithm, depending on whether we have binary or ternary feedback (the order in which
the groups are resolved is of no importance). The CTM algorithm with a higher splitting
factor > 2 is not expected to improve the maximum stable throughput if A is small
(see Section 1.4.4). When a grouping strategy is being used, both active and inactive
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stations have to monitor the channel continuously (this is also true for algorithms that
apply a blocked access strategy).

5.2 Stability under D-BMARP Traffic

It is not too difficult to determine the maximum stable throughput of the two algorithms
introduced in Section 5.1. We restrict ourselves to the case where A, the grouping interval,
is an integer value. In Section 5.2.1 we prove that an algorithm that resolves the colli-
sions using a grouping strategy is stable under primitive D-BMAP traffic if the expected
time to resolve an arbitrary group E|[G] is smaller than A and unstable if E[G] > A.
Afterwards we indicate how to obtain tight upper and lower bounds on E[G]. For the two
algorithms introduced in Section 5.1, these bounds allow us to determine the maximum
stable throughput with sufficient accuracy.

5.2.1 A stability Condition for D-BMAP Input

An algorithm that applies a grouping strategy under primitive D-BMAP input traffic can
be seen as a queue with the following characteristics. Assume that A is an integer. The
customers arriving in the queue correspond to the groups produced by the algorithm.
Thus, every A time slots a new customer arrives that is, we have a deterministic arrival
process. The queue has an infinite waiting room and a single server. A customer is said
to be of type j with 1 < j < [ if the state of the D-BMAP (B,), at the start of the
corresponding grouping interval was 7. The group types are therefore determined by a
primitive discrete time Markov chain with transition matrix B®, where B is the transition
matrix of the D-BMAP (B,),, i.e., B=>_ B,. Thus, if the type of customer n is i than
the type of customer n+1 is j with probability (B); ;. The service time of a customer
that is, the time required to resolve the corresponding group—depends upon the type of
the customer. Thus, the service time of a customer of type j is ¢ with some probability
G,(t). Remark that the service time of a customer depends on the state of the D-BMAP
at the start of the corresponding grouping interval. For [ the number of states of the
D-BMAP, or else the number of customer types, equal to one the above-mentioned queue
reduces to a D/G/1 queue and such a queue is known to be stable for p < 1 [23]. This
condition is obviously equivalent to E[G| < A. Another way to prove that E[G] < A is
a sufficient condition for stability when [ = 1 is to use the Stability Lemma of Pakes [3,
p264]. For [ > 1, things are slightly more complicated.

The arrival process of our queue can be seen as a special case of the discrete time version
of a Markovian arrival process with marked arrivals [25, 27|, denoted as M M AP[K]. Such
a Markov arrival process is characterized by a set of m x m matrices My and M; with .J
a string of integers, where each integer is part of [1, K]. The i, j-th element of M, with
J = 71...7,, n > 0, represents the probability that a transition is made from state 7 to
j and that n arrivals occur. The type of these n arrivals is as follows: the k-th customer
that arrives is a customer of type jx. The matrix M, characterizes the transitions when
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no new arrivals occur. For K =1 the MM AP|K] arrival process reduces to a D-BMAP
arrival process (if we identify the matrix B, with M, where .J is a string that consists

of n ones). It is easily seen that the arrival process of our queue of interest is actually a
MM AP[K] process with K =1 and m = Al. The matrix M, has the following form:

070 ..00
007 ...00

My = : , 5.1

’ 000 ... 10 (5.1)
000 ...01
000 ...00

where [ is the [ x [ unity matrix. The matrices My, 1 < k < [, obey the following equation:

0O 00 ..00
0O 00 ..00

M. — : SRR 5.2

g 0 00 ..00 (5:2)
0 00 ..00
BAKk) 00 ... 00

where B2(k) is obtained from B? by keeping the k-th column of the matrix B2 and
setting all other elements to zero. The entries of the matrices M; with J a string of
length 2 or more are all zero. Now that we know that the input is a M MAP[K], the
queue we are interested in is a special case of a MMAP[K]/G[K]/1 queue.

He [25] has shown that a MMAP[K]/G[K]/1 queue with a work conserving service dis-
cipline is positive recurrent if and only if p = M E[G1] + ... + Ak E[Gk] < 1 and it is
transient if p > 1, where \; corresponds to the average number of type ¢ customers ar-
riving in the queueing system (per time unit) and E[G;] to the expected service time
of a type i customer. In our case the vector (\i,...,Ag) is nothing but 5/A, where
BB = 3 and Be = 1 (because 3 is also the invariant vector of B2). Thus, Ap is equal to
the expected service time of an arbitrary customer that is, the expected time required
to resolve an arbitrary group. This proves that we get a stable, resp. unstable, system

whenever E[G] < A, resp. E[G] > A.

5.2.2 Tight Bounds on F[G]

Following Massey’s approach [41] it is fairly straightforward to obtain a tight upper and
lower bound on E[G] when the basic or modified binary CTM algorithm is used to resolve
the groups. First, we determine the probability that a group contains n contenders that
is, n arrivals occur in the corresponding interval of length A. The probability that the
state of the D-BMAP is j, 1 < j <, at the start of a grouping interval is equal to 3;,
where (3; is the j-th component of the stationary vector 3 corresponding to the D-BMAP
(B,), because 3 is also an invariant vector of B2, The probability of having n arrivals in
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an interval of length A provided that the state is j at the start of the interval, say P;(n),
is easily computed as follows. Define the matrices B, ;,7 > 1,n > 0, as

B,;= ZBj,ilenfj; (5.3)
=0

with B, ; equal to B,,. Then, Pj(n) is found as the j-th component of B, ae. Therefore,
the probability that a group contains n arrivals, say P(n), is nothing but Z_lj:] B;Pj(n).

The expected time required to resolve an arbitrary group E[G] is found as F[G| =
>, P(n)L(n), where L(n) represents the expected time required by the collision reso-
lution algorithm to resolve a set of n contenders. Massey [41] obtained the following
upper and lower bounds on L(n) for the basic and modified binary CTM algorithm. In
order to distinguish both algorithms we write L;(n) for the expected time required by the
basic binary CTM algorithm and L,,(n) as the expected time required by the modified
binary CTM algorithm. For the basic binary CTM algorithm we have

Ly(n) <ayn —1+28, + (2 —a1)0, + (6 — 2a1)ds, + (26/3 — 3a1)03 ,,, (5.4)
with a; = 2.8867 and d; ; = 0 if i # j and 1 if ¢ = j. Moreover,

Ly(n) > agn — 1+ 280, + (2 — a2)01, + (6 — 2a2)0a,, + (26/3 — 3az)03 ., (5.5)
with ay, = 2.8810. Whereas for the modified binary CTM we find

Lp(n) <bin—1+28, 4 (2 —01)01n + (11/2 — 2b1)d9.n + (8 — 3b1)d3.n, (5.6)
with b; = 2.6651 and

Lpy(n) > ban — 1+ 280, 4+ (2 — b2)d1n + (11/2 — 2b9)d9.n + (8 — 3b2)d3.m, (5.7)

with by = 2.6607. If we calculate E[G| = ) P(n)L(n) and replace L(n) by its lower,
resp. upper, bound we obtain a lower, resp. upper, bound on E[G]|. Whenever the lower
bound is larger than A we know from Section 5.2.1 that the algorithm is unstable, whereas
if the upper bound is smaller than A we have a stable scheme. For those arrival rates
that produce an upper bound larger than A and a lower bound that is smaller we know
nothing. This procedure allows us to determine the stability point for any value of A with
a precision of .001 or better ; that is, we can find an interval [z, z + .001] that contains
the maximum stable throughput of the algorithm.

5.3 Numerical Results

Before we present some actual numerical results, it is worthwhile to have a closer look at
the upper and lower bounds of L,(n) and L,,(n) presented in Section 5.2.2. With these
bounds one can easily obtain an interval for each value of A that contains the maximum
stable throughput under any primitive D-BMAP input traffic. The length of this interval
will reduce as A is increased.
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5.3.1 Selecting a Large Grouping Interval A

Using Equation (5.4) and Ly(n) < ayn for n > 0, we have

E[G] = ) P(n)L(n)

< 5 anP(n) + P(0)
A P(0),
Hence,
A< 1= Poy/a), (5.8)

a

is a sufficient condition for the stability of the grouping algorithm which uses the basic
binary CTM algorithm to resolve the groups. Thus, only the presence of empty groups
might reduce the maximum stable throughput below 1/a; = .3464. This is a first indi-
cation that a grouping algorithm might not be able to support a high maximum stable
throughput under bursty input traffic—that is, traffic of which the arrivals are concen-
trated in a small portion of the grouping intervals of length A. Numerical examples that
confirm this idea are presented further on. Obviously, P(0) < 1 if A > 0. As a result we
have stability if

A< L —1/n), (5.9)

a1
for any primitive D-BMAP input traffic.

Using Equation (5.5), we have

E[G] = ) _P(n)L(n)
ay ZnP(n) — ZP(W) +

2P(7(1)) + (2 —a9)P(1) + (6 — 2a2) P(2) + (26/3 — 3ay) P(3)
AN —1+2 —ay
o AA — (ay — 1).

v

Thus, the grouping algorithm that uses the basic binary CTM algorithm is unstable if

1 (LQ*]_
A>— (1 . 5.10
>a,2< + A ) ( )

In conclusion, the maximum stable throughput of the grouping algorithm that uses the
basic binary CTM algorithm to resolve the groups is found in the interval [1/a;(1 —
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A basic binary  modified binary
2 1732 6736 .1876  .6879
3 2309 .5647 .2501  .5839
4 .2598 5103 .2814 .0319
5 2771 4777 3002 .5007
10 B118 4124 3377 4383
20 3291 3797 .3565  .4070
50 3395 3602 .3677 3883

100 3430 3536 3715 3821
1000 .3461 .3478 .3748  .3765
10000 .3464 3472 .3752 3759
00 3464 3471 3752 3758

Table 5.1: Mazimum achievable throughput for the basic and modified binary CTM al-
gorithm when combined with a grouping strateqy (fair coins)

1/A),1/as(1 + (ag — 1)/A)]. In other words, the algorithm is stable under primitive D-
BMAP input traffic if A < 1/a;(1—1/A) and unstable if A > 1/as(1+ (a3 —1)/A). Simi-
larly, for the modified binary CTM algorithm we find the interval [1/b;(1—1/A),1/by(1+
(by — 1)/A)]. Numerical results for different values of A are presented in Table 5.1. For
instance, whatever the D-BMAP input processes might be its corresponding maximum
stable throughput is found in the interval [.3291,.3797], resp. [.3565,.407] if A = 20. In
the next section we indicate that we can actually find arrival processes for which the
maximum stable throughput is close to 1/a;(1 — 1/A) and 1/as(1 4 (as — 1)/A). Hence,
it is not possible to further reduce the size of the intervals in Table 5.1.

Obviously, for A large we find that the interval reduces to [1/ay, 1/as], resp. [1/by,1/bs].
Both these intervals are rather small and contain the maximum stable throughput of the
corresponding algorithm with blocked access (see Section 1.4.4 and Section 2.3). Thus,
whether the basic, resp. modified, binary CTM algorithm uses a blocked access strategy
or a grouping strategy (with A large) makes little difference as far as the maximum stable
throughput under primitive D-BMAP input traffic is concerned. In the next section we
investigate what happens if A is small.

5.3.2 Selecting a Small Grouping Interval A

In this section we study the maximum achievable throughput as a function of A for differ-
ent arrival processes. We subsequently discuss the discrete time Poisson process, Erlang
processes, Markov Modulated Poisson processes and Bulk arrival processes. Definitions
and abbreviations for these processes can be found in Section 2.1.3.

Markov Modulated Poisson Processes: We start with a discussion of the Markov
modulated Poisson processes (MMPPs). Figure 5.1, resp. 5.2, compares the maximum
stable throughput as a function of A (2 < A < 10) for a few MMPPs when the basic,
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resp. modified, binary CTM algorithm is combined with a grouping strategy. Both figures
are almost identical, except that the modified scheme supports throughputs which are a
few percentages higher.
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A first conclusion that can be drawn from both figures is that a serious degradation of the
maximum stable throughput might occur if the burstiness (for a definition, see Section
2.1.2) of the arrival processes increases, especially if A is very small. The reason for this is
the presence of the empty groups, as indicated in Section 5.3.1. Although the probability
P(0) of having an empty group does not decrease that rapidly when increasing A, the
throughput degradation does disappear rather quickly. This is due to the fact that the
throughput is actually a weighted sum of the throughputs 7; associated with a collision
resolution interval (CRI) that corresponds with an interval that starts in state i. We refer
to such a CRI as a type ¢ CRI. The weight that corresponds to T; depends upon the
expected time necessary to resolve a type ¢ CRI divided by sum over j of the expected
time required to resolve a type j CRI. In the case of our M(-,0,a,b) processes, we find
that expected number of contenders associated with a type 1 CRI increases rapidly as
A increases. Whereas the expected number of contenders in a type 2 CRI remains close
to zero (for A << b). This implies that the weight associated with T, ~ 0 decreases
rapidly when A increases, which explains the rapid restoration of the maximum stable
throughput when A is increased.

On the other hand, Figures 5.1 and 5.2 indicate that correlation is of lesser importance.
For instance, the M (-, 0,30, 30), the correlation function r(k) of which decays as .9333*,
performs only slightly better than the M(-, 0,300, 300), which has a correlation function
r(k) that decays as .9933%. Moreover, the results for the M (-, 0, 3000, 3000) arrival process,
which are not included in the figures, are almost identical to those of the M (-, 0,300, 300)
process. This comes as no surprise because the grouping mechanism breaks the correlation
(i.e., the order in which the groups are resolved is of no importance).

Notice, the maximum stable throughput under M(-,0,30,210) input traffic is only a
few percentages higher than 1/a;(1 — 1/A), resp. 1/b(1 — 1/A) (see Table 5.1). We
can easily define a D-BMAP for which the maximum stable throughput is even closer to
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1/ay (1—1/A), resp 1/b;(1—1/A). For instance, the basic, resp. modified, CTM algorithm
with grouping has a maximum stable throughput under M (-, 0,30,3000) input traffic of
~~ 1770, resp. = .1915. The M(-, 0, 30,3000) process is very bursty: the average sojourn
time in the silent state is 3000 slots, whereas the average time in the active state is only
30 slots. Therefore, all the traffic is more or less concentrated in 1 percent of the grouping
intervals of length A.

Erlang Arrival Process: Figures 5.3 and 5.4 present the results for the Erlang arrival
processes. As expected we get a higher maximum stable throughput if & is increased,
i.e., if the process becomes more deterministic. Also, the results for the ER(-, 10) process
are only a few percentages below 1/ay(1 + (ay — 1)/A), resp. 1/bo(1 + (by — 1)/A). For
k = 50 we found a maximum stable throughput for A = 2 of .623, resp. .6415. It is easy
to prove that the maximum stable throughput for A = 2 converges to .625, resp. .6429,
as k approaches infinity.
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It is possible to find D-BMAP arrival processes for which these grouping algorithms sup-
port a higher maximum stable throughput (up to 1/ay(14 (ag—1)/A), resp. 1/by(1+ (by—
1)/A)). For instance, the following primitive D-BMAP arrival process has a maximum
stable throughput for A = 2 of ~ .6725, resp. ~ .687.

0 0 0 010 000
B[]: 1—1/p 0 l/p ,B] = 0 0 0 ,B]O[]: 0 00
0 0 0 0 00 100

The other B,, matrices are zero. This arrival process was constructed such that P(1) =
1—(z+y), P(100) = z and P(101) = y for z+y small. The arrival rate A = (1+100/p)/(2+
1/p). For p large, A &~ 1/2 and both algorithms are stable (for A = 2) when this D-
BMAP is used as input traffic. In order to determine the maximum stable throughput,
we decrease p, i.e., increase A, until both grouping algorithms become unstable. Similar
arrival processes can be constructed for A > 2.
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Bulk Arrival Process: Figures 5.5 and 5.6 present the results for some Bulk arrival
processes. The results are in agreement with the explanations given in the MMPPs
section.
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5.4 Conclusions

In this chapter we evaluated the stability of the basic and the modified binary CTM
algorithm when combined with a grouping strategy under primitive D-BMAP traffic.
The length of the grouping interval was denoted as A. We have proven that the basic
scheme is stable under primitive D-BMAP traffic if the arrival rate A < 0.3464(1 — 1/A)
and unstable if A > 0.3471(1 + 1.881/A), numerical values for these bounds are found in
Table 5.1. A similar result was obtained for the modified scheme. These results imply that
the grouping strategy provides similar stability guarantees as the blocked access strategy
provided that A is chosen sufficiently large. Moreover, for small values of A one can
find D-BMAPs with an arrival rate close to 0.3464(1 — 1/A), resp. 0.3471(1 + 1.881/A),
that result in an unstable, resp. stable, behavior. In general, one may conclude that more
bursty arrival processes have a smaller maximum stable throughput compared to the more
deterministic ones (for small values of A).
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Chapter 6

The Identifier Splitting Algorithm
combined with Polling (ISAP)

In this chapter the Identifier Splitting Algorithm combined with Polling (ISAP) is intro-
duced. The influence of the different protocol parameters on the performance measures
is studied in Chapter 7 by means of several analytical models. Numerical results are
presented in Chapter 8. The Identifier Splitting Algorithm (ISA) was first introduced
by Petras, et al [50-52] during the European RACE project 2067 on Mobile Broadband
Systems (MBS) [44]. ISA is an algorithm used to resolve collisions occurring on the con-
tention channel, present in the Medium Access Control (MAC) layer of the MBS protocol
stack. The contention channel is used by the Mobile Stations to inform the Base Sta-
tion about their current bandwidth requirements. The ISA scheme is a variation on the
deterministic splitting algorithm introduced by Capetanakis [7,17]. As opposed to the
Capetanakis scheme, which traverses the contention tree in a depth-first approach, ISA
uses a breadth-first approach.

ISA was designed to cope with the delayed feedback environment typically found in a wire-
less access network (see Section 6.1), whereas most splitting algorithms require immediate
feedback due to the depth-first approach. Perhaps the most important advantages of the
ISA scheme, or any other deterministic splitting algorithm, are the obvious upperbound
provided on the worst case delay and the fact that splitting algorithms are known to
perform well under low and high load conditions.

As a part of the European ACTS program a trial platform for Mobile Broadband Systems
(MBS) was designed and implemented in the context of the SAMBA project (AC204) [57].
The trial platform used slotted ALOHA [1, 3] as the contention algorithm. This was not
due to the fact that people had second thoughts about ISA, but simply because the trial
platform consisted of 2 Base Stations and 2 Mobile Stations. Clearly, you do not need to
implement a powerful contention resolution algorithm in an environment with only two
competing Mobile Stations. If the number of Mobile Stations increases, random access
becomes more important and more advanced collision resolution algorithms will be used
to improve the performance of random access channels [54, 6.2: General Guidelines|. The
purpose of this chapter is to introduce such an advanced contention resolution algorithm.
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This chapter is structured as follows. In the next section, we introduce the concept of a
delayed feedback environment. We proceed with the ISA protocol proposed by Petras, et
al [50-52]. Next, we indicate how ISA can be combined with Polling, this combination is
called the ISAP scheme. Afterwards, a number of optimizations are discussed. Finally, a
flowchart for an MS using ISAP is presented.

6.1 A Delayed Feedback Environment

In this section we describe a framework for centralized wireless access networks. A number
of MAC proposals found in literature fit into this framework: DSA++ [52, 74], D*MA [37],
EC-MAC [59] and [70 72].

Consider a cellular access network with a centralized architecture, i.e., the area covered
by the wireless network is subdivided into a set of geographically distinct cells, each with
a diameter of approximately 100m (slight overlaps are allowed to facilitate the handovers
from one cell to a neighboring cell). Each cell contains a Base Station (BS) serving a
finite set of Mobile Stations (MS). The MSs communicate among each other and with the
nodes in the fixed network via the BS (see Figure 6.1).

MAC Domain EMS
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=
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™\

_—

e

MS (Mobile Station)
MS MS

BS

BS (Base Station) WN (Wired Network)

Figure 6.1: Reference configuration of the system

Two logically distinct communication channels (uplink and downlink) are used to support
the information exchange between the BS and the MSs. Packets arriving at the BS are
broadcasted downlink, while upstream packets must share the radio medium. The BS
controls the access to the shared radio channel (uplink). The access technique used
is Time Division Multiple Access (TDMA) combined with Frequency Division Duplex
(FDD) to separate the uplink and downlink channels. The ISAP algorithm can also
be implemented if the access technique is Time Division Duplex (TDD). In the further
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description we assume that we are working with an FDD system.

The battery consumption of a mobile node is still one of the main concerns when designing
a wireless network [59]. To indicate the importance of power consumption: one of the
main recommendations for future trial platforms made during the European SAMBA
trial platform is to further reduce the size and power consumption of Mobile Broadband
Systems [44]. Therefore, traffic on both the uplink and downlink channel is grouped into
(fixed length) frames. The fact that battery reductions can be achieved by using a frame
structure will become apparent in the sequel of this section.

The uplink and downlink frames are synchronized in time, i.e., the header of a downlink
frame is immediately followed by the start of an uplink frame (after a negligible round
trip time that is captured within the guard times, see Figure 6.2). Each uplink frame
consists of a (variable or fixed length) contentionless and a (variable or fixed length)
contention period, where the length of the contentionless period dominates that of the
contention period. An MS is allowed to transmit in the contentionless period after re-
ceiving a permit from the BS. The BS distributes the permits among the MSs based on
the current requirements of each MS. Therefore, MSs must inform the BS about their
current bandwidth needs using requests. Whenever an MS forwards a packet to the BS
a request is piggybacked to the packet. When a packet that is generated in an MS finds
the transmission queue empty (in that MS), it uses the contention period to inform the
BS about its presence (i.e., it uses the contention period to sent a request). Piggybacking
is not possible in such case. Notice, piggybacking is only a performance optimization and
not a requirement.

Frame Header Frame Header

- - - -

Downlink

Contention Period Contentionless Period
NN [T T ¢

Uplink

Figure 6.2: Frame Structure

Each downlink frame starts with a frame header in which the required feedback on the
contention period of the previous uplink frame is given. This informs the MSs partic-
ipating in the contention period whether a collision occurred or whether their request
has been successfully received. Apart from the feedback information, the frame header
contains permits for the contentionless period of the uplink frame and announces the
identity of the MSs receiving a packet in the downlink frame. MSs whose identity is not
mentioned can switch to the sleep mode until the start of the next downlink frame (unless
they transmit something in the uplink direction).

We mentioned that piggybacking is merely an optimization. As far as the contention chan-
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nel is concerned, one could also replace it by a (periodic) polling scheme. For instance,
in a Passive Optical Network (PON) a periodic polling scheme is used by the Optical
Network Units (ONUs) to inform the Optical Line Termination point (OLT) about their
bandwidth requirements [53]. In general, a polling scheme is easy to implement, especially
if the number of users remains fixed, e.g., in a wired network, but requires a reasonable
amount of bandwidth (a few Mbit/s). These few Mbits are less expensive in a wired net-
work, where one has hundreds of Mbits available, but become very expensive in a wireless
network. Therefore, it might be better to use a contention channel (with piggybacking)
or to combine both methods. In the next section, we present the Identifier Splitting

Algorithm (ISA).

6.2 The Identifier Splitting Algorithm (ISA)

The Identifier Splitting Algorithm is characterized by two parameters:

e L : the maximum number of contention slots allowed in a single uplink frame (see
Section 6.1),

e (Q : the splitting factor.

The functionality of these parameters becomes apparent in the remainder of this section.
Let us first introduce the notion of a contention cycle (CC). A contention cycle (CC)
consists of a number of consecutive upstream frames during which the contention of all
requests, present in the MSs at the beginning of the cycle, is resolved. The system is gated,
in the sense that any request generated by an MS that wants to access the contention
channel during a CC is blocked until the start of the next CC.

A single contention slot is available in the first frame of a CC. We refer to this slot as
level 0 of the contention tree. Any MS having a request ready at the start of the CC
makes use of this slot. Next, the BS checks whether a successful transmission occurred in
this slot and informs the MS(s) that were involved in the scheme accordingly in the next
downstream frame using a feedback field. Three situations are possible:

e The slot was empty, i.e., none of the MSs accessed the contention channel. As a
result a new CC starts in the next frame.

e An MS sending its request in this slot succeeded. In this case the MS returns to the
piggybacked state. Again, a new CC starts in the next frame.

e A collision occurred. In this case, the next level (level 1) of the CC provides @
contention slots. Based on the first digit of their MAC addresses, as opposed to the
classical coin flip, the MSs involved split up into @) distinct sets. An MS belonging
to the first set uses the first slot of level 1 to attempt a retransmission, the second
set uses the second slot of level 1 and so on.
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The process of generating () slots in a level for each slot of the previous level in which a
collision occurred, is repeated level after level, each time using the next digit of the Q-ary
MAC address in case of a collision. Thus, during the i-th level of a CC two MSs can
only collide if the first ¢ digits of their MAC addresses are identical. Therefore, provided
that the address that uniquely identifies an MS is n digits long, collisions are always
resolved at level n. Notice, the number of contention slots, for each level, equals @) times
the number of collisions during the previous level. Figure 6.3 shows an example of a CC
with 6 participants for () = 2. In this figure CO refers to a collision, SU to a success
and EM to an empty slot. The MAC addresses of the successful MSs are added to the
corresponding slot.

Co LEVEL

LEVEL

LEVEL

LEVEL

LEVEL

LEVEL

Figure 6.3: Demonstrating ISA

A level of the contention tree corresponds to a single frame, except when the number
of slots at level 7 is larger than some predefined value L. This parameter L defines the
maximum number of contention slots that we allow in a single frame. Thus, if a certain
level of the tree requires © = mL + j slots with m > 0 and 1 < j < L then m + 1 frames
are required to support this level.

6.3 The Identifier Splitting Algorithm Combined with
Polling

The Identifier Splitting Algorithm combined with Polling is characterized by three pa-
rameters:

e L : the maximum number of contention slots allowed in a single uplink frame (see
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Section 6.1),
e (Q : the splitting factor,

e N, : the trigger value for the polling feature.

Thus, the parameter N, is added to the scheme. One of the attractive features of the
Identifier Splitting Algorithm (ISA) is that as a CC is being resolved, the BS obtains
more and more information about the addresses of the MSs which are still competing.
For example, if the BS notices that the tree at level i (see Figure 6.3) contains k collisions
and the MAC-addresses are n digits long, then the BS concludes that the remaining
competing MSs can only have kQ™ * possible addresses. This follows from the fact that
each slot at level i corresponds to Q" * addresses. In such case, we state that the remaining
size of the MAC address space is equal to Q" *. This information can be used by the
BS in an attempt to improve the performance characteristics.

We propose the following method: when the size of the remaining MAC address space
Y becomes smaller than some predefined value, say N,, the protocol switches to polling.
Polling, in this context, means that one slot is provided for each address in the remaining
address space. Depending on the relationship between L and Y(< N,), one or multiple
frames are required to support polling. The introduction of the parameter N,, referred to
as the trigger value, not only allows us to improve the performance of the ISA scheme, but
also provides some additional challenges as far as the performance evaluation is concerned
because it creates additional dependencies between a number of random variables (see
Chapter 7).

6.4 Skipping the First Few Levels

In the previous two sections the contention period of the first frame of a CC consisted
of a single contention slot (level 0 of the contention tree). Now we drop this condition:
instead of starting with just one contention slot in the first frame, we provide more than
one slot during the first frame of a CC. The idea to offer more than 1 slot for the first
transmission attempt is far from uncommon in splitting algorithms with blocked access
[51,63] [3, p291]. The starting level is said to be S;, with 0 < S; < n, if the first frame of
the CC contains Q% contention slots. An MS taking part in the contention cycle selects
one of these Q° slots based on the first S; digits of its n-digit MAC address. We need
[Q% /L] frames to support the starting level S;.

The starting level S; can either be fixed at a predefined value or can change in time. A
fixed starting level S; is expected to have a positive impact on the delay. Apart from
that, the throughput might improve in case of high loads [51]. Unfortunately, as shown
in the numerical results, this results in some additional throughput losses during low load
periods. To solve this we propose a scheme that changes the starting level dynamically
between level S,,;, and S,,.,. To make this decision the system load p is not taken into
account, as this value is hard to measure or predict in real systems. We therefore use the
length of the previous CC as follows.
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The starting levels are defined using the following two threshold values: B; and B,,.
Suppose that at some point in time the starting level of a CC equals S; and let L be the
length of this CC, then the new starting level S] obeys the following equation:

maX(Sl — 1, Smm) L S Bl
Sl’ = Sl B <L<B, . (61)
min(S; + 1, Syuaz) L > B,

Clearly all MSs wanting to access the contention channel need to be aware of the current
starting level. We suggest that this knowledge is broadcasted by the BS at the start of
every CC. Therefore, it is not necessary for all MSs, including those that do not use the
contention channel, to keep track of the lengths of the CCs.

6.5 Multiple Instances of ISA

In what follows we demonstrate by means of an example how multiple instances of the
ISA protocol can be created from a single instance with a fixed starting level S; > 1. For
this example (see Figure 6.4) the starting level S; is fixed at 1 and @ is set at 2. As can
be seen in Figure 6.4 all collisions in the right-hand side of the tree are resolved at level
3. Suppose that during these 3 levels a number of MSs, not necessarily participating in
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Figure 6.4: Creating Multiple Instances of ISA

this CC and some with the first bit of their MAC address equal to 1, have generated a
new request. Then, according to the previous sections, they have to wait until the start
of the next CC; that is, until the end of level 5. Alternatively, the BS may initiate a new
instance of the ISA protocol, to be used by all MSs belonging to the second half of the
tree, thereby creating a second instance of the ISA protocol. The first instance is used by
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all MSs whose first bit of their address equals 0, the second half is devoted to the other
MSs, the MAC addresses of which start with a 1.

In general, the ISA protocol with starting level S; and a splitting factor ) can be uncoupled
to form Q' different instances of ISA, where each instance corresponds with a partition
of the address space. Another advantage of this method is that the contention slots
are spread more uniformly over consecutive frames, as the different instances are not
necessarily in phase, i.e., the tops of the different trees might occur in different frames.
The disadvantage of uncoupling is that we can no longer decrease the starting level below
level S;. It is possible to combine multiple instances and polling, but we do not consider
it.

6.6 MS Behaviour

The behaviour of the different MSs, using a single instance of the ISAP scheme, is de-
scribed in Figure 6.5 by means of a flow chart. The following notations are used. An
arrow that is accompanied by a capital S indicates that the transition is made at the
end of a frame header, i.e., after receiving the feedback information from the BS. Let A
be a MAC address, A; the i-th digit of the MAC address A, vf(A,i) the integer value
denoted by the first ¢ digits of the MAC address A and v;(A, ) the integer value denoted
by the last ¢ digits of the MAC address A. For instance for Q) = 2, v;(101101, 3) = 5 and
v(101101,4) = 13.

As long as an MS is not using the contention channel, it remains in the inactive state.
An MS that generates a request makes a transition to the blocked state. There it remains
until the current CC is solved, checking the feedback field at the beginning of every
frame. The feedback field, which is present in the downlink frame header, contains the
following subfields: a bit, denoted as the [-bit, which indicates whether the current level
has finished, a bit, denoted as the c-bit, which indicates whether the current CC has
finished (if set: the starting level of the next CC is also included), an integer value Tc
denoting the number of collisions that occurred (so far) at the current level and a set of
bits, one for each contention slot, where a 0 indicates a success (or an empty slot) and a
1 a failure. Notice that one feedback bit for each contention slot is sufficient as we do not
take capture effects into account.

Once the current CC has ended that is, the c-bit is set three parameters ‘Lvl’, ‘Pos’
and ‘Offset’ are initialized. They have the following function:

e Lvl: indicates the current level of the CC, therefore its value is incremented by one
at the start of each level during a CC.

e Pos : is a variable that holds the number of the contention slot to be used by the
MS (the slots are numbered starting from 1).

e Offset : an integer value that keeps track of the number of slots, belonging to the
current level, present in prior frames.
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Figure 6.5: The Flow Chart of an MS (A = MAC address of the MS)

After initialization the MS waits for the frame that contains slot number ‘Pos’ by making
use of the ‘Offset’ value. Next, the transmission state is entered. A transmission takes
place in slot number ‘Pos’ and the result is found by checking the corresponding feedback
bit. If successful we return to the inactive state, otherwise the MS sets the parameter N
and waits until the current level has finished. N indicates the number of collisions that
have occurred at the current level before slot number ‘Pos’. Next, the MS checks to see
whether a switch to polling is made and depending on this result assigns a new value to
‘Pos’. This routine is repeated until a successful transmission occurs. Checking to see
whether a switch to polling is made at level 7 + 1 simply consists of calculating the size
of the remaining address space and comparing the result with V,,. Due to the fact that a
slot at level i corresponds with Q" addresses, the size of the remaining address space is
found by multiplying the number of collisions at that level 7 by Q" ".

6.7 More Optional Parameters

The numerical examples presented in Chapter 8 indicate that the polling feature has a
positive impact on the delay. It does however reduce the throughput achieved on the
contention channel. In order to limit the throughput losses caused by the polling feature,
one could add another parameter M, to the ISAP scheme. Whenever the ISAP scheme
is enriched by the M, parameter, we refer to it as the M-ISAP scheme.
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The aim of M-ISAP is to guarantee a minimum throughput on the polling slots. Notice,
ISAP already guarantees a worst case throughput 7,,; on the polling slots of

2

Tpoll = m-

(6.2)

For instance, for () = 3 and N, = 30, we get T,,; = 2/27. Equation (6.2) can be
understood as follows. The worst possible throughput on the polling slots is reached when
the switch to polling occurs as a result of a single collision, containing two contenders, at
the highest possible level. Looking at equation (6.2), ISAP hardly provides any guarantee
for large values of V,,. A better guarantee is achieved by prohibiting ISAP to switch to
polling until a certain level, say M, is reached. Indeed, the slots used for polling have a
minimum throughput of T}, of

2

T min(QniMp_l_l,Q[]ogQ ij)a

poll —

(6.3)

where n is the length of a MAC address. For instance, for Q = 2,n = 8, N, = 35 and
M, = 6 we get a worst case throughput of 0.25 on the polling slots. In the same scenario
ISAP would only guarantee a throughput of 0.0625 on the polling slots.



Chapter 7

Analysis of the Identifier Splitting
Algorithm combined with Polling

In this chapter we study the ISAP algorithm by means of several analytical models [65—
67]. The main objective of these models is to obtain experience that allows a well-founded
understanding of the impact of the different protocol parameters and to reveal possible
delay vs. throughput tradeoffs. Numerical results of this study are presented in Chapter
8. Petras, et al [50-52] have studied the first two moments of the length of an ISA
CC with k£ contenders, by means of recursive formulas. Their main assumption is that
every level can be supported by a single frame, i.e., the parameter L is not taken into
account. Fernandez and Sallent [15] have studied none deterministic splitting algorithms
in a hybrid Fiber-Coax Broadband Access Network by means of functional equations.
They also traverse the contention tree in a breadth-first approach. The access network
considered by Fernandez does not contain a frame structure: the system is slotted and
each level of the contention tree is separated by B contentionless time slots. Therefore,
the analysis is very different from ours.

This chapter is subdivided into five sections. A number of simplifying assumptions are
made in Section 7.1, that apply to all the analytical models presented. In Section 7.2, we
start by introducing a model for the binary ISA scheme. We continue with the binary
ISAP scheme, i.e., we add the polling feature. Next, we consider fixed and variable
starting levels and multiple instances. In Section 7.3, we generalize these models to the
(QQ-ary case. Section 7.4, indicates how to evaluate M-ISAP (see Section 6.7). In Sections
7.2 to 7.4 the parameter L is not taken into account (see Section 7.1). Finally, in Section
7.5, we calculate some important expected values that provide insight on the interaction
of the parameter L with the other protocol parameters.

7.1 Assumptions

Let n be the size of the MAC-addresses (in digits). The number of MSs located within the
reach of the BS is assumed to be Q"—that is, all MAC addresses are utilized. Furthermore,
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the aggregate traffic, generated by all MSs on the uplink contention channel, is assumed
to have a Poisson distribution with a mean of A\ requests per frame. As the number of
MSs is finite and equals ", the number of requests generated during a CC should never
exceed Q". Therefore, we drop at random some of the arrivals if this value is exceeded (for
x > Q" arrivals, we drop x — Q" arrivals). Alternatively, we could drop the last z — Q"
arrivals. The fact that we drop these arrivals at random (instead of dropping the last
x — Q™ arrivals) should hardly have any influence on the numerical examples presented,
because the probability of having more than Q" arrivals during a CC is negligible. Random
dropping assures that the requests arrive in a uniform way during a CC. Hence, define
the random variable [; as the number of requests generated during a CC consisting of 7
frames, then

P[I; =k = (Aki')ke”,kqg" (7.1)
PL=Q" = ). (M')ke*i. (7.2)
o K

Notice, we do not need to consider bursty input traffic since we are observing the access
channel used by an MS that wants to transmit a request after a period of silence. In
real-life systems the following holds with respect to the number of MSs participating and
their addresses:

e MSs that were successful during the last frame of a CC will never participate in the

next CC.

e Participating MSs, regardless of the frame in which they were successful, are less
likely to take part in the next CC as opposed to those that did not participate at
all.

To keep the model analytically tractable, both these remarks are ignored. Thus, the
addresses of the MSs taking part in the scheme at the beginning of a CC are uniformly
distributed over the complete address space and their number is distributed according to
a Poisson distribution, where the mean depends on the length of the previous CC.

In the first three parts (Sections 7.2 to 7.4), we assume that each level of the CC corre-
sponds with a single frame, i.e., L is assumed to be large enough to support any level of
the splitting algorithm. Therefore, we cannot use the model to study a system in which
the contention channel is highly loaded. Notice that each level of a CC can always be
supported by a single frame if a CC has k£ < 2L/Q participants, whatever the addresses
of these k stations might be. Indeed, a level requires x > L slots whenever z/@Q collisions
occurred during the previous level. In order to have y collision we need at least 2y MSs
participating. In Sections 7.2 to 7.4, N, and Q" are smaller than or equal to L. In the
fourth part (Section 7.5), we drop the assumption on L and consider all N, and S; values.
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7.2 Analysis of the Binary ISAP Protocol

The work presented in this section was published in [66]. In the first subsection we
calculate the throughput and the delay density function of the ISA scheme (Section 7.2.1).
In a second subsection we focus on ISAP with a fixed starting level S; = 0 (Section 7.2.2).
Afterwards, we consider other fixed starting levels (Section 7.2.3) and variable starting
levels (Section 7.2.4). The following random variables will be used in the sequel of this
section.

e X, resp. X,, denotes the number of contenders or participants in a CC for the ISA,
resp. ISAP protocol.

e R., resp. R,, denotes the level at which the CC is resolved (i.e., the number of
frames needed minus one) for the ISA, resp. ISAP scheme.

° C’i(c), resp. C’i(a), denotes the number of collisions at level 7 for both protocols. These
variables range from 0 to 2°.

e P, denotes the level at which we poll for the ISAP scheme. If the scheme is solved
without polling we let P, be equal to n + 1.

Furthermore we use the symbol C}' to denote the number of different possible combinations
of r from n different items.

7.2.1 The Identifier Splitting Algorithm (ISA)
The Delay Analysis

(A) We start by studying the random variable R, conditioned on X,.. Notice that at
level i the address space is split into 2° equal parts of size 2", For the scheme to be
collision free at level ¢ we can only allow one participating MS in each subspace. This
results in

2(7771)190]31

PR <i| Xe=H =~
k

(7.3)

This can be proven by noticing that P[R. < i | X, = k] = P[R. < i | X. = k —
1] 27 (20— (k—1))/(2"—(k—1)) using induction on k. An alternative proof is based on the
multivariate hypergeometric distribution. By subtraction we obtain P[R, =i | X, = k],
which is denoted as p.(k,i + 1) (we write i + 1 to indicate the number of frames used).

(B) Let us now focus on X.. Clearly X, is the steady-state vector of the Markovian

process (X,(f))n, where Xy(f) denotes the number of contenders during the n-th CC. Due
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to (A),

n—+1 _
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t=1 s

for 0 < j < 2" —1. For j = 2" we assign the remaining probability mass. X, is then
found by solving the eigenvector problem. Applying the definition of the expected value
gives us the mean number of participants F[X.] in a CC.

(C) Before we can calculate the delay we still need to make the following observation.
Consider an arbitrary arrival in a CC, then we need to know the probability that this
CC is k frames long and that there will be [ contenders in the next CC. We denote L),
and XT(w)It as the length of the CC in which an arbitrary arrival occurs and the number

of participants in the next CC Some straightforward reasoning shows that the following
relationships between X( ) L) and X, hold:

o . PX.=1
P[Xv(le)fr,t - l] - W (75)
and

where p,(k, 1) was defined in (A). Notice, 2, P[LS), = [J(A)F 1 /(k—1)! e M = P[X(), =
k]. Let us prove equality (7.5) (equation (7.6) can be found in a similar way). Consider
a finite set of N of consecutive CCs. Denote T;(N) as the number of CCs during which
i arrivals occur. Then, the probability that an arbitrary arrival competes, during a CC,
with ¢ — 1 other arrivals equals iT;(N)/(>_,iTi(N)). As N — oo, T;(N)/N approaches
P[X,=1i| and ), iT;(N)/N approaches E[X_].

Combining (A), (B) and (C) Having the results from (A), (B) and (C), we can
calculate the mean delay. Clearly the delay consists of two parts. The first part D; is
the time until the start of the next CC and the second part D, is the number of frames
needed until our tagged request is successful. Using expression (7.6) and knowing that
the arrivals are distributed uniformly within a CC (see Section 7.1), the expected value
for the first part equals

n+1

= ZP[LE;?T = ii/2. (7.7)

By definition of the expected value the second part equals

ZZP vewt = K100 + 1) (Foli, k) — Foli = 1,k)), (7.8)

1=0 k>1
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where F.(i, k) denotes the probability that a tagged request is successful at or before level
i given that there where k£ —1 other contenders (F.(—1, k) is zero in the expression above).
Again we can prove by induction that

2n72n7i
Ckfl

Fo(i k) = T (7.9)
k—1

Adding E[Dq] and E[Ds] results in the mean delay.

The delay density function Using (A), (B) and (C), it is easy to show that the
delay density function D.(z) (with x between 1 and 2(n + 1)) is given by the following
step function:

ur

Di(x) = S A LD Al 20 g gy prrg), = ), (7.10)

i -1 5. n n )\ =1 5.
where G;(l) = %e Mofor | < 2" — 1 and G;(2") = D json 1 %e M. In (7.10)
s denotes the number of transmissions (including the successful transmission) a tagged
request needs, j refers to the length (in frames) of the CC in which our tagged request is

generated and [ — 1 equals the number of other competitors apart from our tagged one.

The Throughput Analysis

In this section we determine the throughput of the ISA scheme. First, define two more
sets of random variables Si(c) and Si(“), being the number of slots used at level i by both
schemes. From the foregoing we already obtained P[X, = kJ; thus, the throughput 7. is
found as

EX.]
c on

v—o P X =FK|E[Y_, Si(c) X, = k] (7.11)

We could calculate the expected number of slots in this formula as was done in [51] (using
a strong recursive scheme). Still, it is possible to get the same results using a more direct
approach as follows. First, notice that

ED SO X =k =1+ B[S X. = k]. (7.12)
i i=1

On the other hand we know that the expected number of slots at level 7 equals twice the
expected number of collisions at level i — 1, while the expected number of collisions at
level © matches

. l 02117271,77) o 02i72n7i
E[CY | X, = k] =2 (1 - 7’“@3” -2 7’“01? . (7.13)
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Hence, by substituting the summation index

(© 1N (o cr Ty o
S L PSSTEEE) of IS (R M =

i=1

(7.14)

As it turns out, the right-hand side of equation (7.14) was already obtained by Trabb
Pardo [17] in 1977. At that time splitting algorithms were not yet invented, but these
quantities are also relevant to the analysis of tries in computer algorithms.

7.2.2 The Identifier Splitting Algorithm combined with Polling
The Delay Analysis

In this section we will follow the same lines of reasoning as in Section 7.2.1 and we start
by studying P[R, <i | X, = k.

(A’) Two cases can be considered. First, the CC might be solved before level i or at
level 7 due to polling, secondly, it might be solved at level ¢ without a switch to polling.
Hence,

PR, <i|X,=k=PR,<i—1UP, <i|X,=k+
P[R,=iNP,>i| X, =k (7.15)

The first probability is discussed in (A1’), the second in (A2’).

(A1’) We calculate the complementary probability mass. By definition of the polling
mechanism (see Section 6.3) we have

Np
2nfz'+]

P[R,>iNP,>i| X, =k]=P[C" > { J | X, = k. (7.16)

The right-hand side is found using the following relationship:

a N ¢ N,
PlC\” = {anﬂJ x| X, =k = P[C), = {ﬁJ ta| X, =k, (7.17)

for x > 1, but not necessarily for x < 0. To prove this we must show that having
{QTL]Y—Z’HJ + x collisions at level 7 — 1 given k contenders for ISA implies the same for ISAP

and vice versa. Clearly, if ISAP had this number of collisions (at level i — 1 given k
participants), polling did not occur before; thus, we have the same effect for ISA. On
the other hand if the ISA scheme results in that many collisions, ISAP could not have
switched to polling because the remaining address space is too large at level 2 —1 and can
only decrease in size as the level increases.
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Our main objective now is to find the probability that we have exactly [ collisions at
level i given k participants (when using the ISA scheme). Although these values are easy
to describe mathematically by a sum of multivariate hypergeometic probabilities, this is
of no practical use due to the high computational complexity. A more complicated but
appropriate way would be to apply the Inclusion-Exclusion Principle [29,73]. Due to
the alternating sign, this method tends to give numerical problems for large values of n.
We propose the following variation on the Inclusion-Exclusion Principle (where the first
equality is a consequence of (7.3)):

2(n71)k0131

Cl o212 i 2t
s(i, 1 k) = 0,122"’ % (’;253 =Y CPs(il+ a k), (7.19)
11=0 r=1

where s(i,1,k) = P[C\) =2/ — 1 | X, = k]. We can use (7.18) and (7.19) in a floating
point environment for n < 7.

(A2’) In this case each collision at level i — 1 involves only two MSs, otherwise they
cannot be solved at level 7. The probability that such a collision is solved, at level 1,
equals Qngnﬁ Thus by means of the multivariate hypergeometric distribution we get

P[R,=iNP,>i| X, =k]=
5]

N G e e I
Z 9(n—it1)(k=2u) o < ) , (7.20)
k

u=u;_1+1

N,
where u; denotes LQ"LJ'

(B’,C’) Let us define p,(k,i+ 1) as P[R, = i | X, = k|. Steps (B’) and (C’) are
straightforward to obtain from (B) and (C). To calculate the mean delay, we need to
find F,(i, k), i.e., the probability that a tagged request is successful at or before level i
given that we had k& contenders (for the ISAP scheme). We denote u;_1 + 1 as 1)2, thus,
v, =1+ LQnIY—fHJ In (A1’) it was argued that the event C’ | > v; is the same as C’ L > Ui
when conditioned on X, resp. X,, which in its turn commdes with P, > ¢ N R > i
Hence,

Fulisk) = PIR, <i—1UP, <i| X, =k +Y PR, <inC =s| X, =k, (7.21)

§2>0;

where R; denotes the level at which our tagged request is successful. This first probability
was found in (A1’). The second one is found using the methodology of equations (7.18)
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and (7.19) as follows. We define (i, s, k) as P[R; < iN C’i(f)] =21 — 5| X, = k]. We get
(where the first equation is a consequence of (7.3))

o 2(nfi+1)k02i*1
t(Z,Q‘ I,I{J) = Tk (722)

QN _gon— i+1
Chck I .

D M =

11=0

l B\ CF e At
U oozt | T > CItis +a,k).(7.23)

k—11—1 r=1

When we look at the delay density function we can make use of formula (7.10) (where
the indices a are used instead of ¢). This concludes the delay analysis.

The Throughput Analysis

Since we already know the probabilities P[X, = k] from the delay analysis, it is sufficient

to find E[), Si(a) | X, = k]. Unfortunately this is not as straightforward as one might
expect. We start in a similar manner as in the previous section. The expected number of

slots used equals the sum of the expected number of slots used at each level. By definition
of the ISAP scheme we have

E[S" | X,=kl=P[P,=i| X, =k E[S" | X,=kNP, =i +
PP, >iNR,>i| Xo=k B[S | X,=kN P, >iNR, >1i], (7.24)

by observing that the expected number of slots is zero if R, < i—1. The second probability
was obtained in (Al ), the first one is calculated as P[R, <i—1UP, <i | X, = k] minus
P[R, <i—1| X, = k|, two results that were also obtalned in (A’). The computation of

both expected values remains (for ¢ > 2 since SO and 51 are trivial to obtain). They
are discussed in (D’) and (E’).

(D’) First consider E[ \ X,=kNP, >iN R, >i|. In this case the number of slots
used at level i equals two times the number of collisions at level 7 — 1. Also in (A1) it

was shown that the event P, > 1N R, > ¢ is the same as C'i(f)l > v;, when conditioned on
X,, resp. X.. Thus it is sufficient to find

E[Cz(f)l ‘ Xc =kN Cz(i)] > 'I)Z'].

This expected value is obtained using the definition of the expected value combined with
(7.17)

2i—1_y;

E[Ci(i)l | Xe=knN Ci(i)] > v = v + Z
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where we applied the following proposition. If an event A C C' then P[A | B N C] equals
P[A | B]/P[C | B]. In this case, A is equal to C', = s +; and C is chosen as C\*, > v;.

(E’) As opposed to the first case, i.e., (D), the expected number of slots equals 27~ *+1
times the expected number of collisions at level 7 — 1 provided that we do poll a’r level 7
and we have k£ contenders. Also, since the event P, =i is the same as R, > i N C 1 < ;
we are actually looking for

E[C™ | X, = kN R, >inC" < ). (7.26)

We start with the following observation:

C >0 | Xo=kNR,>i E[C\”) | Xo=kN Ry >inC" > v +...

C' < v | X, =kNR, >i E[C"

1—1

a2

where the expression of interest is part of the right-hand side. Both probabilities are
clearly each others’ complement; thus, it is sufficient to calculate the first. To do this
remark again that if an event A C C then P[A | BN (] equals P[A | B]/P|C | B].

Applying this result with A equal to C 1 > v; and with C as R, > i, (A is a part of C
because v; > 0) yields the following expreqqlon for the first probablhty

PICY” > v; | X, =k]/P[Ry > i | Xo = k] (7.28)

)

Both these values were obtained in section (A’). Again two expected values remain un-
known, (E1’) and (E2’) are devoted to them.

(E1’) We start with the one in the right-hand side. Notice that event C 1> viis a

part of the event R, > i (as mentioned above) and this first event is the same as Ci(f)] > v;

when conditioned on X, and X, respectively. Thus the expression we are looking for is
reduced to (7.25).

(E2’) Remark that the event R, > i coincides with C'*)} > 0. As the event C\"), > v;_;

contains this last event, we can also write it as C’( ) > v N C’ 1 > 0. So, we want to

find

E[C | X, =knCY, > v nC™ > 0). (7.29)

kmq22m4mdﬂ>m:Ew%y&:kmd22m4V
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(7.30)
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Applying P[A | BNC| = P[ANC | B]/P|C' | B] we find the probability in the denominator

P[C =0nCY, > vy | X, = K]
(a

PIC = 0] X, =kNC,) > v 4] = — 3 . (7.31)
P[Cl 222)7;,1 ‘Xa:k]

1—

due to our discussion in (A1’) we can substitute the super- and subscripts a for ¢ in both
probabilities without altering their values. Having done this we use (7.18) and (7.19) for
the computation of the denominator, while the numerator is obtained based on a similar
argument as in (A2’)

PlC =0nCY, > v | Xe = k] =

)

. u . .
gn—it2 2i=2 ~2i=2 4 .
9 ) Cu Ckau 2n7z+1 u
(j%" gn—i+2 _ | '

%) (0
Z 2(n7i+2)(k72u)

U=V;i—1

(7.32)

The expression is the same as in (A2’), but with i — 1 substituted for i — 2 (remember
that v; = 1+ u; 1).

We end with the determination of the expected value in the right-hand side of (7.30).
Again, we can substitute the sub- and superscripts a for ¢. Then, using the definition of
the expected value we get

E[CY) | X, = kNG, > vy 4] =

" BICE | Xe=kn O, =1l

[>v;_1

(7.33)

Finally, we calculate the numerator of this sum using the same methodology as in (7.18)
and (7.19), where we define e(i — 1,s,k) as E[2" ! — C'i(f)l | Xc =k N C'i(f)Q =272 —
S]P[C‘(f)2 = 272 — 5| X, = k]. This results in the following equations (the first equation

13
is a consequence of (7.3)):

2(n7i+2)k 02"*2

e(i — 1,272 k) = 27! C—Qk (7.34)
. il o C]’;nz] + 277, 7+10]’;nz[
6(7/ — 1’ S’ k‘) — 2 Z 2 +2 (29 + (22 ! - 29) 10277 §2n— i+2 al
11=0 k—1I1

s 2n752n7i+2 21 275
_Cllokfll

or - Z C5e(i— 1,5 + x, k) (7.35)

with m; equal to 2" — s2n—+2 _ gn—i+1

Remark that the expected number of slots used in this scheme given that we had k con-
tenders is independent of the way the slots (polling and contention slots) are incorporated
into the frame structure. Only the probability of having £ contenders depends upon the
frame structure.
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7.2.3 Skipping the First Few Levels (STATIC)

In this section we describe the necessary adaptations to Section 7.2.2 in order to evaluate
the ISAP scheme when some of the first levels of the tree are skipped. The performance
of ISA with a higher starting level is obtained by setting IV, equal to 0. The starting level
is denoted by S;. The following random variables are defined:

e X : the number of participants in a CC, this variable ranges from 0 to 2".

e R : the level at which the ISAP scheme is resolved, this variable ranges from S to
n.

o Si(aﬂ : the number of slots used at level i.

e P : the level at which we poll, if the scheme is solved without polling, the variable

obtains the value n + 1.

We start with the delay analysis.

The Delay Analysis

To solve this problem we follow the same lines of reasoning as in Section 7.2.2. In this
section we address the most significant differences with the evaluation in Section 7.2.2.
Before going into the mathematical details, let us summarize the two major differences
regarding the behaviour of the protocol. First, the scheme can no longer be solved before
level S; as these levels no longer exist. Secondly, polling at level S is no longer possible
as level S; — 1 is skipped.

(A+) Let us start with RF. Notice that if the scheme was resolved at the first level S,
then it is also solved at or before level S; with the ISA scheme, with a fixed starting level
at 0, and vice versa. Secondly, the events R < z and R, < x coincide if z > S;. Thus
we have (due to (7.3))

2(n751)k025l
PRI =S/ | X =k = 072’“ (7.36)
k

PRI <Si+a| X =k = PR, <S +uz|X,=k|, (7.37)

for every value = > 0. This means that the probability of resolving the scheme before or
at level S; might decrease a bit, compared to the situation where the CC starts at level 0.
If so, the probability that it is solved at level S;+1 increases together with the probability
of polling at this level. Remark that the probability of solving the scheme at level S; + 1
without polling remains identical. There are no changes for the other levels. We define
pi(k,i) as PRI =S +i— 1| X =k].



104 CHAPTER 7. THE ISAP ALGORITHM: ANALYSIS

F.F(i, k) is defined as the probability that a tagged request is successful at or before
level i. With similar arguments as used for R} we get

o2 -2V
Fi(SLk) = . (7.38)
Ckfl
FL(Si+ak) = FulSi+uak), (7.39)

for every positive value x. The remainder of the analysis is analogue to the one with
starting level zero.

The Throughput Analysis

The main objective of this section is to find the expected number of slots used at each level.
Once we have these values, the distribution of X allows us to calculate the throughput.
This new scheme clearly never polls at level S; (or before since these levels do not exist),
therefore the probability of polling at level S; + 1 is increased. This causes the expected
number of slots during level S; and S; + 1 to be different from the ones we had before.
All the other expected values remain the same. The expected number of slots at level S;
matches 2% because we start at this level.

The situation for level S; + 1 is a bit more complicated. We start with equation (7.24)
(where we add a '+’ to all random variables and set i equal to S; + 1). In view of the
discussion in (A+), adding a '+’ only changes the first two values (of the right-hand side)
in this expression. Based on the fact that the events at level S; are similar to those of the
ISA scheme with the starting level at 0, the product of these two values is given by

PPy =S +1|X; =KE[S{T) | Xf=knPF=8+1] =

us,
25N iP[Cg) =i | X,

1
i=1

k). (7.40)

This concludes the throughput analysis.

7.2.4 Skipping the First Few Levels (DYNAMIC)

Having done the analysis for the static starting level it is easy to extend these results
to the proposed dynamic model (see Section 6.4). We use the same random variables as
above but substitute the '+’ sign for a 'x’ to indicate the dynamic nature of the scheme.
We also introduce a new random variable B* as the starting level.
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The Delay Analysis

We start with the search for R; when conditioned on X and B*. Assuming that the
starting level equals S; we have the following (due to the STATIC part):

2(n751)k0251
PR:=S | X =knNnB*=5] = T’f (7.41)
k

PIRE< S 42| X:=knB* =5] = PR, <S +uz|X,=k], (7.42)

with z a positive number. Having found this we define pi(k, S,z + 1) as P[R: = S+ x|
X! =knB*=5]. To find the joint distribution of (X}, B*) it is sufficient to construct
the following transition matrix and to determine its steady state vector:

t3(k; Sy, 33 Sa) = PIXST) = G0 Byyy = Sa | X[ = kN B = S)) =
n—l—lfS';,

(At)e M |
Z Tpa (k'; Sb; t) 1{(t§Bl/\S‘a:S‘,,71)\/(Bl <t<BmASqa=8p)V(t>Bm ASq=Sp+1)}+
t=1 s

Suppose that we observe the system at an arbitrary arrival instance, then the probability
that this CC has a length of k frames and started at level S; is needed. We also need the
probability of having [ contenders and a starting level S; in the next CC (the CC that
is preceded by the one containing the arbitrary arrival). These values are the natural
extensions of (7.5) and (7.6)

P[X* = kN B* =Sk

PIX'“) — kB =5]= 7.43
[ next next l] E[X;] ( )
and
M &
PIL) — kN B* =8 = PIX* =i N B* = (7.5, k). 44
[ cur N cur Sl] E[X;] ]Z] [ a J N Sl]pa(jﬂsl’ ) (7 )

Finally, we need to find F;(i, k, S;), being the probability that a tagged arrival is successful
at or before level 7, knowing that there were k£ — 1 other participants and the CC started
at level S;. Again, using the results of the previous section (see STATIC) we obtain

02n72n75l
fa*(Sl,k,Sl) - kiln, )
Ciy!

]—";‘(Sl +x, k, Sl) = fa(Sl + x, k)

As before we can combine these results to obtain the average delay of the system. Let
us now focus on the delay density function. As in (7.10), s is the number of frames that
the tagged element competes, j is the length of the CC (in frames) in which the tagged
request was generated and S, the level at which this CC started. While [ —1 is the number
of other competitors next to the tagged request,
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Smaz n+1 2" ]f 5”) fl,l,f(sa.))
Y S pAsU o

s=1 Sp=Smin j=[x]—s [=1

G;(1) PILY) = j N B;

cur

= Sy, (7.45)

cur

where G;(1) was defined in Section 7.2.1, the function f(Ss,j) is given by

maX(Smm, Sb - ].) j S Bl
f(Sh,4) = Sh B <j<B, , (7.46)
min(S,ez, Sp + 1) j > B,

and A F)(z,y, 2) equals Fi(x,y,z) — Fi(x — 1,y, 2).

The Throughput Analysis

In the section above we obtained the joint distribution of (X}, B*). This is used to derive
the throughput 7 as follows:

. BIX;]
T = S ' ) . (7.47)
oYers  PXp=kNB* =SB}, S | X; =kNB* =5

where the expected values were obtained in the evaluation of the static model.

mln

7.2.5 Delay and Throughput for Multiple Instances

The analysis can also be used to evaluate the scenario with multiple instances. This is
due to the fact that the delay experienced by a tagged request only depends upon the
events happening in the instance it belongs to (because L is not taken into account).

7.3 Analysis of the Q-ary ISAP Protocol

In this section we generalize the analysis of the binary scheme to the ()-ary scheme. The
work presented in this section was published in [65]. We demonstrate how the delay and
throughput can be calculated for the Q-ary ISAP scheme if S; = 0. The results for S; > 0
can be obtained from those with S; = 0. The procedure required to obtain the results
for a higher starting level S is very similar for both the binary and the Q-ary case and
therefore all details on this procedure are omitted. Also, results for ISA can be obtained
by setting N, = 0.

The following random variables will be used in the sequel of this section.
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e X, resp. X,, denotes the number of contenders or participants in a CC for Q)-ary
ISA, resp. ISAP.

e R, resp. R,, denotes the level at which the CC is resolved (i.e., the number of
frames needed minus one) for the Q-ary ISA scheme, resp. ISAP scheme.

) C’Z.(C) and Ci(a), denotes the number of collisions at level ¢ for both protocols. These

variables range from 0 to Q.

e P, denotes the level at which we poll for the (Q-ary ISAP scheme. If the scheme is
solved without polling we let P, be equal to n + 1.

The symbol O} is still used to denote the number of different possible combinations of r
from n different items.

7.3.1 The Delay Analysis

Most of the steps presented below are straightforward generalizations of the binary equa-
tions, except for (A2”).

(A”) We start by studying P[R, <i | X, = k]. Two cases can be considered: first, the
CC might be solved before level 7 or at level i due to polling, secondly, the CC might be
solved at level 7 without a switch to polling.
PR, <i|X,=kl|=PR, <i—1UPF, <i|X,=k]+
PR, =iNP,>i| X, =k|. (7.48)

The first probability is discussed in (A1”), the second in (A2”).

(A1”) We calculate the complementary probability mass. By definition of the polling
mechanism (see Section 6.3) we have

: : a Ny
PlR,>iNP>i| X, =k = PC) > {Qn mJ X, = A (7.49)
The right-hand side is found using the following relationship:
a Ny . N,
P[Ci(,)] — {Q” zHJ ta| X, =k = [Cz( )] {Qn ’“J +x | X, =k, (7.50)

for z > 1, but not necessarily for x < 0. The following variation on the Inclusion-Exclusion
Principle [29, 73] is proposed (where the first equality is easily proven by induction on k):

. (n—i)k (@'
S(i,QZ,k) = CQC’WIC, (751)
Cvl CQ" Qrt Qi1
s(i, k) = ZQ” ih Zh (’fjé; — > Cls(iyl+ k), (7.52)
r=1

11=0
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where s(i, 1, k) = P[C\ = Q' — 1| X, = k.

(A2”) For the binary splitting algorithm this probability is found easily by observing
that each collision at level i — 1 involves only two MSs, otherwise it cannot be solved at
level 7. Clearly with Q-ary splitting this is no longer the case. Nevertheless, we still have
the following equality:

N,

for > 1. At level i we can subdivide the address space in Q¢ subsets of size ("¢ based
on the first ¢ digits of the addresses. Each of these subsets is defined as a wvirtual slot at
level 7. We state that a wirtual slot or subset at level i is collision free during a CC when
there is at most one contender with an address that is part of that subset. Next, define
p(i, 11, k) as the probability that at level i a specific set of I; virtual slots is collision free
and that at level 141 all virtual slots are collision free, given that we had k£ contenders in
the CC. Notice that the number of collisions at level 4 might be smaller than Q° — I;, so
other wvirtual slots that do not belong to the specific set of size [; might also be collision
free. Hence,

k) = e 350 el g -

Next, define (4,1, k) as the probability that level i contains Q° — I; collisions and level
i + 1 is collision free. Then, we have the following relationship between p(i,[;, k) and
Q(ZJ ll: k)

(i, Q" k) = p(i, Q' k), (7.55)
] Q-1

q(i,l, k) = C¥pli.h. k)= Y C gl + ., k). (7.56)
r=1

This completes (A2”).

(B”) X, is the steady-state vector of the Markovian process (X,(la))n, where X\”) denotes
the number of contenders during the n-th CC. Due to (A”),

n+1 i =\t
.\ def c . c )\t ]6
1ol ) & PIX, = | X = g = 30 A

——P[R,=t—1|X, =k, (7.57)
t=1 J:

for 0 < 57 < Q" —1. For j = Q" we assign the remaining probability mass. X, is then
found by solving the related eigenvector problem.
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(C”) Observing the system at an arbitrary arrival instance O,,, we require the probabil-
ity that the length of the CC, that contains O,,, is k frames and that there are [ contenders
in the next CC. We denote L'% and X,S'f,)ﬁ as the length of the CC containing O,, and
the number of participants in the next CC. Some straightforward reasoning shows the

following relationship between x@ Lgf)r and X,:

next:’
P[X, =]
px\, — =22 .
[ next ] E[Xa] ) (7 58)
and
P[LY =] —)\IZP PR, =1—1| X, = k]/E[X,]. (7.59)

(D”) Define F,(i, k) as the probability that a tagged request is successful at or before
level 7 given that we had k contenders in the CC (for ISAP). Next, define v; = 1+ {Qn El.
We have

Faliyk) =P[Ry <i—1UP, <i| X, =k|+Y_ P[R, <iNC\, = s | X. = k], (7.60)

§>0;

where R; denotes the level at which our tagged request is successful. The first probability
was found in (A1”). The second one is calculated using a similar method as in (7.51)

and (7.52). We define #(i,s, k) as P[R, < inC', = Q"' — s | X, = k]. Then we get
(where the first equation is a consequence of (7.51))

. i1
Q(nfz+1)kcl?

i, Q" k) o (7.61)
Qz 175 ]
t(i,s, k) = — Z C (i, s + x, k) —i—C’Qz ZQ"“LI‘-
l1=0

—sQ"— i+1 n_gOn— i+1_Hyn—i

OlslckQ I “ (ll + <1 _ l_1> CQ -l ? 9 > (7 62)

Qn n_gQn—i+1_ " "

Cy k k)

With these values it is straightforward to find the second term of expression (7.60).

(A”,B”,C”,D”) Having done this we can calculate the mean delay. The delay can be
split into two parts. The first Dy is the time until the start of the next CC and the second
D, is the number of frames needed until our tagged request is successful. Using expression
(7.59) and knowing that the arrivals are distributed uniformly within a CC (see Section
7.1), the expected value for the first part equals

n+1

Dy =) PILE) =ili/2. (7.63)
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By definition of the expected value the second part equals

n

E[D,) =" " PIX, = k(i + 1) (Fulisk) — Fali — 1,K)), (7.64)

i=0 k>1

where F,(i, k) was defined in (D”). The delay density function D,(z) (with x between 1
and 2(n + 1)) is the following:

cur ~

D=y 3o PRI R0 g g pry — (7.65)

where G;(1),1 <1 < Q" is a probability distribution that is equal to (E\Z{)SS e Mforl < Q"
(the remaining probability mass is assigned to G,;(Q")). In equation (7.65), s denotes the
number of transmissions (including the successful transmission) a tagged request needs
and j refers to the length (in frames) of the CC in which our tagged request is generated.
Finally, [ — 1 equals the number of other competitors in the CC apart from our tagged

one.

7.3.2 The Throughput Analysis

The throughput analysis for the Q-ary ISAP scheme is very different from the one used
to obtain the throughput of the binary scheme. Although it is possible to use the same
method as in the binary case, we opt for a shorter but numerically more sensitive method.
The vital part of this method is to calculate the joint probability distribution of the
number of collision at level i and level i + 1 for the ISA scheme. These probabilities are
calculated in a numerically exact environment (Mathematica).

Define a new set of random variables 5’7;('1), where Si(a) is the number of slots required at
level 7 when using the ISAP scheme. By definition of the throughput 7, we have that

_ E[X.)
C S PIX, = HE[Y, S | X, = K]

(7.66)

As the probabilities P[X, = k] were obtained during the delay analysis, it is sufficient
to find E[), Si(a) | X, = k]. The expected number of slots used during a CC equals the

sum of the expected number of slots used at each level, we can focus on E[Si(a) | Xo =K.
Some preliminary calculations are presented in (E”) (in (E”), N, is equal to zero) and

in (F”) we calculate E[Si(“) | X, = k] using the results of (E”).

(E”) Define p(i, 11,15, k) to be the probability that, at level 4, a specific collection of [
virtual slots is collision free and, at level 1+ 1, there are exactly [, collision free virtual slots
given that we had k contenders in the CC. The definition of a virtual slot was presented
in (A2”). Notice that the number of collisions at level i might be smaller than Q" — I1;
thus, other wvirtual slots that do not belong to the specific collection of size [; might also
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be collision free. A reasoning based on the Inclusion-Exclusion Principle [29, 73] allows
us to state the following:

Iy s
. 1 n—i4)q i+1_ n—i— ) s n__ nfiis n—i—1
p(il, 1o, k) = Wg Q! Z)'7C;1C? Qllg Q' 1i C']-,C,?ijfl}? Q
k  j—0 §'=0

QHF1-Ql1—s
=Y Cpli bl + k), (7.67)
r=1

with s = [y — Ql; and with p(i, 1,15, k) = 0 for [, < Ql;. Next, we define s(i, 1,1, k) as
the probability of having exactly [; collision free wvirtual slots, at level 7, and exactly [,
collisions free virtual slots, at level ¢ + 1, given that we had £k contenders in the CC. We
have the following relationship between p(i, [y, ls, k) and s(7, 1y, l3, k):

s(i,Q% 1y k) = p(i, Q" 1y, k), (7.68)
) Q-1

s(i b o k) = CZp(i I, la k) — Y Cl s, 1y + o, 1o, k). (7.69)
r=1

This concludes part (E”).

(F”) Since the expected number of slots at level 0 and 1 are straightforward to obtain,
we can focus on E[Si(a) | X, = k| for i > 2. We distinguish between the following three

events El(i), Eéi) and E3i):

. Efi): the CC is resolved within the first i — 2 levels (with or without polling) or
polling takes place at level 7 — 1.

. Eéi): the CC is resolved (without polling) at level 7 — 1 or polling takes place at
level 7.

) E:gi): the CC is not resolved within the first 7 — 1 levels and polling does not occur
at level 4.

Thus, E[S"] = P(E{)E[S{" | E{] +P(ED)E[S | BY)] +P(ES)E[S® | E{). Pro-
vided that the first event Ey) occurs, the expected number of slots Si(“) at level 7 equals
zero. As for the other two, we can rewrite the previously mentioned events as: E%i) =
C’i(i)Q < vi_1, Eéi) =C;9>v,1NC;_; < v and E§” =C;9>v,1NC;1 > v (v; was

defined in (D”)). Moreover,

P(EY | X = k)E[SY | X = kn EJ] =
DY s 2,Q7 1, QT b k) QU I, (7.70)

l12>vi 1 [2<w;
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and finally

PEY | X = kB[S | X =kn EY] =
S s(i-2.Q7 QT k) QL (7.71)

lh2vi_1 la>w;

where s(i, 11,12, k) was found in (E”).

7.4 Analysis of the Optional Parameter M,

For the definition and use of the parameter M, we refer to Section 6.7. As a reminder,
the ISAP scheme that uses the M, parameter is referred to as the M-ISAP scheme. The
following random variables will be used in the sequel of this section.

e X, X, and X, denote the number of contenders or participants in a CC for the
ISA, ISAP and M-ISAP scheme.

e R., R, and R, denote the level at which the CC is resolved (i.e., the number of
frames needed minus 1) for ISA, ISAP and M-ISAP.

e O '™ and C’i(“), denote the number of collisions at level i for each scheme. These

[ 7

variables range from 0 to Q.

. Si(c), Si(a) and S'i(a) denote the number of contention slots at level i for each scheme.

e P, and P, denote the level at which we poll f0~r the ISAP and M-ISAP scheme. If
a CC is solved without polling we let P, and P, be equal to n + 1.

Furthermore, we use the symbol C7" to denote the number of different possible combina-
tions of r from n different items.

7.4.1 Delay and Throughput Analysis

The influence of the parameter A, on the performance can be studied by introducing
some modifications to the original analysis of the ISAP as performed in Sections 7.2
and 7.3. In this section we summarize the main modifications required. Most of the
modifications required make use of the following property. Consider the i-th level of a CC
with &k contenders. If ¢ < M, then both ISA and M-ISAP behave identical (polling is not
allowed at these level by definition of M,). For i > M, we get an identical behavior for
ISAP and M-ISAP. For ¢ = M, the M-ISAP scheme behaves differently from both the
ISA and ISAP scheme.
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The following three sets of equations are all due to this property. First, R, when condi-
tioned on X, can be calculated as follows:
PR, <i| k] = P[R. <i| X, = K] i < My, (7.72)
PR, <i|X,=kl =P[R, <i|X,=k]| i > M,. (7.73)

Second, define F,(i, k), F.(i, k) and F,(i, k) as the probability that a tagged station is
successful after at most ¢ + 1 transmissions provided that the CC had £k contenders for
each of the schemes. Then,

Fauli k) = F.(i, k) i < M, (7.74)
Fui, k) = Fu(i, k) i > M,. (7.75)

Finally, we also have
| = E[S“ | X, = k] i < M, (7.76)
| = B[S | X, =k i> M, (7.77)

The first two modifications are sufficient to calculate the average delay and the delay
density function for the M-ISAP scheme. As for the throughput, we still need to obtain
E[gj(\f[i | X, = k]. Consider a CC with k contenders, we mentioned that the M-ISAP
scheme behaves identical to ISA until level M, — 1. Therefore,

BISY | Xo=K= Y PICY) =i Xo=k QM+
<[ Np/QrMpH1 ]
Yoo PIeY) =51 X.=kQJ (7.78)

3> Np/Q"~Mrtl]

An algorithm based on the Inclusion-Exclusion Principle [29, 73] to calculate P[Ci(c) =7
X, = k] was provided in the previous sections.

7.5 Analysis of the Impact of L

In the previous two sections we calculated the delay distribution and the throughput of the
ISAP scheme where L, the maximum number of contention slots allowed in a single frame,
was not taken into account. In this section we focus on the parameter L. Unfortunately,
it seems like there is no (apparent) practical way to calculate the throughput and delay
distribution of ISAP when L is taken into account. Theoretically it is not too difficult to
design an algorithm that calculates the throughput and delay of ISAP. However, the time
and space complexity of the algorithm is too large. Also, the calculations are numerically
sensitive and have to be conducted in a numerically exact environment (using rational
calculations).
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The main bottleneck is to obtain the probability that a CC requires i+1 frames (provided
we have k participants). In the previous two sections these probabilities were closely
related with P[R, =i | X, = k|, but this is no longer the case if a level requires multiple
frames. It is however possible, by extending the method we used to obtain the joint
distribution of the number of collisions at level 7 and i+ 1 (see Section 7.3.2), to set up an
algorithm that calculates the joint distribution of the number of collisions (of ISA) at level
0,1,...,n, from which it is easy to obtain the above-mentioned probabilities. However, the
amount of memory required to store this joint distribution is huge: Q™™*"/2 probabilities
have to be stored. Therefore, for realistic values of n, this algorithm is out of reach of the
current computer generations, but might become realistic in 10 years time ©.

Instead of waiting for another 10 years, we can however calculate some measures, i.e.,
expected values, that are closely related to the delay and the throughput of ISAP. These
measures provide insight on the interaction between the parameter L and the other pro-
tocol parameters: N, and S;. We restrict ourselves to the binary case () = 2. The same
technique can also be used for Q > 2. This work was published in [67]

7.5.1 Delay and Throughput Measures

As a reminder, let us summarize the following important protocol parameters:

e n : the length of the MAC addresses (in bits).
e [ : the maximum number of contention slots allowed in one frame.
e N, : the value that triggers the polling mechanism.

e S, : the starting level.
In this section we calculate the following expected values:

e E[F | X = k]: the expected length of a CC (expressed in frames) with &£ > 2
participants.

e E[S | X = k|: the expected number of contention slots that a CC with & > 2
participants requires.

The value E[F] is strongly related with the delay experienced by the protocol, whereas
E[S] is related with the throughput of the protocol. Also, notice that E[S | X = k| does
not depend upon the value of L. Moreover, in the special case of L = 1 both expected
values (E[F] and EI[S]) are identical. Therefore, it is sufficient to set up a scheme to
calculate E[F | X = k| for any value of L.

The first step of the calculation is identical to (E”) (see Section 7.3.2), where we calculate
the probabilities s(i, [1, ls, k) of having [; collision free virtual slots at level i and [y collision
free virtual slots at level i+ 1 provided that we had k contenders in the CC. See (A2”) in
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Section 7.3.1 for the definition of a wirtual slot. The remainder of the analysis is divided
into two parts: in the first part N, > 0 and S; = 0, while in the second case N, > (0 and
S, > 0.

Part 1: 0 < N, <2" and 5, =0

Define the random variable F' as the number of frames required to support a CC and the
random variable F; as the number of frames required to support level 7 of the tree, then

E[FX—k]—iE[F”X—k]. (7.79)

For £k > 2 and N, < 2", we have F; = 1 and F; = 1, resp. 2, if L > 2, resp. L = 1.
Therefore, we can focus on E[F; | X = k] with i > 2. We separate the following three
events Efl), Eéz) and E;gl):

. Efi): the CC is resolved within the first i — 2 levels (with or without polling) or
polling takes place at level 7 — 1.

. Eéi): the CC is resolved (without polling) at level i — 1 or polling takes place at
level 3.

. E:gi): the CC is not resolved within the first 7 — 1 levels and polling does not occur
at level 7.

Thus, E|F}] = P(EE[F; | EY] +P(ES)E[F, | EY] +P(EQ)E[F, | E{"]. Given that
the first event E](Z) occurs, the expected number of frames F; at level 7 equals zero. The
two other expressions are found as follows.

Define C; as the number of collisions at level i. Suppose that C; = N,, then the size
of the remaining address space is N,2" . Thus, at level i + 1 we have no polling when
N, > N,/2"". Also, having N, > N,/2""" is equivalent to having N, > | N, /2" | for N,
an integer value. Hence, polling does not occur at level ¢ + 1 if C; > 1+ | N,/2"¢|. We
denote 1+ |N,/2"*| as ¢;. Hence, we can rewrite the previously mentioned events as:
E1(i) = Cj_9 < ¢i_a, Eéi) =Ci9>¢.9NCiy <y and Ey(,i) =Ci 9> N0 > ¢y,
We already mentioned that E[F; | X = kN Efl)} is zero. Also,

PEY | X =k)E[F, | X =kn EY) =
- i—2 i1 2n i,
>N s(i—2,277 =127 — k) — | (7.80)

l1>c¢; 2 la<ciq

and finally
PEY | X =k)E[F, | X =kn EY)) =

. 4 2
> s(i—2,277 1,27 o k) [Tﬂ : (7.81)

l1>ci—ala>c;q
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where s(i, 1,12, k) was found in (E”) (see Section 7.3.2).

Part 2: 0 < N, <2" and S5; > 0

To avoid any confusion with the previous we define F;(S;) as the number of frames required
to support level ¢ knowing that the starting level is S;. Clearly, for x < S; and y > S, + 1

E[F,(S) | X =k = o, (7.82)
BlRa(s) | x =1 = ||, (783
E[F,(S) | X =k] = E[F,0)]|X =k, (7.84)

where E[F;(0) | X = k] was found in part 1. Thus, only the expected number of frames
to support level S; 4+ 1 remains to be determined. We separate three events:

e F,(S)): the CC is solved at level S;.
e F,(S)): polling occurs at level S; + 1.

e F3(S)): the CC is not solved at level S; nor does polling occur at level S; + 1.

Making use of the values ¢; defined in Part 1, we can rewrite these events as Cg, = 0,
Cs, > 0N Cg, < cg, and Cg, > cg,. Hence,

ElFs1(S) | X = k] =

S s(S—1.1,2% — 1y, k) 2"y + > s(S— L1, 2% — 1y k) 2y
b l s U1y 125 v I ¢ l y U1y 02y Iv I 3

I lg<()51 ZQZ(JSl

for S; > 0. The results for S; = 0 were obtained in Part 1 of the analysis.



Chapter 8

Results for the Identifier Splitting
Algorithm combined with Polling

This chapter investigates the influence of the different ISAP protocol parameters. Our
main objective is to obtain a well-founded understanding of the impact of the different
protocol parameters on the delay and throughput characteristics and to reveal possible
delay vs. throughput tradeoffs. Petras, et al[50 52] have calculated the first two moments
of the length of an ISA CC, with k£ contenders. From these values they estimated the
mean delay and throughput of ISA by assuming that a station generates a new arrival
during a CC with probability p. Thus, the number of arrivals occurring during a CC
obeys a binomial distribution and is independent of the length of a CC. This assumed
independence results in mean delay and throughput results that are (far) too optimistic.

This chapter is subdivided into five sections. Section 8.1 presents some numerical examples
for the binary ISAP scheme. In Section 8.2 we investigate the impact of the splitting factor
Q. Section 8.3 demonstrates the influence of the optional parameter M,, while Section 8.4
focusses on the parameter L. Finally, in Section 8.5, we summarize the main conclusions.

8.1 Results for the Binary ISAP Scheme

In this section we use the analytical model, presented in Section 7.2, to investigate the
impact of the arrival rate A, the trigger value /V, and the starting level S; on the mean
delay, the delay density function and the throughput for the binary ISAP scheme. The
system parameters are set as follows. The number of mobiles is 128; that is, n = 7. The
arrival rate A (requests per frame) varies between 0.05 and 3.5. The values studied for
the polling threshold N, are 0, 20 and 40, where the first case corresponds with the ISA
scheme. The starting level S; will vary from level 0 to 2. When studying a system with a
dynamic starting level, B; and B,, are set to 1 and 4 respectively. Therefore, the starting
level is decreased by one if the CC is solved in 1 frame and is increased by one if the
CC consist of 4 or more frames. The boundary values are set as follows: S,,;, = 0 and
Siaz = 2. The number of instances varies between 1 and 4.
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We study four different scenarios. First, we investigate the impact of the polling threshold
N,, when the starting level S; is fixed at 0. Next, the influence of the starting level S; is
discussed. Then, the impact of using a variable starting level is considered. Finally, we
look at the effect of using multiple instances of ISA. Additional numerical results can be
found in [72].

8.1.1 The Influence of the Polling Threshold on the System Per-
formance

Figures 8.1 and 8.2 show the influence switching to polling has on the mean delay and
the throughput. As expected we get a tradeoff between the delay and throughput char-
acteristics: the sooner the ISAP protocol switches to polling, the shorter the mean delay,
but the lower the throughput.

the influence of polling on ISA
T T

the influence of polling on ISA
T T

the average delay (in frames)
e
throughput

128 mobiles 128 mobile stations

. . . . . . L . .
0 05 1 15 2 25 3 35 o 05 1 15 2 25 3 35
the mean arrival rate A (per frametime) the mean arrival rate ) (per frametime)

Figure 8.1: The impact of polling on the  Figure 8.2: The impact of polling on the
mean delay throughput

From Figures 8.1 and 8.2 we observe that the protocol behaves very similar for different
N, values when the arrival rate A is small (below 0.25). A similar result is obtained for
large values of A (beyond 5). Both these results are intuitively clear. Polling is not an
issue in these cases: for A very small, collisions rarely occur and are solved before polling
can be considered; if A is very large, the remaining size of the address space is too large
to switch to polling.

Let us now consider moderate values for A\. Recall that for a polling threshold N, = 40,
resp. N, = 20, the protocol will never start polling until level 3, resp. level 4 (a single
collision at level 4 corresponds to a remaining address space of 277%). Thus, the impact of
N, on the performance measures is low for small values of A. If the arrival rate increases
(look at the range 0.5 till 1), the probability that collisions at level 2, resp. 3 are introduced
increases. In most cases these collisions contain very few participants; that is, occasionally
32, resp. 16, polling slots are provided at level 3, resp. 4, to poll very few competitors.
Therefore, the throughput decreases with increasing values of N,,. If X is increased even
more, beyond one, polling is postponed in most cases to a later level (as the expected
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number of collisions at level 2, resp. 3, becomes larger than 1) and will contain more
participants. This results in higher throughput values for a fixed value of N,,.

The Delay Density Function The inmpact of skipping levels on density function
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Figure 8.3: The impact of polling on the Figure 8.4: The impact of Skipping with
delay density function with A = 1 =1 and N, =20

Figure 8.3 shows the impact of polling on the delay density function (for A = 1). It illus-
trates that the main improvement of the delay is located within the tail of the distribution
and is not merely an improvement of the mean delay.

8.1.2 The Influence of Skipping Levels (STATIC) on the System
Performance

Figures 8.5 and 8.6 illustrate the impact of S; on the average delay and the throughput. In
these figures we have three different types of curves: full, dotted and dashed, corresponding
to S; = 0,1 and 2 respectively. Moreover, for each value of S; the results for N, = 0,20
and 40 are depicted. For a fixed value of S;, the upper curve, in both the delay and
throughput results, corresponds to N, = 0, the middle curve to N, = 20 and the lowest
to N, = 40.

Skipping the first levels leads to a decrease of the mean waiting time. Let us focus on the
impact of polling for variable values of S;. First, Figure 8.5 shows a larger decrease of the
delay due to polling, when the starting level is larger. This can be seen by observing the
area between the curves for N, = 0,20 and 40. Secondly, notice that the curves converge
slower for increasing values of S; (observe the differences for A = 3.5 in Figure 8.5). Figure
8.6 represents the throughput results for N, = 0, 20 and 40. We see that, for low values of
), skipping levels results in a lower throughput (as most of the 2° slots are wasted). If A
becomes larger, this loss is converted in a small gain due to the fact that the majority of
the slots before level S; contains collisions. The influence of skipping levels on the delay
density function is shown in Figure 8.4.
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8.1.3 The Influence of Skipping Levels (DYNAMIC) on the Sys-

tem

Performance

From the previous sections we may conclude that a higher starting level has a positive
impact on the delay and even on the throughput, especially for larger values of A\. Unfor-
tunately a high price is paid for this in terms of throughput if A is small. The aim of this
section is to show that the dynamic scheme as proposed in Section 6.4 solves this problem.
That is, if A is small the results should tend to the results for S; = S, while for A large
the behavior should be similar to the one corresponding to S; = S,,4:. Figures 8.7 and
8.8 show that this is the case (for N, = 20), meaning that a system where the levels are
skipped dynamically, is able to limit the maximum delay while keeping the throughput

high.
The influence of a dynamic starting level
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8.1.4 The influence of Multiple Instances of ISA on the System
Performance

The analysis presented in Section 7.2 can be applied in order to evaluate the influence of
multiple instances. In this final scenario A\ varies between () and 6. Figures 8.9 and 8.10
show the delay and throughput results for three configurations. In the first, we have one
instance and the starting level S; is fixed at 2. In the second, we have two instances, with
S, = 1. Finally, we have four instances, with S; = 0.

The influence of multiple instances of ISA The influence of multiple instances of ISA
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Figure 8.9: The influence of multiple in-  Figure 8.10: The influence of multiple in-
stances on the delay. stances on the throughput.

Clearly, the more instances we use, the better the average delay. Except for very small
and very large values of A\, were all scenarios perform alike. For more moderate values of
A, there exists a tradeoff between the delay and throughput; thus, the more instances we
use, the smaller the delay and the lower the throughput. Still, the decrease in throughput
is considerably smaller, compared to the throughput losses caused by the introduction of
N,, thereby making the use of multiple instances attractive.

8.2 Results for the ()-ary ISAP Scheme

In this section, we investigate the influence of the splitting factor ) and its interaction
with the arrival rate A, the trigger value N, and, to some extent, the starting level S;.
Moreover, we check whether the main conclusions for the binary ISAP scheme are still
valid for the QQ-ary scheme. The system parameters are set as follows. The splitting factor
Q@ equals 2,3 or 4, we refer to these three cases as the binary, ternary and quaternary
scheme. The number of digits n depends upon the value of ). In the binary case n equals
8, in the ternary case n equals 5 and finally in the quaternary case n equals 4. Thus, for
the binary and quaternary scheme we are able to support 256 MSs, in the ternary case we
can have at most 243 MSs. This small difference in the size of the address space should
hardly have any effect on the results because on average the number of participating MSs
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in a CC is always much smaller than Q)".

8.2.1 The Influence of the Splitting Factor and the Polling Thresh-
old on the System Performance

In Figures 8.11 and 8.12, the influence of ) on the mean delay and the delay density
function is shown for N, = 0 and N, = 20. First, a larger splitting factor () results in a
smaller delay (mean and quantiles). Also, the delay differs much more when we compare
the binary and ternary scheme as opposed to the ternary and quaternary scheme. In
general, a larger value for () results in a smaller delay. Also, the delay improvement we
get from increasing () by one decreases as () grows. Indeed, increasing () by one results
in 1/Q times as many slots to resolve a collision.

Mean Delay (frames)
o

I I I I I I I I I I I I
0 05 1 15 2 25 3 35 4 2 4 6 8 10 12 14 16 18
Mean arrival rate A (per frame) Number of Frames

Figure 8.11: The impact of Q and N, on  Figure 8.12: The impact of () and N, on
the mean delay the delay density function

Secondly, Figures 8.11 and 8.12 show that the influence of the polling threshold N, de-
creases as the splitting factor @) increases (mean and quantiles); thus, the polling feature
is the most attractive for the binary ISAP protocol. A general remark on N, is that dif-
ferent values of N, only result in a different behavior when there is at least one multiple
of ? in between.

Figures 8.13 and 8.14 demonstrate the influence of () on the throughput results for N, = 0
and N, = 20. For N, = 0 the highest throughput is obtained with the ternary scheme,
except for very low load conditions where the binary scheme is slightly superior. For
N, = 20 we have the best results for the ternary scheme, in this case the binary scheme
no longer dominates the quaternary scheme for A around 1. Taking both the delay and
throughput into account, we may conclude that it is better to use a ternary scheme as
opposed to a binary one. The choice between the ternary and the quaternary is a tradeoff
between the delay and throughput. It has to be mentioned that there do exist some
values for IV, for which the binary scheme has better throughput results than the ternary
scheme, e.g., for 27 = 3% < N, < 32 = 2°.
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8.2.2 The Interaction between the Splitting Factor and the Start-
ing Level

We only show results for S, = 0 and S; = 1, although the analytical model imposes
no restraints on the value of the starting level S; (expect that @' is bounded by L).
Figures 8.15 and 8.16 show the influence of the starting level S; and its interaction with
Q for N, = 0. First, the absolute delay improvement that we obtain for S; = 1 is
very similar in all three cases (binary, ternary and quaternary). In general, the absolute
delay improvement that we obtain from a higher starting level is, to a certain extent,
independent of the splitting factor Q).

Mean Delay (in frames)
@
Throughput

I I
0 0.5 1 15 2 25 3 35 4 0 0.5 1 15 2 2.5 3 35 4
Mean arrival rate A (per frame) Mean arrival rate A (per frame)

Figure 8.15: The impact of Sy and Q on  Figure 8.16: The impact of S; and () on
the mean delay the throughput results

As for the throughput, we always get a slight improvement when we increase the starting
level to one, except under low load conditions. Also, the throughput losses suffered under
low load conditions become more severe as () increases. Therefore, if we want to combine
a higher starting level (S; > 1) with a higher splitting factor ), we suggest that it is best
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to make the starting level S; dynamic between S,,;, and Sy,4., With Sy, = 0 or 1 (see
Section 6.4 for the details).

8.3 Results for the M-ISAP Scheme

In this section we study the impact of the optional M, parameter on the delay and
throughput, by making use of the analytical model presented in Section 7.4. We restrict
ourselves to the following scenario: () = 2, n = 8 and N, = 32. The optional M,
parameter is varied from 0 to 8. Notice, the behavior of M-ISAP and ISAP is identical
if M, <4 (in general: M, < n — [logg N,| + 1) and the behavior M-ISAP and ISA is
identical if M, = 8 (in general: M, = n).
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Figure 8.17: The impact of M, on the Figure 8.18: The impact of M, on the
delay throughput

Figures 8.17 and 8.18 demonstrate the usefulness of the M, parameter: increasing M, re-
duces the throughput losses caused by the polling feature, but increases the mean waiting
time. The interesting part about M, is that the throughput gains, for M, =5 and 6 (in
general: M, = f(N,)+1and f(N,)+2, where f(N,) = n— [logy N,|+1), are much more
significant than the delay losses. For instance, for A = 0.75 we get an 8% throughput gain
when increasing M, from 4 to 5, while the mean delay increment is practically zero.

8.4 The Influence of L on ISAP

In this section we investigate the influence of the L parameter, i.e., the maximum number
of contention slots allowed in one frame (see Section 6.1). The results presented were
obtained using the package Mathematica and are therefore exact. As indicated in Section
7.5, we restrict ourselves to the binary case, although the analytical model can easily
be generalized to capture splitting factors ¢ > 2. We consider MAC addresses with
n = 7 bits, although n = 8 — 10 bits might be somewhat more realistic. The number
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of participants (MSs) in the CC therefore varies from k& = 2 to 128 (sometimes we only
show the results for £ < 60 because no significant differences were observed for £ > 60).
The number of contention slots allowed in one frame equals L = 4s, with 4 < s < 16 or
L =128. The trigger value N, is also a multiple of 4 between 16 and 64.

Np=28

Expected length of the CC
[0}
T

Np=48, 52, 56, 60, 64

Il Il Il Il Il Il
5 10 15 20 25 30 35 40 45 50
Number of participants k in the CC

Figure 8.19: The interaction between L and N, with L = 48

8.4.1 Tuning the Trigger Value N,

In this section we focus on the interaction between the polling threshold NV, and the L
parameter. Figure 8.19 (L = 48) shows that the expected length of the CC (in frames)
decreases as N, increases for /N, < 48. Indeed as long as N, < L polling only lasts
one frame and therefore it always results in a delay improvement. More surprisingly, all
the curves are almost identical when N, = 48,52,56 and 60. To understand this let us
compare the cases N, = 48 and N, = 52. Both these cases behave identical except when,
at some level 7+ < 6, the size of the remaining address space Y is larger than 48, but
smaller than (or equal to) 52. In such a case we switch to polling if NV, = 52, namely, Y’
contention slots are included in the next two frames. Thus, the remaining length of the
CC is two frames. When NN, = 48 it is very likely that the remaining length of the CC
is also two frames. Indeed, the first frame to come contains level i 4+ 1 of the tree (only
one frame is required to support level i + 1 as L = 48 and 7 < 6) and the second frame
to come is most likely used to poll the remaining contenders after level i + 1 (as it is
highly probable that the size of the remaining address space will drop below 48). Finally,
increasing N, even more (N, = 64) results in a somewhat larger delay for small values of
k. Therefore, choosing N, > L might not be that useful.

Figure 8.20 shows the results for L = 16. It confirms that there is no use in choosing a
polling threshold N, > L when we look at the expected delay. Moreover, the difference
between two values of N, is only significant if there is a multiple of L in between.
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Figure 8.20: The interaction between L and N, with L = 16

In general, with respect to the expected delay of the scheme, we conclude that the optimal
choice for N, is L. There is one exception to this rule: setting N, = 2" with n small,
e.g., n < 8, might result in a better delay: especially if k£ becomes large—that is, if the
contention channel is highly loaded. For example, in a system with N, = 128 and L = 16
(as shown in Figure 8.20) the length of the CC would be fixed and equal to 8 frames. The
main disadvantage of choosing N, = 2" is the low throughput that is obtained, leaving
less slots available for contention free transmissions (see Section 6.1).
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Figure 8.21: E[S] for different values of N,

The throughput of a CC with & participants can be defined as k/E[S | X = k|. Figure
8.21 shows that the expected number of slots in a CC (given that we have k contenders)
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always increases when N, increases. Moreover, as N, approaches zero, E[S | X = k]
approaches (decreases to) a linear curve for k large. Combining Figures 8.19, 8.20 and
8.21 we may conclude that NV, should always be chosen smaller than or equal to L. The
closer we choose N, to L the better the mean delay but the worse the throughput becomes.

8.4.2 The Influence of the Parameter L

In this section we investigate the influence of the maximum number of contention slots L
allowed in one frame on the delay and throughput measures defined in Section 7.5. Figure
8.22 shows E|[F| for different values of L > N, = 16. A number of conclusions can be
drawn from this figure. Clearly, the less contention slots we allow in one frame the larger
the delay becomes. Moreover, the delay improvements that we get when we increase L
are the most significant if there is a power of 2 in between. In Section 8.4.1 we saw that
different choices for N, (> L) only resulted in a significant difference if there is a multiple
of L in between. Because N, = 16, a small power of two, it is tempting to believe that
the difference between two choices of L is the most significant if there is a multiple of
N, in between. Numerical experiments have shown that this is generally not the case.
Moreover, even if there is no power of two in between different choices of L, we still get
a relevant impact on the mean delay.
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Figure 8.22: E[F] for different values of L

Different values L, and Ly (both bigger than NN,) do result in identical results when the
number of contenders & is smaller than min(L;, L,); this follows from the fact that any
level that is part of a CC with k£ contenders never requires more than £ slots (in the
Q-ary case: kQ/2 slots). Thus, even if we do not take L into account we can still get
good approximate results for low and medium load situations, validating our approach
presented in Sections 7.2 to 7.4.

Although we already demonstated that there is little use in choosing N, > L, we also
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include Figure 8.23 for reasons of completeness. The main purpose of Figure 8.23 is to

demonstrate that different values L; and L, do not coincide for k& smaller than min(L;, L)
when N, > min(Ly, Ly).

8.4.3 Selecting the Starting Level 5

In this section we investigate the interaction between the starting level S; and the L
parameter. In Figure 8.24 the influence of the starting level S; on E[F] is shown (L = 16
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Figure 8.24: E[F] for different values of S
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and N, = 0). For S; < 4 the delay decreases for all values of & when increasing the
starting level S;. Moreover, the improvement that we get by increasing S; by one is close
to one frame. For S; > 4 we still have a delay improvement for large values of k£ (a more
significant one compared to S; < 4), but a price is paid for smaller values of k. Note that
for S; = 7 we obtain a pure polling scheme. In general, looking from the delay perspective,
we get the best results with S; = log, (L) if the contention channel has a low to medium
load. For high loads a larger value for S; might be considered.
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Figure 8.25: E[S] for different values of S

In Figure 8.25 the throughput results are shown for different values of S;. Notice that
these results are independent of L. It demonstrates that increasing S;, when the contention
channel carries a low or medium load, increases the number of slots a CC requires. On
the other hand if the load is high, better results are obtained for high values of S;.

8.4.4 Stability Issues

In this section we investigate the influence of the protocol parameter L and the trigger
value N, on the stability of the scheme under Poissonian input traffic. We define the drift
DIk] of the protocol as min(2", A\E[F' | X = k|) — k, where A is the expected number
of arrivals per frame. A positive D[k] implies that a CC with k& contenders is generally
followed by a CC with more contenders, a negative value indicates an expected decrease
in the number of contenders in the CC. Finally, when the number of contenders k is such
that D[k] = 0 the number of contenders is expected to remain the same, therefore we
refer to these points as stability points. The scheme is expected to operate around these
stability points for the majority of time.

Figure 8.26 shows the drift for A = 2,3.5,5,6.5,8 and 9.5, with L = 32 and N, = 16
or 32. With the exception of A = 9.5 all the curves have a unique stability point. The
curve with A = 9.5 was included on purpose to show that in some rare cases the unique
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Figure 8.26: Stability points for Poissonian input traffic

stability point might split into two hardly separated stability points (this is due to the
oscillations in the E[F] curves). Nevertheless, these split stability points are not expected
to endanger the general stability of the protocol. Comparing the results for N, = 16 and
N, = 32, we see that the stability point of the protocol remains the same for A > 5, as
opposed to A < 5 where we get a smaller stability point for N, = 32. Thus, the delay
improvement that we get by increasing N,(< L) is the most significant for systems with
low to medium loads.

In conclusion, it should be clear that the introduction of L does not affect the stability
of the protocol, though numerical experiments did show that the stability points might
shift somewhat to the right when we decrease L in systems with a high load.

8.5 Conclusions

In this section we summarize the main conclusions drawn from the numerical examples
presented in Sections 8.1 to 8.4. We discuss one parameter at a time starting with L,
followed by @, N,, M, and S;. Although we restricted ourselves to () = 2, when studying
the impact of L, we intuitively generalize these conclusions to the (Q-ary case.

The impact of L, the maximum number of contention slots allowed in a single frame, can
be summarized as follows:

e Obviously, incrementing L reduces the delay suffered by a request.

e An increment of L from [; to [y is the most significant if one or more powers of @)
are located within the interval |l1,[5]. Although, other increments are also useful.
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e Under low or medium load conditions the influence of L is minor when chosen large
enough.

As for the splitting factor (), we have:

e Increasing the splitting factor ) results in smaller delays (mean and quantiles).

e From the throughput perspective we obtain, for most scenarios, the best results for
the ternary scheme.

e A ternary scheme should be preferred above a binary one. The choice between the
ternary and the quaternary is a tradeoff between the delay and throughput.

The influence of the polling threshold, N,, can be summarized as follows:

e The polling threshold NV, should not be chosen larger than L, the maximum number
of contention slots allowed in one frame.

e When selecting an appropriate value for N, a tradeoff has to be made between the
delay and throughput characteristics where a better delay is obtained for larger
values of N, (< L).

e Switching to polling has a more significant impact for smaller splitting factors Q.
The delay improvements for () > 3 do not seem to pay off against the complexity
introduced by the polling mechanism. Therefore, one should not implement it for

Q > 3.

As for the optional M, parameter:

e The optional M, parameter, to be used in combination with N,, is useful to make
the delay vs. throughput tradeoff, when selecting N, more attractive.

A fixed or variable starting level S; has the following influence:

e If the load of the contention channel is low (or medium) the starting level S; should
not be chosen larger than log,(L). For S; < log,(L) we get a similar tradeoff as
with the polling threshold N,, i.e., the larger S; the better the delay and the worse
the throughput becomes.

e For highly loaded systems it might still be useful to select S; > logy (L) as this
might result in better delay and throughput characteristics.

e A higher starting level does however result in a serious throughput degradation if
the channel is poorly loaded. This throughput loss can be avoided by making the
starting level variable (see Section 6.4).

Finally, we also indicated that the ISAP protocol often has a single stability point and
should operate around this point for the majority of time. Further optimizations can be
made by implementing multiple instances of ISA.






Conclusion

This thesis focuses on the performance evaluation of a family of algorithms used to solve
the so-called multiple access problem that occurs in communication networks whenever
multiple sending and receiving nodes are all connected to the same, single, shared link.
Protocols, or algorithms, designed to solve this problem are known as multiple access pro-
tocols. Within this thesis we have analyzed the performance of a specific class of multiple
access protocols commonly known as tree algorithms and this both from a theoretical and
a more practical point of view. The thesis is subdivided into two parts.

The first analyzes the maximum stable throughput of tree algorithms, often referred to as
their efficiency, under a number of idealized conditions. These conditions are used as the
standard model of a multiple access link within the IEEE Information Theory Society [8];
hence, the multiple access problem is viewed from a theoretical perspective. The main
difference with all prior work is that we have significantly relaxed the assumptions made
on the arrival process an arrival process is a stochastic process that specifies how new
packets are generated by the users (senders) connected to the shared link. Instead of
Poisson arrivals we consider a rich class of tractable Markovian arrival processes, which
lend themselves very well to modeling bursty arrival processes arising in computer and
communication networks—namely, we consider discrete time batch Markovian arrival pro-
cesses (D-BMAPs). Tree algorithms can be further categorized into three subclasses: the
blocked access, free access and grouped access class. The methods used to analyze the
first subclass see Chapter 2 are fairly common and originated in the early 1980s [41].
To a certain extent the same can be said about the grouped access class (although some
complications do arise, see Chapter 5). The free access class is by far the most difficult
to analyze (given the current state of the art results) and requested a very different and
new approach, Chapters 3 and 4 are devoted to them. The key result is to view a tree
algorithm with free access as a tree structured quasi-birth-death (QBD) Markov chain,
the theory of which was developed during the late 1990s, and to study the stability of the
algorithm by means of the recurrence of the Markov chain. The main conclusion drawn
from the first part of the thesis is that the good stability characteristics of tree algorithms
under Poisson arrivals are maintained under this rich class of arrival processes, thereby
further extending the established theoretical foundation of tree algorithms. More detailed
conclusions and key results are found at the end of each chapter.

In the second part of the thesis, we study tree algorithms from a more practical per-
spective. Many access systems for instance, wireless broadband systems, hybrid fiber
coaxial (HFC) networks or passive optical networks (PONs)—have a point-to-multipoint



134 CONCLUSION

architecture. The single end point, referred to as the access point (AP), operates as a
centralized controller, that is, it decides which of the end nodes gets to transmit a packet
to the AP. To make this decision, end nodes need to declare their bandwidth require-
ments to the access point (AP). This information is then used by the AP to schedule all
uplink transmissions, that is, transmissions from an end node to the AP, according to the
traffic characteristics and the quality of service (QoS) agreed upon. A problem of central
importance is how the end nodes inform the AP about their bandwidth needs, a prob-
lem that has received considerable attention of the IEEE Communication Society. In the
second part of this thesis, we address this problem in the context of wireless broadband
access networks and we provide a detailed analysis of the Identifier Splitting Algorithm
combined with Polling (ISAP)  see Chapter 6. The Identifier Splitting Algorithm is a
tree algorithm that was introduced during the European RACE project 2067 on Mobile
Broadband Systems (MBS). We have enhanced this algorithm with a polling mechanism
and studied the influence of its parameters on the delay and throughput characteristics
by means of several analytical models. These models, presented in Chapter 7, combine
elementary probability theory, queueing theory, combinatorics and the theory of Markov
chains. A summary of the main conclusions drawn from the numerical results, presented
in Chapter 8, is given in Section 8.5.
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Deze thesis handelt over de performantie evaluatie van een verzameling algoritmen die
gebruikt worden om het zogenaamde “multiple access” probleem—dat optreedt in com-
municatie netwerken telkemale meerdere zendende en ontvangende gebruikers gebruik
maken van éénzelfde, gezamelijke communicatie link—op te lossen. Algoritmen, of pro-
tocols, die ontworpen zijn om aan dit probleem een antwoord te bieden, zijn gekend als
“multiple access” algoritmen. Binnen het kader van deze thesis wordt de performantie
van een welbepaalde klasse van multiple access algoritmen, genaamd t¢ree algoritmen,
geévalueerd. Deze evaluatie gebeurt zowel vanuit een theoretisch oogpunt, alsook vanuit
een meer praktische invalshoek. Vandaar dat de thesis ook is opgesplits in twee delen.

In het eerste deel wordt de maximale stabiele throughput, d.w.z., de maximale verwerk-
ingscapaciteit of efficiéntie, bestudeerd, en dit onder een aantal geidealizeerde condities.
Deze condities worden, door de IEEE Information Theory Society, veelal gehanteerd als
het standaard model voor multiple access communicatie links. Gegeven de ideologie die
deze organizatie hanteert, kunnen we stellen dat het probleem bekeken wordt vanuit
een meer theoretisch oogpunt. Het grote verschil met al het voorgaande werk bestaat
erin dat we de veronderstellingen gemaakt op het aankomstenproces—het aankomsten-
proces is een stochastisch proces dat aangeeft wanneer de gebruikers nieuwe pakketten
aanmaken sterk versoepeld hebben. In plaats van Poisson aankomsten te veronder-
stellen, beschouwen we een erg rijke klasse van aankomstenprocessen, die uiterst geschikt
is voor het modeleren van de meer onregelmatige aankomstpatronen die we terug vin-
den in moderne communicatie netwerken— namelijk, discrete tijds batch Markoviaanse
aankomstenprocessen (D-BMAPs).

De beschouwde algoritmen, d.w.z. de tree algoritmen, kunnen verder ingedeeld worden in
drie categorieén. De categorie waartoe een bepaald algoritme behoort, hangt af van de
strategie dat het hanteert om nieuwe aankomsten in het schema te betrekken. Zo zijn er
algoritmen met geblokkeerde, vrije en gegroepeerde toegang. De methode die gehanteerd
werd voor de evaluatie van de eerste categorie van algoritmen dat is, deze met geblok-
keerde toegang, zie Hoofdstuk 2 is vrij gebruikelijk en werd reeds in het begin van de
jaren tachtig ontwikkeld [41]. Tot op zeker hoogte kan hetzelfde gezegd worden omtrent de
algoritmen met gegroepeerde access, zij het dat er toch een aantal complicaties optreden,
zie Hoofdstuk 5. De categorie met de vrije toegang is veruit de moeilijkste om te evalueren,
gegeven de huidige stand van zaken, vandaar dat deze ook vroeg om een geheel nieuwe
benadering. Hoofdstuk 3 en 4 zijn hieraan gewijd. Het belangrijkste resultaat bestaat
erin om deze algoritmen te zien als een boomgestructureerde QBD (“Quasi-Birth-Death”)
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Markov keten, een theorie die zelf pas op het einde van de jaren negentig ontwikkeld is.
De hoofdconclusie van het eerste deel van de thesis is dat de goede stabiliteitskenmerken,
in het geval van Poisson aankomsten, bewaard blijven wanneer we D-BMAP aankomsten
beschouwen. Dit resultaat draagt dus erg bij tot de verdere theoretische onderbouw van
tree algoritmen als oplossing voor het multiple access probleem. De overige conclusies
worden samengevat op het einde van elk hoofdstuk.

In het tweede deel van de thesis worden de tree algoritmen vanuit een meer praktis-
che invalshoek bekeken. Vele access netwerken—bijvoorbeeld, draadloze netwerken, HFC
(“Hybrid Fiber Coaxial”) netwerken en PON (“Passive Optical Networks”) netwerken
hebben een gecentralizeerde architectuur. Concreet betekent dit dat al het verkeer van of
naar het netwerk loopt via een enkel knooppunt, dat we het access punt (AP) noemen.
Het AP bepaalt ook, en dit op elk ogenblik, welke eindgebruiker informatie mag versturen
naar het AP (en dus naar het netwerk toe). Om deze beslissing te kunnen nemen, moet
elk van de eindgebruikers zijn huidige behoefte aan bandbreedte kenbaar maken aan het
AP. Het AP zal dan een beslissing maken op basis van de verkregen informatie en dit in
overeenkomst met het contract dat bestaat tussen de eindgebruiker en de service provider
(die eigenaar is van de netwerk infrastructuur). Een belangrijke vraag hierbij is: Hoe kan
een eindgebruiker zijn huidige behoefte aan bandbreedte kenbaar maken aan het AP ? Dit
probleem heeft al heel wat aandacht gekregen van de IEEE Communication Society. In
het tweede deel van deze thesis bekijken we dit probleem in het licht van draadloze breed-
band access netwerken en maken we een uitgebreidde analyse van het Identifier Splitting
Algoritme in combinatie met Polling (ISAP)—zie Hoofdstuk 6.

Het Identifier Splitting Algoritme is een tree algoritme dat voor het eerste geintroduceerd
werd tijdens het Europeese RACE 2067 project dat handelt over mobiele breedband syste-
men (MBS). In het kader van deze thesis hebben we dit algoritme verrijkt met een polling
mechanisme en hebben we vervolgens, op basis van een aantal analytische modellen, de
invloed op de performantie—dat is, de wachttijd en de efficiéntie—van de verschillende
parameters van het algoritme bestudeerd. Deze analytische modellen worden voorgesteld
in Hoofdstuk 7 en maken gebruik van elementaire kanstheorie, queueing theorie, combina-
toriek en Markov ketens. Een samenvatting van de belangrijkste conclusies wordt gegeven
op het einde van Hoofdstuk 8.
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