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Introdu
tion
This thesis fo
uses on the performan
e evaluation of a family of algorithms used to solvethe so-
alled multiple a

ess problem present in nearly all 
ommuni
ation and 
omputernetworks. In order to de�ne the multiple a

ess problem 
onsider two nodes part of a
ommuni
ation network. Su
h two nodes are 
onne
ted with ea
h other by a su

ession of
ommuni
ations links, the physi
al media of whi
h 
an be 
oaxial 
able, 
opper wire, �beropti
s and radio spe
trum. Broadly speaking, two types of 
ommuni
ation network linksexist. A point-to-point link 
onsist of a single sender on one end of the link, and a singlere
eiver at the other end of the link. The se
ond type of link, a shared link, 
an havemultiple sending and re
eiving nodes all 
onne
ted to the same, single, shared link, e.g.,wired and wireless lo
al area networks (LANs), 
ellular a

ess networks (GSM,GPRS),passive opti
al networks (PONs) and hybrid �ber 
oaxial networks (HFCs). Whenevera network solely 
onsists of point-to-point links, there is no multiple a

ess problem.However, if one or more shared links are present, a problem of 
entral importan
e is howto 
oordinate the a

ess of multiple sending and re
eiving nodes to a shared link. Thisproblem is known as the multiple a

ess problem. Proto
ols, or algorithms, designed tosolve this problem are known as multiple a

ess proto
ols.An important sub
lass of multiple a

ess proto
ols are so-
alled random a

ess proto
ols(a de�nition is given in Chapter 1). The most 
ommonly used random a

ess proto
olsare the ALOHA proto
ols and the 
arrier sense multiple a

ess (CSMA) proto
ols, e.g.,Ethernet. Within this thesis we analyze the performan
e of another family of randoma

ess algorithms 
ommonly known as tree algorithms and this both from a theoreti
aland a more pra
ti
al point of view. Tree algorithms were developed during the late 1970sand sin
e then a large body of literature has been devoted to them, espe
ially during the1980s. During the last �ve years they experien
ed yet another boost in attention with thedevelopment of hybrid �ber 
oaxial (HFC) and wireless (broadband) a

ess networks.Before we pro
eed with providing an overview of the 
ontents of this thesis, it is useful totake a step ba
k and �rst elaborate a bit about tree algorithms and their relation to themost important of all 
omputer networks: the publi
 Internet. We already indi
ated in theprevious paragraph that tree algorithms re
eived a lot of attention with the development ofbroadband a

ess networks. A

ess networks are generally 
ategorized into residential and
ompany a

ess networks. Nowadays, 
ompany a

ess networks are 
ompletely dominatedby Ethernet LANs. Until a few years ago, residential users were 
onne
ted to the publi
Internet by means of a dialup modem over a POTS (plain old telephone system) or bymeans of an ISDN \telephone" line, whi
h 
an be though of as a \better modem" [33℄



ii INTRODUCTIONthat supports rates up to 128 Kbps 
ompared to the 56 Kbps dialup modems.Two new te
hnologies, asymmetri
 digital subs
riber line (ADSL) and hybrid �ber 
oax-ial 
able (HFC) have been deployed during the last few years. ADSL runs over existingtwisted-pair telephone lines and supports data rates between 2 and 8 Mbps from the Inter-net servi
e provider (ISP) to a home. In the reverse dire
tion the data rate is mu
h smaller(between 16 and 640 Kbps). From the MAC perspe
tive it is important to note that theuplink bandwidth, that is, from a home to the ISP, is not shared among di�erent homes.HFC a

ess networks di�erentiate themselves from ADSL, ISDN and dialup modems be-
ause they are an extension of the 
urrent 
able networks used for broad
asting 
abletelevision. HFC a

ess rates are 
omparable to ADSL, e.g., Motorola's CableCOMM sys-tem o�ers speeds downstream of up to 30 Mbps of whi
h up to 10 Mbps is available to anindividual modem and it runs smoothly upstream at a rate of up to 768 Kbps. However,with HFC, the upstream rates are shared among the homes. Therefore, a multiple a

essproto
ol is required. Due to the limited upstream bandwidth, upstream transmissions arereservation based, that is, a user has to reserve a part of the uplink bandwidth wheneverit wants to transmit data. A me
hanism, referred to as the a

ess me
hanism, that allowsa user to reserve this bandwidth 
an be rather 
ompli
ated [21, 35, 36℄. However, a 
entralfeature of the a

ess me
hanism is a random a

ess 
hannel.Formed in May 1994 by several vendors, the IEEE 802.14 Working Group (WG) devel-ops international standards for data 
ommuni
ations over 
ables, that is, HFC networks.Important for our dis
ussion is that, after signi�
ant deliberations, the group sele
ted atree based algorithm for the random a

ess 
hannel [20, 21℄. However, due to the delayedprogress of the IEEE 802.14 WG, four major 
able operators, Com
ast Cable Commu-ni
ations, Cox Communi
ations, Tele-Communi
ations In
., and Time Warner Cable,established the Multimedia Cable Network System (MCNS) Partners Ltd. in De
ember1995 to 
reate the DOCSIS standard. The di�eren
es between the DOCSIS standard andthe 802.14 draft were driven by organizational priorities. MCNS was aiming at keeping
osts and market development to a minimum while IEEE was looking for a future-proofstandard. The two standards di�er the most in the medium a

ess 
ontrol (MAC) layer.Moreover, the DOCSIS standard repla
ed the tree algorithm by a simple binary exponen-tial ba
ko� (BEB) algorithm1. Extensive simulation studies, 
ondu
ted by the NationalInstitute of Standards and Te
hnology (NIST), have indi
ated that the tree algorithmproposed by the IEEE 802.14 signi�
antly outperforms the BEB algorithm in terms ofdelay and 
ell delay variation [20, 21℄. Given these results the MCNS nevertheless se-le
ted the BEB algorithm for its simpli
ity. Knowing that \time is money" for the MCNSPartners, this 
ame as no surprise.DOCSIS v1.0 was approved as a standard by the ITU on Mar
h 19, 1998, and 
urrentlydominates the market. In addition, DOCSIS v1.1, whose major feature is supportingQoS servi
e, was released on July 31, 1999. In 
ontrast, the IEEE 802.14 Working Groupwas disbanded in Mar
h 2000, and IEEE 802.14a will remain as a draft afterward. The1The BEB algorithm has been very su

essful in Ethernet LANs, however, the eÆ
ien
y of EthernetLANs is mainly guaranteed by the 
arrier sense and 
ollision dete
tion (CSMA/CD) me
hanism 
ombinedwith the limitations put on the length of a LAN segment. In HFC networks home users 
annot sense nordete
t 
ollisions on the 
hannel.



iiigroup has 
areful intentions and its spe
i�
ation is undoubtedly better than that devel-oped by MCNS from a te
hnologi
al perspe
tive [36℄. Considering the European 
ableenvironment, the European Cable Communi
ation Asso
iation (ECCA) started to 
reatethe EuroModem spe
i�
ation in De
ember 1998. The EuroModem v1.0 was approved bythe European Tele
ommuni
ations Standard Institute (ETSI) on May 12, 1999. The 
on-tention resolution algorithm used in the EuroModem spe
i�
ation is the BEB algorithm.Having dis
ussed the relevan
e of tree algorithms in nowadays 
ommuni
ation networks,we pro
eed with an overview of the 
ontents of this thesis. The thesis is subdivided intotwo parts. The �rst analyzes the maximum stable throughput of tree algorithms, oftenreferred to as their eÆ
ien
y, under a number of idealized 
onditions. These 
onditions areused as the standard model of a multiple a

ess link within the IEEE Information TheorySo
iety [8℄; hen
e, the multiple a

ess problem is viewed from a theoreti
al perspe
tive.A large body of papers has been written on this topi
. Chapter 1 provides an overview ofthe most signi�
ant results and also in
ludes a short dis
ussion on other random a

essproto
ols not belonging to the 
lass of tree algorithms. The main di�eren
e with all priorwork is that we have signi�
antly relaxed the assumptions made on the arrival pro
ess|an arrival pro
ess is a sto
hasti
 pro
ess that spe
i�es how new pa
kets are generated bythe users (senders) 
onne
ted to the shared link. Instead of Poisson arrivals we 
onsidera ri
h 
lass of tra
table Markovian arrival pro
esses, whi
h lend themselves very wellto modeling bursty arrival pro
esses arising in 
omputer and 
ommuni
ation networks|namely, we 
onsider dis
rete time bat
h Markovian arrival pro
esses (D-BMAPs). Treealgorithms 
an be further 
ategorized into three sub
lasses: the blo
ked a

ess, free a

essand grouped a

ess 
lass. The methods used to analyze the �rst sub
lass|see Chapter2|are fairly 
ommon and originated in the early 1980s [41℄. To a 
ertain extent the same
an be said about the grouped a

ess 
lass (although some 
ompli
ations do arise, seeChapter 5). The free a

ess 
lass is by far the most diÆ
ult to analyze (given the 
urrentstate of the art results) and requested a very di�erent and new approa
h, Chapters 3and 4 are devoted to them. The key result is to view a tree algorithm with free a

essas a tree stru
tured quasi-birth-death (QBD) Markov 
hain, the theory of whi
h wasdeveloped during the late 1990s, and to study the stability of the algorithm by means ofthe re
urren
e of the Markov 
hain. The main 
on
lusion drawn from the �rst part of thethesis is that the good stability 
hara
teristi
s of tree algorithms under Poisson arrivalsare maintained under this ri
h 
lass of arrival pro
esses, thereby further extending theestablished theoreti
al foundation of tree algorithms. More detailed 
on
lusions and keyresults are found at the end of ea
h 
hapter.In the se
ond part of the thesis, we study tree algorithms from a more pra
ti
al per-spe
tive. Many a

ess systems|for instan
e, wireless broadband systems, hybrid �ber
oaxial (HFC) networks or passive opti
al networks (PONs)|have a point-to-multipointar
hite
ture. The single end point, referred to as the a

ess point (AP), operates as a
entralized 
ontroller, that is, it de
ides whi
h of the end nodes gets to transmit a pa
ketto the AP. To make this de
ision, end nodes need to de
lare their bandwidth requirementsto the a

ess point (AP). This information is then used by the AP to s
hedule all uplinktransmissions, that is, transmissions from an end node to the AP, a

ording to the traÆ

hara
teristi
s and the quality of servi
e (QoS) agreed upon. A problem of 
entral impor-tan
e is how the end nodes inform the AP about their bandwidth needs, a problem that



iv INTRODUCTIONhas re
eived 
onsiderable attention of the IEEE Communi
ation So
iety. In the se
ondpart of this thesis, we address this problem in the 
ontext of wireless broadband a

essnetworks and we provide a detailed analysis of the Identi�er Splitting Algorithm 
ombinedwith Polling (ISAP). The Identi�er Splitting Algorithm is a tree algorithm that was intro-du
ed during the European RACE proje
t 2067 on Mobile Broadband Systems (MBS).We have enhan
ed this algorithm with a polling me
hanism and studied the in
uen
e ofits parameters on the delay and throughput 
hara
teristi
s by means of several analyti
almodels. These models 
ombine elementary probability theory, queueing theory, 
ombi-natori
s and the theory of Markov 
hains. The ISAP s
heme is introdu
ed in Chapter 6.Several analyti
al models that allow its evaluation are presented in Chapter 7, whereas inChapter 8 we dis
uss the in
uen
e of the di�erent proto
ol parameters by means of theanalyti
al models presented in Chapter 7.Before we pro
eed, there are a few people I would like to thank. First of all, I thank mypromotor Chris Blondia for giving me the oppertunity to write a PhD (and to \a
t" likean assistant at the UIA for the past few years) and for introdu
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al methods. David V�azquez Cortizofor the useful dis
ussions we had during his stay at the University of Antwerp. Moreover,I would like to express my gratitude to a number of international resear
hers for providingme with the ne
essary study material, espe
ially P. Flajolet, J.M. Massey, M. Sidi, Q. Heand M. Neuts. I also like to thank most of my 
olleagues at the University of Antwerpfor the ni
e working atmosphere (in alphabeti
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Chapter 1An Introdu
tion to Random A

essAlgorithms
In this 
hapter we present a general introdu
tion to random a

ess algorithms. It is notour intention to provide a 
omplete overview of all existing random a

ess algorithms,nor to present them in a 
hronologi
al order. Extensive overviews of random a

essalgorithms 
an be found in [3, 63℄. The emphasis of this introdu
tion is on a family ofrandom a

ess algorithms 
ommonly known as tree or splitting algorithms and on theirstability 
hara
teristi
s. Before introdu
ing the 
on
ept of a tree algorithm, we dis
ussthe �rst, and one of the most popular, of all random a

ess algorithms: the notoriousALOHA proto
ol. Some attention is also paid to a
knowledgement-based, ba
ko� andage-based algorithms. The 
hapter starts with a simple des
ription of what a mediuma

ess 
ontrol (MAC) proto
ol, or more spe
i�
 a random a

ess algorithm, is supposedto do.1.1 Medium A

ess Control (MAC)Broadly speaking, two types of network 
ommuni
ation links exist. A point-to-point link
onsist of a single sender on one end of the link, and a single re
eiver at the other end ofthe link. The se
ond type of link, a shared link, 
an have multiple sending and re
eivingnodes all 
onne
ted to the same single, shared link. A shared link is often referred to as ashared medium. In the �rst s
enario|that of the point-to-point link|there is no mediuma

ess 
ontrol (MAC) layer present in the 
orresponding proto
ol sta
k. In the se
onds
enario|that of the shared medium|multiple nodes might transmit simultaneously onthe same link. A problem of 
entral importan
e, to the data link layer, is how to 
oordinatethe a

ess of multiple sending and re
eiving nodes to a shared 
hannel|the so-
alledmultiple a

ess problem. It is the task of the medium a

ess 
ontrol layer to regulate alltransmissions on the shared link; i.e., to solve the multiple a

ess problem. The MediumA

ess Control (MAC) sublayer is part of the data link layer in the ISO-OSI model [33, 63℄.Sin
e the early 1970s many MAC proto
ols have aroused. Most of them 
an be 
atego-



4 CHAPTER 1. RANDOM ACCESS ALGORITHMS: INTRODUCTIONrized as either being 
ontention proto
ols or 
ontention free proto
ols. Consider a sharedlink with a rate of R bits per se
ond. In a 
ontention proto
ol, or random a

ess proto
ol,nodes always transmit at the full rate R of the link and are allowed to transmit simulta-neously, although simultaneous transmissions seldom lead to a su

essful re
eption (the
apture e�e
t of a wireless 
hannel is one of the few ex
eptions [49℄). These simultane-ous transmissions are referred to as 
ollisions. Contention free proto
ols avoid 
ollisions.There are two main proto
ol 
lasses that avoid 
ollision [33℄. The �rst partitions the 
han-nel among all nodes sharing the link, e.g., time-division multiplexing (TDM), frequen
y-division multiplexing (FDM) or 
ode-division multiplexing (CDM). The se
ond 
lass isknown as the taking-turns proto
ols and allows nodes to use the 
hannel during its turn,e.g., polling proto
ols and token-passing proto
ols. The main disadvantage of many 
on-tention free proto
ols is the low utilization of the network link. Both 
ategories haveproven their worth in a myriad of multiple a

ess appli
ations. More details are providedin the next few se
tions. In the remainder of this 
hapter an X 
hannel refers to a 
hannelupon whi
h the MAC proto
ol X is being used (in literature the term ALOHA 
hannelis sometimes also used for a 
hannel that has 
ertain 
hara
teristi
s).Mu
h attention has been paid to the stability of random a

ess algorithms. A randoma

ess s
heme is said to be stable if the mean time until a pa
ket is transmitted su

essfullyis �nite. Underlying all the work done in this area are the following key assumptions [63℄:� New arrivals o

ur a

ording to a Poisson pro
ess with rate �.� The number of nodes or stations is assumed to be in�nite. In pra
ti
e, the numberof nodes is always �nite. Assuming an in�nite number provides us with an upperbound to the delay [3℄. In parti
ular, ea
h �nite set of nodes 
an regard itself asan in�nite set of virtual stations, one for ea
h arriving pa
ket. This situation isequivalent to the in�nite node assumption and allows a station with ba
kloggedpa
kets to 
ompete with itself.� A single error free 
ontention 
hannel provides immediate binary (
ollision or not)or ternary (
ollision, su

ess or empty) feedba
k.A lot 
an be|and has been|said about these assumptions and they are far from beingthe most realisti
 ones, but at least they provide us with a 
ommon framework in whi
hwe 
an make a fair 
omparison among di�erent random a

ess algorithms. When wedis
uss the stability of an algorithm under Poisson input traÆ
 we a
tually refer to this
ommon framework.1.2 The ALOHA Proto
olsThis se
tion is based on [3, 16, 41, 42, 63℄. During the early days of 
ommuni
ation net-works (i.e., the old telephone networks) nodes were always 
onne
ted using point-to-point
onne
tions. It was not until 1968, around the same period of time the �rst nodes of theARPANET [32℄ were 
onne
ted, that the �rst random a

ess proto
ol, known as pure



1.2. THE ALOHA PROTOCOLS 5ALOHA [1℄, 
ame into existen
e. At the University of Hawaii resear
hes were planningto inter
onne
t a number of data terminals (stations), lo
ated on di�erent isles, with the
entral 
omputer by means of radio 
ommuni
ation. The radio 
hannel was to be sharedamong all stations. They proposed the following s
heme to regulate all transmissions onthe shared radio 
hannel.A station simply transmits whenever it has data to send. As stations send their framesat arbitrary times, there will be 
ollisions. Frames involved in a 
ollision are 
onsideredas destroyed and need to be retransmitted. The overlap between the 
olliding frames isirrelevant, namely, in all 
ases the 
he
ksum will fail and indi
ate that a retransmission isrequired. In order to redu
e the number of 
ollisions, stations retransmit a frame after arandom delay between 0 and a prede�ned parameter Æ. Stations that need to retransmittheir frame are referred to as ba
klogged stations.Assuming �xed length frames, pure ALOHA has a vulnerable period of 2 frames. Abram-son indi
ated that the maximum throughput of a pure ALOHA 
hannel (under PoissontraÆ
) is 1=2e, i.e., about 18%, under what is 
alled the equilibrium hypothesis. Thishypothesis a
tually expresses the hope that the ALOHA 
hannel is stable, i.e., that themean waiting time of a pa
ket is �nite or in other words that the queue of frames awaitingretransmission is not growing steadily. As it turns out, ALOHA's simpli
ity 
auses it tobe unstable for every arrival rate � > 0 under Poisson input.Roberts modi�ed the ALOHA system by introdu
ing the notion of \time slotting", thismodi�ed version is known as slotted ALOHA. Assuming �xed length frames, we 
hoosethis length as the unit of time. Stations are only allowed to start transmitting at amultiple of the time unit, thereby redu
ing the vulnerable period to a single frame andaugmenting the maximum a
hievable throughput to 1=e, i.e., about 36%, under the equi-librium hypothesis. Again, slotted ALOHA turned out to be unstable for all arrival rates� > 0. There is also a geometri
 variant of Slotted ALOHA, where ba
klogged stationsretransmit in ea
h time slot with a probability p (p = 1=Æ). A simple proof that thegeometri
 variant of the slotted ALOHA system is unstable for all arrival rates � > 0 isgiven below.In a slotted ALOHA system ba
klogged stations retransmit their frame in ea
h slot with aprobability p. Let ai be the probability that i new arrivals o

ur in a slot. The number ofnew arrivals o

urring in slot i and slot i+1 are independent and identi
ally distributed.N(t), the number of ba
klogged stations during time slot t, is therefore a Markov 
hainon the state spa
e fn j n � 0g with the following transition probabilities Pk;lPk;k�1 = a0kp(1� p)k�1;Pk;k = a0(1� kp(1� p)k�1) + a1(1� p)k;Pk;k+1 = a1(1� (1� p)k);Pk;k+j = aj (j � 2):For 0 < p < 1 and a0 + a1 < 1, N(t) is an aperiodi
 irredu
ible Markov 
hain and slottedALOHA is stable if and only if this Markov 
hain is ergodi
. Obviously, for k large enough,Pk;k�1 < 1�a0�a1 =Pj�2 Pk;k+j be
ause Pk;k�1 de
reases to zero. Moreover, Pk;k�i = 0



6 CHAPTER 1. RANDOM ACCESS ALGORITHMS: INTRODUCTIONfor i > 1. Therefore, the Markov 
hain N(t) does not have a stationary distribution asa result of the Instability Lemma by Kaplan [3, p265℄. This is suÆ
ient to prove slottedALOHA's instability for every arrival pro
ess with a0 + a1 < 1, in parti
ular for thePoisson arrival pro
ess with a mean � > 0 (ai = �i=i! e��).Kelly further improved this result by showing that the number of su

essful transmissionson an AHOLA 
hannel is �nite with probability 1. In 
on
lusion, eventually an ALOHA
hannel be
omes jammed with 
ollisions. The time that elapses before this o

urs 
anhowever be very large. For instan
e, Greenberg and Weiss have shown that for p = 0:01and � = 0:1 it takes about e346 time slots before the 
hannel is \jammed" with 
ollisions.Numerous proposals have been made to stabilize ALOHA, ea
h one proposing a di�erentmethod on how to estimate the number of ba
klogged stations. None of them su

eed inkeeping the virtue of the original ALOHA s
hemes: their simpli
ity.ALOHA systems are nevertheless often implemented in pra
ti
e, although most of themappear in fa
t to be unstable. In order to 
ope with the instability, they implement somekind of \time out" feature that 
lears the system if totally jammed with 
ollisions. Thissolution works �ne when the traÆ
 intensity|that is, the rate of the new arrivals|andthe retransmission probability p is low.1.3 A
knowledgement-based, Ba
ko� and Age-basedAlgorithmsAnother important random a

ess s
heme, known as Ethernet, was introdu
ed in 1979by Met
alfe (Harvard) [45℄. Stations making use of an Ethernet 
hannel postpone thei-th retransmission attempt for a random time between 0 and 2i time units, as opposedto 0 and Æ on an ALOHA 
hannel. Ten years after the introdu
tion of Ethernet, Aldous(Berkeley) [2℄ proved that Ethernet was unstable for all arrival rates � > 0 under Poissonarrivals. The instability of Ethernet is not as severe as that of ALOHA. For instan
e,Kelly and Ma
Phee [30℄ have shown that the number of su

essful transmissions is �nite,resp. in�nite, with probability 1 if � > ln 2 = :69, resp. � < ln 2 = :69, for the slotted ver-sion of Ethernet. Whereas the number of su

essful transmissions on an ALOHA 
hannelis �nite with probability 1 for all � > 0. In pra
ti
e, Ethernet frames are dropped if thenumber of retransmission attempts rea
hes a prede�ned threshold. ALOHA and Ether-net both belong to a 
lass of algorithms known as a
knowledgement-based algorithms1.In an a
knowledgement-based algorithm, users make retransmission de
isions using onlythe history of their own transmission attempts|that is, users only re
eive feedba
k fromthe 
hannel indi
ating whether their own transmission attempts are su

essful or not.Other algorithms that listen to the feedba
k of every slot are referred to as full-sensingalgorithms (examples are the tree algorithms presented in the next se
tion). Re
ently,Goldberg et al [19℄ have shown that all a
knowledgement-based algorithms are unstable1Notes on 
ontention resolution written by L.A. Goldberg from the Warwi
k University were veryuseful in writing the remainder of this se
tion. The notes are unpublished and a 
opy 
an be found ather webpage: http://www.d
s.warwi
k.a
.uk/�leslie.



1.4. TREE ALGORITHMS 7for � > :530045 under Poisson input. Moreover, not even one a
knowledgement-basedalgorithm is known so far to be provably stable for any arrival rate � > 0 under PoissontraÆ
.An important sub
lass of the a
knowledment-based algorithms are the ba
ko� algorithms.A ba
ko� algorithm is asso
iated with a sequen
e of probabilities pi, i � 0. In a given timeslot of the 
orresponding algorithm, every station that has a pa
ket ready for transmis-sion and that has been unsu

essful in transmitting this pa
ket on i o

asions transmits(independently) with probability pi. Obviously, slotted ALOHA and Ethernet are ba
k-o� algorithms with pi = p and pi = 2�i respe
tively. It has been shown that ba
ko�algorithms are always unstable under Poisson traÆ
 for � � :42 [19℄. Tree algorithmsare therefore superior to ba
ko� algorithms|from the stability point of view|be
ausethere are many tree algorithms known that support higher input rates (up to :48776, seeSe
tion 1.4). In 1989 Ma
Phee posed the question whether there exists a ba
ko� algo-rithm that is stable for any � > 0. The answer to this question is still unknown. Kelly,et al [30℄ have shown that all ba
ko� algorithms with slower than exponential ba
ko�result in a �nite number of su

essful transmissions with probability 1. For instan
e,setting pi = (i + 1)�k; k � 1; results in a �nite number of su

essful transmissions (withprobability 1).Another interesting sub
lass are the age-based algorithms. An age-based algorithm isasso
iated with a sequen
e of probabilities pi; i � 0: In a given time slot of the 
orre-sponding algorithm, every station (re)transmits (independently) with probability pi if thepa
ket was generated i time slots ago. Kelly and Ma
Phee have shown that the numberof su

essful transmissions is �nite if and only if Pti=1 pi, i.e., the expe
ted number oftransmissions that a pa
ket endures in the �rst t slots after being generated, is 
(log(t))2(2 this is a footnote mark). Ingenoso has shown that age-based algorithms are unstable ifpi; i � 0; is monotoni
ally de
reasing. For instan
e, setting pi = a=i results in an in�nitenumber of su

esses be
ause Pti=1 1=i = log t + O(1), but the algorithm is neverthelessunstable.1.4 Tree AlgorithmsThe breakthrough in sear
hing for a random a

ess s
heme that was provably stable wasmade by Capetanakis [7℄ in 1977 and independently by Tsybakov and Mikhailov [64℄ andto some extent by Hayes [3℄. The basi
 idea behind this s
heme was already used byDorfman during the Se
ond World War for testing soldiers for syphilis [12, 63℄ and is analgorithm for what is known as the group testing problem. The group testing problemstudies algorithms to �nd d defe
ts in a population of size N as fast as possible. A singletest on a group of n indi
ates whether there is at least one defe
t in the group of sizen. For instan
e, the syphilis soldiers are the defe
ts among all soldiers. Dorfman usedthe following method: take a blood sample from N soldiers and mix a portion of ea
hsample into a single sample. Next, test this sample for syphilis. If negative, all soldiers are2A fun
tion f(t) = 
(g(t)) if 8
 > 0 9N : f(t) � 
g(t) for t � N .
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leared. Otherwise 
reate two samples: one by mixing a portion of the �rst N/2 soldierstogether, the se
ond using the portions of the last N/2 soldiers. This algorithm is appliedre
ursively until the identity of all the syphilis soldiers is known. Whether this algorithmminimizes the number of tests required, for d > 1, is still an open issue. For d = 1 it isproven to be the fastest possible.When translated to a 
omputer network this algorithm goes as follows: whenever a groupof n stations 
ollides, they split into 2 groups. Ea
h station draws a pseudo randomnumber to de
ide whether it joins the �rst or the se
ond group. Stations joining the �rstgroup retransmit in the next slot and resolve a possible 
ollision re
ursively, while theother stations wait until the �rst group is resolved before applying the same algorithm.A station joins the �rst, resp. the se
ond, group with probability p1, resp. p2 = 1 � p1.Whenever a station sele
ts a group it is said to 
ip a 
oin. For p1 = 1=2 the 
oin is saidto be fair, otherwise it is referred to as biased. The 
ollision resolution algorithm (CRA)des
ribed above is known as the basi
 binary Capetanakis-Tsybakov-Mikhailov (CTM)or tree algorithm. It 
an be 
ombined with di�erent 
hannel a

ess proto
ols (CAPs). A
hannel a

ess proto
ol indi
ates when a newly arrived pa
ket is allowed to transmit forthe �rst time.For now we dis
uss the following two CAPs:� Blo
ked A

ess: After an initial 
ollision of n stations, all new arrivals postpone their�rst transmission attempt until the n initial stations have resolved their 
ollision.The time elapsed from the initial 
ollision until the point where the n stations havetransmitted su

essfully is 
alled the 
ollision resolution interval (CRI). Supposethat m new pa
kets are generated during the CRI. Then, a new CRI starts (with mparti
ipants) when the previous CRI (with n stations involved) ends. In 
on
lusion,when the blo
ked a

ess mode is used new arrivals are blo
ked until the CRI duringwhi
h they arrived has ended. They will parti
ipate in the next CRI.� Free A

ess: New arrivals transmit the moment they are generated, i.e., at the �rstslot boundary following their arrival time. Thus, if k new arrivals o

ur during slot iand the n stations that transmitted in slot i split into a group of n1 and n2 stations,n1 + k stations will transmit in slot i+ 1.Di�erent terminology is used when these 
hannel a

ess proto
ols (CAPs) are 
ombinedwith a tree algorithm. For instan
e, the blo
ked a

ess s
hemes are also referred to astree-sear
h algorithms, the free a

ess s
hemes as sta
k algorithms [35℄. Implementationdetails and examples are provided in Chapter 3. Binary feedba
k (
ollision or not) suÆ
esin order to implement the basi
 binary tree algorithm with blo
ked or free a

ess. Manyother tree algorithms have aroused from this initial one. An overview is presented Se
tions1.4.1 to 1.4.5.An important result for the Poisson input traÆ
 that applies to any random a

ess s
hemeimplementing a blo
ked a

ess strategy is the following [22, 41℄. If a 
on
i
t resolutionalgorithm (CRA) has an expe
ted running time T (n), to resolve n parti
ipants, thenthe 
orresponding random a

ess algorithm with blo
ked a

ess is stable for all � <



1.4. TREE ALGORITHMS 9lim inf n=T (n) and is unstable for � > lim supn=T (n). The expression for T (n) dependsupon the 
on
i
t resolution algorithm. Whatever happens for an arrival rate � betweenthe liminf and the limsup of n=T (n) is un
lear (although in some parti
ular 
ases somelight was shed on this gray area, see [43℄). For some CRAs n=T (n) does have a limit3 forn!1, i.e., the gray area disappears, but this is not always the 
ase4 (although the sizeof the gray area tends to be rather small in su
h 
ases). In Chapter 2 we will generalizethis result to a more general 
lass of arrival pro
esses.The key result in studying the stability of the basi
 CTM algorithm with blo
ked a

esswas, strangely enough, already obtained by Knuth in 1973 [17℄. The reason is the general-ity of the re
ursive pro
ess based on random 
hoi
es that turns out to be the exa
t modelfor a variety of sear
hing algorithms in 
omputer s
ien
e. Let lN denote the expe
tednumber of slots required to solve a 
ollision of N stations. Knuth showed that lN satis�esthe following equation asymptoti
ally (for p1 = 1=2, i.e., fair 
oins):lN = 2ln 2N +NP (log2N) +O(pN); (1.1)with P (�) a periodi
 fun
tion with an amplitude < 10�5. Combining this result withthe property mentioned in the previous paragraph, shows that the CTM algorithm withblo
ked a

ess (and fair 
oins) is stable for � < ln 2=2 � 10�5 and unstable for � >ln 2=2 + 10�5 under Poisson traÆ
. In Chapter 3, we prove that this result is not merelyvalid for the Poisson arrival pro
ess. Knuth's result was however not 
ommonly known atthe time. For instan
e, in 1981 Massey [41℄ showed that the CTM algorithm with blo
keda

ess was stable under Poisson input for � < :3465 and unstable for � > :3471. In thispaper Massey mentions that W. Sandrin of the Comsat Laboratories pointed out thatln 2=2 � :3465735. In 1985 Mathys and Flajolet [13, 43℄ showed that the best stabilityresults for the Poisson input traÆ
 are obtained with fair 
oins, i.e., p1 = 1=2.In general, studying the stability of a random a

ess s
heme with free a

ess is morediÆ
ult 
ompared to a blo
ked a

ess s
heme. In 1985 Mathys and Flajolet [13, 43℄eventually showed that the basi
 binary CTM algorithm with free a

ess, also referredto as the binary sta
k algorithm, is stable under Poisson input traÆ
 (and fair 
oins) for� < :360. Moreover, for the Poisson traÆ
 fair 
oins are the optimal 
oins; that is, theya
hieve the highest maximum stable throughput. In Chapter 3, we show that both theseresults are not valid for other arrival pro
esses. Chapter 3 presents analyti
al methodsthat allow us, among other things, to determine the stability of the basi
 binary CTMalgorithm with free a

ess for a variety of arrival pro
esses.3For instan
e, when slotted ALOHA is 
ombined with blo
ked a

ess, it is easy to showlimn!1 n=T (n) < limn!1 n2p e(n�1) ln(1�p) = 0. Therefore, slotted ALOHA with blo
ked a

ess isunstable for all arrival rates � > 0, whatever the value of the retransmission probability p.4In 1980 Vvedenskaya [41℄ was the �rst to prove that limn!1 n=T (n) does not exist for many treealgorithms. However, a lot of the Russian results were unknown to the Western world for quite sometime.
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 Q-ary CTM or Tree AlgorithmA �rst of many generalizations of the basi
 binary tree algorithm is the basi
 Q-arytree algorithm. This generalization 
onsists of splitting the set of stations involved in a
ollision into Q|instead of two|groups. Stations part of the i-th group postpone anyretransmission attempts until the �rst i� 1 groups have been resolved. A station sele
tsthe i-th group with a probability pi. Whenever p1 = p2 = : : : = pQ = 1=Q one talksabout fair 
oins, otherwise about biased 
oins. For the new pa
ket arrivals one 
an eitheruse free or blo
ked a

ess. The stability properties of the basi
 Q-ary tree algorithm wererevealed by Mathys and Flajolet [43℄ in 1985 and 
an be summarized as follows.We start with the basi
 Q-ary tree algorithm with blo
ked a

ess. Let lN denote theexpe
ted number of slots required to solve a 
ollision of N stations. Then, lN=N satis�esthe following equation asymptoti
ally:lN=N = Q�PQi=1 pi ln pi + f1(N) +O(N�1); (1.2)with f1(N) a 
u
tuating fun
tion of small amplitude, between 10�3 and 10�6. Due to theproperty of any blo
ked a

ess algorithm we �nd that the basi
 Q-ary tree algorithm isstable for � < �P pi ln pi=Q � � and unstable � > �P pi ln pi=Q + �, for some � small,under Poisson input traÆ
. The sum �PQi=1 pi ln pi rea
hes a maximum equal to lnQ=Qfor pi = 1=Q, 1 � i � Q. Therefore, the basi
 Q-ary tree algorithm (with fair 
oins) isstable for arrival rates up to � � lnQ=Q. The highest arrival rates (up to :3662) 
anbe supported by the ternary s
heme, i.e., Q = 3, followed by the binary and quaternarys
hemes who both support rates up to :3466. For Q = 5 we get :3218 and the maximuma
hievable throughput lnQ=Q further de
reases for higher splitting fa
tors Q (see Table1.1 and Figure 1.1).
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Figure 1.1: In
uen
e of the Splitting Fa
tor on the Maximum Stable Throughput for theBasi
 Q-ary CTM AlgorithmAs noted before, the maximum a
hievable throughput of a random a

ess s
heme withblo
ked a

ess (under Poisson traÆ
) is found by studying the asymptoti
 behavior of



1.4. TREE ALGORITHMS 11Q basi
 blo
ked a

ess basi
 free a

ess mod. blo
ked a

ess mod. free a

ess2 .3466 .3602 .3754 .38723 .3662 .4016 .3741 .40704 .3466 .3992 .3496 .40075 .3219 .3872 .3233 .38786 .2986 .3734 .2994 .37367 .2780 .3597 .2784 .35988 .2600 .3470 .2602 .34719 .2441 .3353 .2443 .335310 .2303 .3246 .2304 .3246Table 1.1: Maximum a
hievable throughput for the basi
 and the modi�ed Q-ary treealgorithm with fair 
oinsn=T (n), where T (n) is the expe
ted runtime of the 
on
i
t resolution algorithm (CRA)required to resolve the 
ontention between n parti
ipants. This runtime T (n) is alsoreferred to as the expe
ted length of a 
ollision resolution interval (CRI) initiated byn parti
ipants. For free a

ess algorithms a CRI is generally de�ned as the time thatelapses between two su

essive time instan
es for whi
h none of the stations has a pa
ketready for transmission. A random a

ess algorithm with free a

ess is stable wheneverthe expe
ted length of an arbitrary CRI is �nite, otherwise it is unstable (an asymptoti
analysis of the length of a CRI is not required). The results for the basi
 Q-ary CTMalgorithm with free a

ess are presented in Table 1.1. Fair 
oins a
hieve the best stabilityresults.1.4.2 The Modi�ed Q-ary CTM or Tree AlgorithmThe basi
 Q-ary tree algorithm exploits binary feedba
k (
ollision or not). It 
an beimproved by exploiting ternary (
ollision, su

ess or empty) feedba
k whenever available[3, 41℄. The algorithm that exploits ternary feedba
k is referred to as the modi�ed Q-ary tree algorithm. It 
an be 
ombined with both blo
ked and free a

ess and worksas follows. If, after a 
ollision, the next Q � 1 slots turn out to be empty|that is, allstations involved in the 
ollision 
hose the last group and no new arrivals o

urred if thefree a

ess strategy is used|the next slot must 
ontain a 
ollision if the basi
 Q-ary CTMalgorithm is used as the 
on
i
t resolution algorithm. This otherwise doomed slot 
an beskipped by having all stations a
t as if the 
ollision had o

urred. Obviously, the modi�eds
heme performs at least as well as the basi
 algorithm. Surprisingly, Capetanakis failedto noti
e the existen
e of 
ertain-to-o

ur 
ollisions in his algorithm. Massey [41℄ was the�rst to point this out, whereas Tsybakov and Mikhailov dis
overed this independently; asa 
onsequen
e the modi�ed CTM algorithm is also referred to as the CMTM (Cap-Mas-Tsy-Mik) algorithm.In pra
ti
e, this improvement has a slight problem, when 
ombined with the blo
ked a

essstrategy, in that if an idle slot is in
orre
tly per
eived by the re
eiver as a 
ollision|this
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h errors o

ur|the algorithm 
ontinues splittinginde�nitely. Let us explain this phenomenon. Suppose that an empty slot is per
eivedas a 
ollision due to an error in the 
hannel. As a result all stations, in
luding thosegenerating new arrivals, wait until the set of stations involved in this 
ollision is resolved,but this set is an empty set. Therefore, the next Q � 1 slots are empty (new arrivalsare blo
ked) and the modi�ed algorithm ki
ks in and skips the slot following these Q� 1empty slots (be
ause it believes that this slot ne
essarily 
ontains a 
ollision). Noti
e, ifthe basi
 algorithm were to be used the next slot would have turned out empty and the\
ollision" would have been resolved. As for the modi�ed algorithm, the next Q� 1 slotsare again empty and another slot will be skipped by the modi�ed s
heme. As a resultthe algorithm be
omes deadlo
ked as it 
ontinues splitting inde�nitely; that is, none ofthe stations ever su

eed in transmitting their pa
ket. In pra
ti
e, after some prede�nednumber h times Q � 1 empty slots, where every Q � 1 slots are followed by a split, thealgorithm should allow the next subset to transmit without �rst splitting it. The valueof h depends upon the reliability of the medium.The stability 
hara
teristi
s of the modi�ed algorithm under Poisson traÆ
 were alsorevealed by Mathys and Flajolet [43℄. The 
orresponding equation for the blo
ked a

esss
heme (with fair 
oins) for lN=N islN=N = Q(1� f1(N))� [Q�1 + (1�Q�1) ln(1�Q�1)� f2(N)℄lnQ +O(N�1); (1.3)were f1(N) and f2(N) are 
u
tuating fun
tions of small amplitude, between 10�3 and10�6. Numeri
al values for Q = 2 to 10 are found in Table 1.1. This table also representsthe results for the free a

ess s
heme. Fair 
oins are, for both the blo
ked a

ess andfree a

ess strategy, no longer the optimal 
oins. It turns out that in
reasing the prob-ability pQ, while keeping the others equal to ea
h other, slightly improves the maximuma
hievable throughput. For instan
e, the modi�ed ternary tree algorithm with free a

esssupports input rates up to :407614 for p1 = p2 = :314544 and p3 = :370911. The modi�edbinary tree algorithm with blo
ked a

ess a
hieves a stability of :381260 for p1 = :4174and p2 = :5826.1.4.3 Estimating the Multipli
ity of Con
i
ts to Speed TheirResolutionThe highest stability result under Poisson traÆ
 we en
ountered, so far, when exploitingbinary, resp. ternary, feedba
k is :401599, resp. :407614. Higher stability results, up to:487 for ternary feedba
k, have been a
hieved in a variety of ways. The �rst, dis
ussedin this se
tion, 
an be used in 
ombination with a blo
ked a

ess strategy and existsin estimating the number of parti
ipants at the start of the 
ollision resolution interval(CRI). If the estimated multipli
ity is equal to m, all stations taking part in the CRI splitinto m groups at the start of the CRI. Next, ea
h of the m groups is resolved using a
ollision resolution algorithm (in our 
ase a tree algorithm). This idea was �rst introdu
edby Capetanakis in his dynami
 tree proto
ol, under the assumption that the multipli
ityof the 
on
i
t was a Poisson distributed random variable [3, 22℄. Several pro
edures have



1.4. TREE ALGORITHMS 13a basi
 binary tree modi�ed binary tree modi�ed biased binary tree2 .4025 .4341 .44021.1 .4202 .4526 .45891.01 .4256 .4581 .46441.001 .4275 .4602 .46651.0001 .4282 .4609 .4672Table 1.2: Maximum a
hievable throughput for the basi
, modi�ed and the biased modi�ed(p1 = :4174) binary tree algorithm when 
ombined with the base a estimation methodbeen proposed for estimating the 
on
i
t multipli
ity. A summary of those whose a

ura
ydoes not depend on the sto
hasti
 assumptions about the arrival pro
ess is presented inthis se
tion.Greenberg, et al [22℄ proposed the following estimation method known as the base aestimation algorithm. The base a estimation algorithm sear
hes for a power of a that is
lose to n, the 
on
i
t multipli
ity. The following probabilisti
 test of the hypothesis thatn � ai is used. Let ea
h of the n 
on
i
ting stations transmit in a slot with probability a�i.A 
ollision supports the hypothesis that n � ai. This test is exe
uted with i = 1; 2; 3; : : :until no 
ollision o

urs. If this pro
edure leads to a series of j 
ollisions, n is estimatedas aj. The estimation therefore requires 1 + loga n� = O(loga n) time slots, where n� isthe estimate for n [22℄. The 
loser we 
hoose a to one, the better the estimate turns outto be.Greenberg, et al [22℄ determined the asymptoti
 behavior of the expe
ted time lN requiredto resolve a CRI with N parti
ipants when the basi
 binary tree algorithm, the modi�edbinary tree algorithm and the modi�ed biased binary tree algorithm (p1 = :4174) is used asthe 
ontention resolution algorithm. Combining this with the Poisson property for blo
keda

ess s
hemes provides us with the maximum a
hievable throughput. Numeri
al resultsare presented in Table 1.2. The results indi
ate that stability up to :4282, resp. :4672,
an be a
hieved by exploiting binary, resp. ternary, feedba
k.Cidon and Sidi [8℄ further experimented with the estimation ideas of Greenberg et al [22℄.They proposed the following estimation pro
edure. Suppose that there are n 
ontendersin the CRI. Ea
h of the n stations transmits in the �rst slot of the CRI with a probabilityp > 0. Thus, the n stations are split into two sets E and D, where E 
onsists of thosestations that transmitted and D of the others. If this �rst slot holds a 
ollision|thatis, jEj � 2|then the stations in E use the modi�ed binary CTM or tree algorithm toresolve the 
ollision. When the set E is resolved we know the number of parti
ipants jEjin E. The estimate for n, denoted as n�, is 
omputed as jEj=p and the estimate for jDjis n� � jEj. Next, m is de�ned as maxf1; d�(n� � jEj) � �eg. The parameter � has noe�e
t on the stability of the algorithm, whereas � is used to optimize the stability. Next,the stations belonging to the set D are split into m sets and ea
h set is resolved using themodi�ed binary CTM algorithm. Cidon and Sidi [8℄ have shown that the lim inf n=T (n)of this 
on
i
t resolution algorithm is equal to :468 for � = :786 and p < 10�5. Usingthis idea they 
onstru
ted a more 
omplex variation on this 
on
i
t resolution algorithm



14 CHAPTER 1. RANDOM ACCESS ALGORITHMS: INTRODUCTIONand found one for whi
h lim inf n=T (n) = :487|that is, a CRA that resolves 
on
i
ts ofmultipli
ity n, for n large, in expe
ted time of approximately 2:054n time slots.1.4.4 Grouping on Arrival TimesAnother natural way to devise a random a

ess algorithm that a
hieves a high stablethroughput is to \de
ouple" transmission times from arrival times5. This was �rst sug-gested by Gallager [3℄ and his Russian 
ounterpart Federov [41℄. A des
ription by Massey[41℄ is given below. Suppose that the random a

ess s
heme is a
tivated at time t = 0.The unit of time is de�ned as the length of a slot, so that the i-th transmission slot is thetime interval (i; i+ 1℄. A se
ond time in
rement � is 
hosen and the i-th arrival epo
h isde�ned as the time interval (i�; i�+�℄ (� is not ne
essarily an integer value). The �rsttransmission rule used by this algorithm is as follows: transmit a new pa
ket that arrivedduring the i-th arrival epo
h in the �rst \utilizable" slot following the 
ollision resolutioninterval (CRI) for new pa
kets that arrived during the (i� 1)-th arrival epo
h. The mod-i�er \utilizable" re
e
ts the fa
t that the CRI for new pa
kets that arrived during the(i�1)-th arrival epo
h might end before the i-th arrival epo
h has ended. If so, a numberof transmission slots are skipped until the i-th arrival epo
h ends. One 
ould improve thealgorithm by shortening the i-th arrival epo
h. This both 
ompli
ates the analysis andthe implementation and has no in
uen
e on the maximum stable throughput.Ea
h of the groups is resolved using either the basi
 binary or the modi�ed binary treealgorithm, depending on whether we have binary or ternary feedba
k (the order in whi
hthey are resolved is of no importan
e). Con
i
t resolution algorithms that use a highersplitting fa
tor (Q > 2) are not 
onsidered for resolving the groups. The reason is thefollowing. When grouping arrivals based on the arrival epo
hs, it is important to havea 
ollision resolution algorithm that performs well for groups with very few 
ontenders(be
ause these appear the most frequent if � is small). The basi
 Q-ary tree algorithmperforms best in resolving groups with n � 3 parti
ipants for Q = 2. The same 
anbe said about the modi�ed algorithm for n � 7. This 
auses higher splitting fa
tors toa
hieve worse stability results (if � is small).Massey [41℄ has proven that the maximum stable throughput a
hieved by this algorithmunder Poisson input is :4294, resp. :4622, when exploiting binary, resp. ternary, feedba
kby setting � equal to 2:6712, resp. 2:7066. Noti
e, the expe
ted number of arrivalsin an arrival epo
h is 1:147, resp. 1:251. Gallager [3℄ further improved this algorithmby making the result of the 
oin 
ip depend upon the arrival times. Thus, pa
ketsgenerated during the �rst half of the interval, whi
h is being resolved, are 
onsidered as
ipping \0", the others as 
ipping \1". An important 
onsequen
e is that the resultingalgorithm is a �rst-
ome-�rst-served (FCFS) algorithm, namely, the order in whi
h thestations are su

essful is identi
al to the order of arrival. Gallager also indi
ated a se
ondimprovement that in
reases the maximum a
hievable throughput and greatly simpli�esthe analysis. Consider what happens when a 
ollision is followed by another 
ollision in5The idea of grouping has been reintrodu
ed more re
ently in wireless lo
al area networks (LANs)with delayed feedba
k [9, 10℄



1.5. UPPER BOUNDS 15the tree algorithm. Let n be the number of stations involved in the �rst 
ollision andassume that n1 of the n stations sele
t the �rst group; thus, n2 = n�n1 sele
t the se
ond.Let n11, resp. n12, be the number of stations that sele
t the �rst, resp. se
ond, group afterthe se
ond 
ollision. The se
ond 
ollision indi
ates that n1 � 2. Due to the �rst 
ollisionwe have n = n1 + n2 � 2, therefore we know nothing about n2 (for Poisson arrivals).Gallager therefore suggested to add the n2 stations to the group of the n12 stations. Theanalysis of this algorithm is mu
h easier 
ompared to other tree algorithms be
ause thestatus of all ba
klogged stations (those who do not belong to the set that is 
urrentlybeing resolved) is identi
al. Gallager proved that this algorithm, referred to as the FCFSsplitting algorithm, supports rates up to :4871 (when exploiting ternary feedba
k). Moselyand Humblet [28℄ further re�ned the algorithm for rates up to :48776.1.4.5 The Deterministi
 Tree AlgorithmCapetanakis, Hayes, and Tsybakov and Mikhailov [22℄ independently proposed a de-terministi
 tree algorithm. A deterministi
 tree algorithm is used as a random a

essalgorithm in an environment with a �nite set of K stations. Ea
h of these K stations isidenti�ed by a unique number, written as a Q-ary number and referred to as the MACaddress of the station (K is 
hosen as a power of Q). It di�ers from the basi
 Q-arytree algorithm with blo
ked a

ess in the sense that stations are no longer split into Qsets using a probabilisti
 method, but use their MAC address in a deterministi
 fash-ion. A station sele
ts the i-th group after the j-th 
ollision in a CRI if the j-th digitof its MAC address equals i. As a result the maximum length of a CRI is redu
ed to(QK � 1)=(Q � 1), 
orresponding to a full Q-ary tree of height k, where K = Qk, thatdevelops when all K stations are a
tive. The maximum delay for a message is thereforebounded by 2(QK � 1)=(Q� 1) < 4K.The 
onditions under whi
h the stability analysis of an algorithm operating in a �nitepopulation ofK stations is done, are very di�erent from those operating in an in�nite pop-ulation. For a �nite population one assumes that ea
h station generates traÆ
 a

ordingto a Poisson pro
ess with rate �=K, resulting in a global rate � [17℄. A station attemptsto transmit one pa
ket at a time, while the other pa
kets are bu�ered until a su

essfultransmission takes pla
e. The algorithm is said to be stable if the expe
ted delay of apa
ket is �nite. Obviously, stability is maintained for all rates � < (Q� 1)K=(QK � 1).(Q� 1)K=(QK � 1) de
reases as K in
reases and rea
hes a limit of (Q� 1)=Q for K toin�nity.1.5 Upper Bounds on the Maximum A
hievableThroughputThis se
tion is based on [38, 41, 42℄. Mu
h work has gone into determining upper boundson the maximum a
hievable throughput that 
an be supported by a full-sensing algorithmunder Poisson input traÆ
. In a full-sensing algorithm, all users re
eive feedba
k infor-



16 CHAPTER 1. RANDOM ACCESS ALGORITHMS: INTRODUCTIONmation at the end of ea
h slot (as opposed to the a
knowledgement-based algorithms).Pipperger was the �rst to improve the obvious upper bounds6 using information-theoreti
arguments. He showed that all algorithms are unstable for � > :744. Humblet improvedthis bound in 1979 to :704. The next improvement was made by Molle in 1980: all algo-rithms are unstable for � > :6731. Kelly (1985) introdu
ed a new boundary for algorithmsthat allow new arrivals to transmit immediately. The argument went as follows. Supposethat an algorithm is operating stable under Poisson arrivals. De�ne pr as the fra
tion ofthe slots in whi
h retransmissions take pla
e. Then, be
ause the number of new sendersin any slot is independent of the number of retransmitted pa
kets in that slot, it followsthat the fra
tion of slots with exa
tly one pa
ket (i.e., the throughput �) satis�es� � �e��(1� pr) + pre�� (1.4)with equality when at most 1 pa
ket is retransmitted in a slot. The stability implies � = �.It is readily7 seen that setting pr = 1 maximizes � for whi
h the equation 
an be satis�ed;thus, � � e��. The largest � that satis�es this equation is � = :5671. Noti
e, even ifthe stations were to 
ommuni
ate among ea
h other in order to implement a 
ollision freeretransmission s
heme, but do not ex
hange information about the new arrivals whi
hare transmitted immediately, one 
annot a
hieve a throughput above :5671. Tsybakovand Mikhailov (1987) used similar but more intri
ate arguments to prove that all randoma

ess algorithms are unstable for � > :5683. The best algorithms known a
hieve athroughput of :4492, resp. :4877, when binary, resp. ternary, feedba
k is exploited.In 1979 Mosely gave some 
onvin
ing arguments (but no proof) that random a

esss
hemes for whi
h the order of the su

essful transmissions is identi
al to the order ofthe arrivals, i.e., FCFS algorithms, 
annot a
hieve a throughput above :48785. Re
ently,in 1998, Loher has proven that FCFS algorithms are always unstable for � > :4906. TheFCFS splitting algorithms of Gallager and Mosely are stable for rates up to :4871 and:4877.

6It is easy to show that random a

ess algorithms that allow new arrivals to transmit immediately areunstable under Poisson traÆ
 for �=(1 + �) < e��, i.e., � > :802.7Equation (1.4) 
an be rewritten as g(�) = (e� � 1)�=(1 � �) � pr, with g(0) = 0; g(�) � 0 for0 � � < 1 and g0(�) > 0 for 0 � � < 1. As a result one maximizes the solution by setting pr = 1.



Chapter 2D-BMAPs and Random A

essAlgorithms with Blo
ked A

ess
The obje
tive of this 
hapter is threefold. First, we des
ribe a 
lass of arrival pro
esses
ommonly known as dis
rete time bat
h Markovian arrival pro
esses (D-BMAPs), dis
usssome of its properties and present some examples. Se
ond, we motivate why it is usefulto study the stability of random a

ess s
hemes under D-BMAP input traÆ
. Finally, weprove that the Poisson results presented in Chapter 1 for the random a

ess algorithmswith blo
ked a

ess are also valid for most D-BMAPs. Blo
ked a

ess is one of the 
hannela

ess proto
ols (CAPs) presented in Chapter 1. The other two, namely, free a

ess andgrouping, are dis
ussed in Chapters 3{5. That is, the stability of tree algorithms with freea

ess under D-BMAP input traÆ
 is addressed in Chapter 3 and 4; while tree algorithmsthat make use of grouping (see Se
tion 1.4.4) are dis
ussed in Chapter 5.2.1 D-BMAPs: De�nition, Properties and ExamplesThe D-BMAP is the dis
rete time 
ounterpart of the BMAP [39, 40℄ and was �rst intro-du
ed in [4℄. D-BMAPs form a 
lass of tra
table Markovian arrival pro
esses, whi
h, ingeneral, are non-renewal and whi
h in
lude the dis
rete time variants of the Markov mod-ulated Poisson pro
ess, the PH-renewal pro
ess and superpositions of su
h pro
esses asparti
ular 
ases. Be
ause of its versatility, it lends itself very well to modeling bursty ar-rival pro
esses 
ommonly arising in 
omputer and 
ommuni
ations appli
ations [5, 47, 48℄.2.1.1 A De�nitionA de�nition by Dani�els [11℄ is given below. Formally, a D-BMAP is de�ned by an in�niteset of positive l � l matri
es (Bn)0�n<1, with the property thatB = 1Xn=0Bn (2.1)



18 CHAPTER 2. D-BMAPS AND BLOCKED ACCESSis a transition matrix. A D-BMAP is denoted by (Bn)n, whi
h 
ompletely determines it.By de�nition the Markov 
hain J t asso
iated with B and having fi; 1 � i � lg as its statespa
e, is 
ontrolling the a
tual arrival pro
ess as follows. Suppose J is in state i at time t.By going to the next time instan
e t+ 1, there o

urs a transition to another or possiblythe same state, and a bat
h arrival may or may not o

ur. The entries (Bn)i;j representthe probability of having a transition from state i to j and a bat
h arrival of size n. So, atransition from state i to j without an arrival will o

ur with probability (B0)i;j. De�neby Xt the number of arrivals generated at time t.D-BMAPs are generally de�ned with l, the size of the square matri
es Bn, �nite. It ispossible to extend their theory for l in�nite [11℄. However, the D-BMAPs studied inthis thesis are assumed to have a �nite number of states. Some of the properties weprove with respe
t to random a

ess s
hemes, make expli
it use of the �niteness of l. Wealso assume that the transition matrix B is an aperiodi
 irredu
ible matrix. Aperiodi
irredu
ible matri
es are often referred to as primitive matri
es [58℄. Thus, whenever werefer to a primitive D-BMAP we mean to say that its transition matrix B is aperiodi
 andirredu
ible. For B primitive the Markov 
hain Jt has a unique stationary distribution.Let � be the stationary probability ve
tor of the Markov 
hain Jt, i.e., �B = � and �e = 1with e a 
olumn ve
tor of 1's. The mean arrival rate � = E[Xt℄ of the D-BMAP (Bn)n isgiven by� = � 1Xn=1 nBn! e: (2.2)Due to the Ergodi
 Theorem for primitive Markov Chains [58℄ we havelimL!1 E[PL�1i=0 Xt+i j Jt = j℄L = �; (2.3)for 1 � j � l. D-BMAPs for whi
h Bn = 0, for n � 2, are referred to as dis
rete timeMarkovian arrival pro
esses (D-MAPs).2.1.2 Some PropertiesThe following properties have been shown to hold for an arbitrary D-BMAP (Bn)n. Ad-ditional properties and dis
ussions 
an be found in [4{6℄. First, a superposition of twoD-BMAPs (B1n)n and (B2n)n is again a D-BMAP (Bn)n. The Bn matri
es of the newly
reated D-BMAP are 
al
ulated as a sum of Kron
ker produ
ts between the B1n and B2nmatri
es, see [4, 11℄. Se
ond, the auto
orrelation fun
tion r(k) = Cov(X1; Xk)=Var(X1)is found as [4℄r(k) = � [P1n=1 nBn℄Bk�2 [P1n=1 nBn℄ e� �2� [P1n=1 n2Bn℄ e� �2 : (2.4)The index of dispersion for 
ounts (IDC), a measure for the burstiness of an arrival pro
ess,at time k, is de�ned asI(k) = Var(Pkj=1Xj)E[Pkj=1Xj℄ = kCov(X1; X1) + 2Pk�1j=1(k � j)Cov(X1; Xj+1)�k : (2.5)



2.1. D-BMAPS: DEFINITION, PROPERTIES AND EXAMPLES 19Another measure that is often used for the burstiness is the index of dispersion for intervals(IDI). The IDI is the sequen
e 
2k de�ned as
2k = kV ar[Pkj=1 Sj℄E[Pkj=1 Sj℄2 ; (2.6)where Sj represents the j-th interarrival time. For a renewal pro
ess [61℄ we have 
2k = 
21,where 
21 is the squared 
oeÆ
ient of variation, i.e., the variation divided by the squareof the mean, of the number of arrivals in a slot. In parti
ular, for the Poisson pro
essI(k) = 
2k = 1.2.1.3 Some ExamplesThe Dis
rete Time Poisson Pro
essThe dis
rete time Poisson pro
ess is obtained by observing the 
ontinuous time Poissonpro
ess at the slot boundaries. Arrivals that o

urred in the interval (t; t + 1℄ are nowassumed to arrive on the boundary of slot t and t+1, i.e., at time t+1. We 
an model thedis
rete time Poisson pro
ess as a D-BMAP with a single state by letting Bn = e���n=n!,for n � 0. The auto
orrelation fun
tion r(k) = 0, while the index of dispersion for 
ounts(IDC) I(k) = 1. Whether we use the 
ontinuous time or dis
rete time variant of thePoisson pro
ess makes no di�eren
e to the stability of a time slotted algorithm. Themean delay is slightly di�erent (at most 1). For later referen
e, we abbreviate the Poissonpro
ess as PP(�).The Dis
rete Time Erlang Pro
essWe de�ne the 
ontinuous time Erlang pro
ess as follows. The 
ontinuous time Erlangpro
ess has independent and identi
ally distributed interarrival times that obey an Erlangdistribution [23℄ with parameters k and �e (this �e is not to be 
onfused with the arrivalrate � of the 
orresponding D-BMAP). Clearly, for k = 1 the Erlang pro
ess is redu
edto the Poisson pro
ess. By observing the Erlang pro
ess at the slot boundaries we obtainthe dis
rete time Erlang pro
ess (arrivals are assumed to o

ur on slot boundaries). Thedis
rete time Erlang pro
ess 
an be modeled as a D-BMAP in the following way. Let
n = e���n=n!; n � 0, and let Bn; n � 0, be k � k matri
es de�ned as(Bn)i;j = 
nk+j�i nk � j � i; (2.7)(Bn)i;j = 0 nk < j � i: (2.8)The arrival rate � of this D-BMAP1 is �e=k. For later referen
e, we abbreviate the Erlangk pro
ess as ER(�e ; k).1The matrix B = PnBn is a 
ir
ulant matrix [60℄. Therefore, it is possible to determine the eigen-values of B expli
itly as a fun
tion of �e and k. Whi
h allows us to get an expli
it expression for thede
ay rate of the auto
orrelation fun
tion [11℄.



20 CHAPTER 2. D-BMAPS AND BLOCKED ACCESSThe Dis
rete Time Markov Modulated Poisson Pro
essWe restri
t ourselves to the dis
rete time Markov modulated Poisson pro
esses with twostates. These pro
esses are 
hara
terized by two parameters �1; �2 and a 2 � 2 matrixT . The pro
ess will generate arrivals a

ording to a Poisson pro
ess with a mean rate �iwhen the 
urrent state is i. Transitions from one state to another 
an o

ur at the endof ea
h time slot a

ording to a 2� 2 transition matrix TT = � 1� 1a 1a1b 1� 1b � : (2.9)The expe
ted sojourn time in state 1, resp. state 2, is a, resp. b, time slots. The matri
esBn are found asBn =  �n1 e��1n! (1� 1a) �n1 e��1n! 1a�n2 e��2n! 1b �n2 e��2n! (1� 1b )! : (2.10)Noti
e, PnBn = B = T . The arrival rate � is 
al
ulated as (�1a + �2b)=(a + b). Bymeans of the spe
tral de
omposition [11℄ of T and Equation (2.4) it is not too diÆ
ult to�nd the auto
orrelation fun
tion r(k)r(k) = (1� 1a � 1b )k�1(�1 � �2)2�1ab + �2ba + �1 + �2 + (�1 � �2)2 : (2.11)For later referen
e, we abbreviate the Markov Modulated Poisson pro
ess with parameters�1; �2; a and b as M (�1 ; �2 ; a; b).The Bulk Arrival Pro
essThe Bulk arrival pro
ess is de�ned as a dis
rete time arrival pro
ess 
hara
terized by a1�m ve
tor v and a length L. The arrival pattern of this pro
ess 
onsists of a repetitionof identi
al 
y
les. The �rst part of ea
h 
y
le 
onsists of a set of bat
hes, 
hara
terizedby v. For instan
e v = [2; 3; 2℄ means that we �rst have a bat
h of size 2, in the nexttime slot we have a bat
h of size 3, followed by a bat
h of size 2. The se
ond part of the
y
le is a silent period with a geometri
ally distributed length with average L. The Bulkarrival pro
ess 
an be des
ribed by the following D-BMAP. Let v = [v1; : : : ; vm℄ and letBn; n � 0; be a set of (m+ 1)� (m+ 1) matri
es with(Bvj )j;j+1 = 1 (1 � j � m); (2.12)(B0)m+1;1 = 1=L; (2.13)(B0)m+1;m+1 = 1� 1=L: (2.14)The other 
omponents of the matri
es Bn are equal to zero. The arrival rate � of aBulk arrival pro
ess equals Pj vj=(L + m). For m = 1 one easily obtains that theauto
orrelation fun
tion r(k) obeys the following equation:r(k) = �(�1)kL�(k�2)L� 2 : (2.15)For later referen
e, we abbreviate the Bulk arrival pro
ess with parameters v and L asB(v ;L).



2.2. D-BMAPS AS ACCESS NETWORK INPUT TRAFFIC 212.2 D-BMAPs as A

ess Network Input TraÆ
It has been pointed out in literature [8, 22, 42℄ that the stability of a random a

ess algo-rithm under a more general 
lass of arrival pro
esses|also referred to as the robustnessof an algorithm [8, 42℄ or, equivalently, the insensitivity to the statisti
s of the arrivalpro
ess|is an attra
tive pra
ti
al feature. The reason is obvious: in pra
ti
e, an a

essnetwork, e.g., a lo
al area network (LAN), operates with a �nite number of users andtraÆ
 generated on su
h a network tends to be more bursty and 
orrelated 
omparedto Poisson arrivals. The 
lass of D-BMAPs allows us to in
orporate burstiness and 
or-relation and is therefore, to some extent, better suited to mat
h a

ess network inputtraÆ
. As with the Poisson arrivals we assume that the D-BMAP traÆ
 is generated byan in�nite number of users, this provides us with an upper bound to the delay.The fa
t that we limit ourselves to dis
rete time arrival pro
esses is of no importan
e.The stability under a 
ontinuous time bat
h Markovian arrival pro
ess 
an be studiedby 
reating a dis
rete time variant with the same stability properties. The dis
rete timevariant is found by observing the 
ontinuous time pro
ess at the slot boundaries and byassuming that the arrivals that o

urred in the interval (t; t + 1℄ a
tually o

ur at timet + 1, i.e., on the boundary of time slot t and t + 1 (e.g., the dis
rete time Poisson andErlang pro
esses des
ribed in Se
tion 2.1.3). Noti
e, the time interval (t; t+1℄ is referredto as slot t. Suppose that the D-BMAP (Bn)n is used as input traÆ
 and assume thatthe D-BMAP is in some state i; 1 � i � l, at time t. Then, with a probability (Bn)i;j, thestate at time t+1 is j and n new pa
kets are generated at the boundary of slot t�1 and t.In a random a

ess algorithm with free a

ess these n new pa
kets are transmitted|forthe �rst time|in time slot t by their 
orresponding stations. In a blo
ked a

ess s
hemeea
h of these n stations defers the �rst transmission attempt until the 
urrent 
ollisionresolution interval (CRI) has �nished. Whereas in a grouping algorithm, they postponethe transmission attempt until all prior groups have been resolved (unless the groups arenot resolved in a FCFS order).2.3 D-BMAPs and Blo
ked A

ess AlgorithmsRe
all from Chapter 1, that if the input traÆ
 is Poisson with a mean � and if a 
on
i
tresolution algorithm (CRA) has an expe
ted running time T (n), to resolve n parti
ipants,then the 
orresponding random a

ess algorithm with blo
ked a

ess is stable for all� < lim inf n=T (n); unstable for � > lim supn=T (n). The expression for T (n) dependsupon the CRA. Therefore, it is suÆ
ient to study the asymptoti
 behaviour of n=T (n) forn to in�nity in order to determine the stability of a blo
ked a

ess s
heme under Poissoninput. This behaviour is, obviously, independent of the arrival pro
ess. Thus, in orderto generalize the stability results of any blo
ked a

ess s
heme, presented in Chapter 1,it suÆ
es to generalize the above-mentioned Poisson property to the arrival pro
ess ofinterest.Comments that this property 
an be generalized to other arrival pro
esses are often foundin literature [14, 22, 42, 43℄. For instan
e, Massey [42℄ states that \This stability holds not



22 CHAPTER 2. D-BMAPS AND BLOCKED ACCESSonly for the assumed Poisson arrival pro
ess, but for virtually any arrival pro
ess that
an be 
hara
terized by an average arrival rate �." Massey [41℄ proves the property forPoisson arrivals and gives an intuitive argument for other arrival pro
esses. Cidon andSidi [8, Theorem 8℄ have proven the following theorem. Let � = lim inf n=T (n) and letNt;t+L be the number of pa
kets arriving to the system in the interval (t; t + L℄. Then,the system is stable if there exists a Æ > 0 and an L� su
h that E[Nt;t+L℄ < (� � Æ)L forall t and L > L�. For instan
e, assuming Poisson arrivals, E[Nt;t+L℄ is nothing but �L forall t . Hen
e, by setting L� = 1, it suÆ
es to �nd a Æ > 0 su
h that � < (� � Æ), where� = lim inf n=T (n). In 
on
lusion, we have stability if � < lim inf n=T (n).From Se
tion 2.1.1 we know that the expe
ted number of arrivals of a primitive D-BMAPthat o

ur in an interval of length L approa
hes �L as L approa
hes in�nity, where � isthe mean arrival rate (whi
hever the state at the start of the interval is). Provided thatthe number of states of the D-BMAP l is �nite, we �nd that for any � > 0 there exists anL� su
h that E[Nt;t+L℄ < (�+ �)L for all t and L > L�. Thus, when �+ � < �, it suÆ
esto 
hoose Æ equal to (� � �) � � > 0 to ful�ll the required equation (� is 
hosen to besmaller than � � �). Hen
e, we have the following theorem:Theorem 2.1 A random a

ess algorithm with blo
ked a

ess, 
orresponding to a 
on
i
tresolution algorithm (CRA) that resolves 
on
i
ts of multipli
ity n in expe
ted time T (n),is stable under primitive D-BMAP (Bn)n input traÆ
 if1. � < lim inf n=T (n), with � the mean arrival rate,2. (Bn)n has a �nite number of states l.The aperiodi
ity of the D-BMAP (Bn)n is not really a requirement, i.e., the theorem is alsovalid under irredu
ible D-BMAP traÆ
. We did not �nd a proof in the literature showingthat the system be
omes unstable for � > lim supn=T (n) (ex
ept for Poisson arrivals).Therefore, we now prove the following theorem. The proof method is a generalization ofMassey's proof for the Poisson arrivals [41℄.Theorem 2.2 A random a

ess algorithm with blo
ked a

ess, whi
h 
orresponds to a
ollision resolution algorithm (CRA) that solves 
ollisions of multipli
ity n in an expe
tedtime T (n), is unstable under primitive D-BMAP traÆ
 if1. � > lim supn=T (n), with � the mean arrival rate,2. (Bn)n has a �nite number of states l,3. (Bn)n is not a D-MAP, that is there exists a n > 1 su
h that Bn 6= 0.We start with the following de�nitions. Let (Bn)n be a primitive D-BMAP with a �nitenumber of states, i.e., with l �nite. Let Yi and Xi denote the length and the number ofparti
ipants of the i-th 
ollision resolution interval (CRI), where X0 and Y0 
orrespond



2.3. D-BMAPS AND BLOCKED ACCESS ALGORITHMS 23to the CRI beginning at time t = 0. Let Zi denote the state of the D-BMAP at the startof the i-th CRI, where Z0 is the state at time t = 0. Let T (n) be the expe
ted timerequired by the 
on
i
t resolution algorithm (CRA) to resolve a set of n 
ontenders, i.e.,T (n) = E[Yi j Xi = n℄. Using the law of total probability, we haveE[Yi℄ = 1Xn=0 P [Xi = n℄E[Yi j Xi = n℄: (2.16)Let � = lim supn=T (n), then for any �1 > 0 there exists anN(�1) su
h that n=T (n) � �+�1for n > N(�1). In other words, T (n) � n=(� + �1) for n > N(�1). Therefore, we 
an writeEquation (2.16) asE[Yi℄ � 1� + �1 Xn>N(�1)nP [Xi = n℄ + Xn�N(�1)E[Yi j Xi = n℄P [Xi = n℄: (2.17)Let T (n) = n=(� + �1) + g(n), where g(n) is a 
orre
tion that 
an be either positive ornegative. Therefore,E[Yi℄ � 1� + �1E[Xi℄ + Xn�N(�1) g(n)P [Xi = n℄: (2.18)Whenever g(n) � 0 we use 0 as a lower bound for g(n)P [Xi = n℄; otherwise, we use g(n)as an lower bound for g(n)P [Xi = n℄. Hen
e,E[Yi℄ � 1� + �1E[Xi℄ + e(�1); (2.19)where �1 > 0, e(�1) � 0 is a �xed number2 that does not depend upon i and � =lim supn=T (n). We know from Se
tion 2.1.1 that for any primitive D-BMAP the expe
tednumber of arrivals in an interval of length L approa
hes �L as L approa
hes in�nity, where� is the arrival rate of the D-BMAP (independent of the state at the start of the interval).Thus, be
ause the number of states of the D-BMAP (Bn)n is �nite, we have that for any�2 > 0 there exists a K(�2) su
h that E[Xi+1 j Yi = L℄ � (�� �2)L for L > K(�2). Hen
e,by means of the law of total probabilityE[Xi+1℄ � (�� �2) XL>K(�2)LP [Yi = L℄ + XL�K(�2)P [Yi = L℄E[Xi+1 j Yi = L℄: (2.20)Re
all Zi is the state of the D-BMAP at the start of the i-th CRI. Obviously,E[Xi+1 j Yi = L℄ � minj E[Xi+1 j Yi = L \ Zi = j℄: (2.21)The expression minj E[Xi+1 j Yi = L \ Zi = j℄ is nothing but the expe
ted number ofarrivals generated by the input D-BMAP during an interval of length L, provided thatthe state at the start of the interval is j. Hen
e, we 
an write it as (� � �2)L + h(L),where h(L) is a 
orre
tion that is either positive or negative, to obtainE[Xi+1℄ � (�� �2)E[Yi℄ + XL�K(�2) h(L)P [Yi = L℄: (2.22)2The value e(�1) also depends on the CRA being used and not solely on �1.



24 CHAPTER 2. D-BMAPS AND BLOCKED ACCESSFor h(L) negative, resp. positive, we repla
e h(L)P [Yi = L℄ by h(L), resp. 0, to �nd thatE[Xi+1℄ � (�� �2)E[Yi℄ + f(�2); (2.23)where f(�2) � 0 is a �xed number3 that does not depend upon i. Combining Equations(2.19) and (2.23) provides us with the following equation:E[Xi+1℄ � �� �2� + �1E[Xi℄ + (�� �2)e(�1) + f(�2); (2.24)for i � 0. When the equality is taken in Equation (2.24), we have a �rst-order linearre
ursion whose solution for the initial 
ondition X0 = N and Z0 = j is a lower bound onE[Xi℄. This lower bound 
an be rearranged to the following form:E[Xi℄ �  N � [(�� �2)e(�1) + f(�2)℄1� ���2�+�1 !��� �2� + �1�i + [(�� �2)e(�1) + f(�2)℄1� ���2�+�1 ; (2.25)with e(�1) � 0 and f(�2) � 0. De�ne [(���2)e(�1)+f(�2)℄1�(���2)=(�+�1) as IN 4. For (� � �2) > (� + �1) we�nd IN � 0 (�2 is 
hosen su
h that � > �2). Thus, for (�� �2) > (� + �1) the lower boundfor E[Xi℄ presented in Equation (2.25) grows without a bound as i goes to in�nity if N islarge enough|that is, larger than IN . For N smaller than IN the lower bound for E[Xi℄de
reases to minus in�nity and we know nothing from Equation (2.25).Noti
e, Equation (2.25) a
tually states that if a CRI with more than IN parti
ipantso

urs, E[Xi℄ grows without bound|that is, the algorithm is unstable under D-BMAP(Bn)n traÆ
|for � > � . Next, we prove that a CRI with more than IN 
ontenders o

urswith probability one if (Bn)n is not a D-MAP. Consider the Markov 
hain (Xi; Zi) on thestate spa
e f(n; j) j n � 0; 1 � j � lg. From this Markov 
hain, we 
onstru
t a �nitestate Markov 
hain Wi with an absorbing state w by repla
ing the states f(n; j) j n >IN ; 1 � j � lg by a single absorbing state w. The state spa
e of Wi is 
 = 
1 [ 
2 [ 
3,with 
1 = f(n; j) j n = 0 or 1; 1 � j � lg, 
2 = f(n; j) j 2 � n � IN ; 1 � j � lg and
3 = fwg. Hen
e, 
 
onsists of (IN + 1)l + 1 states. Denote the transition matrix P ofWi asP = 0� A B aC D b0 0 1 1A ; (2.26)where the 2l � 2l matrix A, resp. 2l � (IN � 1)l matrix B, represents the transitionprobabilities from the states in 
1 to those in 
1, resp. 
2. Whereas, the (IN � 1)l � 2lmatrix C, resp. (IN�1)l�(IN�1)l matrix D, represents the transition probabilities fromthe states in 
2 to those in 
1, resp. 
2. Finally, let the ve
tors a, resp. b, represent the3Obviously, f(�2) also depends on the D-BMAP (Bn)n being used as the input pro
ess and on the
on
i
t resolution algorithm (CRA) being used be
ause K(�2) depends on �2 and the CRA.4Noti
e, the value of IN depends upon �1, �2, the 
ollision resolution algorithm (CRA) that is used(be
ause t, e(�1) and f(�2) depend on the CRA) and the D-BMAP (be
ause � and f(�2) depend on theD-BMAP).



2.3. D-BMAPS AND BLOCKED ACCESS ALGORITHMS 25probabilities that a transition is made from the states in 
1, resp. 
2, to the absorbingstate w. Moreover, denote the k-th power of P asP k = 0� A(k) B(k) a(k)C(k) D(k) b(k)0 0 1 1A : (2.27)The states in 
1[
2 are transient [31℄ if for some k0 > 0: a(k) > 0 and b(k) > 0 for k > k0.In whi
h 
ase a transition to the absorbing state eventually o

urs with probability one.That is, a CRI with more than IN 
ontenders o

urs with probability one.First, we have b > 0; hen
e, b(k) > 0 for any k > 0. Indeed, if a CRI has n � 2 
ontenders,then for ea
h t > 0 there exists a non zero probability pn;t that the CRA needs t or moretime slots to resolve the 
ontention between n parti
ipants (be
ause the CRA works withan in�nite population). Also, for t large enough, there exists a non zero probability thatmore than IN arrivals o

ur in an interval of length t (whatever the state at the start ofthe interval). As a result, there exists a non zero probability that a CRI with two or more
ontenders is followed by a CRI with more than IN 
ontenders. Se
ond, in order to showthat there exists a k0 > 0 su
h that a(k) > 0 for k > k0, it suÆ
es to show that ea
h ofthe 2l rows of the 2l � (IN � 1)l + 1 matrix [B(k)a(k)℄ with k � k0 has at least one entrythat defers from zero (be
ause b > 0). Suppose that the Markov 
hain (Xi; Zi) is in state(n1; j1) 2 
1. The input D-BMAP (Bn)n is not a D-MAP; hen
e, there exists an i�; j�and m > 1 su
h that (Bm)i�;j� 6= 0. Moreover, due to the irredu
ibility of B =PnBn weknow that for some k(n1;j1) > 0 there exists a non zero probability that the Markov 
hain(Xi; Zi) makes a k(n1;j1)-step transition from state (n1; j1) to a state of the form (n2; i�)|that is, a state of the form (n2; i�) is rea
hed after k(n1;j1) transitions with a non zeroprobability. From the state (n2; i�) there is a non zero probability (be
ause (Bm)i�;j� 6= 0)that the Markov 
hain (Xi; Zi) makes a transition to a state of the form (n3; j2) withn3 � m > 1. Hen
e, from the state (n1; j1) there is a non zero probability that a state ofthe form (n3; j2) is rea
hed in k(n1;j1) + 1 steps, with n3 � m > 1. Thus, if the Markov
hain Wi is in the state (n1; j1) 2 
1, there exists a nonzero probability that Wi rea
hesa state in 
2 \
3 after k(n1;j1)+1 steps. Therefore, 
hoosing k0 = max(n1;j1)2
1 k(n1;j1)+1
ompletes the proof.In 
on
lusion, the algorithm 
orresponding to the 
on
i
t resolution algorithm that solves
on
i
ts of multipli
ity n in an expe
ted time T (n), is unstable under the D-BMAP (Bn)nif � > lim supn=T (n) and if (Bn)n does not belong to the 
lass of D-MAPs. As far asthe D-MAPs are 
on
erned, Equation (2.25) also states that the algorithm is unstablefor D-MAPs with � > lim supn=T (n) if the number of parti
ipants in the �rst CRI issuÆ
iently large. This may seem somewhat 
ounter intuitive. For instan
e, for ea
h CRIthere exists a non zero probability that no new arrivals o

ur during the CRI (ex
ept for� > 1 and some periodi
 D-MAPs). If this happens we obviously get stability be
auseall subsequent CRIs have either zero or one parti
ipants. Noti
e, Equation (2.25) statesthat su
h an event does not happen with a probability one. In 
on
lusion, startingwith a CRI with more than IN parti
ipants, with D-MAP input traÆ
 with an arrivalrate � > lim supn=T (n), results in an unstable algorithm be
ause the expe
ted delay isin�nite. Often there is however a non zero probability that stability is obtained along theway (this probability should be equal to one in order to obtain a �nite expe
ted delay).



26 CHAPTER 2. D-BMAPS AND BLOCKED ACCESS2.4 Con
lusionIn this 
hapter we introdu
ed the 
lass of D-BMAP arrival pro
esses and motivated whyit is useful to study the stability of a random a

ess algorithm under D-BMAP inputtraÆ
. We also demonstrated that it is fairly easy to prove that the stability/unstabilityof a blo
ked a

ess algorithm under primitive D-BMAP traÆ
 (with a �nite number ofstates and not belonging to the 
lass of D-MAPs) is identi
al to the stability/unstabilityunder Poisson traÆ
. This is a very positive 
hara
teristi
 of a blo
ked a

ess s
heme.Obviously, this does not imply that the delay is in the same order of magnitude for di�erentarrival pro
esses. The obje
tive of Part I of this thesis is to study the stability of most ofthe tree algorithms presented in Se
tion 1.4, with the ex
eption of some of the groupingalgorithms of Se
tion 1.4.4, under D-BMAP input traÆ
. Having dealt with the blo
keda

ess s
hemes, the basi
 and modi�ed Q-ary CTM algorithms with free a

ess and anumber of grouping algorithms remain to be studied. Indeed, the estimation algorithmspresented in Se
tion 1.4.3 are also of the blo
ked a

ess type. In the next 
hapter weintrodu
e a method to study the stability of the basi
 binary CTM algorithm with freea

ess under D-BMAP input traÆ
. In Chapter 4 we generalize this method to the basi
and modi�ed Q-ary CTM algorithm with free a

ess; whereas Chapter 5 deals with treealgorithms that make use of a grouping strategy.



Chapter 3Analysis of the Basi
 Binary CTMAlgorithm with Free A

ess
In this 
hapter we indi
ate how to determine whether the basi
 binary CTM algorithmwith free a

ess is stable under D-BMAP (Bn)n input traÆ
. We start with a more detaileddes
ription of the algorithm to be studied in order to get a good grasp of the problemand how the mathemati
s relate to the problem. Afterwards, we introdu
e a 
lass ofMarkov 
hains known as Quasi-Birth-Death (QBD) Markov 
hains with a tree stru
tureand indi
ate how to 
onstru
t su
h a Markov 
hain that is re
urrent, resp. transient,whenever the basi
 binary CTM algorithm (with free a

ess) is stable, resp. unstable. Analgorithm that determines whether this Markov 
hain is re
urrent or not is also provided.Furthermore, using this Markov 
hain we 
an 
al
ulate the mean delay experien
ed by apa
ket and many other performan
e measures of interest. Numeri
al results are presentedat the end of the 
hapter. It is important to noti
e that to our best knowledge treestru
tured Markov 
hains have never been used in order to study a medium a

ess 
ontrolproto
ol. So far, appli
ations of tree stru
tured Markov 
hains have been limited to thestudy of last 
ome �rst serve (LCFS) queueing systems with multiple 
lasses of 
ustomers,ea
h 
lass having a di�erent servi
e requirement [24{26, 62, 78, 79℄. The work presentedin this 
hapter was published in [68℄.3.1 The Basi
 Binary CTM Algorithm with Free A
-
essFrom Chapter 1 we know that the basi
 binary CTM algorithm is a 
ollision resolutionalgorithm (CRA) for whi
h ea
h user strives to retransmit its 
olliding pa
ket till it is
orre
tly re
eived. The users have to resolve this 
ontention without the bene�t of anyadditional information on other users' a
tivity. The algorithm separates, in a re
ursiveway, users that 
ollide into two groups. The separation is done a

ording to some ran-domization pro
edure. The users that sele
t the �rst group attempt a retransmission inthe next slot, while the users that sele
t the se
ond group wait until the �rst group is
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INACTIVE

INACTIVE

Message Arrival

Successful Transmission

CO/q CO/1 CO/1

NC/1 NC/1NC/1
CO/p

Figure 3.1: State Diagram: CO = 
ollision, NC = no 
ollisionIn 
orresponden
e with the framework used to study the stability under Poisson input(see Chapter 1), we have an in�nite number of users, i.e., stations, ea
h holding zero orone pa
kets. Users that hold a pa
ket (at time t) are referred to as a
tive users (at timet). The basi
 binary CTM proto
ol is 
onveniently implemented by letting ea
h a
tiveuser maintain an integer value, referred to as the 
urrent sta
k level. The 
urrent sta
klevel held by a station 
an be seen as a representation of the number of \groups" thatneed to be resolved before a station is allowed to (re)transmit. At the end of ea
h timeslot the 
urrent sta
k level is updated a

ording to the following rules (see Figure 3.1):� A user that be
ame a
tive, i.e., generated a new pa
ket, during slot t� 1 initializesits 
urrent sta
k level for slot t at zero. A user is allowed to transmit in time slott whenever its 
urrent sta
k level for slot t is zero. Therefore, users that be
amea
tive during slot t � 1 transmit in slot t (together with other stations that havetheir 
urrent sta
k level for slot t at zero).� Suppose that slot t does not hold a 
ollision, i.e., at most one user has its 
urrentsta
k level for slot t at zero. Then, users with a 
urrent sta
k level for slot t equal toi; i > 0; set their 
urrent sta
k level for slot t+1 at i�1 (while a possibly su

essfuluser be
omes ina
tive).� If slot t however does hold a 
ollision, users with a 
urrent sta
k level for slot t equalto i; i > 0, set their 
urrent sta
k level for slot t + 1 at i + 1. While, users with a
urrent sta
k level for slot t equal to zero split into two groups: a user joins the �rstgroup with a probability p and the se
ond group with a probability q = 1� p. Allthe users that join the �rst group set their 
urrent sta
k level for slot t+ 1 at zero,while the users that join the se
ond group set their 
urrent sta
k level for slot t+ 1at one.An example of the transmission pro
ess is shown in Figure 3.2. Figure 3.2 also in
ludesa list of group numbers (1 or 2) for ea
h pa
ket to indi
ate whi
h group the pa
ket joinsafter ea
h 
ollision (in whi
h it is involved). Thus, the list 1; 2; : : : for pa
ket E indi
atesthat pa
ket E joins the �rst group as a result of its �rst 
ollision and the se
ond as aresult of its se
ond 
ollision.
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THE SEQUENCE OF GROUPS SELECTED BY THE ASSOCIATED TRANSMITTER:

A: ... D: 1,...
B: 2,1,2,1,1,... E: 1,2,...

F: 2,...

G: ...
H: 2,...
I: 1,...C: 2,2,1,...

STATIONS WITH

Figure 3.2: Example of the Transmission Pro
ess: CSL = Current Sta
k Level3.2 Markov Chain of the Quasi-Birth-Death Typewith a Tree Stru
tureIn this se
tion we brie
y des
ribe a tree stru
tured Quasi-Birth-Death (QBD) Markov
hain. This type of Markov 
hain was �rst introdu
ed in Takine, et al [62℄ and Yeung,et al [78, 79℄. The theory of tree stru
tured QBD Markov 
hains is a generalization ofthe well-known theory of matrix analyti
al methods introdu
ed by Neuts [47, 48℄. Thegeneralization exists in 
onsidering the dis
rete time bivariate Markov 
hain f(Xt; Nt); t �0g, in whi
h the values of Xt are represented by nodes of a Q-ary tree, and where Nt takesinteger values between 1 and m. Xt is referred to as the node and Nt as the auxiliaryvariable of the Markov 
hain at time t. A des
ription of the transitions of the Markov
hain is given below. A Q-ary tree is a tree for whi
h ea
h node has Q 
hildren. The rootnode is denoted as ;. The remaining nodes are denoted as strings of integers, with ea
hinteger between 1 and Q. For instan
e, the k-th 
hild of the root node is represented byk, the l-th 
hild of the node k is represented by kl, and so on. Throughout this 
hapterwe use lower 
ase letters to represent integers and upper 
ase letters to represent stringsof integers when referring to nodes of the tree. We use '+' to denote 
on
atenation onthe right. For example, if J = 1 0 8; k = 6 then J + k = 1 0 8 6.The Markov 
hain (Xt; Nt) is 
alled a Markov 
hain of the QBD-type with a tree stru
tureif at ea
h step the 
hain 
an only make transitions to its parent, 
hildren of its parent(in
luding itself), or to its 
hildren, see Figure 3.3. Moreover, if the 
hain is in state(J + k; i) at time t then the state at time t+ 1 is determined as follows:1. (J; j) with probability di;jk ; k = 1; : : : ; Q;2. (J + s; j) with probability ai;jk;s; k; s = 1; : : : ; Q,3. (J + ks; j) with probability ui;js ; s = 1; : : : ; Q.
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J

J+k

... J+ks

...

Figure 3.3: A tree stru
tured Markov 
hain and its transitionsDe�ne m�m matri
es Dk; Ak;s and Us with respe
tive (i; j)th elements given by di;jk ; ai;jk;sand ui;js . Noti
e that transitions from state (J+k; i) do not dependent upon J , moreover,transitions to state (J + ks; j) are also independent of k. When the Markov 
hain is inthe root state (;; i) at time t then the state at time t+ 1 is determined as follows:1. (;; j) with probability f i;j,2. (k; j) with probability ui;jk ; k = 1; : : : ; Q.De�ne the m �m matrix F with 
orresponding (i; j)th element given by f i;j. A funda-mental period of a tree stru
tured QBD Markov 
hain that starts in the state (J +k; i) isde�ned as the �rst passage time from the state (J + k; i) to one of the m states (J; j) forj = 1; : : : ; m. In general, Q and m are assumed to be �nite. The theory of tree stru
turedQBD Markov 
hains 
an be extended for Q and m in�nite. However, in order to solve theMarkov 
hain numeri
ally both Q and m need to be �nite. For a more detailed des
riptionof the notations and algebra see Yeung, et al [78℄.3.3 Markovian Model for the Basi
 Binary CTM Al-gorithm with Free A

essNew pa
kets are generated a

ording to a D-BMAP (see Chapter 2) as follows. Assumethat the D-BMAP is in some state i; 1 � i � l, at time t. Then, with a probability(Bn)i;j, the state at time t+ 1 is j and n � 0 new pa
kets are generated at the boundaryof slot t � 1 and t. Due to the free a

ess these n new pa
kets are transmitted (for the�rst time) in time slot t by their 
orresponding stations.



3.3. MARKOVIAN MODEL 313.3.1 A First AttemptThe system at time slot t is fully spe
i�ed by the state of the D-BMAP at the boundaryof slot t and t + 1 and by the 
urrent sta
k level for slot t of ea
h a
tive station. Thevalue of all these 
urrent sta
k levels 
an be spe
i�ed by a single string sksk�1 : : : s1s0,where si spe
i�es the number of a
tive stations with a 
urrent sta
k level for slot t equalto i. Therefore, the system is fully 
hara
terized by the Markov 
hain (Vt;Wt), where Wtdenotes the state of the D-BMAP at the boundary of slot t and t + 1 and Vt representsthe string that holds the 
urrent sta
k level for slot t of all a
tive stations. It is easy tosee that (Vt;Wt) is a tree stru
tured Markov 
hain. Indeed, the node sksk�1 : : : s1s0 isthe parent of the nodes sksk�1 : : : s1s0s for s � 0. Ea
h node, in
luding the root node ;,
ontains l states (the l states of the D-BMAP) and has an in�nite number of 
hildren.The root node, denoted as ;, represents the 
ase when there are no a
tive stations.The 
hain (Vt;Wt) is not of the Quasi-Birth-Death type. For instan
e, suppose that the
hain is in the state (J; i) with J = 2 5 at time t. Therefore, 5 a
tive stations have their
urrent sta
k level for slot t at zero, i.e., transmit in slot t, and 2 a
tive stations have their
urrent sta
k level for slot t at one. Next, suppose that 3 out of the 5 stations in
reasetheir 
urrent sta
k level to one as a result of the 
oin 
ip pro
edure. When a 
ollidingstation determines to join either the �rst or the se
ond group, it is said to 
ip a 
oin(if p = 1=2 a fair 
oin). The 
oin 
ipping of all 
olliding stations is referred to as the
oin 
ipping pro
edure. Then, at time t+ 1, the Markov 
hain is in the state (K; j) withK = 2 3 (2 + s) with probability (Bs)i;j (i.e., s new arrivals o

urred on the boundary ofslot t and slot t+1). This type of transitions (to the grand
hildren of the parent node) isnot allowed in a tree stru
tured QBD Markov 
hain. Also, the Markov 
hain is no longerof the GI=M=1 type (see Yeung, et al [79℄) and there is no simple or expli
it solution forits stationary distribution.3.3.2 The A
tual ModelIn order to solve the problem indi
ated in the previous se
tion we make the number ofstations with a 
urrent sta
k level for slot t equal to zero a part of the auxiliary variable.A
tive stations that have a 
urrent sta
k level for slot t larger than zero are referred to asba
klogged stations (at time t). Consider the following Markov 
hain (Xt; Nt). Let Xt bethe string holding the 
urrent sta
k level for slot t of all ba
klogged stations (at time t).For instan
e, when Xt = sk : : : s2s1 there arePki=1 si ba
klogged stations, of whi
h si � 0have their 
urrent sta
k level for slot t equal to i. In this example there are no stationswith a 
urrent sta
k level for slot t larger than k. The sample spa
e of the random variableXt is 
1 = f;g [ fJ : J = sk : : : s1; sj � 0; 1 � j � k; k � 1g. Noti
e, the string J isallowed to have a number of leading zeros (see Note 1 for more 
omments on this issue).The random variable Xt has a tree stru
ture. For instan
e, the 
hildren of sk : : : s1 aresk : : : s1s; s � 0. Thus, ea
h node in the tree has an in�nite number of 
hildren. Nt holdsboth the number of a
tive stations with a 
urrent sta
k level for slot t equal to zero andthe state of the D-BMAP at the boundary of slot t and t + 1. The sample spa
e of therandom variable Nt is 
2 = f(i; j) j i � 0; 1 � j � lg.



32 CHAPTER 3. BASIC BINARY CTM WITH FREE ACCESSIt is easy to see that (Xt; Nt) is a Markov 
hain. The state spa
e of the Markov 
hain is
1�
2. In order to solve this Markov 
hain the nodes of Xt should have a �nite numberof 
hildren and the auxiliary variable Nt should have a �nite number of states. Therefore,the Markov 
hain (Xt; Nt) is approximated by another bivariate Markov 
hain (Xdt ; Ndt ).(Xdt ; Ndt ) is obtained by setting a maximum d on the number of stations that 
an havethe same 
urrent sta
k level for slot t (in
luding sta
k level zero). If a situation o

ursin whi
h d + k; k > 0, stations have the same 
urrent sta
k level for slot t, k stationsare assumed to drop their pa
ket. Thus, introdu
ing d 
an 
ause stations to drop theirpa
ket. Pa
kets are otherwise never dropped by a station. Nevertheless, provided that dis 
hosen suÆ
iently large there should hardly be any di�eren
e between the performan
emeasures of (Xdt ; Ndt ) and (Xt; Nt) (the di�eren
e between the re
urren
e of both Markov
hains is dis
ussed in Se
tion 3.5). We state that d is 
hosen suÆ
iently large if theratio of dropped pa
kets due to the introdu
tion of d is smaller than 10�9, i.e., if lessthan one in a billion pa
kets is dropped. The introdu
tion of the parameter d is the onlyapproximation required to evaluate the basi
 binary CTM algorithm with free a

ess.There is no obvious relationship between a suÆ
iently large value for d and the maximumn for whi
h Bn 6= 0 (also su
h an n does not ne
essarily exist). For instan
e, a suÆ
ientlylarge d for the Bulk arrival pro
ess with v = [4℄, as de�ned in Se
tion 2.1.3, is found ford � 18 for L = 10, d � 12 for L = 80 and d � 10 for L = 800 (whereas Bn = 0 for n � 5in ea
h of the three 
ases).Let us now 
onsider (Xdt ; Ndt ) in more detail. Xdt is the string that holds the 
urrent sta
klevel for slot t of all ba
klogged stations. For instan
e, when Xdt = sk : : : s2s1 then for siba
klogged stations the 
urrent sta
k level for slot t equals i. The sample spa
e of therandom variableXdt is 
d1 = f;g[fJ : J = sk : : : s1; 0 � sj � d; 1 � j � k; k � 1g. Xdt hasa tree stru
ture, e.g., sk : : : s1s; 0 � s � d, are 
hildren of sk : : : s1. Therefore, ea
h nodein 
d1 has d+1 
hildren. As opposed to the general des
ription of the tree stru
tured QBDMarkov 
hain (see Se
tion 3.2) we represent the 
hildren of a node by 0 to d instead of 1 tod+1. Ndt represents the number of stations that transmit in slot t (i.e., the 
urrent sta
klevel for slot t of these stations is zero) and the state of the D-BMAP at the boundary ofslot t and t+ 1. The sample spa
e of Ndt is 
d2 = f(i; j) j 0 � i � d; 1 � j � lg. It is easyto see that (Xdt ; Ndt ) is a Markov 
hain and the state spa
e of the Markov 
hain (Xdt ; Ndt )is 
d1 � 
d2.We now prove that transitions made by the Markov 
hain (Xdt ; Ndt ) are either transitionsto a 
hild or a parent node (ex
ept from the root node ;). Assume that the Markov 
hain(Xdt ; Ndt ) is in node J + k at time t, i.e., Xdt = J + k. If slot t 
ontains a 
ollision of 
 � 2stations|that is, Ndt is of the form (
; j) with 
 � 2; 1 � j � l|all ba
klogged stationsin
rement their 
urrent sta
k level by one. Thus, the integers in the string J +k shift oneposition to the left and Xdt+1 = J+ks with 0 � s � 
 (s of the 
 
olliding stations set their
urrent sta
k level for slot t + 1 at one as a result of the 
oin 
ip). Ndt+1 is determinedby j; 
 and the probability that a station sele
ts the �rst group p. Thus, a 
ollision inslot t 
auses the Markov 
hain to make a transition to a 
hild node (this is also the 
asefor Xdt = ;). If slot t does not hold a 
ollision, all ba
klogged stations de
rement their
urrent sta
k level by one, i.e., shift one position to the right. Hen
e, if slot t does nothold a 
ollision, the 
hain will be in the parent node J at time slot t+ 1 (for Xdt = ; the
hain remains in the root node). In 
on
lusion, the 
hain 
an only make transitions from



3.3. MARKOVIAN MODEL 33a node to either its parent node or to one of its 
hildren.In order for the Markov 
hain (Xdt ; Ndt ) to be a tree stru
tured QBD Markov 
hain thefollowing two additional 
onditions have to be satis�ed. First, the probability of making atransition from state (J+k; (i; j)) to state (J; (i0; j 0)) may not dependent upon J . As notedabove, su
h a transition takes pla
e whenever slot t does not hold a 
ollision. Clearly, j 0,the new state of the D-BMAP, is solely determined by j, the old state of the D-BMAP,and thus independent of J . While, i0, the number of stations that transmit in slot t+1, isdetermined by k, the number of stations that de
rease their 
urrent sta
k level from oneto zero, and j, the old state of the D-BMAP (be
ause this state j determines the numberof new arrivals on the boundary of slot t and slot t+1). Se
ond, the probability of makinga transition from state (J + k; (i; j)) to state (J + ks; (i0; j 0)) may not dependent upon Jand k. Su
h a transition o

urs whenever slot t does hold a 
ollision. Again, j 0, the newstate of the D-BMAP, is determined by j, the old state of the D-BMAP. While, s, thenumber of stations that in
rease their 
urrent sta
k level to one (as a result of the 
oin
ipping), is determined by i and the probability p. Finally, i0, the number of stations thattransmit in slot t+ 1, is determined by i; p and j, the old state of the D-BMAP (be
ausethis state j determines the number of new arrivals).In 
on
lusion, the Markov 
hain (Xdt ; Ndt ) is a tree stru
tured QBD Markov 
hain. A treestru
tured QBD Markov 
hain is fully 
hara
terized by the matri
es Dk, Us, Ak;s andF (see Se
tion 3.2). The matri
es Ak;s hold the transition probabilities that the 
hain(Xdt ; Ndt ) goes from state (J + k; (i; j)) to the state (J + s; (i0; j 0)). These transitions aretransitions between sibling nodes. Two nodes are referred to as sibling nodes if they havethe same parent node. Remember that the 
hain (Xdt ; Ndt ) 
an only make transitions toits parent or to its 
hildren, therefore, the entries of the matri
es Ak;s are zero. This fa
tredu
es the memory and time requirements of the algorithm that 
al
ulates the steadystate probabilities of (Xdt ; Ndt ) when it is ergodi
 (for details see Se
tion 3.4).The matri
es Dk hold the transition probabilities that the 
hain (Xdt ; Ndt ) goes from state(J + k; (i; j)) to the state (J; (i0; j 0)). This happens when slot t does not hold a 
ollision.Therefore, the state i, the number of stations that transmit in slot t, must be equal tozero or one. Moreover, the state i0, the number of stations that transmit in slot t + 1,equals k, the number of stations that de
rease their 
urrent sta
k level from one to zero,plus some possible new arrivals. Hen
e,Dk((i; j); (i0; j 0)) = 8><>:(Bi0�k)j;j0 i � 1; i0 � k; i0 < d;Pn�d�k(Bn)j;j0 i � 1; i0 � k; i0 = d;0 otherwise; (3.1)where (Bn)j;j0 holds the probability that n new arrivals o

ur and that the input D-BMAP
hanges its state from j to j 0.The matri
es Us hold the transition probabilities that the 
hain (Xdt ; Ndt ) goes from state(J + k; (i; j)) to the state (J + ks; (i0; j 0)). This happens when slot t holds a 
ollision.Therefore, the state i, the number of stations that transmit in slot t, must be larger thanor equal to 2. Moreover, the state i0, the number of stations that transmit in slot t + 1,equals i, the number of stations that transmitted in slot t, minus s, the number of stations
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rease their 
urrent sta
k level to one (as a result of the 
oin 
ipping), plus somepossible new arrivals. Clearly, s 
an never be larger than i. Hen
e,Us((i; j); (i0; j 0)) = 8><>:Cispi�sqs(Bi0�(i�s))j;j0 i > 1; i � s; i0 � i� s; i0 < d;Cispi�sqsPn�d�(i�s)(Bn)j;j0 i > 1; i � s; i0 � i� s; i0 = d;0 otherwise; (3.2)where (Bn)j;j0 holds the probability that n new arrivals o

ur and that the input D-BMAP
hanges its state from j to j 0 and Cis denotes the number of di�erent possible 
ombinationsof s from i di�erent items.Assume that the Markov 
hain is in node J = ; at time t, i.e., Xdt = ;. Then the transi-tions to the nodes s, 0 � s � d, are governed by the matri
es Us, whereas the transitionsto the root node ; are as follows. The matrix F holds the transition probabilities that
hain (Xdt ; Ndt ) goes from state (;; (i; j)) to the state (;; (i0; j 0)). This happens wheneverslot t does not hold a 
ollision, i.e., i � 1. The state i0, the number of stations thattransmit in slot t + 1, equals the number of new arrivals (o

urring on the boundary ofslot t and slot t+ 1). Hen
e,F ((i; j); (i0; j 0)) = 8><>:(Bi0)j;j0 i � 1; i0 < d;Pn�d(Bn)j;j0 i � 1; i0 = d;0 otherwise; (3.3)where (Bn)j;j0 holds the probability that n new arrivals o

ur and that the input D-BMAP
hanges its state from j to j 0.Note 1: It is possible that a string J has a number of leading zeros. The semanti
s ofsu
h a string J is identi
al to that of the string J without the leading zeros. For instan
e,J = 0 0 4 0 5 has the same meaning as K = 4 0 5. Strings with leading zeros arise fromthe following situation. When the Markov 
hain (Xdt ; Ndt ) is in the root state J = ;,i.e., Xdt = ;, a transition might o

ur to state 0. For instan
e, suppose that Ndt = (
; j),with 
 � 2; 1 � j � l, and assume that the 
urrent sta
k level for slot t + 1 is set atzero for ea
h of the 
 
olliding stations (as a result of the 
oin 
ip pro
edure). Then,at time t + 1, a

ording to Equation (3.2), the Markov 
hain (Xdt ; Ndt ) is in the node0. It might seem more appropriate to remain in the root node J = ; in su
h 
ases, orequivalently to avoid strings with leading zeros. If we ex
lude this type of transitions;that is, eliminate su
h strings, the node variable Xdt would have a tree stru
ture whereevery node has d+ 1 
hildren ex
ept for the root node ; (who has d 
hildren). In Yeung,et al [79℄ this type of Markov 
hain is 
alled a Markov 
hain with a forest stru
ture andalgorithms to 
al
ulate the steady state are provided. Both approa
hes lead to the samesteady state probabilities (after rearranging the states appropriately). The advantage ofallowing this type of transitions is that we get a slightly faster algorithm be
ause theboundary 
ondition is slightly less 
ompli
ated.



3.4. THE STATIONARY DISTRIBUTION OF THE QUEUE STRING 353.4 The Stationary Distribution of the Queue StringA

ording to Yeung and Alfa [78℄, a matrix geometri
 solution exists for an ergodi
 QBDMarkov 
hain with a tree stru
ture. The Markov 
hain (Xdt ; Ndt ) is aperiodi
 wheneverthe D-BMAP modeling the input traÆ
 is aperiodi
. The irredu
ibility is not alwaysinherited from the input D-BMAP, e.g., D-BMAPs with B0 = 0 or Bn = 0; n � 2. InSe
tion 3.5 we address the problem of determining whether the Markov 
hain (Xdt ; Ndt ) ispositive re
urrent. De�ne, for ea
h string J 2 
d1, 0 � i � d and 1 � j � l�(J; (i; j)) = limt!1P [(Xdt ; Ndt ) = (J; (i; j))℄: (3.4)Denote by �(J; i) = (�(J; (i; 1)); : : : ; �(J; (i; l))) and by �(J) = (�(J; 0); : : : ; �(J; d)). Inorder to 
al
ulate the 1� l(d+1) ve
tors �(J) the following three sets of l(d+1)� l(d+1)matri
es play an important role [78℄.Let Gk; 0 � k � d, denote the matrix whose (i; v)th element is the probability that theMarkov 
hain (Xdt ; Ndt ) is in state (J; v) at the end of the fundamental period given thatthis period starts from state (J + k; i). These matri
es are sto
hasti
 for re
urrent QBDMarkov 
hains with a tree stru
ture (Takine, et al [62℄). Let Rk; 0 � k � d, denote thematrix whose (i; v)th element is the expe
ted number of visits to (J + k; v) given that(Xd0 ; Nd0 ) = (J; i) before visiting node J again. Let Vk; 0 � k � d, denote the matrixwhose (i; v)th element is the taboo probability that starting from (J + k; i), the 
haineventually returns to a node with the same length as J + k by visiting (J + k; v), underthe taboo of the node J and the sibling nodes of J + k, i.e., the nodes J + s; s 6= k.Yeung and Alfa [78℄ have shown that the matri
es Gk and Rk 
an be expressed in terms ofVk. Moreover, if a tree stru
tured QBD Markov 
hain does not allow transitions betweensibling nodes, they were able to shown that the following simple expressions hold:Gk = (I � Vk)�1Dk; (3.5)Rk = Uk(I � Vk)�1; (3.6)Vk = Ak;k + dXs=0 UsGs: (3.7)If however transitions between sibling nodes were allowed it would still be possible to solvethe 
hain but the equations would be more 
ompli
ated and the resulting iterative s
hememore time 
onsuming [78, 79℄. Noti
e that the matri
es Vk; 0 � k � d, are identi
al ifthe matri
es Ak;k; 0 � k � d, are identi
al. For the Markov 
hain (Xdt ; Ndt ) the matri
esAk;k; 0 � k � d, are equal to zero, therefore the matri
es Vk; 0 � k � d, are identi
al.In the remaining part of this se
tion we drop the subs
ript k if we refer to Vk. Usingequations (3.5) and (3.7), we obtainV = dXs=0 Us(I � V )�1Ds: (3.8)
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ial 
ase of Theorem 2 in Yeung and Alfa [78℄, the matrix V 
an be obtained aslimN!1 V [N ℄ from the re
ursionV [N + 1℄ = dXs=0 Us(I � V [N ℄)�1Ds; (3.9)where V [0℄ = 0. Also, the matri
es Gs[N ℄ = (I�V [N ℄)�1Ds 
onverge to the substo
hasti
matri
es Gs. Sin
e we do not know in advan
e whether the Markov 
hain (Xdt ; Ndt ) isre
urrent, we do not use the possible sto
hasti
 nature of the matri
es Gs as a stopping
riterion for the re
ursion in (3.9). We simply repeat the re
ursion until all matri
esGs[N ℄; 0 � s � d; have stabilized.Next, the matri
es Rk; 0 � k � d, are 
al
ulated from the matrix V using equation (3.6).The steady state ve
tors �(J) are then 
al
ulated as follows [78℄:�(J + k) = �(J)Rk; (3.10)where �(;) is the left invariant ve
tor of the matrix F + V , i.e., �(;)(F + V ) = �(;), and�(;) is normalized as �(;)(I �R)�1e = 1. The matrix R is de�ned as Pds=0Rs. In orderto 
larify the subsequent steps required to 
al
ulate the steady state probabilities we havesummarized them in the following algorithm:Algorithm:� INPUT: A sequen
e of matri
es Bn; n � 0; that 
hara
terize the D-BMAP inputtraÆ
.� STEP 1: Cal
ulate the matri
es Dk; 0 � k � d, Us; 0 � s � d, and F by makinguse of formulas (3.1), (3.2) and (3.3).� STEP 2: Determine the matrix V using the iterative formula presented in (3:9).� STEP 3: Cal
ulate the matri
es Rk; 0 � k � d; by means of equation (3.6).� STEP 4: Determine the ve
tor �(;) as follows: �(;) = �(;)(F + V ), where �(;) isnormalized as �(;)(I �R)�1e = 1.� STEP 5: Cal
ulate de steady state probabilities of interest using the equation �(J+k) = �(J)Rk.REMARK: At the end of STEP 4 one 
an determine whether the parameter d was 
hosensuÆ
iently large (see Note 2), if not, d has to be in
reased and the �rst four steps haveto be repeated, i.e., everything has to be re
al
ulated. For many numeri
al examplessetting d as small as 10 was suÆ
ient (see Se
tion 3.7). Thus, one starts with d = 2 andrepeats the �rst 4 steps until d is suÆ
iently large. It is however possible to redu
e thethe 
omputational e�ort by making a �rst estimate for the starting value of d (instead ofd = 2). If we estimate the value of d larger than the smallest possible d for whi
h d is
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iently large, we are �nished after one run. One must however note that the largerwe 
hoose d, the more time it requires to 
ompute the �rst four steps. Therefore, oneshould try to limit the margin of overestimation. During the numeri
al trials we noti
edthat there exists a strong relationship between a suÆ
iently large d and the burstiness,i.e., the variation of the number of arrivals in a time slot, of the input pro
ess. We usedthe following heuristi
 method to redu
e the 
omputation times: if d = x was suÆ
ientlylarge for a spe
i�
 D-BMAP and the next D-BMAP we are about to evaluate is more,resp. less, bursty we make use of a larger, resp. smaller, �rst estimate for a suÆ
ientlylarge d.Note 2: We 
an make use of the following test to determine whether d was 
hosen suf-�
iently large. Let � be the load, i.e., arrival rate �, of the D-BMAP modeling the aggre-gated input traÆ
. From the steady state probabilities we 
an 
al
ulatePJ;j �(J; (1; j)).This sum is, due to the law of total probability, equal to the probability that there isexa
tly one a
tive station with a 
urrent sta
k level for slot t equal to zero. Therefore,this sum mat
hes the probability of having a su

essful transmission. We 
an now 
om-pare this with the arrival rate �, i.e., load �, of the D-BMAP to get a value for the ratioof dropped pa
kets. In 
on
lusion, we state that d is 
hosen suÆ
iently large whenever(��PJ;j �(J; (1; j)))=� < 10�9.3.5 Stability IssuesIn Chapter 1 we mentioned that Mathys and Flajolet [43℄ have shown that the basi
binary CTM algorithm with free a

ess is stable under a Poisson 
ow of arrivals if thearrival rate � < :360177 (using fair 
oins, i.e., for p = 1=2). In this se
tion we indi
ate howto determine whether the basi
 binary CTM algorithm with free a

ess is stable underD-BMAP traÆ
. De�ne S as the set of all (primitive) D-BMAPs. S 
an be split into twosubsets S1 and S2 su
h that the CTM algorithm with free a

ess is stable for s 2 S1 andis unstable for s 2 S2. For instan
e, the CTM algorithm is stable for all D-MAPs, i.e.,D-BMAPs with Bn = 0 for n � 2:A D-BMAP s belongs to S1 if and only if the Markov 
hain (Xt; Nt) is stable, i.e., positivere
urrent. To test whether the Markov 
hain (Xt; Nt) is positive re
urrent, we study thestability of the Markov 
hain (Xdt ; Ndt ). Clearly, the 
hain (Xt; Nt) is transient wheneverthe 
hain (Xdt ; Ndt ) is transient. Indeed, (Xdt ; Ndt ) behaves identi
al to (Xt; Nt) ex
ept thatit drops a pa
ket from time to time. Clearly, this only improves the expe
ted delay su�eredby an arbitrary pa
ket. The stability of the 
hain (Xdt ; Ndt ) is however not suÆ
ient toprove that the 
hain (Xt; Nt) is stable. For instan
e, for every s 2 S, (X1t ; N1t ) is stable.Even when d is 
hosen suÆ
iently large, it is still possible that the dropping of theserare pa
kets (even when we lose less than one in a billion) 
auses the 
hain (Xdt ; Ndt ) tobe
ome stable while (Xt; Nt) is not. Hen
e, it is possible that we slightly overestimatethe stability point of a parti
ular arrival pro
ess. There exists only one 
ase we 
an useto get an idea of the margin of overestimation: the Poisson result. Numeri
al results (notin
luded in Se
tion 3.7) have indi
ated that for d = 10 the overestimation is less than
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hain was unstable for � = :36018 while the exa
t result by Flajolet states:360177). Further in
reasing d would result in even smaller overestimation errors.The Markov 
hain (Xdt ; Ndt ) is re
urrent if and only if the matri
es Gk; 0 � k � d, aresto
hasti
 (HE [25℄). Provided that the Markov 
hain (Xdt ; Ndt ) is re
urrent, we de�nea heuristi
 measure ds for its stability as follows. Let �(i; j); 0 � i � d and 1 � j � l,be the probability that the auxiliary variable Ndt is equal to (i; j). Hen
e, �(i; j) =PJ �(J; (i; j)) = �(;)(I � R)�1 (see Se
tion 3.4). Let ds = Pj �(0; j) +Pj �(1; j) �Pj;i>1 �(i; j). ds 
an be seen as the di�eren
e between the drift towards the root nodeand the drift away from the root node. Indeed, Pj �(0; j) is equal to the probabilitythat slot t is empty, i.e., no transmission takes pla
e in slot t, and Pj �(1; j) is theprobability that slot t holds a su

essful transmission. Therefore, Pj �(0; j) +Pj �(1; j)is the probability that the Markov 
hain makes a transition to a parent node. While,Pj;i>1 �(i; j) represents the probability that a 
ollision takes pla
e in slot t|that is, the
hain makes a transition to a 
hild node. The di�eren
e between these two probabilitiesis used as a measure for the stability.3.6 Performan
e MeasuresAlthough we mainly fo
us on the stability 
hara
teristi
s of the basi
 binary CTM algo-rithm, we 
an also obtain a number of other interesting performan
e measures. As far asthe numeri
al results are 
on
erned we restri
t ourselves in this 
hapter to the stability.Numeri
al results on the mean delay and other performan
e measures are presented inChapter 4 in order to 
ompare the performan
e of the basi
 Q-ary CTM algorithm withfree a

ess for di�erent values of the splitting fa
tor Q.3.6.1 The Fundamental Period and Mean DelayDe�ne �1(i; j); 0 � i � d and 1 � j � l, as the expe
ted length of a fundamental periodgiven that this period starts from state (J + k; (i; j)). Noti
e that these expe
ted valuesdo not depend upon J and k. �1(i; j) is the expe
ted number of time slots ne
essaryto resolve a 
ollision of i stations provided that the D-BMAP is in state j (at the endof the time slot in whi
h the i stations 
ollide). Let �1(i) = (�1(i; 1); : : : ;�1(i; l)) and�1 = (�1(0); : : : ;�1(d)). Then, the 
olumn ve
tor �t1 (xt denotes the transposed ve
torof x) obeys the following equation:�t1 = e+ dXs=0 Us[�t1 +Gs�t1℄: (3.11)This equation is obtained as follows. The expe
ted length of the fundamental periodequals one if the �rst slot of the period is 
ollision free, i.e., if i equals zero or one (the�rst 2(d+1) rows of Us are zero, i.e., �1(i; j) = 1 for i = 0 or 1). Otherwise, the �rst slotholds a 
ollision and the expe
ted length of the fundamental period equals one (the �rstslot) plus the expe
ted time required to resolve the �rst group plus the expe
ted time
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ond group. In order to 
al
ulate the expe
ted time required toresolve the �rst group we apply the law of total probability on the state of the D-BMAPat the boundary of the se
ond and third slot of the fundamental period (the state at theboundary of the �rst and se
ond is j), on the number of 
olliding stations that sele
t these
ond group and on the number of new arrivals o

urring on the slot boundary of the�rst and se
ond slot of the fundamental period. In matrix form this leads to Ps Us�t1.For the expe
ted time required to resolve the se
ond group we also apply the law of totalprobability on the state of the D-BMAP at the end of the slot following the fundamentalperiod initiated by the �rst group and on the number of new arrivals on the boundaryof the last slot of the fundamental period initiated by the �rst group and the �rst of theperiod initiated by the se
ond group. In matrix form this leads toPs UsGs�t1. Equation(3.11) 
an be solved as a set of linear equations or using an iterative method.De�ne �(k; j); 1 � k � d and 1 � j � l, as the probability that Ndt = (k; j) at an arrivalinstant. Details on how to 
al
ulate �(k; j) are provided in Se
tion 3.6.3. Thus, theprobability that the transmission of a pa
ket is su

essful at its �rst attempt isPj �(1; j).Let U(delay) beU(delay) = dXi=1 lXj=1 �(i; j)�1(i; j): (3.12)Then U(delay) is an upper bound on the mean delay experien
ed by an arbitrary pa
ket.It is possible to 
al
ulate the mean delay E(delay) as follows.De�ne �2(i; j); 1 � i � d and 1 � j � l, as the expe
ted delay su�ered by an arbitrarypa
ket provided that the �rst transmission of the pa
ket 
oin
ided with the transmission ofi�1 other pa
kets and provided that the D-BMAP is in state j after the �rst transmission.Let �2(i) = (�2(i; 1); : : : ;�2(i; l)) and �2 = (�2(0); : : : ;�2(d)). The 
olumn ve
tor �t2obeys the following equation (this equation is obtained in a similar manner as Equation(3.11)):�t2 = e+ dXs=0 �MsUs�t2 +NsUs[�t1 +Gs�t2℄� ; (3.13)where Ms and Ns are the following (d+ 1)l � (d+ 1)l diagonal matri
es:Ms = diag(0t; a1(s)et; : : : ; ad(s)et); (3.14)Ns = diag(0t; b1(s)et; : : : ; bd(s)et); (3.15)with ai(s) = 0 for i � s, ai(s) = (i � s)=i for i > s, bi(s) = 0 for i < s, bi(s) = s=i fori � s, 0t a 1 � l ve
tor with all elements zero and et a 1 � l ve
tor with all elementsequal to one. Remark that ai(s), resp. bi(s), represents the probability that our arbitrarypa
ket sele
ts the �rst, resp. se
ond, group after a 
ollision knowing that s of the 
ollidingstations sele
t the se
ond group. Equation (3.13) 
an be solved as a set of linear equationsor using an iterative method. The expe
ted delay experien
ed by a pa
ket E(delay) is



40 CHAPTER 3. BASIC BINARY CTM WITH FREE ACCESSfound asE(delay) = dXi=1 lXj=1 �(i; j)�2(i; j): (3.16)3.6.2 Other Performan
e MeasuresDe�ne �(k; i; j); k � 0; 0 � i � d and 1 � j � l, as the probability that the highest
urrent sta
k level held by a station equals k and that the auxiliary variable of theMarkov 
hain (Xdt ; Ndt ) equals (i; j). Let �(k; j) = (�(k; i; 1); : : : ;�(k; i; l)) and �(k) =(�(k; 0); : : : ;�(k; d)). Re
all that it is possible that a string J 2 
1 starts with a sequen
eof zeros (see Note 1 in Se
tion 3.3.2). Therefore, �(k) = PJ2L(k) �(J) with L(k) � 
1,where L(k) is the 
olle
tion of strings J with a length m;m � k, and with exa
tly m� kleading zeros. De�ne R as Pdi=0Ri, then due to Equation (3.10)�(k) = �(;)(I � R0)�1 k = 0; (3.17)�(k) = �(k � 1)(R� R0) = �(;)(I � R0)�1(R� R0) k = 1; (3.18)�(k) = �(k � 1)R = �(;)(I � R0)�1(R�R0)Rk�1 k > 1: (3.19)The matrix (I � R0)�1 = Pj Rj0 exists be
ause R = PiRi, Ri � 0 for 0 � i � dand (I � R)�1 = Pj Rj exists. De�ne �(k; i; j); k � 0; 0 � i � d and 1 � j � l, asthe probability that the number of ba
klogged stations equals k and that the auxiliaryvariable of the Markov 
hain (Xdt ; Ndt ) equals (i; j). Let �(k; j) = (�(k; i; 1); : : : ;�(k; i; l))and �(k) = (�(k; 0); : : : ;�(k; d)). Then, due to Equation (3.10)�(k) = �(;)(I � R0)�1 k = 0; (3.20)�(k) = min(k;d)Xi=1 �(k � i)Ri(I �R0)�1 k > 0: (3.21)Next, de�ne �(k); k > 0; as the expe
ted number of ba
klogged stations with a 
urrentsta
k level equal to k. The probability of having i; i > 0; stations with a 
urrent sta
klevel equal to k; k > 0; is PJ2T (k) �(J)e, where the subset T (k) � 
1 is the 
olle
tion ofstrings J for whi
h the k-th integer from the right equals i. Hen
e,�(k) = dXi=1 i�(;)(I � R)�1RiRk�1e: (3.22)De�ne E[r℄ as the expe
ted number of transmissions required to transmit a pa
ket su

ess-fully. E[r℄ is signi�
antly smaller than E(delay) be
ause an a
tive station only transmitswhenever its 
urrent sta
k level is equal to zero. Let �(;)(I � R)�1 = (�(0); : : : ; �(d)),where �(i); 0 � i � d, is a 1� l ve
tor. Then, E[r℄ is found as the ratio of the expe
tednumber of transmissions in slot t and the expe
ted number of su

essful transmissions inslot t E[r℄ = Pdk=1 k�(k)e�(1)e : (3.23)



3.7. NUMERICAL EXAMPLES 41Finally, let pe, resp. ps, resp. p
, be the probability that a time slot is empty, resp. holdsa su

essful transmission, resp. holds a 
ollision. Then,pe = �(0)e; (3.24)ps = �(1)e; (3.25)p
 = dXi=2 �(i)e: (3.26)3.6.3 The State of the Auxiliary Variable at Arrival TimesBasi
ally, �(k; j); 1 � k � d and 1 � j � l, equals the probability that the �rst trans-mission of a pa
ket 
oin
ides with the transmission of k � 1 other pa
kets and thatthe state of the D-BMAP modeling the input traÆ
 is j after this �rst transmission. Let�s = �(;)(I�R)�1Rs; 0 � s � d, and � = �(;)(I�R)�1. Clearly, �s and � are 1�l(d+1)ve
tors. Thus �s 
an be written as �s = (�s(0); : : : ; �s(d)), where �s(i); 0 � i � d, are1� l ve
tors. Similarly, � = (�(0); : : : ; �(d)) and �(;) = (�0(;); : : : ; �d(;)).Both equations presented below are a natural extension of the 
ommon method usedin an M/G/1 type of Markov 
hain to 
al
ulate the steady state probabilities of theMarkov 
hain at an arrival instant given the steady state probabilities at an arbitrarytime instant (see, e.g., [4℄) and by observing that the pa
kets that are dropped (due to d)are dropped before their �rst transmission attempt (see Equations (3.1), (3.2) and (3.3)).Let �(k) = (�(k; 1); : : : ;�(k; l))t. For k < d, we get�(k) = 1ps " 1Xi=0  �i(;)kBk + kXs=0 �s(i)(k � s)Bk�s! +dXi=2 �(i)min(i;k)Xs=0 Cisps(1� p)i�s(k � s)Bk�s35 ; (3.27)where ps was de�ned in Se
tion 3.6.2. For k = d, we have�(d) = 1ps " 1Xi=0  �i(;)dXj�d Bj + dXs=0 �s(i)(d� s)Xj�d Bj�s! +dXi=2 �(i)min(i;k)Xs=0 Cisps(1� p)i�s(d� s)Xj�d Bj�s35 : (3.28)3.7 Numeri
al ExamplesTo test whether the Markov 
hain (Xdt ; Ndt ) is stable, we 
al
ulate the matri
es Gk; 0 �k � d, and 
he
k whether they are sto
hasti
. The matri
es Gk are determined by an
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h is performed in a 
oating point environment; hen
e, the resultingmatri
es are never \truely" sto
hasti
. Therefore, if all the row sums of Gk are between1�10�9 and 1, we 
on
lude that Gk is sto
hasti
. If there is a row in Gk for whi
h the rowsum is below 1� 10�4 we 
on
lude that the matrix Gk is not sto
hasti
. If the smallestrow sum of Gk is between 1� 10�4 and 1� 10�9 we 
on
lude that the sto
hasti
 natureof Gk is undetermined (i.e., the re
urren
e of the 
hain (Xdt ; Ndt ) is un
lear). Noti
e thatif (Xdt ; Ndt ) is transient we 
an use the value of the smallest row sum dt as a heuristi
measure of instability.As with many of the iterative formulas used in the matrix analyti
al approa
h [18, 34,46, 55, 75{77℄, the number of iterations required by formula (3.9) in
reases signi�
antlywhen the Markov 
hain (Xdt ; Ndt ) is 
lose to instability (e.g., 10 to 100 iterations suÆ
efor many stable and unstable Markov 
hains, while the number of iterations 
an be
omeas large as a few thousands when the 
hain is (very) 
lose to the instability point). Thislimits the pre
ision by whi
h instability points 
an be determined.Next, we determine the instability point of a number of D-BMAP arrival pro
esses pre-sented in Se
tion 2.1.3 for p = 1=2. The issue of using biased 
oins (p 6= 1=2) is brie
ydis
ussed at the end of this se
tion. In the remainder of this 
hapter, the instability pointis also referred to as the stability point as this is the point where the CTM algorithmswit
hes between being stable and unstable. For most of the numeri
al results presentedbelow the parameter d was suÆ
iently large for d � 10 (see Se
tion 3.3.2 and Note 2 inSe
tion 3.4).3.7.1 The Dis
rete Time Poisson Pro
essFrom Chapter 1 it follows that the basi
 binary CTM algorithm with free a

ess is stablefor � < :360177147 under Poisson input traÆ
. We start by 
on�rming this result usingour analyti
al model. The results are presented in Table 3.1. The �rst 
olumn of Table3.1 represents the arrival rate of the input D-BMAP �, the se
ond indi
ates whetherthe 
hain (Xdt ; Ndt ) is stable or not (S = stable, U = unstable) and the last 
olumnrepresents the heuristi
 stability measure ds or the instability measure dt depending onwhether the Markov 
hain was stable or not. A

ording to Table 3.1 the Markov 
hain(Xdt ; Ndt ) be
omes unstable for � somewhere between :36015 and :3602. This is in 
omplete
orresponden
e with the results obtained by Mathys and Flajolet [43℄. Additional runshave shown that the stability point is found in the interval [:36015; :36018℄.3.7.2 The Dis
rete Time Erlang Pro
essThe dis
rete time Erlang pro
ess was introdu
ed in Se
tion 2.1.3. The stability pointsfor the Erlang pro
ess with k = 2; 3 and 4 have been determined and the results arepresented in Table 3.2. The results indi
ate that in
reasing the parameter k results ina higher stability point. This is not surprising be
ause the Erlang distribution be
omesmore deterministi
 when in
reasing k. As a fun
tion of k, the growth of the stabilitypoint de
reases as k in
reases (this seems logi
al as the varian
e of the Erlang distribution



3.7. NUMERICAL EXAMPLES 43� S=U ds=dt.10000 S .9745.30000 S .5207.35000 S .1215.35500 S .0617.36000 S .0023.36010 S .0010.36015 S .0003.36020 U .9991.36030 U .9951.36050 U .9872.36100 U .9678.36250 U .9120.37000 U .6791.40000 U .2169Table 3.1: Stability under Poisson traÆ
.

� = �e=k k S=U ds=dt.3625 2 S .1035.3650 2 S .0199.3655 2 S .0017.3656 2 U .9965.3658 2 U .9835.3660 3 S .1203.3670 3 S .0468.3675 3 S .0059.3676 3 U .9973.3680 3 U .9646.3675 4 S .1313.3682 4 S .0246.3684 4 U .9955.3690 4 U .9384Table 3.2: Stability under Erlang k traÆ
.de
reases linearly in k). For instan
e, the stability point of the Erlang pro
ess with k = 15is below :37. Therefore, the di�eren
e between the stability point for the Erlang pro
esswith k = 1 and k = 15 is less than :01, while the varian
e of the interarrival times is 15times as large for k = 1 as opposed to k = 15.3.7.3 The Dis
rete Time Markov Modulated Poisson Pro
essThe dis
rete time Markov modulated Poisson pro
ess was introdu
ed in Se
tion 2.1.3. Forthe numeri
al examples we restri
t ourselves to the interrupted Poisson pro
esses (IPPs).An IPP is an MMPP with two states and the arrival rate 
orresponding to one of thestates, say �1, is zero. The IPPs are the most bursty of all MMPPs with two statesand are therefore expe
ted to produ
e the most deviating results from the Poisson result.For instan
e, the algorithm under M(�; 2�1; 30; 30) input is stable for � = 3�1=2 < :359;unstable � > :36. That is, the stability point is found in the interval [:359; :36℄.� = �2=2 S=U ds=dt0.3250 S 0.06730.3400 S 0.02220.3450 S 0.00720.3466 S 0.00250.3480 U 0.99650.3500 U 0.98430.3600 U 0.9279Table 3.3: Stability under M(0; �; 300; 300)input traÆ
.

� = �2=8 S=U ds=dt0.3400 S 0.02020.3450 S 0.00560.3460 S 0.00270.3466 S 0.00090.3480 U 0.99520.3500 U 0.98560.3600 U 0.9449Table 3.4: Stability under M(0; �; 210; 30)input traÆ
.



44 CHAPTER 3. BASIC BINARY CTM WITH FREE ACCESS� = v1=(L + 1) v1 S=U ds=dt0.344800 2 S 0.01610.347826 2 S 0.00260.348432 2 U 0.99870.350900 2 U 0.90080.342800 3 S 0.02590.349040 3 S 0.00240.349854 3 U 0.99260.352900 3 U 0.84460.347800 4 S 0.00330.348432 4 S 0.00120.349040 4 U 0.99160.350900 4 U 0.9287Table 3.5: Stability under the Bulk arrivalpro
ess.

� =P vi=(L + 2) P vi S=U ds=dt0.348800 2+1 S 0.00460.349854 2+1 S 0.00050.350050 2+1 U 0.99690.350400 2+1 U 0.98030.348400 3+1 S 0.00170.348735 3+1 S 0.00060.349040 3+1 U 0.99530.350900 3+1 U 0.93300.344800 2+2 S 0.00900.346620 2+2 S 0.00260.347826 2+2 U 0.98380.348400 2+2 U 0.9631Table 3.6: Stability under the Bulk arrivalpro
ess.Tables 3.3 and 3.4 show that the interval [:3466; :348℄ in
ludes the stability point of boththe M(0; �; 300; 300) and M(0; �; 210; 30). Thus, although the se
ond IPP is by far themore bursty of the two|be
ause the arrivals are 
on
entrated in 12:5% of the time slots
ompared to the 50%|their stability point di�ers less than :0014. As for the in
uen
eof 
orrelation, we found that the interval [:348; :349℄ 
ontains the stability point of theIPP with a = b = 30, i.e., the M(0; �; 30; 30) pro
ess. Comparing this with the resultsin Table 3.3, we see that 
orrelation slightly de
reases the stability of the basi
 binaryCTM algorithm with free a

ess (in our example less than :0024). This observation was
on�rmed by other numeri
al examples.3.7.4 The Bulk Arrival Pro
essThe Bulk arrival pro
ess is de�ned in Se
tion 2.1.3. Table 3.5 presents the results form = 1 with v = [2℄; [3℄ and [4℄; whereas Table 3.6 holds the results for m = 2 withv = [2; 1℄; [3; 1℄ and [2; 2℄. For ea
h of these pro
esses we gradually de
rease L, i.e., in
reasethe arrival rate �, until the basi
 binary CTM algorithmwith free a

ess be
omes unstable.Perhaps somewhat surprisingly: the v = [2; 2℄ pro
ess is the �rst of the six pro
esses tobe
ome unstable (� 2 [:346620; :347826℄), then the v = [2℄ pro
ess, followed by either thev = [4℄ or the v = [3; 1℄ pro
ess (we did not attempt to distinguish these two pro
esses),next the v = [3℄ pro
ess and �nally the v = [2; 1℄ pro
ess. From these results it followsthat it is not always the most bursty pro
ess that results in the lowest stability point.3.7.5 Summary for Fair CoinsThe stability point of the basi
 binary CTM algorithm with free a

ess under D-BMAPinput depends upon the exa
t de�nition of the input pro
ess. For instan
e, the dis
retetime Poisson pro
ess, the Erlang pro
esses, the Markov modulated Poisson pro
esses and
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esses all result in a di�erent stability point. Moreover, it is oftendiÆ
ult to state a priori|from the 
hara
teristi
s of the D-BMAPs|whi
h of two inputpro
esses results in a higher stability point, i.e., maximum stable throughput. Hen
e, thestability results of the basi
 binary CTM algorithm with blo
ked a

ess are mu
h moretransparent as opposed to the free a

ess s
heme (see Theorems 2.1 and 2.2 in Se
tion2.3).On the other hand, the stability point, i.e., maximum stable throughput, of the free a

esss
heme under D-BMAP input is never far below the stability point under Poisson input(in our examples: at most :014). Thus, the basi
 binary CTM algorithm with free a

essseems to maintain its good stability 
hara
teristi
s under D-BMAP input traÆ
. Clearly,we 
an always de�ne a D-BMAP with a load 0 � � � 1 for whi
h the CTM algorithmwith free a

ess is stable, for example a D-MAP. Also, although 
orrelation in the inputtraÆ
 redu
es the stability point somewhat, it does not devastate the stability.An interesting open problem related to this is whether there exists an arrival rate �minsu
h that the basi
 binary CTM proto
ol with free a

ess (with p = 1=2) is stable underall primitive D-BMAPs with an arrival rate � < �min. During the numeri
al trials, wedid not �nd a D-BMAP with an arrival rate smaller than � = :34657 = ln(2)=2 for whi
hthe basi
 binary CTM algorithm with free a

ess be
ame unstable. For instan
e, thev = [2; 2; 2; 2℄, v = [2; 2; 2; 2; 2℄, v = [5℄, v = [10℄ Bulk arrival pro
esses, the IPP witha = b = 3000 and many others turned out to be stable for an arrival rate of ln(2)=2. Thevalue ln(2)=2 is no stranger to the basi
 binary CTM algorithm be
ause in Se
tion 2.3we have shown that the basi
 binary CTM algorithm with blo
ked a

ess under primitiveD-BMAP input traÆ
 is stable for � < ln(2)=2� 10�5; unstable for � > ln(2)=2 + 10�5.Moreover, the expe
ted length of a busy period initiated by a 
ollision of n stationsin
reases asymptoti
ally as 2n= ln(2) provided that no new arrivals o

ur. This resultalso indi
ates that the Bulk arrival pro
ess v = [n℄ with a load smaller than ln(2)=2 isunlikely to 
ause instability even for large values of n and L. The question raises whetherit is at all possible to �nd a primitive D-BMAP with an arrival rate � < ln(2)=2 thatmakes the basi
 binary CTM algorithm with free a

ess unstable. If not, the basi
 binaryCTM algorithm with free a

ess results in a maximum stable throughput that is at leastas good as the 
orresponding s
heme with blo
ked a

ess under primitive D-BMAP traÆ
.We therefore formulate the following 
onje
ture:Conje
ture 3.1 The basi
 binary CTM algorithm with free a

ess is is stable underprimitive (Bn)n D-BMAP traÆ
 if1. � < ln(2)=2, with � the mean arrival rate,2. (Bn)n has a �nite number of states l.3.7.6 Using Biased CoinsFair 
oins are the optimal 
oins for the basi
 binary CTM algorithm 
ombined withboth the free and blo
ked a

ess strategy provided that the input pro
ess is Poisson (see



46 CHAPTER 3. BASIC BINARY CTM WITH FREE ACCESSPP (�) M(0; �; 30; 30) ER(�; 2)p �(ds) p �(ds) p �(ds).6000 .351 .5500 .343 .6000 .359.5500 .358 .5000 .348 .5500 .364.5200 .359 .4800 .349 .5300 .365 (.0211).5100 .360 (.0012) .4700 .350 (.00047) .5200 .365 (.0264).5000 .360 (.0023) .4650 .350 (.00062) .5150 .365 (.0270).4900 .360 (.0012) .4600 .350 (.00060) .5100 .365 (.0261).4800 .359 .4500 .350 (.00011) .5000 .365 (.0199).4500 .358 .4400 .349 .4800 .364.4000 .351 .4200 .348 .4500 .362Table 3.7: The in
uen
e of using biased 
oins on the stability of the basi
 binary CTMalgorithm with free a

ess.Chapter 1). Moreover, the stability under primitive D-BMAP traÆ
 is identi
al to thePoisson stability (see Se
tion 2.3) if the blo
ked a

ess strategy is used. Hen
e, fair 
oinsare again optimal. In this se
tion, we investigate whether this result is also valid if thefree a

ess strategy is used|that is, whether the basi
 binary CTM algorithm with freea

ess performs best under D-BMAP input traÆ
 if fair 
oins are used (p = 1=2).For ea
h arrival pro
ess a 
onsidered, we vary the probabilities p and q = 1 � p, anddetermine the stability point that 
orresponds to the 
ouple (a; p). De�ne � as a multipleof :001 su
h that the interval ℄�; �+ 0:001[ that holds the stability point of (a; p). Whenthe stability point of di�erent 
ouples (a; p) lies within the same interval ℄�; � + 0:001[,we also add the stability measure ds to determine whi
h value for p performs best. Alarger value for ds implies a more stable Markov 
hain. Table 3.7 represents the stabilitypoints, i.e., maximum stable throughput, as a fun
tion of p for the basi
 binary CTMalgorithm with free a

ess under Poisson input traÆ
, Markov modulated Poisson inputtraÆ
 and Erlang input traÆ
. The Poisson result obtained by Mathys and Flajolet [43℄is 
on�rmed by our analyti
al model.Table 3.7 indi
ates that the optimal value for p for the ER(�; 2) lies somewhere in theinterval ℄:51; :52[, whereas the optimal value for the M(0; �; 30; 30) input traÆ
 is foundin the range ℄:46; :47[. We already mentioned that the optimum for Poisson input isp = :5. Thus, the more bursty the input traÆ
 the lower the optimal value of p be
omes.Intuitively, this 
an be understood as follows: the more bursty the input traÆ
 be
omesthe better it is to postpone the retransmission of some of the 
olliding pa
kets. Forinstan
e, if a 
ollision o

urs, in slot t, under Erlang traÆ
 it is more likely that no newarrivals will o

ur in the next slot, slot t+1, as opposed to the slots t+i; i > 1. Therefore, itis better to 
hoose p slightly larger than :5. Whereas for the Markov modulated PoissontraÆ
 it is more likely that the D-BMAP is transmitting at a higher rate whenever a
ollision o

urs and therefore it might be interesting to postpone some of the arrivals thato

ur during this high rate period to a period where a lower input rate is being used (i.e.,the probability that new arrivals o

ur in slot t+1 is larger than in slot t+ i; i > 1). Thisline of reasoning also 
orresponds with the Poisson result: if a 
ollision o

urs in slot t,



3.8. CONCLUSIONS 47the probability of having a new arrival in slot t + i is identi
al for all i > 0 (= 1� e��).Therefore, there is no reason to prefer the next slot above any of the other slots, i.e., p = :5is the optimum. Another remark is that the stability point of a single state D-BMAP(i.e., l = 1) arrival pro
ess remains identi
al if we swap the value for p and q, e.g., thePoisson results in Table 3.7. Indeed, swapping both values 
hanges the order in whi
hthe two sets of 
olliding stations are resolved. The order is unimportant if the number ofarrivals o

urring in 
onse
utive time slots is independent.In 
on
lusion, for bursty and 
orrelated arrival patterns higher throughput results 
an bea
hieved by de
reasing p. It is however hard to predi
t the optimal value for p be
ause itdepends upon the statisti
al properties of the arrival pro
ess.3.8 Con
lusionsIn this 
hapter we demonstrated that the stability of the basi
 binary CTM algorithmwith free a

ess under D-BMAP input traÆ
 
an be determined by 
onstru
ting a Quasi-Birth-Death (QBD) Markov 
hain with a tree stru
ture. The following 
on
lusions weredrawn from the numeri
al examples. First, the maximum stable throughput a
hievedby the basi
 binary CTM algorithm with free a

ess di�ers from one arrival pro
ess tothe other. Hen
e, the stability is not as transparent as its blo
ked a

ess 
ounterpart(see Theorem 2.1 and 2.2). Se
ond, 
orrelated and bursty arrival pro
esses tend to resultinto a smaller maximum stable throughput. However, the maximum stable throughputis never far below the Poisson result. Moreover, we did not �nd a primitive D-BMAPwith an arrival rate � < ln(2)=2 for whi
h the basi
 binary CTM algorithm with freea

ess (p = 1=2) is unstable. The question raises whether it is at al possible to �ndsu
h a primitive D-BMAP. If not, the basi
 binary CTM algorithm with free a

ess (andfair 
oins) outperforms its blo
ked a

ess 
ounterpart (see Se
tion 2.3) under primitiveD-BMAP input traÆ
. We believe that this is the 
ase be
ause we managed to �nd manydi�erent arrival pro
esses with a rate �; ln(2)=2 = :34657 < � < :348, that resulted in anunstable algorithm, but none with � < ln(2)=2. Moreover, in
reasing the 
orrelation orburstiness of a spe
i�
 arrival pro
ess often resulted in a de
rease of the maximum stablethroughput that seemed to 
onverge to the value ln(2)=2, e.g., the Markov modulatedPoisson pro
esses. Nevertheless, it 
ould be that we have been looking at the wrong setof arrival pro
esses ,. Finally, fair 
oins are no longer the optimal 
oins for the basi
binary CTM algorithm with free a

ess under D-BMAP input, as opposed to the Poissoninput 
ase or the blo
ked a

ess s
heme. The 
orrelation between the number of arrivalsin slot t and t+ 1 is an important indi
ation as to whi
h 
oins are optimal. For instan
e,if there is no 
orrelation one expe
ts fair 
oins to be optimal, e.g., the Poisson pro
ess;while the larger, resp. smaller, the 
orrelation is the smaller, resp. larger, the optimal pis expe
ted to be.





Chapter 4The Basi
 and Modi�ed Q-ary CTMAlgorithm with Free A

ess
In this 
hapter we extend the te
hniques presented in the previous 
hapter in order tostudy the stability of the basi
 and modi�ed Q-ary CTM algorithm with free a

ess.Thus, we indi
ate how to 
onstru
t a tree stru
tured QBD Markov 
hain that is re
urrent,resp. transient, whenever the tree algorithm of interest is stable, resp. unstable. We startwith a detailed des
ription of the basi
 and the modi�ed Q-ary CTM algorithm withfree a

ess. Next, in Se
tion 4.2, we introdu
e the tree stru
tured QBD Markov 
hainsof interest. Numeri
al results are presented in Se
tion 4.3 and 
on
lusions are drawn inSe
tion 4.4. The work presented in this 
hapter is to appear in [69℄4.1 The Basi
 and Modi�ed Q-ary CTM AlgorithmIn a �rst subse
tion we des
ribe the basi
 Q-ary CTM algorithm with free a

ess, in ase
ond the modi�ed Q-ary CTM algorithm with free a

ess. We start with a summary ofthe 
ommon features of both algorithms. A single 
hannel (bus, 
able, broad
ast medium)is shared among many users (sour
es, nodes, stations) that transmit pa
ketized messages.Time is slotted and transmissions 
an only o

ur at the beginning of a time slot. Ea
htime slot has a �xed duration equal to the time required to transmit a pa
ket. Ea
htransmission is within the re
eption range of every user (in a wireless 
entralized LANenvironment the Base Station 
ould broad
ast the result of ea
h uplink transmission).The CTM algorithm is a 
ollision resolution algorithm (CRA) for whi
h ea
h user strivesto retransmit its 
olliding pa
ket till it is 
orre
tly re
eived. The users have to resolvethis 
ontention without the bene�t of any additional sour
e of information on other users'a
tivity.The CTM proto
ol separates users that 
ollide re
ursively|a

ording to some random-ization pro
edure|into distin
t groups. The users of the �rst group retransmit in thenext slot, while the users of the i-th group, i > 1, wait until the �rst i � 1 groups areresolved. The CTM algorithm is 
onveniently implemented by letting ea
h user maintain
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urrent sta
k level (that is, an integer value). Users that have a pa
ket ready to transmitare referred to as a
tive users. Ea
h a
tive user maintains a 
urrent sta
k level (an integervalue) and at the end of ea
h time slot the 
urrent sta
k level is updated. The value ofthe 
urrent sta
k level de�nes when and if a stations is allowed to (re)transmit a pa
ket.The basi
 and modi�ed Q-ary CTM algorithms with free a

ess use a di�erent pro
edureto update the 
urrent sta
k level.4.1.1 The Basi
 Q-ary CTM Algorithm with Free A

essThe 
urrent sta
k level, that is maintained by ea
h a
tive user, is updated as follows:� An a
tive user transmits in a time slot t whenever its 
urrent sta
k level for slott is equal to zero. A user that be
ame a
tive during time slot t � 1 initializes the
urrent sta
k level for slot t at zero.� At the end of a time slot t in whi
h no 
ollision o

urs, users with a sta
k leveli; i > 0; for slot t set their 
urrent sta
k level for slot t+1 at i� 1 (while a possiblesu

essful user be
omes ina
tive).� At the end of a time slot t in whi
h a 
ollision o

urs, all users with a 
urrent sta
klevel i; i > 0, for slot t set their 
urrent sta
k level for slot t+ 1 at i+Q� 1. Userswith a 
urrent sta
k level for slot t equal to zero split into Q distin
t groups: a userjoins the i-th group with a probability pi�1. Users that join the i-th group set their
urrent sta
k level for slot t + 1 equal to i� 1.Figure 3.1 shows the state diagram for the basi
 binary, i.e., Q = 2, CTM algorithm withfree a

ess; whereas Figure 3.2 presents an example of the transmission pro
ess for Q = 2.Figure 3.2 also in
ludes a list of group numbers (1 or 2) for ea
h pa
ket to indi
ate whi
hgroup the pa
ket joins after ea
h 
ollision (in whi
h it is involved). Thus, the list 1; 2; : : :for pa
ket E indi
ates that pa
ket E joins the �rst group as a result of its �rst 
ollisionand the se
ond as a result of its se
ond 
ollision. Sele
ting one of the Q distin
t groups(after a 
ollision) 
an be seen as 
ipping a Q-sided 
oin. A distin
tion is made betweenfair 
oins, i.e., p0 = : : : = pQ�1 = 1=Q, and biased 
oins. We will 
onsider both fair andbiased 
oins (we do assume that all the stations use the same 
oins, either fair or biased).4.1.2 The Modi�ed Q-ary CTM Algorithm with Free A

essThe modi�ed CTM algorithm is a well-known improvement of the basi
 CTM algorithmthat skips so-
alled doomed slots (see Chapter 1). Doomed slots are slots for whi
h alla
tive stations know a priori that the above-mentioned operation of the basi
 Q-ary CTMalgorithm would result in a 
ollision. In order to implement this optimization, ternaryfeedba
k (empty, su

essful or 
ollision slot) is required. As opposed to the basi
 CTMalgorithm where only binary feedba
k (
ollision or not) is required. The idea is thefollowing.



4.2. ANALYSIS OF THE BASIC AND MODIFIED Q-ARY CTM ALGORITHM 51Suppose that a 
ollision is followed by Q� 1 empty slots. This means that all the pa
ketsinvolved in the 
ollision sele
ted the Q-th group. Using the basi
 CTM algorithm, thesestations would transmit in the next slot (together with possible new
omers), generating aguaranteed 
ollision. The modi�ed s
heme improves the basi
 s
heme by omitting theseslots and by splitting the set of stations that would otherwise result in a guaranteed
ollision into Q subsets. If the next Q � 1 slots are again empty, we would get anotherguaranteed 
ollision and therefore the next slot is again skipped. Thus, whenever, forsome i � 1, the last 1+ i(Q� 1) slots 
ontain a 
ollision followed by i(Q� 1) empty slots,this otherwise-wasted slot 
an be skipped by having all stations immediately a
t as if ithad o

urred. This modi�ed s
heme is 
onveniently implemented using a 
urrent sta
klevel and a simple 
ount down 
ounter.Figure 4.1 presents an example of the transmission pro
ess for Q = 3, it also in
ludesa list of group numbers (1, 2 or 3) for ea
h pa
ket to indi
ate whi
h group the pa
ketjoins after ea
h 
ollision (in whi
h it is involved). Thus, the list 2; 3; 1; 1; : : : for pa
ket Dindi
ates that pa
ket D joins the se
ond group as a result of its �rst 
ollision, the thirdas a result of its se
ond 
ollision, the �rst as a result of its third 
ollision (the skipped
ollision) and again the �rst as a result of its fourth 
ollision.
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Figure 4.1: Example of the Transmission Pro
ess: CSL = Current Sta
k Level
4.2 Analysis of the Basi
 and Modi�ed Q-ary CTMAlgorithmThis se
tion is subdivided in four parts. Ea
h part des
ribes a tree stru
tured QBDMarkov 
hain that is stable, resp. unstable, whenever either the basi
 or the modi�ed



52 CHAPTER 4. Q-ARY TREE ALGORITHMS AND FREE ACCESSCTM algorithm, for spe
i�
 values of Q, is stable, resp. unstable. The four parts aresummarized below:1. the basi
 CTM algorithm with Q > 2,2. the modi�ed CTM algorithm with Q = 2,3. the modi�ed CTM algorithm with Q = 3,4. the modi�ed CTM algorithm with Q > 3.With ea
h new part some additional 
omplexity is introdu
ed. In ea
h of these parts newpa
kets are generated a

ording to a D-BMAP 
hara
terized by the matri
es (Bn)n (seeChapter 2) as follows. Assume that the D-BMAP is in some state i; 1 � i � l, at timet. Then, with a probability (Bn)i;j, the state at time t + 1 is j and n new pa
kets aregenerated at the boundary of slot t� 1 and t. Due to the free a

ess these n new pa
ketsare transmitted (for the �rst time) in time slot t by their 
orresponding stations.4.2.1 The Basi
 CTM algorithm with Q > 2As in the previous 
hapter, we 
onstru
t a tree stru
tured QBD Markov 
hain that allowsus to study the stability of the basi
 CTM algorithm with free a

ess, but now for Q > 2.In the remainder of this se
tion we indi
ate how to 
onstru
t this Markov 
hain andhow to 
al
ulate the matri
es Dk, Us, Ak;s and F (see Se
tion 3.2) that 
hara
terize theMarkov 
hain. These matri
es are the input variables of the iterative algorithm des
ribedin Se
tion 4.2.5.Let qi; 0 � i � Q� 1; be the probability that a station in
reases its 
urrent sta
k level toi, as a result of the 
oin 
ipping pro
edure, provided that it does not in
rease its 
urrentsta
k level to a value above i. Hen
e,qi = pi1�Pj>i pj ; (4.1)where pi; 0 � i � Q� 1; is the probability that a station in
reases its 
urrent sta
k levelto i as a result of the 
oin 
ip.Consider the sto
hasti
 pro
ess (Xt; Yt; Zt), where Xt denotes the ba
klogged string 
on-sisting of the status of all ba
klogged stations at time slot t, Yt denotes the number ofstations that transmit in time slot t and Zt denotes the state of the input D-BMAP at theend of time slot t, i.e., at the boundary of slot t and t+1. For instan
e, when Xt = sk : : : s1there arePi si ba
klogged stations, i.e., stations with a 
urrent sta
k level for slot t equalto i > 0, and for si � 0 of them the 
urrent sta
k level for slot t equals i. Denote (Yt; Zt)as the auxiliary variable Nt. In the previous 
hapter we have shown that this sto
hasti
pro
ess (to be 
orre
t its approximation (Xdt ; Ndt )) is a tree stru
tured QBD Markov 
hainif Q = 2. For Q > 2, this pro
ess is still a tree stru
tured Markov 
hain but it is not ofthe QBD type. For instan
e, after ea
h slot in whi
h a 
ollision o

urs, Q� 1 integers are



4.2. ANALYSIS OF THE BASIC AND MODIFIED Q-ARY CTM ALGORITHM 53added to the ba
klogged string. These Q � 1 integers represent the number of stationsthat in
rease their 
urrent sta
k level to 1; 2; : : :, Q� 1 as a result of their 
oin 
ippingpro
edure.Therefore, we 
onstru
t an expanded Markov 
hain (Xt;Yt;Zt;Qt) and denote (Yt;Zt;Qt)as the auxiliary variable Nt. This expanded Markov 
hain is 
onstru
ted su
h that it isa tree stru
tured QBD Markov 
hain. The te
hnique used to 
onstru
t this expandedMarkov 
hain is similar to the method used by Ramaswami [56℄ in order to redu
e anM/G/1-type Markov 
hain to a QBD Markov 
hain. The idea behind this expandedMarkov 
hain is that whenever a transition o

urs that adds Q � 1 integers to the nodevariable Xk, we split this transition into Q � 1 transitions that ea
h add one integer tothe node variable Xk.Assume a given realization (Xk(w); Nk(w)) of the Markov 
hain (Xk; Nk). The expanded
hain (Xt;Nt) with Nt = (Yt;Zt;Qt) is 
onstru
ted as follows (the range of Qt is 0 toQ� 2). The random variable Qt keeps tra
k of how many integers remain to be added tothe node variable Xt.Initial state: If (X0(w); N0(w)) = (J; (i; j)), then set (X0(w);N0(w)) = (J; (i; j; 0)). Also,set k = 0 and t = 0, k represents the steps of the original 
hain and t represents the stepsof the expanded 
hain. We will establish a one-to-one 
orresponden
e between the state(J; (i; j)) of the original 
hain and the state (J; (i; j; 0)) of the expanded 
hain.Transition Rules: We 
onsider three possibilities: Qt(w) = 0, Qt(w) > 1 and Qt(w) = 1.For Qt(w) = 0, 
onsider (Xk(w); (Yk(w); Zk(w))), and do one of the following:Case 1: This 
ase 
orresponds to the situation where the k-th time slot does not hold a 
ol-lision, i.e., Yk(w) � 1. We set Xt+1(w) = Xk+1(w) and Nt+1(w) = (Yk+1(w); Zk+1(w); 0).Thus, transitions that do not 
orrespond to a 
ollision remain identi
al. Next, both t andk are in
reased by one.Case 2: This 
ase 
orresponds to the situation where the k-th time slot does hold a 
ol-lision, i.e., Yk(w) > 1. Therefore, Xk+1(w) 
an be written as Xk(w) + sQ�1sQ�2 : : : s2s1.Then, (Xt+1(w);Nt+1(w)) = (Xk(w)+sQ�1; (Yk(w)�sQ�1; Zk(w); Q�2)). Indeed, Qt+1(w)= Q�2 be
ause the Q�2 integers sQ�2 : : : s1 remain to be added to Xt+1. Next, in
rementboth k and t by one.ForQt(w) > 1, Xk(w) 
an be written as J+sQ�1sQ�2 : : : s2s1, set Xt+1(w) = Xt(w)+sQt(w)and Nt+1(w) = (Yt(w) � sQt(w);Zt(w);Qt(w) � 1). Next, in
rease t by one and do notalter the value of k.For Qt(w) = 1, Xk(w) 
an be written as J + sQ�1sQ�2 : : : s2s1, set Xt+1(w) = Xt(w) + s1and Nt+1(w) = (Yk(w); Zk(w); 0). Again, in
rease t by one and do not alter the value ofk.The expanded Markov 
hain (Xt;Nt) is a tree stru
tured QBD Markov 
hain. The onlyproblem is that every node in (Xt;Nt) has an in�nite number of 
hildren and the auxiliaryvariable Nt has an in�nite number of states. As in the previous 
hapter, we 
an resolvethis problem by approximating the expanded 
hain by the 
hain (X dt ;N dt ) with N dt =(Ydt ;Zt;Qt)) that is obtained by putting a maximum d on the number of stations that
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al 
urrent sta
k level.The expanded Markov 
hain (X dt ;N dt ) does not allow transitions between sibling nodes.Therefore, the entries of the matri
es Ak;s are zero. Looking at the transition rulesdes
ribed above, the transition blo
ks Dk and Us of the Markov 
hain (X dt ;N dt ) are thefollowing.The matri
es Dk hold the transition probabilities that the 
hain (X dt ;N dt ) goes from state(J + k; (i; j;m)) to the state (J; (i0; j 0; m0)). This 
an only happen if m = 0, m0 = 0 andi � 1. Hen
e,Dk((i; j;m); (i0; j 0; m0)) = 8><>:(Bi0�k)j;j0 m = 0; m0 = 0; i � 1; i0 � k; i0 < d;Pn�d�k(Bn)j;j0 m = 0; m0 = 0; i � 1; i0 � k; i0 = d;0 otherwise; (4.2)where (Bn)j;j0 holds the probability that n new arrivals o

ur and that the input D-BMAP
hanges its state from j to j 0 (see Chapter 2). Noti
e that Equation (4.2) is identi
al toEquation (3.1).The matri
es Us hold the transition probabilities that the 
hain (X dt ;N dt ) goes from state(J + k; (i; j;m)) to the state (J + ks; (i0; j 0; m0)). We separate three di�erent 
ases. First,assume that m = 0. Hen
e,Us((i; j; 0); (i0; j 0; m0)) = (CisqsQ�1(1� qQ�1)i�s(Il)j;j0 m0 = Q� 2; i > 1; i0 = i� s;0 otherwise; (4.3)where Il is an l� l unity matrix. We simply add the integer, that denotes the number of
olliding stations that in
rease their 
urrent sta
k level to Q� 1, to the ba
klogged string.Se
ond, for m = 1, we getUs((i; j; 1); (i0; j 0; m0)) = 8>>>><>>>>:Cisqs1(1� q1)i�s(Bi0�(i�s))j;j0 m0 = 0;i � s; d > i0 � i� s;Cisqs1(1� q1)i�sPn�d�(i�s)(Bn)j;j0 m0 = 0; i � s; i0 = d;0 otherwise: (4.4)We add the integer, that denotes the number of 
olliding stations that in
rease their
urrent sta
k level to 1, to the ba
klogged string and allow for new arrivals to join thes
heme.Finally, for Q� 1 > m > 1, we haveUs((i; j;m); (i0; j 0; m0)) = (Cisqsm(1� qm)i�s(Il)j;j0 m0 = m� 1; i0 = i� s;0 otherwise: (4.5)We add the integer, that denotes the number of 
olliding stations that in
rease their
urrent sta
k level to m, to the ba
klogged string.



4.2. ANALYSIS OF THE BASIC AND MODIFIED Q-ARY CTM ALGORITHM 554.2.2 The Modi�ed CTM Algorithm with Q = 2Consider the sto
hasti
 pro
ess (Xt; Yt; Zt), where Xt denotes the ba
klogged string 
on-sisting of the status of all ba
klogged stations at time slot t, Yt denotes the number ofstations that transmit in time slot t and Zt denotes the state of the input D-BMAP atthe end of time slot t, i.e., the boundary of slot t and t + 1. Let Nt = (Yt; Zt). For themodi�ed binary CTM algorithm with free a

ess, the sto
hasti
 pro
ess (Xt; Nt) is notMarkovian. We illustrate this by means of an example. Let Xt = J +k; k > 1 and Yt = 0.This implies that the t-th time slot is empty and that k stations have a 
urrent sta
k levelfor slot t equal to one. Consider the following two possibilities for Xt�1.First, let Xt�1 = J and Yt�1 = k, in this 
ase slot t � 1 holds a 
ollision of exa
tly kstations. A state with Xt = J + k and Yt = 0 is rea
hed if ea
h of the k 
olliding stationsin
rements its 
urrent sta
k level to one as a result of the 
oin 
ip (and no new arrivalso

ur). After seeing that slot t is empty, all stations know that slot t+1 would result in a
ollision if the basi
 s
heme is used, i.e., slot t+1 is a doomed slot. As a result, all stationsimmediately a
t as if the 
ollision did o

ur. Therefore, it is possible that Xt+1 = J + s(if s of the k stations de
ide to set their 
urrent sta
k level for slot t+1 to one as a resultof the 
oin 
ip).Se
ond, let Xt�1 = J + k + 0 and Yt�1 = 1, in whi
h 
ase slot t � 1 holds a su

essfultransmission. A state with Xt = J+k and Yt = 0 is rea
hed if no new arrivals o

ur. Dueto the su

ess in slot t�1, the stations do not 
onsider slot t+1 as a doomed slot, and the
ollision in slot t+ 1 will take pla
e. This implies that Xt+1 is equal to J . In 
on
lusion,the state of the sto
hasti
 pro
ess (Xt; Nt) at time t + 1 is not solely determined by thestate a time t, whi
h implies that (Xt; Nt) with Nt = (Yt; Zt) is not Markovian.Nevertheless, from the sto
hasti
 pro
ess (Xt; Nt), we 
an 
onstru
t a tree stru
turedQBD Markov 
hain by adding a value, say �1, to the range of Yt. Yt = �1 then impliesthat slot t is empty and that slot t+1 would have been a doomed slot (if we were using thebasi
 s
heme). While Yt = 0 implies that slot t is empty and slot t+1 is not 
onsidered tobe a doomed slot. Denote the sto
hasti
 pro
ess that is obtain by adding �1 to the rangeof Yt as (Xt;Mt) with Mt = (Yt; Zt). The transitions to and from a state with Yt = �1are as follows. We enter in a state with Yt = �1 whenever a transition o

urs from a
ollision slot to an empty slot. We stay in a state with Yt = �1 as long as the subsequentslots are empty; otherwise we enter a state with Yt 6= �1.The sto
hasti
 pro
ess (Xt;Mt) 
an be shown to be a tree stru
tured QBD Markov 
hain(with similar arguments as in Se
tion 3.3.2). However (Xt;Mt) does allow transitionsbetween sibling nodes. This happens whenever an otherwise doomed slot is skipped. Itis possible to use a more 
omplex (and time 
onsuming) iterative formula (
ompared tothe one in Se
tion 4.2.5), that determines whether a tree stru
tured Markov 
hain, thatdoes allow transitions between sibling nodes, is stable. Instead, we 
onstru
t a new treestru
tured QBD Markov 
hain (Xt;Mt) with Mt = (Yt;Zt) that only uses transitionsto parent and 
hild nodes. The range of the random variable Yt equals f(0; n) j �1 �ng [ f(1; n) j 2 � ng. We will establish a one-to-one 
orresponden
e between the states(J; (i; j)) of the Markov 
hain (Xt;Mt) and the states (J; ((0; i); j)) of (Xt;Mt). The idea
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hain (Xt;Mt) is that a transition from a node J + k to a nodeJ + s is split into two transitions: a �rst one from node J + k to J , followed by a se
ondone from node J to J + s. When the transition from node J + k to J takes pla
e we storethe value of k in Yt by setting Yt = (1; k). The fa
t that the �rst 
omponent of Yt is equalto one indi
ates that the next transition has to be the se
ond step of a split transition.Assume a given realization (Xk(w);Mk(w)) of the Markov 
hain (Xk;Mk). The expanded
hain (Xt;Mt) is 
onstru
ted as follows.Initial state: If (X0(w);M0(w)) = (J; (i; j)), then set (X0(w);M0(w)) = (J; ((0; i); j)).Also, set k = 0 and t = 0, k represents the steps of the original 
hain and t represents thesteps of the expanded 
hain.Transition Rules: We 
onsider two possibilities: Yt(w) = (0; i) and Yt(w) = (1; i).For Yt(w) = (0; i), 
onsider (Xk(w);Mk(w)) with Mk(w) = (Yk(w); Zk(w)), and do one ofthe following:Case 1: This 
ase 
orresponds to the situation where the k-th time slot holds a 
ollision.We set Xt+1(w) = Xk+1(w) and Mt+1(w) = ((0; Yk+1(w)); Zk+1(w)). Thus, transitionsthat 
orrespond with a 
ollision remain identi
al. Next, both t and k are in
reased byone.Case 2: This 
ase 
orresponds to the situation where the k-th time slot does not holda 
ollision. This implies that Yk(w) = 0; 1 or �1. First, 
onsider Yk(w) = �1. ThenXk(w) 
an be written as Xk(w) = J + s with s > 1 and we get (Xt+1(w);Mt+1(w)) =(J; ((1; s); Zk(w))). Se
ond, for Yk(w) 6= �1, we get (Xt+1(w);Mt+1(w)) = (Xk+1(w);((0; Yk+1(w)); Zk+1(w))). Hen
e, the transitions remain identi
al if Yk(w) 6= �1. Next,in
rement both k and t by one.For Yt(w) = (1; i), Xk(w) 
an be written as J+u, set Xt+1(w) = Xt(w)+u andMt+1(w) =((0; Yk(w)); Zk(w)). Next, in
rease t by one and do not alter the value of k.As in the previous subse
tion, we make the number of 
hildren in ea
h node and thenumber of states of the auxiliary variable Mt �nite by putting a maximum d on thenumber of stations that are allowed to have the same 
urrent sta
k level. Looking at thetransitions rules, the transition blo
ks Dk; 0 � k � d; and Us; 0 � s � d, are the following.The matri
es Dk hold the transition probabilities that the 
hain (X dt ;Mdt ) goes from state(J + k; ((m; i); j)) to the state (J; ((m0; i0); j 0)). For m = 0 and i 6= �1, we getDk(((0; i); j); ((m0; i0); j 0)) = 8><>:(Bi0�k)j;j0 m0 = 0; i � 1; i0 � k; i0 < d;Pn�d�k(Bn)j;j0 m0 = 0; i � 1; i0 � k; i0 = d;0 otherwise: (4.6)Noti
e, Equation (4.6) is identi
al to Equation (4.2). For m = 0 and i = �1, we setDk(((0;�1); j); ((m0; i0); j 0)) = 8>>><>>>:(Bi0�k)j;j0 k = 0 or 1; m0 = 0; i0 � k; i0 < d;Pn�d�k(Bn)j;j0 k = 0 or 1; m0 = 0; i0 � k; i0 = d;(Il)j;j0 k > 1; m0 = 1; i0 = k;0 otherwise; (4.7)



4.2. ANALYSIS OF THE BASIC AND MODIFIED Q-ARY CTM ALGORITHM 57where Il is an l � l identity matrix. A visit to one of the states (J + k; ((0;�1); j)),with k = 0 or 1, 
an never o

ur (the states are transient with an expe
ted returnprobability equal to 0). Nevertheless, we 
an still make use of the iterative s
heme inSe
tion 4.2.5 by making sure that the probability of eventually returning to a state of theform (J; ((m; i); j)) equals one. We realize this by making sure that the 
orrespondingrows of the matri
es D0 and D1 are sto
hasti
. This explains the somewhat unexpe
ted�rst two lines in the equation above (we a
t as if i = 0, but any sto
hasti
 row will do).For m = 1, all entries of Dk; 0 � k � d, are zero.The matri
es Us hold the transition probabilities that the 
hain (X dt ;Mdt ) goes from state(J + k; ((m; i); j)) to the state (J + ks; ((m0; i0); j 0)). For i 6= s, we getUs(((m; i); j); ((m0; i0); j 0)) = 8>>>><>>>>:Cisps1pi�s0 (Bi0�(i�s))j;j0 m0 = 0; i > 1;i > s; d > i0 � i� s;Cisps1pi�s0 Pn�d�(i�s)(Bn)j;j0 m0 = 0; i > 1; i > s; i0 = d;0 otherwise: (4.8)For i = s, we getUs(((m; i); j); ((m0; i0); j 0)) = 8>>><>>>:ps1(B0)j;j0 m0 = 0; i > 1; i0 = �1;ps1(Bi0)j;j0 m0 = 0; i > 1; 0 < i0 < d;ps1Pn�d(Bn)j;j0 m0 = 0; i > 1; i0 = d;0 otherwise: (4.9)Noti
e that Equation (4.8) and (4.9) are also valid for m = 0; 1 and for i = �1.4.2.3 The Modi�ed CTM Algorithm with Q = 3For the basi
 CTM algorithm with free a

ess we made use of two di�erent models, onefor Q = 2 and another for Q > 2. For the modi�ed CTM algorithm with free a

ess wemake use of three di�erent models. Ea
h model des
ription is only valid for the spe
i�edrange of Q. Rather than going through the entire pro
ess that is used to 
onstru
t theremaining two models, i.e., tree stru
tured QBD Markov 
hains, we restri
t ourselves toa des
ription of the state spa
e of the Markov 
hains and their 
orresponding transitionprobabilities. The te
hniques used to 
onstru
t both models are a 
ombination of themethods used to 
onstru
t the previous two models.The Markov 
hain (X dt ;Mdt ) with Mdt = (Ydt ;Zt), used to study the modi�ed ternaryCTM algorithm, is de�ned on the state spa
e 
d1� (
d2 �
3), where 
d1 = f;g[ fJ j J =sk : : : s1; 0 � sj � d; 1 � j � k; k � 1g, 
d2 = f(0; i) j �1 � i � dg [ f(1; i) j 0 � i �dg [ f(2; i) j 2 � i � dg and 
3 = fj j 1 � j � lg. The transition matri
es Dk; Us andAk;s are the following. The entries of the matri
es Ak;s are all zero. Thus, the 
hain doesnot allow transitions between sibling nodes.
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es Dk hold the transition probabilities that the 
hain (X dt ;Mdt ) goes from state(J + k; ((m; i); j)) to the state (J; ((m0; i0); j 0)). For m = 0 and i 6= �1, we getDk(((0; i); j); ((m0; i0); j 0)) = 8><>:(Bi0�k)j;j0 m0 = 0; i � 1; i0 � k; i0 < d;Pl�d�k(Bl)j;j0 m0 = 0; i � 1; i0 � k; i0 = d;0 otherwise; (4.10)For m = 0 and i = �1, we set
Dk(((0;�1); j); ((m0; i0); j 0)) = 8>>>>>><>>>>>>:

(B0)j;j0 k = 0 or 1; m0 = 0; i0 = �1;(Bi0)j;j0 k = 0 or 1; m0 = 0; d > i0 > 0;Pl�d(Bl)j;j0 k = 0 or 1; m0 = 0; i0 = d;(Il)j;j0 k > 1; m0 = 2; i0 = k;0 otherwise; (4.11)
where Il is a l� l identity matrix. For m = 1 and 2, all entries of Dk; 0 � k � d, are zero.The matri
es Us hold the transition probabilities that the 
hain (X dt ;Mdt ) goes from state(J + k; ((m; i); j)) to the state (J + ks; ((m0; i0); j 0)). For m = 0 or 2, we getUs(((m; i); j); ((m0; i0); j 0)) = (Cisqs2(1� q2)i�s(Il)j;j0 m0 = 1; i > 1; i � s; i0 = i� s;0 otherwise: (4.12)For m = 1 and i > 0, we getUs(((1; i); j); ((m0; i0); j 0)) = 8>>>><>>>>:Cisqs1(1� q1)i�s(Bi0�(i�s))j;j0 m0 = 0; i � s;d > i0 � i� s;Cisqs1(1� q1)i�sPl�d�(i�s)(Bl)j;j0 m0 = 0; i � s; i0 = d;0 otherwise: (4.13)While for m = 1 and i = 0, we haveUs(((1; 0); j); ((m0; i0); j 0)) = 8>>><>>>:(B0)j;j0 m0 = i = s = 0; i0 = �1;(Bi0)j;j0 m0 = i = s = 0; 0 < i0 < d;Pl�d(Bl)j;j0 m0 = i = s = 0; i0 = d;0 otherwise: (4.14)
4.2.4 The Modi�ed CTM Algorithm with Q > 3The Markov 
hain (X dt ;Mdt ) with Mdt = (Ydt ;Zt), used to study the modi�ed CTMalgorithm with Q > 3, is de�ned on the state spa
e 
d1� (
d2�
3), where 
d1 = f;g[fJ j
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d2 = f(m; i) j 0 � m � Q � 3;�1 � i �dg [ f(Q � 2; i) j 0 � i � dg [ f(Q � 1; i) j 2 � i � dg and 
3 = fj j 1 � j � lg. Thetransition matri
es Dk; Us and Ak;s are the following. The entries of the matri
es Ak;s areall zero. Thus, the 
hain does not allow transitions between sibling nodes.The matri
es Dk hold the transition probabilities that the 
hain (X dt ;Mdt ) goes from state(J + k; ((m; i); j)) to the state (J; ((m0; i0); j 0)). For m = 0 and i 6= �1, we getDk(((0; i); j); ((m0; i0); j 0)) = 8><>:(Bi0�k)j;j0 m0 = 0; i � 1; i0 � k; i0 < d;Pl�d�k(Bl)j;j0 m0 = 0; i � 1; i0 � k; i0 = d;0 otherwise; (4.15)For m = 0 and i = �1, we set
Dk(((0;�1); j); ((m0; i0); j 0)) = 8>>>>>><>>>>>>:

(B0)j;j0 k = 0 or 1; m0 = 0; i0 = �1;(Bi0)j;j0 k = 0 or 1; m0 = 0; d > i0 > 0;Pl�d(Bl)j;j0 k = 0 or 1; m0 = 0; i0 = d;(Il)j;j0 k > 1; m0 = Q� 1; i0 = k;0 otherwise; (4.16)
where Il is a l � l identity matrix. For m 6= 0, all entries of Dk; 0 � k � d, are zero.The matri
es Us hold the transition probabilities that the 
hain (X dt ;Mdt ) goes from state(J + k; ((m; i); j)) to the state (J + ks; ((m0; i0); j 0)). For m = 0 or Q� 1, we getUs(((m; i); j); ((m0; i0); j 0)) = 8><>:CisqsQ�1(1� qQ�1)i�s(Il)j;j0 m0 = Q� 2; i > 1;i � s; i0 = i� s;0 otherwise: (4.17)For m = 1 and i � 0,Us(((1; i); j); ((m0; i0); j 0)) = 8>>>><>>>>:Cisqs1(1� q1)i�s(Bi0�(i�s))j;j0 m0 = 0; i � s;d > i0 � i� s;Cisqs1(1� q1)i�sPl�d�(i�s)(Bl)j;j0 m0 = 0; i � s; i0 = d;0 otherwise: (4.18)For m = 1 and i = �1,Us(((1;�1); j); ((m0; i0); j 0)) = 8>>><>>>:(B0)j;j0 m0 = s = 0; i0 = �1;(Bi0)j;j0 m0 = s = 0; 0 < i0 < d;Pl�d(Bl)j;j0 m0 = s = 0; i0 = d;0 otherwise: (4.19)
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Us(((Q�2; i); j); ((m0; i0); j 0)) = 8>>>>>><>>>>>>:

CisqsQ�2(1� qQ�2)i�s(Il)j;j0 m0 = Q� 3; i > 0;i � s; i0 = i� s;(Il)j;j0 m0 = Q� 3;i = s = 0; i0 = �1;0 otherwise: (4.20)
Finally, for 1 < m < Q� 2, we haveUs(((m; i); j); ((m0; i0); j 0)) = 8>>><>>>:Cisqsm(1� qm)i�s(Il)j;j0 m0 = m� 1; i > �1;i � s; i0 = i� s;(Il)j;j0 m0 = m� 1; s = 0; i = i0 = �1;0 otherwise: (4.21)4.2.5 Stability of a Tree Stru
tured QBD Markov ChainIn Se
tion 3.4 we argued that the stability of a tree stru
tured QBD Markov 
hain thatonly allows transitions to parent or 
hild nodes 
an be determined as follows. De�neV [0℄ = 0 and use the re
ursionV [N + 1℄ = dXs=0 Us(I � V [N ℄)�1Ds; (4.22)to 
al
ulate V [N ℄. The Markov 
hain is re
urrent if the matri
es Gs[N ℄ = (I�V [N ℄)�1Ds
onverge to a set of sto
hasti
 matri
es Gs; otherwise, we have a transient 
hain. Theiterative formula (4.22) 
an be further optimized by making use of the stru
tural propertiesof the matri
es Ds; Us and V [N ℄. For the basi
 and the modi�ed binary CTM algorithmwith free a

ess, this optimization was limited to an a

eleration of the produ
t of (I �V [N ℄)�1 with the matri
es Ds, where we made use of the fa
t that about 80 per
ent of therows of Ds 
ontain nothing but zeros. For higher splitting fa
tors Q, this per
entage iseven higher (90 to 95 per
ent). The inversion of the matrix I � V [N ℄ was also optimizedfor Q > 2. We will demonstrate this for the basi
 CTM algorithm with Q > 2; thete
hnique is similar (slightly more 
omplex) for the modi�ed s
heme with Q = 3 andQ > 3.Consider the l(d+1)(Q�1)� l(d+1)(Q�1) matrix V (see Se
tion 3.4 for its de�nition),that 
orresponds to the tree stru
tured QBD Markov 
hain presented in Se
tion 4.2.1, the(i; v)th element of whi
h is the taboo probability that starting from (J + k; i), the 
haineventually returns to a node with the same length as J + k by visiting (J + k; v), underthe taboo of the node J and the sibling nodes of J + k. Next, subdivide the matrix V in
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ks of size l(d+ 1)� l(d+ 1).V = 0B� V0;0 V0;1 : : : V0;Q�2... ... . . . ...VQ�2;0 VQ�2;1 : : : VQ�2;Q�2 1CA ; (4.23)where the elements of Vq1;q2 are the taboo probabilities that starting from (J+k; (i; j; q1)),the 
hain (X dt ;N dt ) with N dt = (Ydt ;Zt;Qt) eventually returns to a node with the samelength as J + k by visiting (J + k; (v; u; q2)), under the taboo of the node J and thesibling nodes of J + k. Looking at the transition probabilities of (X dt ;N dt ), these tabooprobabilities are equal to zero if q2 6= 0. Thus,V = 0B� V0;0 0 : : : 0... ... . . . ...VQ�2;0 0 : : : 0 1CA : (4.24)The inverse (I � V )�1 of a matrix V with su
h a stru
ture is found as(I � V )�1 = 0BBBBB� (I � V0;0)�1 0 0 : : : 0V1;0(I � V0;0)�1 I 0 : : : 0V2;0(I � V0;0)�1 0 I : : : 0... ... ... . . . ...VQ�2;0(I � V0;0)�1 0 0 : : : I
1CCCCCA : (4.25)Clearly, the matri
es 0 � V [N ℄ � V;N � 0; have the same stru
ture as V and therefore,we 
an redu
e the 
omplexity of the matrix inversion in (4.22) fromO(l3d3Q3) toO(l3d3Q).Moreover, the stru
ture of V [N ℄ also implies that only the �rst l(d + 1) 
olumns of thematrix produ
ts between the matri
es Us and (I � V [N ℄)�1Ds di�er from zero, allowingus to redu
e the 
omplexity of these produ
ts from O(l3d3Q3) to O(l3d3Q2).It is not too diÆ
ult to generalize the equations presented in Se
tion 3.6. That is, manyinteresting performan
e measures|in
luding the mean delay|
an be 
al
ulated from thesteady state probabilities of ea
h of these Markov 
hains. Numeri
al results that 
omparethe mean delay|and some other measures as well| for di�erent values of Q are presentedin the next se
tion.4.3 Numeri
al ResultsWe determine the instability point, i.e., maximum a
hievable throughput, of the basi
and the modi�ed CTM algorithm for di�erent arrival pro
esses that belong to the 
lass ofthe D-BMAP pro
esses. We mainly 
onsider fair 
oins, i.e., p0 = p1 = : : : = pQ�1 = 1=Q,and shortly dis
uss biased 
oins for Q = 2. The D-BMAP input pro
esses 
onsidered wereintrodu
ed in Se
tion 2.1.3. We start with the results for the basi
 CTM algorithm withfair 
oins (for di�erent values of Q). Some �gures on the average delay and the expe
tednumber of retransmission are also presented.



62 CHAPTER 4. Q-ARY TREE ALGORITHMS AND FREE ACCESS4.3.1 The Basi
 CTM Algorithm with Fair CoinsMaximum Stable ThroughputTable 4.1 presents the stability points, i.e., maximum a
hievable throughput, of nine dif-ferent arrival pro
esses: the Poisson pro
ess, three Markov modulated Poisson pro
esses,three Bulk arrival pro
esses and two Erlang pro
esses and this for Q = 2; 3; 4 and 5. Forthe Poisson pro
ess, resp. the Erlang pro
esses, we start with � = 0, resp. �e = 0, andin
rease �, resp. �e, until instability is rea
hed. For the bulk arrival pro
esses we �x vand de
rease L until instability is rea
hed (we started with a large value of L). Finally,for the Markov modulated Poisson pro
esses we �x a; b and �2 (the last one possibly as afun
tion of �1) and in
rease �1 until instability is rea
hed. For ea
h 
ouple (a;Q), wherea is an arrival pro
ess and Q the splitting fa
tor, Table 4.1 presents two values x and y.The �rst x is the lower bound � of the interval ℄�; � + :001[ that holds the instabilitypoint of the arrival pro
ess a, i.e., the maximum arrival rate � of the D-BMAP for whi
hit is stable. The se
ond y indi
ates the di�eren
e between � and � in multiples of :001,where ℄�; � + :001[ holds the instability point of the Poisson pro
ess.Let us study these results in detail. The Poisson results presented in Table 4.1 are in
omplete 
orresponden
e with the results obtained in [43℄. This means that the resultsobtained by Mathys and Flajolet [43℄ lie within the intervals presented in Table 4.1. Re-pla
ing the input Poisson pro
ess by a Markov modulated Poisson pro
ess results in aninferior stability. This implies that more bursty and more 
orrelated (
ompare the se
ondMMPP with the third) input traÆ
 results in a worse stability, i.e., a lower maximuma
hievable throughput. Moreover, the higher the splitting fa
tor Q the larger the through-put degradation, e.g., repla
ing the Poisson input by M(�; 0; 30; 30) input results in a lossof :012 for Q = 2, :026 for Q = 3, :035 for Q = 4 and :041 for Q = 5. Therefore,lower splitting fa
tors Q are better equipped to 
ope with bursty and 
orrelated inputtraÆ
. Intuitively, one 
an understand this as follows. More bursty and 
orrelated traÆ
generally results in more 
ollisions. A 
ollision results in an in
rement of the 
urrentsta
k level of all ba
klogged stations. The higher Q the higher the in
rement. Thus, forevery 
ollision one needs at least Q� 1 empty or su

essful slots in order to return to thesame 
urrent sta
k level. Therefore, higher splitting fa
tors su�er more under in
reasedburstiness. Or to state it di�erently, the basi
 Q-ary CTM algorithm with free a

ess isunstable if Q times the probability that a slot holds a 
ollision is larger than one; whereasthe number of initial 
ollisions due to simultaneous new arrivals in a time slot are identi
alwhi
hever splitting fa
tor Q is being used.Also, noti
e that a fa
tor Q = 2 performs better, :004, than a fa
tor Q = 5 for theM(�; 0; 300; 300) pro
ess (for Poisson input it was the opposite). As a matter of fa
t, forany two fa
tors Q1 and Q2, within the range [2; 5℄, one 
an always �nd an input pro
essfor whi
h the fa
tor Q1 outperforms the fa
tor Q2, ex
ept for Q1 = 2 and Q2 = 3 (seeTable 4.1).Let us now 
onsider the Erlang results. Repla
ing the input Poisson pro
ess by an Erlangpro
ess results in a superior stability. This result 
orresponds with the previous result,i.e., less bursty traÆ
 results in a higher maximum a
hievable throughput. Moreover, the
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ess Q = 2 Q = 3 Q = 4 Q = 5PP(�) .360 +0 .401 +0 .399 +0 .387 +0M (�; 2�1 ; 30 ; 30 ) .358 -2 .397 -4 .393 -6 .380 -8M (�; 0 ; 30 ; 30 ) .348 -12 .375 -26 .364 -35 .346 -41M (�; 0 ; 300 ; 300 ) .347 -13 .373 -28 .361 -38 .343 -44ER(�; 2 ) .365 +5 .419 +18 .427 +28 .425 +38ER(�; 3 ) .367 +7 .427 +26 .441 +42 .444 +57B([2 ℄; �) .348 -12 .359 -42 .327 -72 .291 -96B([3 ℄; �) .349 -11 .372 -29 .352 -47 .325 -62B([4 ℄; �) .348 -12 .371 -30 .355 -44 .332 -55Table 4.1: Stability results for the basi
 Q-ary CTM algorithm with free a

esshigher the splitting fa
tor Q the larger the in
rement, e.g., repla
ing the Poisson input byER(�; 3) input results in a gain of :007 for Q = 2, :026 for Q = 3, :042 for Q = 4 and :057for Q = 5. Therefore, higher splitting fa
tors Q are better equipped to take advantageof less bursty input traÆ
 (the explanation is the same as before). Finally, the Bulkarrival pro
esses|the most arti�
ial of the pro
esses 
onsidered|are mainly introdu
edto indi
ate that exoti
 arrival patterns 
an seriously deteriorate the stability of the basi
CTM algorithm, espe
ially for higher splitting fa
tors Q. For the binary s
heme the loss isonly about :012; whereas for Q = 5 it varies between :055 and :096. If we were to in
reaseQ even more, things only be
ome worse, e.g., for Q = 10 the basi
 CTM algorithm withfree a

ess is unstable for an arrival rate � = :18 under B([2℄; �) input traÆ
.In 
on
lusion, when implementing the basi
 CTM algorithm, one should always sele
t asplitting fa
tor Q = 2 or 3 be
ause the throughput degradation due to the introdu
tionof 
orrelation and burstiness is less severe for a low splitting fa
tor Q, e.g., the di�eren
eobserved between the worst possible and the best input traÆ
 is :02 for Q = 2 (see Table4.1). Although, the basi
 ternary CTM algorithm is more sensitive to the spe
i�
 natureof the input pro
ess, i.e., the variation of the maximum a
hievable throughput is higher
ompared to the binary s
heme, it still remains a pra
ti
al optimum be
ause, for ea
h ofthe nine pro
esses 
onsidered, it outperforms the binary s
heme.There is another important 
on
lusion that 
an be drawn from these results. In theprevious 
hapter we did not manage to �nd a primitive D-BMAP with an arrival rate� < ln(2)=2 for whi
h the basi
 binary CTM algorithm (with free a

ess) is unstable, whereln(Q)=Q is the maximum stable throughput for the basi
 Q-ary CTM algorithm withblo
ked a

ess (see Se
tion 2.3). That is, for ea
h of the arrival pro
esses 
onsidered thebasi
 binary CTM algorithm with free a

ess outperformed its blo
ked a

ess 
ounterpart.A
tually, we believe that this might be the 
ase for all the arrival pro
esses belonging tothe 
lass of primitive D-BMAPs. In this se
tion we did however manage to �nd an arrivalpro
ess, e.g., the B([2℄; �), for whi
h the maximum stable throughput is below ln(Q)=Qfor Q = 3; 4 and 5 (
ompare Tables 1.1 and 4.1). Thus, the basi
 Q-ary CTM algorithmwith free a

ess 
an be outperformed by its blo
ked a

ess 
ounterpart for Q = 3; 4 and5. Moreover, we 
an easily prove the following theorem.



64 CHAPTER 4. Q-ARY TREE ALGORITHMS AND FREE ACCESSTheorem 4.1 For any integer value Q > 2, there exists a primitive D-BMAP (Bn)n withan arrival rate � < ln(Q)=Q su
h that the basi
 Q-ary CTM algorithm with free a

ess isunstable under (Bn)n input traÆ
.The proof for Q = 3; 4 and 5 is given by Table 4.1. Similarly, we found that the algorithmwith Q = 6, resp. Q = 7, was unstable under B([2℄; 5:78), resp. B([2℄; 6:27), traÆ
. Thearrival rate � of these two arrival pro
esses is :295 < ln(6)=6 and :275 < ln(7)=7. Thus,it suÆ
es to prove the theorem for Q > 7. Let (Bn)n be an arbitrary D-BMAP withB1 = 0, B2 6= 0 and Bn = 0 for n > 2, e.g., the B([2℄; L) arrival pro
ess. Thus, all newarrivals o

ur in groups of two. As a result, the probability p
 that a 
ollision o

urs is atleast �=2 (if � < 2). Now, looking at the Markov 
hain 
onstru
ted to evaluate the basi
Q-ary CTM algorithm with free a

ess, it is 
lear that the basi
 Q-ary CTM algorithmis unstable whenever the probability p
 of having a 
ollision is larger than 1=Q. Indeed,the probability that a transition is made to a parent node (1 � p
) must be larger than(Q � 1) times the probability p
 of making a transition to a 
hild node in order to havestability be
ause ea
h 
ollision 
auses the Markov 
hain to de
rease (Q� 1) levels. Thus,the s
heme is unstable under (Bn)n traÆ
 if � � 2=Q. Furthermore, � = 2=Q < ln(Q)=Qif 2 < ln(Q), this is true for Q > 7:39. This 
ompletes the proof.In 
on
lusion, forQ > 2, there exists a D-BMAP for whi
h the basi
Q-ary CTM algorithmwith blo
ked a

ess outperforms its free a

ess 
ounterpart. Note however that the D-BMAPs used to prove the theorem are very arti�
ial and have little or no pra
ti
alrelevan
e.
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Figure 4.2: The mean delay of the ba-si
 CTM algorithm with free a

ess underPoisson input
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Figure 4.3: The expe
ted number of trans-missions of the basi
 CTM algorithm underPoisson inputOther Performan
e MeasuresFigures 4.2 and 4.3 present the mean delay and the expe
ted number of transmissionsrespe
tively as a fun
tion of the arrival rate � under Poisson input. Figure 4.2 has oftenbeen used to indi
ate that having a higher stability point implies a better delay for every



4.3. NUMERICAL RESULTS 65arrival rate � below the maximum a
hievable throughput. This property is however notalways valid for other arrival pro
esses. For instan
e, Figure 4.5 
learly indi
ates that theexpe
ted delay for Q = 5 is (mu
h) smaller than the mean delay for Q = 2 if :2 < � < :33,whereas the binary s
heme has a higher maximum stable throughput. Figure 4.4 presentsthe mean delay under ER(�e; 3) traÆ
. Noti
e the big di�eren
e between the mean delayunder Erlang, Poisson and Markov modulated Poisson traÆ
.
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Figure 4.5: The mean delay of the ba-si
 CTM algorithm with free a

ess underM(�1; 0; 30; 30) traÆ
Next, we investigate the in
uen
e of the 
orrelation between the number of arrivals in
onse
utive time slots, on the mean delay and the expe
ted number of transmissions.Consider theM(�1; 0; 30; 30) arrival pro
ess. In order to study the in
uen
e of 
orrelationwe �x the arrival rate � and gradually in
rease the mean sojourn time of both states(starting at a = b = 30).
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Figure 4.6: The in
uen
e of 
orrelationon the mean delay for � = :1 0 500 1000 1500
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Figure 4.7: The in
uen
e of 
orrelationon the expe
ted number of transmissions for� = :1Figure 4.6 and 4.7 present the results for � = :1; Figure 4.8 and 4.9 for � = :2. Figure 4.6and 4.7 indi
ate that the in
uen
e of 
orrelation is hardly noti
eable if the arrival rate
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t that the mean arrival rate of both states is well belowthe maximum a
hievable throughput. On the other hand, Figure 4.8 and 4.9 indi
atethat the expe
ted number of transmission remains small even under high 
orrelation andhigh arrival rates; whereas the mean delay in
reases signi�
antly as a result of the strong
orrelation. This strong in
rease follows from the fa
t that �1 = :4, while the maximumstable throughput of these pro
esses is below :4 (see Table 4.1). Also, the ternary s
heme
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Figure 4.9: The in
uen
e of 
orrelationon the expe
ted number of transmissions for� = :2
aptures the in
uen
e of the 
orrelation better than the other s
hemes. This 
omes as nosurprise be
ause the ternary s
heme has the highest maximum stable throughput for thistype of pro
esses. In 
on
lusion, the higher the maximum stable throughput of a s
hemethe better it 
opes with 
orrelation.4.3.2 The Modi�ed CTM Algorithm with Fair CoinsTable 4.2 represents the stability results for the same nine arrival pro
esses studied inthe previous subse
tion. For ea
h 
ouple (a;Q), where a is an arrival pro
ess and Q thesplitting fa
tor, Table 4.2 presents two values x and y. The �rst x is the lower bound �of the interval ℄�; � + :001[ that holds the instability point of the arrival pro
ess a. These
ond y denotes the di�eren
e between the lower bounds � of the modi�ed and the basi
CTM algorithm (in multiples of :001).The results for the Poisson pro
ess are in 
omplete 
orresponden
e with the results ob-tained by Mathys and Flajolet [43℄. When we fo
us on the result for Q = 3, we see thatthe Markov 
hain was unstable for an arrival rate of :407. Mathys and Flajolet [43℄ showedthat the a
tual stability point is :40697 (see Table 1.1). This is another strong argumentthat the impa
t of the parameter d is indeed very small. Let us explain this in moredetail. We know that instability of the approximated Markov 
hain always implies theinstability of the exa
t Markov 
hain. The only possible error exists in the fa
t that theapproximated 
hain might be
ome stable when the exa
t 
hain is not. This might happenwhen we 
hoose an arrival rate � that is fra
tionally larger than the a
tual stability point.
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ess Q = 2 Q = 3 Q = 4 Q = 5PP(�) .388 +27 .406 +5 .400 +1 .387 +0M (�; 2�1 ; 30 ; 30 ) .384 +26 .402 +5 .395 +2 .381 +1M (�; 0 ; 30 ; 30 ) .371 +23 .380 +5 .365 +1 .346 +0M (�; 0 ; 300 ; 300 ) .370 +23 .377 +4 .362 +1 .343 +0ER(�; 2 ) .394 +29 .424 +5 .429 +2 .425 +0ER(�; 3 ) .396 +29 .432 +5 .443 +2 .444 +0B([2 ℄; �) .377 +29 .365 +6 .328 +1 .291 +0B([3 ℄; �) .378 +29 .378 +6 .353 +1 .325 +0B([4 ℄; �) .377 +29 .378 +7 .357 +2 .333 +1Table 4.2: Stability results for the modi�ed Q-ary CTM algorithm with free a

essThe result for Q = 3 shows that this is not the 
ase even if the di�eren
e between bothvalues, i.e., the arrival rate � and the stability point, is only :00003.Table 4.2 indi
ates that the impa
t of implementing the modi�ed CTM algorithm is moreor less the same for ea
h of the arrival pro
esses, e.g., for Q = 2 the in
rement variesbetween :023 and :027. Table 4.2 also 
on�rms that it is hardly worthwhile to implementthe modi�ed CTM algorithm for Q > 3. The reason that doomed slots o

ur less frequent,for largeQ, is twofold. First, the probability that all 
olliding stations sele
t the last groupis smaller (we use fair 
oins). Se
ond, even if all 
olliding stations sele
t the last group,a doomed slot only o

urs if the next Q � 1 slots are unused by new arrivals. Table 4.2indi
ates that there are arrival pro
esses for whi
h the modi�ed binary CTM algorithmoutperforms the ternary one, e.g., B([2℄; �).As noted before, we did not manage to �nd a primitive D-BMAP with an arrival rate� < ln(2)=2 for whi
h the basi
 binary CTM algorithm (with free a

ess) is unstable, whereln(Q)=Q is the maximum stable throughput for the basi
 Q-ary CTM algorithm withblo
ked a

ess (see Se
tion 2.3). That is, for ea
h of the arrival pro
esses 
onsidered thebasi
 binary CTM algorithm with free a

ess outperformed its blo
ked a

ess 
ounterpart.For the modi�ed binary CTM algorithm this is not the 
ase. Indeed, the maximum stablethroughput under M(�; 0; 300; 300) input is part of the interval [:37; :371℄ for the modi�edbinary CTM algorithm with free a

ess, while its blo
ked a

ess 
ounterpart a
hieves amaximum stable throughput of :3754 under primitive D-BMAP input (see Se
tion 2.3and Table 1.1). Moreover, we have the following theorem, where ln(Q)=(Q� [Q�1 + (1�Q�1) ln(1�Q�1)℄) is the maximum stable throughput of the blo
ked a

ess algorithm:Theorem 4.2 For any integer value Q � 2, there exists a primitive D-BMAP (Bn)nwith an arrival rate � < ln(Q)=(Q� [Q�1+(1�Q�1) ln(1�Q�1)℄) su
h that the modi�edQ-ary CTM algorithm with free a

ess is unstable under (Bn)n input traÆ
.The proof for Q = 2 follows from the M(�; 0; 300; 300) result in Table 4.2; whereas theresult for Q = 3; 4 and 5 follows from the B([2℄; �) result. For Q = 6 and 7 we madeuse of the B([2℄; 5:78) and B([2℄; 6:27) pro
ess respe
tively. Thus, it suÆ
es to prove the



68 CHAPTER 4. Q-ARY TREE ALGORITHMS AND FREE ACCESSPP (�) M(�; 0; 30; 30) ER(�; 2)p0 �(ds) p0 �(ds) p0 �(ds).5000 .387 .5000 .371 .5000 .394.4500 .391 .4500 .379 .4500 .397.4300 .392 .4200 .382 .4400 .397.4100 .393 (.0023) .3800 .384 (.0018) .4200 .398 (.0083).4068 .393 (.0024) .3750 .384 (.0019) .4175 .398 (.0084).4050 .393 (.0023) .3700 .384 (.0018) .4150 .398 (.0082).3800 .392 .3600 .384 (.0013) .4100 .398 (.0073).3500 .390 .3400 .383 .3900 .397Table 4.3: Stability results for the modi�ed binary CTM algorithm with free a

ess andbiased 
oinstheorem for Q > 7. Now, [Q�1 + (1 � Q�1) ln(1 � Q�1)℄ is positive for Q > 1. Hen
e,ln(Q)=Q is smaller than ln(Q)=(Q� [Q�1+(1�Q�1) ln(1�Q�1)℄). Therefore, it suÆ
esto prove that there exists a D-BMAP (Bn)n with an arrival rate � < ln(Q)=Q su
h thatwe get instability. Let (Bn)n be an arbitrary D-BMAP with B1 = 0, B2 6= 0 and Bn = 0for n > 2, e.g., the B([2℄; L) arrival pro
ess. Thus, all new arrivals o

ur in groups oftwo. As a result, the probability p
 that a 
ollision o

urs is at least �=2 (if � < 2). Now,looking at the Markov 
hain 
onstru
ted to evaluate the modi�ed Q-ary CTM algorithmwith free a

ess, it is 
lear that the algorithm be
omes unstable whenever the probabilityp
 of having a 
ollision is larger than 1=Q. Indeed, the probability that a transition ismade to a parent node (1 � p
) must be larger than (Q � 1) times the probability p
 ofmaking a transition to a 
hild node in order to have stability be
ause ea
h 
ollision 
ausesthe Markov 
hain to de
rease (Q � 1) levels. Thus, the modi�ed Q-ary CTM algorithmis unstable under (Bn)n traÆ
 if � � 2=Q. Moreover, � = 2=Q < ln(Q)=Q if 2 < ln(Q),this is true for Q > 7:39. This 
ompletes the proof.In 
on
lusion, for Q � 2, there exists a D-BMAP for whi
h the modi�ed Q-ary CTMalgorithm with blo
ked a

ess outperforms its free a

ess 
ounterpart (see Equation 1.3and Theorem 2.1). One must however note that the D-BMAPs used to prove the theoremare very arti�
ial and have little pra
ti
al relevan
e (ex
ept for the Q = 2 result).4.3.3 Using Biased CoinsIn Se
tion 3.7.6 we dis
ussed the use of biased 
oins when the basi
 binary CTM algorithmwith free a

ess is used. In this se
tion we study the in
uen
e of biased 
oins for themodi�ed binary CTM algorithm. In Se
tion 3.7.6 we saw that the burstier the input traÆ
is the lower the optimal value of p0 be
omes whenever the basi
 binary CTM algorithm isused. Table 4.3 
on�rms that this is also the 
ase for the modi�ed binary CTM algorithm.However, for the modi�ed algorithm the maximum stable throughput that 
an be a
hievedwith biased 
oins di�ers mu
h more from the maximum stable throughput a
hieved withfair 
oins (
ompared to the basi
 CTM algorithm, see Table 3.7). Moreover, the ranges



4.4. CONCLUSIONS 69of the optimal p0's are very di�erent from the ones that we found for the basi
 s
heme(about :09 lower). This 
an be understood as follows: sele
ting a smaller value for p0be
omes more attra
tive be
ause a lower penalty is paid when all the 
olliding stationssele
t the last (se
ond) group 
ompared to the basi
 CTM algorithm.In 
on
lusion, for bursty and 
orrelated arrival patterns higher throughput results 
anbe a
hieved by de
reasing p0, espe
ially if the modi�ed s
heme is used. However, theoptimal value for p0 is hard to predi
t (it depends upon the sto
hasti
 nature of thearrival pro
ess).4.4 Con
lusionsWe have analyzed the throughput 
hara
teristi
s of the basi
 and modi�ed Q-ary CTMalgorithm with free a

ess for both fair and biased 
oins by 
onstru
ting several treestru
tured QBD Markov 
hains and by determining their stability. As opposed to anyprior work, we did not restri
t our study to Poisson arrival patterns but 
onsidered amu
h more general 
lass of input pro
esses (D-BMAPs). We have shown, by means ofnumeri
al examples, that the binary and the ternary s
hemes should be preferred abovehigher splitting fa
tors Q be
ause they su�er mu
h smaller throughput losses under burstyand 
orrelated input traÆ
. The maximum stable throughput a
hieved by the binary andternary CTM algorithm under D-BMAP input is not far below the Poisson result, i.e.,the CTM algorithm with free a

ess maintains its good stability 
hara
teristi
s under D-BMAP input. Moreover, whenever possible, it is worth to exploit ternary feedba
k, i.e.,implement the modi�ed s
heme, for a splitting fa
tor Q = 2 or 3. We also demonstratedthat it might be very useful to use biased 
oins when the input traÆ
 is expe
ted to behighly bursty and 
orrelated. De
reasing the probability that a station sele
ts the �rstgroup (after a 
ollision) results in higher throughput results.If we 
ompare the blo
ked a

ess strategy with the free a

ess s
heme, we have proven(see Theorems 4.1 and 4.2) that there exists a primitive D-BMAP for whi
h the basi
 andmodi�ed Q-ary CTM algorithm with blo
ked a

ess outperforms its free a

ess 
ounter-part (ex
ept for the basi
 binary CTM algorithm). The D-BMAPs used to prove thesetheorems are however of a rather arti�
ial nature and therefore of lesser pra
ti
al impor-tan
e. For those D-BMAPs that are of a more pra
ti
al nature, we may 
on
lude thatfree a

ess generally results in (slightly) better throughput.Another important performan
e 
hara
teristi
 is the mean delay that is experien
ed whentransmitting a pa
ket. Using the QBD Markov 
hains that were 
onstru
ted in this thesis,it is possible to 
al
ulate the mean delay and many other performan
e 
hara
teristi
s.Numeri
al results have indi
ated that a higher maximum stable throughput does notne
essarily imply a smaller delay for every arrival rate �. This was a hope expressed bymany resear
hers, e.g., Massey [42℄ who states \If one algorithm has a larger maximumstable throughput than another, one hopes that if the �rst algorithm is reasonably simple(so that the large maximum stable throughput was not a
hieved by \tri
kery" that usedhigh arrivals rates to a spe
ial advantage) then the �rst algorithm will have a better delay-
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hara
teristi
 for all throughputs." Noti
e, the delay 
urves for the Poissoninput seemed to 
on�rm this hope, but the M(�; 0; 30; 30) input indi
ated that this is notalways the 
ase. Nevertheless, if an algorithm has a larger maximum stable throughput,it is expe
ted to 
ope better with 
orrelation.The Bit Error Ratio (BER) and 
apture e�e
ts are important 
hara
teristi
s of a wireless
hannel. It is fairly straightforward to see that one 
an extend the models presented inthis thesis in order to evaluate the CTM algorithm with free a

ess when applied to a
hannel with Markovian 
apture and errors. For instan
e, one 
ould easily add the stateof the 
hannel as a part of the auxiliary variable of the tree stru
tured QBD Markov
hains.



Chapter 5Tree Algorithms and Grouping
In this 
hapter we investigate the stability of tree algorithms that make use of a groupingstrategy. A number of tree algorithms of this type were introdu
ed in Se
tion 1.4.4. Wedo not 
onsider Gallager's optimized version that uses the arrival times to split 
ollidingstations into two groups (the dis
rete nature of the D-BMAP arrival pro
ess prohibits usfrom doing so). The two other algorithms dis
ussed in Se
tion 1.4.4 are introdu
ed againin the next se
tion and their stability under D-BMAP traÆ
 is dis
ussed in Se
tion 5.2and 5.3. Con
lusions are drawn in Se
tion 5.4.5.1 Tree algorithms using a Grouping StrategyA des
ription of the grouping me
hanism due to Massey [41℄ is given below. Supposethat the random a

ess s
heme is a
tivated at time t = 0. The unit of time is de�nedas the length of a slot, so that the i-th transmission slot is the time interval (i; i + 1℄. Ase
ond time in
rement � is 
hosen and the i-th arrival epo
h is de�ned as the time interval(i�; i�+�℄ (� is not ne
essarily an integer value). The �rst transmission rule used by thisalgorithm is as follows: transmit a new pa
ket that arrived during the i-th arrival epo
hin the �rst utilizable slot following the 
ollision resolution interval (CRI) for new pa
ketsthat arrived during the (i � 1)-th arrival epo
h. The modi�er \utilizable" re
e
ts thefa
t that the CRI for new pa
kets that arrived during the (i� 1)-th arrival epo
h mightend before the i-th arrival epo
h has ended. If so, a number of transmission slots areskipped until the i-th arrival epo
h ends. One 
ould improve the algorithm by shorteningthe i-th arrival epo
h. This both 
ompli
ates the analysis and the implementation and isexpe
ted to have no in
uen
e on the maximum stable throughput (be
ause it only altersthe behavior of the algorithm when there are no ba
klogged groups).Ea
h of the groups is resolved using either the basi
 binary or the modi�ed binary CTMalgorithm, depending on whether we have binary or ternary feedba
k (the order in whi
hthe groups are resolved is of no importan
e). The CTM algorithm with a higher splittingfa
tor Q > 2 is not expe
ted to improve the maximum stable throughput if � is small(see Se
tion 1.4.4). When a grouping strategy is being used, both a
tive and ina
tive



72 CHAPTER 5. TREE ALGORITHMS AND GROUPINGstations have to monitor the 
hannel 
ontinuously (this is also true for algorithms thatapply a blo
ked a

ess strategy).5.2 Stability under D-BMAP TraÆ
It is not too diÆ
ult to determine the maximum stable throughput of the two algorithmsintrodu
ed in Se
tion 5.1. We restri
t ourselves to the 
ase where �, the grouping interval,is an integer value. In Se
tion 5.2.1 we prove that an algorithm that resolves the 
olli-sions using a grouping strategy is stable under primitive D-BMAP traÆ
 if the expe
tedtime to resolve an arbitrary group E[G℄ is smaller than � and unstable if E[G℄ > �.Afterwards we indi
ate how to obtain tight upper and lower bounds on E[G℄. For the twoalgorithms introdu
ed in Se
tion 5.1, these bounds allow us to determine the maximumstable throughput with suÆ
ient a

ura
y.5.2.1 A stability Condition for D-BMAP InputAn algorithm that applies a grouping strategy under primitive D-BMAP input traÆ
 
anbe seen as a queue with the following 
hara
teristi
s. Assume that � is an integer. The
ustomers arriving in the queue 
orrespond to the groups produ
ed by the algorithm.Thus, every � time slots a new 
ustomer arrives|that is, we have a deterministi
 arrivalpro
ess. The queue has an in�nite waiting room and a single server. A 
ustomer is saidto be of type j with 1 � j � l if the state of the D-BMAP (Bn)n at the start of the
orresponding grouping interval was j. The group types are therefore determined by aprimitive dis
rete time Markov 
hain with transition matrix B�, where B is the transitionmatrix of the D-BMAP (Bn)n, i.e., B =PnBn. Thus, if the type of 
ustomer n is i thanthe type of 
ustomer n+1 is j with probability (B�)i;j. The servi
e time of a 
ustomer|that is, the time required to resolve the 
orresponding group|depends upon the type ofthe 
ustomer. Thus, the servi
e time of a 
ustomer of type j is t with some probabilityGj(t). Remark that the servi
e time of a 
ustomer depends on the state of the D-BMAPat the start of the 
orresponding grouping interval. For l the number of states of theD-BMAP, or else the number of 
ustomer types, equal to one the above-mentioned queueredu
es to a D=G=1 queue and su
h a queue is known to be stable for � < 1 [23℄. This
ondition is obviously equivalent to E[G℄ < �. Another way to prove that E[G℄ < � isa suÆ
ient 
ondition for stability when l = 1 is to use the Stability Lemma of Pakes [3,p264℄. For l > 1, things are slightly more 
ompli
ated.The arrival pro
ess of our queue 
an be seen as a spe
ial 
ase of the dis
rete time versionof a Markovian arrival pro
ess with marked arrivals [25, 27℄, denoted asMMAP [K℄. Su
ha Markov arrival pro
ess is 
hara
terized by a set of m�m matri
es M0 and MJ with Ja string of integers, where ea
h integer is part of [1; K℄. The i; j-th element of MJ , withJ = j1 : : : jn, n > 0, represents the probability that a transition is made from state i toj and that n arrivals o

ur. The type of these n arrivals is as follows: the k-th 
ustomerthat arrives is a 
ustomer of type jk. The matrix M0 
hara
terizes the transitions when
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ur. For K = 1 the MMAP [K℄ arrival pro
ess redu
es to a D-BMAParrival pro
ess (if we identify the matrix Bn with MJ where J is a string that 
onsistsof n ones). It is easily seen that the arrival pro
ess of our queue of interest is a
tually aMMAP [K℄ pro
ess with K = l and m = �l. The matrix M0 has the following form:
M0 = 0BBBBBBB�

0 I 0 : : : 0 00 0 I : : : 0 0... ... ... . . . ... ...0 0 0 : : : I 00 0 0 : : : 0 I0 0 0 : : : 0 0
1CCCCCCCA ; (5.1)

where I is the l�l unity matrix. The matri
esMk, 1 � k � l, obey the following equation:
Mk = 0BBBBBBB�

0 0 0 : : : 0 00 0 0 : : : 0 0... ... ... . . . ... ...0 0 0 : : : 0 00 0 0 : : : 0 0B�(k) 0 0 : : : 0 0
1CCCCCCCA ; (5.2)

where B�(k) is obtained from B� by keeping the k-th 
olumn of the matrix B� andsetting all other elements to zero. The entries of the matri
es MJ with J a string oflength 2 or more are all zero. Now that we know that the input is a MMAP [K℄, thequeue we are interested in is a spe
ial 
ase of a MMAP[K℄/G[K℄/1 queue.He [25℄ has shown that a MMAP[K℄/G[K℄/1 queue with a work 
onserving servi
e dis-
ipline is positive re
urrent if and only if � = �1E[G1℄ + : : : + �KE[GK℄ < 1 and it istransient if � > 1, where �i 
orresponds to the average number of type i 
ustomers ar-riving in the queueing system (per time unit) and E[Gi℄ to the expe
ted servi
e timeof a type i 
ustomer. In our 
ase the ve
tor (�1; : : : ; �K) is nothing but �=�, where�B = � and �e = 1 (be
ause � is also the invariant ve
tor of B�). Thus, �� is equal tothe expe
ted servi
e time of an arbitrary 
ustomer|that is, the expe
ted time requiredto resolve an arbitrary group. This proves that we get a stable, resp. unstable, systemwhenever E[G℄ < �, resp. E[G℄ > �.5.2.2 Tight Bounds on E[G℄Following Massey's approa
h [41℄ it is fairly straightforward to obtain a tight upper andlower bound on E[G℄ when the basi
 or modi�ed binary CTM algorithm is used to resolvethe groups. First, we determine the probability that a group 
ontains n 
ontenders|thatis, n arrivals o

ur in the 
orresponding interval of length �. The probability that thestate of the D-BMAP is j, 1 � j � l, at the start of a grouping interval is equal to �j,where �j is the j-th 
omponent of the stationary ve
tor � 
orresponding to the D-BMAP(Bn)n be
ause � is also an invariant ve
tor of B�. The probability of having n arrivals in



74 CHAPTER 5. TREE ALGORITHMS AND GROUPINGan interval of length � provided that the state is j at the start of the interval, say Pj(n),is easily 
omputed as follows. De�ne the matri
es Bn;i; i > 1; n � 0; asBn;i = nXj=0 Bj;i�1Bn�j; (5.3)with Bn;1 equal to Bn. Then, Pj(n) is found as the j-th 
omponent of Bn;�e. Therefore,the probability that a group 
ontains n arrivals, say P (n), is nothing but Plj=1 �jPj(n).The expe
ted time required to resolve an arbitrary group E[G℄ is found as E[G℄ =Pn P (n)L(n), where L(n) represents the expe
ted time required by the 
ollision reso-lution algorithm to resolve a set of n 
ontenders. Massey [41℄ obtained the followingupper and lower bounds on L(n) for the basi
 and modi�ed binary CTM algorithm. Inorder to distinguish both algorithms we write Lb(n) for the expe
ted time required by thebasi
 binary CTM algorithm and Lm(n) as the expe
ted time required by the modi�edbinary CTM algorithm. For the basi
 binary CTM algorithm we haveLb(n) � a1n� 1 + 2Æ0;n + (2� a1)Æ1;n + (6� 2a1)Æ2;n + (26=3� 3a1)Æ3;n; (5.4)with a1 = 2:8867 and Æi;j = 0 if i 6= j and 1 if i = j. Moreover,Lb(n) � a2n� 1 + 2Æ0;n + (2� a2)Æ1;n + (6� 2a2)Æ2;n + (26=3� 3a2)Æ3;n; (5.5)with a2 = 2:8810. Whereas for the modi�ed binary CTM we �ndLm(n) � b1n� 1 + 2Æ0;n + (2� b1)Æ1;n + (11=2� 2b1)Æ2;n + (8� 3b1)Æ3;n; (5.6)with b1 = 2:6651 andLm(n) � b2n� 1 + 2Æ0;n + (2� b2)Æ1;n + (11=2� 2b2)Æ2;n + (8� 3b2)Æ3;n; (5.7)with b2 = 2:6607. If we 
al
ulate E[G℄ = Pn P (n)L(n) and repla
e L(n) by its lower,resp. upper, bound we obtain a lower, resp. upper, bound on E[G℄. Whenever the lowerbound is larger than � we know from Se
tion 5.2.1 that the algorithm is unstable, whereasif the upper bound is smaller than � we have a stable s
heme. For those arrival ratesthat produ
e an upper bound larger than � and a lower bound that is smaller we knownothing. This pro
edure allows us to determine the stability point for any value of � witha pre
ision of :001 or better ; that is, we 
an �nd an interval [x; x + :001℄ that 
ontainsthe maximum stable throughput of the algorithm.5.3 Numeri
al ResultsBefore we present some a
tual numeri
al results, it is worthwhile to have a 
loser look atthe upper and lower bounds of Lb(n) and Lm(n) presented in Se
tion 5.2.2. With thesebounds one 
an easily obtain an interval for ea
h value of � that 
ontains the maximumstable throughput under any primitive D-BMAP input traÆ
. The length of this intervalwill redu
e as � is in
reased.



5.3. NUMERICAL RESULTS 755.3.1 Sele
ting a Large Grouping Interval �Using Equation (5.4) and Lb(n) � a1n for n > 0, we haveE[G℄ = Xn�0 P (n)L(n)� Xn>0 a1nP (n) + P (0)= a1��+ P (0):Hen
e,� < 1a1 (1� P (0)=�); (5.8)is a suÆ
ient 
ondition for the stability of the grouping algorithm whi
h uses the basi
binary CTM algorithm to resolve the groups. Thus, only the presen
e of empty groupsmight redu
e the maximum stable throughput below 1=a1 = :3464. This is a �rst indi-
ation that a grouping algorithm might not be able to support a high maximum stablethroughput under bursty input traÆ
|that is, traÆ
 of whi
h the arrivals are 
on
en-trated in a small portion of the grouping intervals of length �. Numeri
al examples that
on�rm this idea are presented further on. Obviously, P (0) < 1 if � > 0. As a result wehave stability if� < 1a1 (1� 1=�); (5.9)for any primitive D-BMAP input traÆ
.Using Equation (5.5), we haveE[G℄ = Xn P (n)L(n)� a2Xn nP (n)�Xn P (n) +2P (0) + (2� a2)P (1) + (6� 2a2)P (2) + (26=3� 3a2)P (3)� a2��� 1 + 2� a2= a2��� (a2 � 1):Thus, the grouping algorithm that uses the basi
 binary CTM algorithm is unstable if� > 1a2 �1 + a2 � 1� � : (5.10)In 
on
lusion, the maximum stable throughput of the grouping algorithm that uses thebasi
 binary CTM algorithm to resolve the groups is found in the interval [1=a1(1 �



76 CHAPTER 5. TREE ALGORITHMS AND GROUPING� basi
 binary modi�ed binary2 .1732 .6736 .1876 .68793 .2309 .5647 .2501 .58394 .2598 .5103 .2814 .53195 .2771 .4777 .3002 .500710 .3118 .4124 .3377 .438320 .3291 .3797 .3565 .407050 .3395 .3602 .3677 .3883100 .3430 .3536 .3715 .38211000 .3461 .3478 .3748 .376510000 .3464 .3472 .3752 .37591 .3464 .3471 .3752 .3758Table 5.1: Maximum a
hievable throughput for the basi
 and modi�ed binary CTM al-gorithm when 
ombined with a grouping strategy (fair 
oins)1=�); 1=a2(1 + (a2 � 1)=�)℄. In other words, the algorithm is stable under primitive D-BMAP input traÆ
 if � < 1=a1(1� 1=�) and unstable if � > 1=a2(1+ (a2� 1)=�). Simi-larly, for the modi�ed binary CTM algorithm we �nd the interval [1=b1(1�1=�); 1=b2(1+(b2 � 1)=�)℄. Numeri
al results for di�erent values of � are presented in Table 5.1. Forinstan
e, whatever the D-BMAP input pro
esses might be its 
orresponding maximumstable throughput is found in the interval [:3291; :3797℄, resp. [:3565; :407℄ if � = 20. Inthe next se
tion we indi
ate that we 
an a
tually �nd arrival pro
esses for whi
h themaximum stable throughput is 
lose to 1=a1(1� 1=�) and 1=a2(1 + (a2 � 1)=�). Hen
e,it is not possible to further redu
e the size of the intervals in Table 5.1.Obviously, for � large we �nd that the interval redu
es to [1=a1; 1=a2℄, resp. [1=b1; 1=b2℄.Both these intervals are rather small and 
ontain the maximum stable throughput of the
orresponding algorithm with blo
ked a

ess (see Se
tion 1.4.4 and Se
tion 2.3). Thus,whether the basi
, resp. modi�ed, binary CTM algorithm uses a blo
ked a

ess strategyor a grouping strategy (with � large) makes little di�eren
e as far as the maximum stablethroughput under primitive D-BMAP input traÆ
 is 
on
erned. In the next se
tion weinvestigate what happens if � is small.5.3.2 Sele
ting a Small Grouping Interval �In this se
tion we study the maximum a
hievable throughput as a fun
tion of � for di�er-ent arrival pro
esses. We subsequently dis
uss the dis
rete time Poisson pro
ess, Erlangpro
esses, Markov Modulated Poisson pro
esses and Bulk arrival pro
esses. De�nitionsand abbreviations for these pro
esses 
an be found in Se
tion 2.1.3.Markov Modulated Poisson Pro
esses: We start with a dis
ussion of the Markovmodulated Poisson pro
esses (MMPPs). Figure 5.1, resp. 5.2, 
ompares the maximumstable throughput as a fun
tion of � (2 � � � 10) for a few MMPPs when the basi
,



5.3. NUMERICAL RESULTS 77resp. modi�ed, binary CTM algorithm is 
ombined with a grouping strategy. Both �guresare almost identi
al, ex
ept that the modi�ed s
heme supports throughputs whi
h are afew per
entages higher.
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t of � on the max-imum stable throughput (modi�ed)A �rst 
on
lusion that 
an be drawn from both �gures is that a serious degradation of themaximum stable throughput might o

ur if the burstiness (for a de�nition, see Se
tion2.1.2) of the arrival pro
esses in
reases, espe
ially if � is very small. The reason for this isthe presen
e of the empty groups, as indi
ated in Se
tion 5.3.1. Although the probabilityP (0) of having an empty group does not de
rease that rapidly when in
reasing �, thethroughput degradation does disappear rather qui
kly. This is due to the fa
t that thethroughput is a
tually a weighted sum of the throughputs Ti asso
iated with a 
ollisionresolution interval (CRI) that 
orresponds with an interval that starts in state i. We referto su
h a CRI as a type i CRI. The weight that 
orresponds to Ti depends upon theexpe
ted time ne
essary to resolve a type i CRI divided by sum over j of the expe
tedtime required to resolve a type j CRI. In the 
ase of our M(�; 0; a; b) pro
esses, we �ndthat expe
ted number of 
ontenders asso
iated with a type 1 CRI in
reases rapidly as� in
reases. Whereas the expe
ted number of 
ontenders in a type 2 CRI remains 
loseto zero (for � << b). This implies that the weight asso
iated with T2 � 0 de
reasesrapidly when � in
reases, whi
h explains the rapid restoration of the maximum stablethroughput when � is in
reased.On the other hand, Figures 5.1 and 5.2 indi
ate that 
orrelation is of lesser importan
e.For instan
e, the M(�; 0; 30; 30), the 
orrelation fun
tion r(k) of whi
h de
ays as :9333k,performs only slightly better than the M(�; 0; 300; 300), whi
h has a 
orrelation fun
tionr(k) that de
ays as :9933k. Moreover, the results for theM(�; 0; 3000; 3000) arrival pro
ess,whi
h are not in
luded in the �gures, are almost identi
al to those of the M(�; 0; 300; 300)pro
ess. This 
omes as no surprise be
ause the grouping me
hanism breaks the 
orrelation(i.e., the order in whi
h the groups are resolved is of no importan
e).Noti
e, the maximum stable throughput under M(�; 0; 30; 210) input traÆ
 is only afew per
entages higher than 1=a1(1 � 1=�), resp. 1=b1(1 � 1=�) (see Table 5.1). We
an easily de�ne a D-BMAP for whi
h the maximum stable throughput is even 
loser to



78 CHAPTER 5. TREE ALGORITHMS AND GROUPING1=a1(1�1=�), resp 1=b1(1�1=�). For instan
e, the basi
, resp. modi�ed, CTM algorithmwith grouping has a maximum stable throughput under M(�; 0; 30; 3000) input traÆ
 of� :1770, resp. � :1915. The M(�; 0; 30; 3000) pro
ess is very bursty: the average sojourntime in the silent state is 3000 slots, whereas the average time in the a
tive state is only30 slots. Therefore, all the traÆ
 is more or less 
on
entrated in 1 per
ent of the groupingintervals of length �.Erlang Arrival Pro
ess: Figures 5.3 and 5.4 present the results for the Erlang arrivalpro
esses. As expe
ted we get a higher maximum stable throughput if k is in
reased,i.e., if the pro
ess be
omes more deterministi
. Also, the results for the ER(�; 10) pro
essare only a few per
entages below 1=a2(1 + (a2 � 1)=�), resp. 1=b2(1 + (b2 � 1)=�). Fork = 50 we found a maximum stable throughput for � = 2 of :623, resp. :6415. It is easyto prove that the maximum stable throughput for � = 2 
onverges to :625, resp. :6429,as k approa
hes in�nity.
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Figure 5.4: The impa
t of � on the max-imum stable throughput (modi�ed)It is possible to �nd D-BMAP arrival pro
esses for whi
h these grouping algorithms sup-port a higher maximum stable throughput (up to 1=a2(1+(a2�1)=�), resp. 1=b2(1+(b2�1)=�)). For instan
e, the following primitive D-BMAP arrival pro
ess has a maximumstable throughput for � = 2 of � :6725, resp. � :687.B0 = 0� 0 0 01� 1=p 0 1=p0 0 0 1A ; B1 = 0� 0 1 00 0 00 0 0 1A ; B100 = 0� 0 0 00 0 01 0 0 1A :The other Bn matri
es are zero. This arrival pro
ess was 
onstru
ted su
h that P (1) =1�(x+y), P (100) = x and P (101) = y for x+y small. The arrival rate � = (1+100=p)=(2+1=p). For p large, � � 1=2 and both algorithms are stable (for � = 2) when this D-BMAP is used as input traÆ
. In order to determine the maximum stable throughput,we de
rease p, i.e., in
rease �, until both grouping algorithms be
ome unstable. Similararrival pro
esses 
an be 
onstru
ted for � > 2.



5.4. CONCLUSIONS 79Bulk Arrival Pro
ess: Figures 5.5 and 5.6 present the results for some Bulk arrivalpro
esses. The results are in agreement with the explanations given in the MMPPsse
tion.
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Figure 5.6: The impa
t of � on the max-imum stable throughput (modi�ed)5.4 Con
lusionsIn this 
hapter we evaluated the stability of the basi
 and the modi�ed binary CTMalgorithm when 
ombined with a grouping strategy under primitive D-BMAP traÆ
.The length of the grouping interval was denoted as �. We have proven that the basi
s
heme is stable under primitive D-BMAP traÆ
 if the arrival rate � < 0:3464(1� 1=�)and unstable if � > 0:3471(1 + 1:881=�), numeri
al values for these bounds are found inTable 5.1. A similar result was obtained for the modi�ed s
heme. These results imply thatthe grouping strategy provides similar stability guarantees as the blo
ked a

ess strategyprovided that � is 
hosen suÆ
iently large. Moreover, for small values of � one 
an�nd D-BMAPs with an arrival rate 
lose to 0:3464(1� 1=�), resp. 0:3471(1 + 1:881=�),that result in an unstable, resp. stable, behavior. In general, one may 
on
lude that morebursty arrival pro
esses have a smaller maximum stable throughput 
ompared to the moredeterministi
 ones (for small values of �).
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Chapter 6The Identi�er Splitting Algorithm
ombined with Polling (ISAP)
In this 
hapter the Identi�er Splitting Algorithm 
ombined with Polling (ISAP) is intro-du
ed. The in
uen
e of the di�erent proto
ol parameters on the performan
e measuresis studied in Chapter 7 by means of several analyti
al models. Numeri
al results arepresented in Chapter 8. The Identi�er Splitting Algorithm (ISA) was �rst introdu
edby Petras, et al [50{52℄ during the European RACE proje
t 2067 on Mobile BroadbandSystems (MBS) [44℄. ISA is an algorithm used to resolve 
ollisions o

urring on the 
on-tention 
hannel, present in the Medium A

ess Control (MAC) layer of the MBS proto
olsta
k. The 
ontention 
hannel is used by the Mobile Stations to inform the Base Sta-tion about their 
urrent bandwidth requirements. The ISA s
heme is a variation on thedeterministi
 splitting algorithm introdu
ed by Capetanakis [7, 17℄. As opposed to theCapetanakis s
heme, whi
h traverses the 
ontention tree in a depth-�rst approa
h, ISAuses a breadth-�rst approa
h.ISA was designed to 
ope with the delayed feedba
k environment typi
ally found in a wire-less a

ess network (see Se
tion 6.1), whereas most splitting algorithms require immediatefeedba
k due to the depth-�rst approa
h. Perhaps the most important advantages of theISA s
heme, or any other deterministi
 splitting algorithm, are the obvious upperboundprovided on the worst 
ase delay and the fa
t that splitting algorithms are known toperform well under low and high load 
onditions.As a part of the European ACTS program a trial platform for Mobile Broadband Systems(MBS) was designed and implemented in the 
ontext of the SAMBA proje
t (AC204) [57℄.The trial platform used slotted ALOHA [1, 3℄ as the 
ontention algorithm. This was notdue to the fa
t that people had se
ond thoughts about ISA, but simply be
ause the trialplatform 
onsisted of 2 Base Stations and 2 Mobile Stations. Clearly, you do not need toimplement a powerful 
ontention resolution algorithm in an environment with only two
ompeting Mobile Stations. If the number of Mobile Stations in
reases, random a

essbe
omes more important and more advan
ed 
ollision resolution algorithms will be usedto improve the performan
e of random a

ess 
hannels [54, 6.2: General Guidelines℄. Thepurpose of this 
hapter is to introdu
e su
h an advan
ed 
ontention resolution algorithm.



84 CHAPTER 6. THE ISAP ALGORITHMThis 
hapter is stru
tured as follows. In the next se
tion, we introdu
e the 
on
ept of adelayed feedba
k environment. We pro
eed with the ISA proto
ol proposed by Petras, etal [50{52℄. Next, we indi
ate how ISA 
an be 
ombined with Polling, this 
ombination is
alled the ISAP s
heme. Afterwards, a number of optimizations are dis
ussed. Finally, a
ow
hart for an MS using ISAP is presented.6.1 A Delayed Feedba
k EnvironmentIn this se
tion we des
ribe a framework for 
entralized wireless a

ess networks. A numberof MAC proposals found in literature �t into this framework: DSA++ [52, 74℄, D2MA [37℄,EC-MAC [59℄ and [70{72℄.Consider a 
ellular a

ess network with a 
entralized ar
hite
ture, i.e., the area 
overedby the wireless network is subdivided into a set of geographi
ally distin
t 
ells, ea
h witha diameter of approximately 100m (slight overlaps are allowed to fa
ilitate the handoversfrom one 
ell to a neighboring 
ell). Ea
h 
ell 
ontains a Base Station (BS) serving a�nite set of Mobile Stations (MS). The MSs 
ommuni
ate among ea
h other and with thenodes in the �xed network via the BS (see Figure 6.1).
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MS

MS (Mobile Station)
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MS
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MS

MAC Domain

WN (Wired Network)Figure 6.1: Referen
e 
on�guration of the systemTwo logi
ally distin
t 
ommuni
ation 
hannels (uplink and downlink) are used to supportthe information ex
hange between the BS and the MSs. Pa
kets arriving at the BS arebroad
asted downlink, while upstream pa
kets must share the radio medium. The BS
ontrols the a

ess to the shared radio 
hannel (uplink). The a

ess te
hnique usedis Time Division Multiple A

ess (TDMA) 
ombined with Frequen
y Division Duplex(FDD) to separate the uplink and downlink 
hannels. The ISAP algorithm 
an alsobe implemented if the a

ess te
hnique is Time Division Duplex (TDD). In the further



6.1. A DELAYED FEEDBACK ENVIRONMENT 85des
ription we assume that we are working with an FDD system.The battery 
onsumption of a mobile node is still one of the main 
on
erns when designinga wireless network [59℄. To indi
ate the importan
e of power 
onsumption: one of themain re
ommendations for future trial platforms made during the European SAMBAtrial platform is to further redu
e the size and power 
onsumption of Mobile BroadbandSystems [44℄. Therefore, traÆ
 on both the uplink and downlink 
hannel is grouped into(�xed length) frames. The fa
t that battery redu
tions 
an be a
hieved by using a framestru
ture will be
ome apparent in the sequel of this se
tion.The uplink and downlink frames are syn
hronized in time, i.e., the header of a downlinkframe is immediately followed by the start of an uplink frame (after a negligible roundtrip time that is 
aptured within the guard times, see Figure 6.2). Ea
h uplink frame
onsists of a (variable or �xed length) 
ontentionless and a (variable or �xed length)
ontention period, where the length of the 
ontentionless period dominates that of the
ontention period. An MS is allowed to transmit in the 
ontentionless period after re-
eiving a permit from the BS. The BS distributes the permits among the MSs based onthe 
urrent requirements of ea
h MS. Therefore, MSs must inform the BS about their
urrent bandwidth needs using requests. Whenever an MS forwards a pa
ket to the BSa request is piggyba
ked to the pa
ket. When a pa
ket that is generated in an MS �ndsthe transmission queue empty (in that MS), it uses the 
ontention period to inform theBS about its presen
e (i.e., it uses the 
ontention period to sent a request). Piggyba
kingis not possible in su
h 
ase. Noti
e, piggyba
king is only a performan
e optimization andnot a requirement.
Downlink

Uplink

t

t

Frame Header Frame Header

Contention Period Contentionless Period

Figure 6.2: Frame Stru
tureEa
h downlink frame starts with a frame header in whi
h the required feedba
k on the
ontention period of the previous uplink frame is given. This informs the MSs parti
-ipating in the 
ontention period whether a 
ollision o

urred or whether their requesthas been su

essfully re
eived. Apart from the feedba
k information, the frame header
ontains permits for the 
ontentionless period of the uplink frame and announ
es theidentity of the MSs re
eiving a pa
ket in the downlink frame. MSs whose identity is notmentioned 
an swit
h to the sleep mode until the start of the next downlink frame (unlessthey transmit something in the uplink dire
tion).We mentioned that piggyba
king is merely an optimization. As far as the 
ontention 
han-
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on
erned, one 
ould also repla
e it by a (periodi
) polling s
heme. For instan
e,in a Passive Opti
al Network (PON) a periodi
 polling s
heme is used by the Opti
alNetwork Units (ONUs) to inform the Opti
al Line Termination point (OLT) about theirbandwidth requirements [53℄. In general, a polling s
heme is easy to implement, espe
iallyif the number of users remains �xed, e.g., in a wired network, but requires a reasonableamount of bandwidth (a few Mbit/s). These few Mbits are less expensive in a wired net-work, where one has hundreds of Mbits available, but be
ome very expensive in a wirelessnetwork. Therefore, it might be better to use a 
ontention 
hannel (with piggyba
king)or to 
ombine both methods. In the next se
tion, we present the Identi�er SplittingAlgorithm (ISA).6.2 The Identi�er Splitting Algorithm (ISA)The Identi�er Splitting Algorithm is 
hara
terized by two parameters:� L : the maximum number of 
ontention slots allowed in a single uplink frame (seeSe
tion 6.1),� Q : the splitting fa
tor.The fun
tionality of these parameters be
omes apparent in the remainder of this se
tion.Let us �rst introdu
e the notion of a 
ontention 
y
le (CC). A 
ontention 
y
le (CC)
onsists of a number of 
onse
utive upstream frames during whi
h the 
ontention of allrequests, present in the MSs at the beginning of the 
y
le, is resolved. The system is gated,in the sense that any request generated by an MS that wants to a

ess the 
ontention
hannel during a CC is blo
ked until the start of the next CC.A single 
ontention slot is available in the �rst frame of a CC. We refer to this slot aslevel 0 of the 
ontention tree. Any MS having a request ready at the start of the CCmakes use of this slot. Next, the BS 
he
ks whether a su

essful transmission o

urred inthis slot and informs the MS(s) that were involved in the s
heme a

ordingly in the nextdownstream frame using a feedba
k �eld. Three situations are possible:� The slot was empty, i.e., none of the MSs a

essed the 
ontention 
hannel. As aresult a new CC starts in the next frame.� An MS sending its request in this slot su

eeded. In this 
ase the MS returns to thepiggyba
ked state. Again, a new CC starts in the next frame.� A 
ollision o

urred. In this 
ase, the next level (level 1) of the CC provides Q
ontention slots. Based on the �rst digit of their MAC addresses, as opposed to the
lassi
al 
oin 
ip, the MSs involved split up into Q distin
t sets. An MS belongingto the �rst set uses the �rst slot of level 1 to attempt a retransmission, the se
ondset uses the se
ond slot of level 1 and so on.



6.3. THE ISAP ALGORITHM 87The pro
ess of generating Q slots in a level for ea
h slot of the previous level in whi
h a
ollision o

urred, is repeated level after level, ea
h time using the next digit of the Q-aryMAC address in 
ase of a 
ollision. Thus, during the i-th level of a CC two MSs 
anonly 
ollide if the �rst i digits of their MAC addresses are identi
al. Therefore, providedthat the address that uniquely identi�es an MS is n digits long, 
ollisions are alwaysresolved at level n. Noti
e, the number of 
ontention slots, for ea
h level, equals Q timesthe number of 
ollisions during the previous level. Figure 6.3 shows an example of a CCwith 6 parti
ipants for Q = 2. In this �gure CO refers to a 
ollision, SU to a su

essand EM to an empty slot. The MAC addresses of the su

essful MSs are added to the
orresponding slot.
LEVEL 0

LEVEL 1

LEVEL 2

LEVEL 3

CO

CO CO

CO

CO

SUCO

SU SU

LEVEL 4

LEVEL 5

CO

CO

SU SU

EM

EMEM

SU

0011 1010 1000 1001 0011 0100

1000 1010 0011

0110 0101 1001

0010 0100 1111

1000 0011 0110Figure 6.3: Demonstrating ISAA level of the 
ontention tree 
orresponds to a single frame, ex
ept when the numberof slots at level i is larger than some prede�ned value L. This parameter L de�nes themaximum number of 
ontention slots that we allow in a single frame. Thus, if a 
ertainlevel of the tree requires x = mL+ j slots with m � 0 and 1 � j � L then m+ 1 framesare required to support this level.6.3 The Identi�er Splitting Algorithm Combined withPollingThe Identi�er Splitting Algorithm 
ombined with Polling is 
hara
terized by three pa-rameters:� L : the maximum number of 
ontention slots allowed in a single uplink frame (see
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tion 6.1),� Q : the splitting fa
tor,� Np : the trigger value for the polling feature.Thus, the parameter Np is added to the s
heme. One of the attra
tive features of theIdenti�er Splitting Algorithm (ISA) is that as a CC is being resolved, the BS obtainsmore and more information about the addresses of the MSs whi
h are still 
ompeting.For example, if the BS noti
es that the tree at level i (see Figure 6.3) 
ontains k 
ollisionsand the MAC-addresses are n digits long, then the BS 
on
ludes that the remaining
ompeting MSs 
an only have kQn�i possible addresses. This follows from the fa
t thatea
h slot at level i 
orresponds toQn�i addresses. In su
h 
ase, we state that the remainingsize of the MAC address spa
e is equal to kQn�i. This information 
an be used by theBS in an attempt to improve the performan
e 
hara
teristi
s.We propose the following method: when the size of the remaining MAC address spa
eY be
omes smaller than some prede�ned value, say Np, the proto
ol swit
hes to polling.Polling, in this 
ontext, means that one slot is provided for ea
h address in the remainingaddress spa
e. Depending on the relationship between L and Y (� Np), one or multipleframes are required to support polling. The introdu
tion of the parameter Np, referred toas the trigger value, not only allows us to improve the performan
e of the ISA s
heme, butalso provides some additional 
hallenges as far as the performan
e evaluation is 
on
ernedbe
ause it 
reates additional dependen
ies between a number of random variables (seeChapter 7).6.4 Skipping the First Few LevelsIn the previous two se
tions the 
ontention period of the �rst frame of a CC 
onsistedof a single 
ontention slot (level 0 of the 
ontention tree). Now we drop this 
ondition:instead of starting with just one 
ontention slot in the �rst frame, we provide more thanone slot during the �rst frame of a CC. The idea to o�er more than 1 slot for the �rsttransmission attempt is far from un
ommon in splitting algorithms with blo
ked a

ess[51, 63℄ [3, p291℄. The starting level is said to be Sl, with 0 � Sl � n, if the �rst frame ofthe CC 
ontains QSl 
ontention slots. An MS taking part in the 
ontention 
y
le sele
tsone of these QSl slots based on the �rst Sl digits of its n-digit MAC address. We needdQSl=Le frames to support the starting level Sl.The starting level Sl 
an either be �xed at a prede�ned value or 
an 
hange in time. A�xed starting level Sl is expe
ted to have a positive impa
t on the delay. Apart fromthat, the throughput might improve in 
ase of high loads [51℄. Unfortunately, as shownin the numeri
al results, this results in some additional throughput losses during low loadperiods. To solve this we propose a s
heme that 
hanges the starting level dynami
allybetween level Smin and Smax. To make this de
ision the system load � is not taken intoa

ount, as this value is hard to measure or predi
t in real systems. We therefore use thelength of the previous CC as follows.



6.5. MULTIPLE INSTANCES OF ISA 89The starting levels are de�ned using the following two threshold values: Bl and Bm.Suppose that at some point in time the starting level of a CC equals Sl and let L be thelength of this CC, then the new starting level S 0l obeys the following equation:S 0l = 8<: max(Sl � 1; Smin) L � BlSl Bl < L < Bmmin(Sl + 1; Smax) L � Bm : (6.1)Clearly all MSs wanting to a

ess the 
ontention 
hannel need to be aware of the 
urrentstarting level. We suggest that this knowledge is broad
asted by the BS at the start ofevery CC. Therefore, it is not ne
essary for all MSs, in
luding those that do not use the
ontention 
hannel, to keep tra
k of the lengths of the CCs.6.5 Multiple Instan
es of ISAIn what follows we demonstrate by means of an example how multiple instan
es of theISA proto
ol 
an be 
reated from a single instan
e with a �xed starting level Sl � 1 . Forthis example (see Figure 6.4) the starting level Sl is �xed at 1 and Q is set at 2. As 
anbe seen in Figure 6.4 all 
ollisions in the right-hand side of the tree are resolved at level3. Suppose that during these 3 levels a number of MSs, not ne
essarily parti
ipating in
SU

0011 1010 1000

0110 0101 1001

LEVEL 1

LEVEL 2

LEVEL 3

CO CO

COCO

CO

SU

EM

EM SU SU

CO

SU
0010 0010 1000 0010 1010 1110

SU

LEVEL 4/1

LEVEL 5/2

CO

SU CO
1010 1010 1110

1000 0010 0001 1010 1110 0011

Figure 6.4: Creating Multiple Instan
es of ISAthis CC and some with the �rst bit of their MAC address equal to 1, have generated anew request. Then, a

ording to the previous se
tions, they have to wait until the startof the next CC; that is, until the end of level 5. Alternatively, the BS may initiate a newinstan
e of the ISA proto
ol, to be used by all MSs belonging to the se
ond half of thetree, thereby 
reating a se
ond instan
e of the ISA proto
ol. The �rst instan
e is used by



90 CHAPTER 6. THE ISAP ALGORITHMall MSs whose �rst bit of their address equals 0, the se
ond half is devoted to the otherMSs, the MAC addresses of whi
h start with a 1.In general, the ISA proto
ol with starting level Sl and a splitting fa
torQ 
an be un
oupledto form QSl di�erent instan
es of ISA, where ea
h instan
e 
orresponds with a partitionof the address spa
e. Another advantage of this method is that the 
ontention slotsare spread more uniformly over 
onse
utive frames, as the di�erent instan
es are notne
essarily in phase, i.e., the tops of the di�erent trees might o

ur in di�erent frames.The disadvantage of un
oupling is that we 
an no longer de
rease the starting level belowlevel Sl. It is possible to 
ombine multiple instan
es and polling, but we do not 
onsiderit.6.6 MS BehaviourThe behaviour of the di�erent MSs, using a single instan
e of the ISAP s
heme, is de-s
ribed in Figure 6.5 by means of a 
ow 
hart. The following notations are used. Anarrow that is a

ompanied by a 
apital S indi
ates that the transition is made at theend of a frame header, i.e., after re
eiving the feedba
k information from the BS. Let Abe a MAC address, Ai the i-th digit of the MAC address A, vf(A; i) the integer valuedenoted by the �rst i digits of the MAC address A and vl(A; i) the integer value denotedby the last i digits of the MAC address A. For instan
e for Q = 2, vf(101101; 3) = 5 andvl(101101; 4) = 13.As long as an MS is not using the 
ontention 
hannel, it remains in the ina
tive state.An MS that generates a request makes a transition to the blo
ked state. There it remainsuntil the 
urrent CC is solved, 
he
king the feedba
k �eld at the beginning of everyframe. The feedba
k �eld, whi
h is present in the downlink frame header, 
ontains thefollowing sub�elds: a bit, denoted as the l-bit, whi
h indi
ates whether the 
urrent levelhas �nished, a bit, denoted as the 
-bit, whi
h indi
ates whether the 
urrent CC has�nished (if set: the starting level of the next CC is also in
luded), an integer value T
denoting the number of 
ollisions that o

urred (so far) at the 
urrent level and a set ofbits, one for ea
h 
ontention slot, where a 0 indi
ates a su

ess (or an empty slot) and a1 a failure. Noti
e that one feedba
k bit for ea
h 
ontention slot is suÆ
ient as we do nottake 
apture e�e
ts into a

ount.On
e the 
urrent CC has ended|that is, the 
-bit is set|three parameters `Lvl', `Pos'and `O�set' are initialized. They have the following fun
tion:� Lvl : indi
ates the 
urrent level of the CC, therefore its value is in
remented by oneat the start of ea
h level during a CC.� Pos : is a variable that holds the number of the 
ontention slot to be used by theMS (the slots are numbered starting from 1).� O�set : an integer value that keeps tra
k of the number of slots, belonging to the
urrent level, present in prior frames.



6.7. MORE OPTIONAL PARAMETERS 91
Inactive

S

yes

Pos = v_f(A,S_l)

c-bit = 1 ?

Blocked

Offset = 0

Offset + L >= Pos ? Offset += L
no

yes

Transmit in slot

Pos - Offset
Success ?

S no

yes

l_bit = 1 ? no

S

S yes

<= N_p ?

S

yes

noPos = Q . N 

no

Request Ready

Level += 1

Offset = 0
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+ A_(Lvl+1) + 1

Figure 6.5: The Flow Chart of an MS (A = MAC address of the MS)After initialization the MS waits for the frame that 
ontains slot number `Pos' by makinguse of the `O�set' value. Next, the transmission state is entered. A transmission takespla
e in slot number `Pos' and the result is found by 
he
king the 
orresponding feedba
kbit. If su

essful we return to the ina
tive state, otherwise the MS sets the parameter Nand waits until the 
urrent level has �nished. N indi
ates the number of 
ollisions thathave o

urred at the 
urrent level before slot number `Pos'. Next, the MS 
he
ks to seewhether a swit
h to polling is made and depending on this result assigns a new value to`Pos'. This routine is repeated until a su

essful transmission o

urs. Che
king to seewhether a swit
h to polling is made at level i + 1 simply 
onsists of 
al
ulating the sizeof the remaining address spa
e and 
omparing the result with Np. Due to the fa
t that aslot at level i 
orresponds with Qn�i addresses, the size of the remaining address spa
e isfound by multiplying the number of 
ollisions at that level i by Qn�i.
6.7 More Optional ParametersThe numeri
al examples presented in Chapter 8 indi
ate that the polling feature has apositive impa
t on the delay. It does however redu
e the throughput a
hieved on the
ontention 
hannel. In order to limit the throughput losses 
aused by the polling feature,one 
ould add another parameter Mp to the ISAP s
heme. Whenever the ISAP s
hemeis enri
hed by the Mp parameter, we refer to it as the M -ISAP s
heme.



92 CHAPTER 6. THE ISAP ALGORITHMThe aim of M -ISAP is to guarantee a minimum throughput on the polling slots. Noti
e,ISAP already guarantees a worst 
ase throughput Tpoll on the polling slots ofTpoll = 2QblogQ Np
 : (6.2)For instan
e, for Q = 3 and Np = 30, we get Tpoll = 2=27. Equation (6.2) 
an beunderstood as follows. The worst possible throughput on the polling slots is rea
hed whenthe swit
h to polling o

urs as a result of a single 
ollision, 
ontaining two 
ontenders, atthe highest possible level. Looking at equation (6.2), ISAP hardly provides any guaranteefor large values of Np. A better guarantee is a
hieved by prohibiting ISAP to swit
h topolling until a 
ertain level, say Mp, is rea
hed. Indeed, the slots used for polling have aminimum throughput of Tpoll ofTpoll = 2min(Qn�Mp+1; QblogQNp
) ; (6.3)where n is the length of a MAC address. For instan
e, for Q = 2; n = 8; Np = 35 andMp = 6 we get a worst 
ase throughput of 0:25 on the polling slots. In the same s
enarioISAP would only guarantee a throughput of 0:0625 on the polling slots.



Chapter 7Analysis of the Identi�er SplittingAlgorithm 
ombined with Polling
In this 
hapter we study the ISAP algorithm by means of several analyti
al models [65{67℄. The main obje
tive of these models is to obtain experien
e that allows a well-foundedunderstanding of the impa
t of the di�erent proto
ol parameters and to reveal possibledelay vs. throughput tradeo�s. Numeri
al results of this study are presented in Chapter8. Petras, et al [50{52℄ have studied the �rst two moments of the length of an ISACC with k 
ontenders, by means of re
ursive formulas. Their main assumption is thatevery level 
an be supported by a single frame, i.e., the parameter L is not taken intoa

ount. Fernandez and Sallent [15℄ have studied none deterministi
 splitting algorithmsin a hybrid Fiber-Coax Broadband A

ess Network by means of fun
tional equations.They also traverse the 
ontention tree in a breadth-�rst approa
h. The a

ess network
onsidered by Fernandez does not 
ontain a frame stru
ture: the system is slotted andea
h level of the 
ontention tree is separated by B 
ontentionless time slots. Therefore,the analysis is very di�erent from ours.This 
hapter is subdivided into �ve se
tions. A number of simplifying assumptions aremade in Se
tion 7.1, that apply to all the analyti
al models presented. In Se
tion 7.2, westart by introdu
ing a model for the binary ISA s
heme. We 
ontinue with the binaryISAP s
heme, i.e., we add the polling feature. Next, we 
onsider �xed and variablestarting levels and multiple instan
es. In Se
tion 7.3, we generalize these models to theQ-ary 
ase. Se
tion 7.4, indi
ates how to evaluate M -ISAP (see Se
tion 6.7). In Se
tions7.2 to 7.4 the parameter L is not taken into a

ount (see Se
tion 7.1). Finally, in Se
tion7.5, we 
al
ulate some important expe
ted values that provide insight on the intera
tionof the parameter L with the other proto
ol parameters.7.1 AssumptionsLet n be the size of the MAC-addresses (in digits). The number of MSs lo
ated within therea
h of the BS is assumed to beQn|that is, all MAC addresses are utilized. Furthermore,



94 CHAPTER 7. THE ISAP ALGORITHM: ANALYSISthe aggregate traÆ
, generated by all MSs on the uplink 
ontention 
hannel, is assumedto have a Poisson distribution with a mean of � requests per frame. As the number ofMSs is �nite and equals Qn, the number of requests generated during a CC should neverex
eed Qn. Therefore, we drop at random some of the arrivals if this value is ex
eeded (forx > Qn arrivals, we drop x � Qn arrivals). Alternatively, we 
ould drop the last x � Qnarrivals. The fa
t that we drop these arrivals at random (instead of dropping the lastx � Qn arrivals) should hardly have any in
uen
e on the numeri
al examples presented,be
ause the probability of having more thanQn arrivals during a CC is negligible. Randomdropping assures that the requests arrive in a uniform way during a CC. Hen
e, de�nethe random variable Ii as the number of requests generated during a CC 
onsisting of iframes, thenP [Ii = k℄ = (�i)kk! e��i; k < Qn (7.1)P [Ii = Qn℄ = Xk�Qn (�i)kk! e��i: (7.2)Noti
e, we do not need to 
onsider bursty input traÆ
 sin
e we are observing the a

ess
hannel used by an MS that wants to transmit a request after a period of silen
e. Inreal-life systems the following holds with respe
t to the number of MSs parti
ipating andtheir addresses:� MSs that were su

essful during the last frame of a CC will never parti
ipate in thenext CC.� Parti
ipating MSs, regardless of the frame in whi
h they were su

essful, are lesslikely to take part in the next CC as opposed to those that did not parti
ipate atall.To keep the model analyti
ally tra
table, both these remarks are ignored. Thus, theaddresses of the MSs taking part in the s
heme at the beginning of a CC are uniformlydistributed over the 
omplete address spa
e and their number is distributed a

ording toa Poisson distribution, where the mean depends on the length of the previous CC.In the �rst three parts (Se
tions 7.2 to 7.4), we assume that ea
h level of the CC 
orre-sponds with a single frame, i.e., L is assumed to be large enough to support any level ofthe splitting algorithm. Therefore, we 
annot use the model to study a system in whi
hthe 
ontention 
hannel is highly loaded. Noti
e that ea
h level of a CC 
an always besupported by a single frame if a CC has k � 2L=Q parti
ipants, whatever the addressesof these k stations might be. Indeed, a level requires x > L slots whenever x=Q 
ollisionso

urred during the previous level. In order to have y 
ollision we need at least 2y MSsparti
ipating. In Se
tions 7.2 to 7.4, Np and QSl are smaller than or equal to L. In thefourth part (Se
tion 7.5), we drop the assumption on L and 
onsider all Np and Sl values.



7.2. ANALYSIS OF THE BINARY ISAP PROTOCOL 957.2 Analysis of the Binary ISAP Proto
olThe work presented in this se
tion was published in [66℄. In the �rst subse
tion we
al
ulate the throughput and the delay density fun
tion of the ISA s
heme (Se
tion 7.2.1).In a se
ond subse
tion we fo
us on ISAP with a �xed starting level Sl = 0 (Se
tion 7.2.2).Afterwards, we 
onsider other �xed starting levels (Se
tion 7.2.3) and variable startinglevels (Se
tion 7.2.4). The following random variables will be used in the sequel of thisse
tion.� X
, resp. Xa, denotes the number of 
ontenders or parti
ipants in a CC for the ISA,resp. ISAP proto
ol.� R
, resp. Ra, denotes the level at whi
h the CC is resolved (i.e., the number offrames needed minus one) for the ISA, resp. ISAP s
heme.� C(
)i , resp. C(a)i , denotes the number of 
ollisions at level i for both proto
ols. Thesevariables range from 0 to 2i.� Pa denotes the level at whi
h we poll for the ISAP s
heme. If the s
heme is solvedwithout polling we let Pa be equal to n + 1.Furthermore we use the symbolCnr to denote the number of di�erent possible 
ombinationsof r from n di�erent items.7.2.1 The Identi�er Splitting Algorithm (ISA)The Delay Analysis(A) We start by studying the random variable R
 
onditioned on X
. Noti
e that atlevel i the address spa
e is split into 2i equal parts of size 2n�i. For the s
heme to be
ollision free at level i we 
an only allow one parti
ipating MS in ea
h subspa
e. Thisresults inP [R
 � i j X
 = k℄ = 2(n�i)kC2ikC2nk : (7.3)This 
an be proven by noti
ing that P [R
 � i j X
 = k℄ = P [R
 � i j X
 = k �1℄ 2n�i (2i�(k�1))=(2n�(k�1)) using indu
tion on k. An alternative proof is based on themultivariate hypergeometri
 distribution. By subtra
tion we obtain P [R
 = i j X
 = k℄,whi
h is denoted as p
(k; i+ 1) (we write i + 1 to indi
ate the number of frames used).(B) Let us now fo
us on X
. Clearly X
 is the steady-state ve
tor of the Markovianpro
ess (X(
)n )n, where X(
)n denotes the number of 
ontenders during the n-th CC. Due
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(k; j) def= P [X(
)n+1 = j j X(
)n = k℄ = n+1Xt=1 (�t)je��tj! p
(k; t); (7.4)for 0 � j � 2n � 1. For j = 2n we assign the remaining probability mass. X
 is thenfound by solving the eigenve
tor problem. Applying the de�nition of the expe
ted valuegives us the mean number of parti
ipants E[X
℄ in a CC.(C) Before we 
an 
al
ulate the delay we still need to make the following observation.Consider an arbitrary arrival in a CC, then we need to know the probability that thisCC is k frames long and that there will be l 
ontenders in the next CC. We denote L(
)
urand X(
)next as the length of the CC in whi
h an arbitrary arrival o

urs and the numberof parti
ipants in the next CC. Some straightforward reasoning shows that the followingrelationships between X(
)next, L(
)
ur and X
 hold:P [X(
)next = l℄ = P [X
 = l℄lE[X
℄ (7.5)and P [L(
)
ur = l℄ = �l 2nXk=0 P [X
 = k℄p
(k; l)=E[X
℄ (7.6)where p
(k; l) was de�ned in (A). Noti
e,Pl P [L(
)
ur = l℄(�l)k�1=(k�1)! e��l = P [X(
)next =k℄. Let us prove equality (7.5) (equation (7.6) 
an be found in a similar way). Considera �nite set of N of 
onse
utive CCs. Denote Ti(N) as the number of CCs during whi
hi arrivals o

ur. Then, the probability that an arbitrary arrival 
ompetes, during a CC,with i � 1 other arrivals equals iTi(N)=(Pi iTi(N)). As N ! 1, Ti(N)=N approa
hesP [X
 = i℄ and Pi iTi(N)=N approa
hes E[X
℄.Combining (A), (B) and (C) Having the results from (A), (B) and (C), we 
an
al
ulate the mean delay. Clearly the delay 
onsists of two parts. The �rst part D1 isthe time until the start of the next CC and the se
ond part D2 is the number of framesneeded until our tagged request is su

essful. Using expression (7.6) and knowing thatthe arrivals are distributed uniformly within a CC (see Se
tion 7.1), the expe
ted valuefor the �rst part equalsE[D1℄ = n+1Xi=1 P [L(
)
ur = i℄i=2: (7.7)By de�nition of the expe
ted value the se
ond part equalsE[D2℄ = nXi=0 Xk�1 P [X(
)next = k℄(i + 1)(F
(i; k)� F
(i� 1; k)); (7.8)
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(i; k) denotes the probability that a tagged request is su

essful at or before leveli given that there where k�1 other 
ontenders (F
(�1; k) is zero in the expression above).Again we 
an prove by indu
tion thatF
(i; k) = C2n�2n�ik�1C2n�1k�1 : (7.9)Adding E[D1℄ and E[D2℄ results in the mean delay.The delay density fun
tion Using (A), (B) and (C), it is easy to show that thedelay density fun
tion D
(x) (with x between 1 and 2(n + 1)) is given by the followingstep fun
tion:D
(x) = bx
Xs=1 n+1Xj=dxe�s 2nXl=1 F
(s� 1; l)�F
(s� 2; l)j Gj(l)P [L(
)
ur = j℄; (7.10)where Gj(l) = (�j)l�1(l�1)! e��j for l < 2n � 1 and Gj(2n) = Pj�2n�1 (�j)l�1(l�1)! e��j. In (7.10)s denotes the number of transmissions (in
luding the su

essful transmission) a taggedrequest needs, j refers to the length (in frames) of the CC in whi
h our tagged request isgenerated and l � 1 equals the number of other 
ompetitors apart from our tagged one.The Throughput AnalysisIn this se
tion we determine the throughput of the ISA s
heme. First, de�ne two moresets of random variables S(
)i and S(a)i , being the number of slots used at level i by boths
hemes. From the foregoing we already obtained P [X
 = k℄; thus, the throughput T
 isfound asT
 = E[X
℄P2nk=0 P [X
 = k℄E[Pi S(
)i j X
 = k℄ : (7.11)We 
ould 
al
ulate the expe
ted number of slots in this formula as was done in [51℄ (usinga strong re
ursive s
heme). Still, it is possible to get the same results using a more dire
tapproa
h as follows. First, noti
e thatE[Xi S(
)i j X
 = k℄ = 1 + nXi=1 E[S(
)i j X
 = k℄: (7.12)On the other hand we know that the expe
ted number of slots at level i equals twi
e theexpe
ted number of 
ollisions at level i � 1, while the expe
ted number of 
ollisions atlevel i mat
hesE[C(
)i j X
 = k℄ = 2i 1� C2n�2n�ikC2nk � 2n�iC2n�2n�ik�1C2nk ! : (7.13)
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e, by substituting the summation indexE[Xi S(
)i j X
 = k℄ = 1 + 2n+1 nXi=1 "2�i 1� C2n�2ikC2nk !� C2n�2ik�1C2nk # : (7.14)As it turns out, the right-hand side of equation (7.14) was already obtained by TrabbPardo [17℄ in 1977. At that time splitting algorithms were not yet invented, but thesequantities are also relevant to the analysis of tries in 
omputer algorithms.7.2.2 The Identi�er Splitting Algorithm 
ombined with PollingThe Delay AnalysisIn this se
tion we will follow the same lines of reasoning as in Se
tion 7.2.1 and we startby studying P [Ra � i j Xa = k℄.(A') Two 
ases 
an be 
onsidered. First, the CC might be solved before level i or atlevel i due to polling, se
ondly, it might be solved at level i without a swit
h to polling.Hen
e,P [Ra � i j Xa = k℄ = P [Ra � i� 1 [ Pa � i j Xa = k℄+P [Ra = i \ Pa > i j Xa = k℄: (7.15)The �rst probability is dis
ussed in (A1'), the se
ond in (A2').(A1') We 
al
ulate the 
omplementary probability mass. By de�nition of the pollingme
hanism (see Se
tion 6.3) we haveP [Ra � i \ Pa > i j Xa = k℄ = P [C(a)i�1 > � Np2n�i+1� j Xa = k℄: (7.16)The right-hand side is found using the following relationship:P [C(a)i�1 = � Np2n�i+1�+ x j Xa = k℄ = P [C(
)i�1 = � Np2n�i+1� + x j X
 = k℄; (7.17)for x � 1, but not ne
essarily for x � 0. To prove this we must show that havingj Np2n�i+1k+x 
ollisions at level i� 1 given k 
ontenders for ISA implies the same for ISAPand vi
e versa. Clearly, if ISAP had this number of 
ollisions (at level i � 1 given kparti
ipants), polling did not o

ur before; thus, we have the same e�e
t for ISA. Onthe other hand if the ISA s
heme results in that many 
ollisions, ISAP 
ould not haveswit
hed to polling be
ause the remaining address spa
e is too large at level i�1 and 
anonly de
rease in size as the level in
reases.
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tive now is to �nd the probability that we have exa
tly l 
ollisions atlevel i given k parti
ipants (when using the ISA s
heme). Although these values are easyto des
ribe mathemati
ally by a sum of multivariate hypergeometi
 probabilities, this isof no pra
ti
al use due to the high 
omputational 
omplexity. A more 
ompli
ated butappropriate way would be to apply the In
lusion-Ex
lusion Prin
iple [29, 73℄. Due tothe alternating sign, this method tends to give numeri
al problems for large values of n.We propose the following variation on the In
lusion-Ex
lusion Prin
iple (where the �rstequality is a 
onsequen
e of (7.3)):s(i; 2i; k) = 2(n�i)kC2ikC2nk ; (7.18)s(i; l; k) = C2il lXl1=0 2(n�i)l1C ll1C2n�l2n�ik�l1C2nk � 2i�lXx=1 C l+xl s(i; l + x; k); (7.19)where s(i; l; k) = P [C(
)i = 2i � l j X
 = k℄. We 
an use (7.18) and (7.19) in a 
oatingpoint environment for n � 7.(A2') In this 
ase ea
h 
ollision at level i � 1 involves only two MSs, otherwise they
annot be solved at level i. The probability that su
h a 
ollision is solved, at level i,equals 2n�i2n�i+1�1 . Thus by means of the multivariate hypergeometri
 distribution we getP [Ra = i \ Pa > i j Xa = k℄ =b k2
Xu=ui�1+1 2(n�i+1)(k�2u)�C2n�i+12 �uC2i�1u C2i�1�uk�2uC2nk � 2n�i2n�i+1 � 1�u ; (7.20)where ui denotes j Np2n�ik.(B',C') Let us de�ne pa(k; i + 1) as P [Ra = i j Xa = k℄. Steps (B') and (C') arestraightforward to obtain from (B) and (C). To 
al
ulate the mean delay, we need to�nd Fa(i; k), i.e., the probability that a tagged request is su

essful at or before level igiven that we had k 
ontenders (for the ISAP s
heme). We denote ui�1 + 1 as vi; thus,vi = 1+b Np2n�i+1 
. In (A1') it was argued that the event C(
)i�1 � vi is the same as C(a)i�1 � vi,when 
onditioned on X
, resp. Xa, whi
h in its turn 
oin
ides with Pa > i \ Ra � i.Hen
e,Fa(i; k) = P [Ra � i� 1[Pa � i j Xa = k℄+Xs�vi P [Rt � i\C(
)i�1 = s j X
 = k℄; (7.21)where Rt denotes the level at whi
h our tagged request is su

essful. This �rst probabilitywas found in (A1'). The se
ond one is found using the methodology of equations (7.18)



100 CHAPTER 7. THE ISAP ALGORITHM: ANALYSISand (7.19) as follows. We de�ne t(i; s; k) as P [Rt � i \C(
)i�1 = 2i�1 � s j X
 = k℄. We get(where the �rst equation is a 
onsequen
e of (7.3))t(i; 2i�1; k) = 2(n�i+1)kC2i�1kC2nk (7.22)t(i; s; k) = C2i�1s sXl1=0 2(n�i+1)l1Csl1C2n�s2n�i+1k�l1C2nk � l1k + �1� l1k� C2n�s2n�i+1�2n�ik�l1�1C2n�s2n�i+1�1k�l1�1 !� 2i�1�sXx=1 Cs+xs t(i; s+ x; k):(7.23)When we look at the delay density fun
tion we 
an make use of formula (7.10) (wherethe indi
es a are used instead of 
). This 
on
ludes the delay analysis.The Throughput AnalysisSin
e we already know the probabilities P [Xa = k℄ from the delay analysis, it is suÆ
ientto �nd E[Pi S(a)i j Xa = k℄. Unfortunately this is not as straightforward as one mightexpe
t. We start in a similar manner as in the previous se
tion. The expe
ted number ofslots used equals the sum of the expe
ted number of slots used at ea
h level. By de�nitionof the ISAP s
heme we haveE[S(a)i j Xa = k℄ = P [Pa = i j Xa = k℄ E[S(a)i j Xa = k \ Pa = i℄ + : : :P [Pa > i \Ra � i j Xa = k℄ E[S(a)i j Xa = k \ Pa > i \ Ra � i℄; (7.24)by observing that the expe
ted number of slots is zero ifRa � i�1. The se
ond probabilitywas obtained in (A1'), the �rst one is 
al
ulated as P [Ra � i�1[Pa � i j Xa = k℄ minusP [Ra � i� 1 j Xa = k℄, two results that were also obtained in (A'). The 
omputation ofboth expe
ted values remains (for i � 2 sin
e S(a)0 and S(a)1 are trivial to obtain). Theyare dis
ussed in (D') and (E').(D') First 
onsider E[S(a)i j Xa = k \ Pa > i \Ra � i℄. In this 
ase the number of slotsused at level i equals two times the number of 
ollisions at level i � 1. Also in (A1') itwas shown that the event Pa > i \Ra � i is the same as C(
)i�1 � vi, when 
onditioned onXa, resp. X
. Thus it is suÆ
ient to �ndE[C(
)i�1 j X
 = k \ C(
)i�1 � vi℄:This expe
ted value is obtained using the de�nition of the expe
ted value 
ombined with(7.17)E[C(
)i�1 j X
 = k \ C(
)i�1 � vi℄ = vi + 2i�1�viXs=0 sP [C(
)i�1 = s+ vi j X
 = k℄P [C(
)i�1 � vi j X
 = k℄ ; (7.25)



7.2. ANALYSIS OF THE BINARY ISAP PROTOCOL 101where we applied the following proposition. If an event A � C then P [A j B \ C℄ equalsP [A j B℄=P [C j B℄. In this 
ase, A is equal to C(
)i�1 = s+ vi and C is 
hosen as C(
)i�1 � vi.(E') As opposed to the �rst 
ase, i.e., (D'), the expe
ted number of slots equals 2n�i+1times the expe
ted number of 
ollisions at level i � 1 provided that we do poll at level iand we have k 
ontenders. Also, sin
e the event Pa = i is the same as Ra � i \C(a)i�1 < viwe are a
tually looking forE[C(a)i�1 j Xa = k \ Ra � i \ C(a)i�1 < vi℄: (7.26)We start with the following observation:E[C(a)i�1 j Xa = k \ Ra � i℄ =P [C(a)i�1 � vi j Xa = k \Ra � i℄ E[C(a)i�1 j Xa = k \ Ra � i \ C(a)i�1 � vi℄ + : : :P [C(a)i�1 < vi j Xa = k \ Ra � i℄ E[C(a)i�1 j Xa = k \Ra � i \ C(a)i�1 < vi℄; (7.27)where the expression of interest is part of the right-hand side. Both probabilities are
learly ea
h others' 
omplement; thus, it is suÆ
ient to 
al
ulate the �rst. To do thisremark again that if an event A � C then P [A j B \ C℄ equals P [A j B℄=P [C j B℄.Applying this result with A equal to C(a)i�1 � vi and with C as Ra � i, (A is a part of Cbe
ause vi > 0) yields the following expression for the �rst probability:P [C(a)i�1 � vi j Xa = k℄=P [Ra � i j Xa = k℄: (7.28)Both these values were obtained in se
tion (A'). Again two expe
ted values remain un-known, (E1') and (E2') are devoted to them.(E1') We start with the one in the right-hand side. Noti
e that event C(a)i�1 � vi is apart of the event Ra � i (as mentioned above) and this �rst event is the same as C(
)i�1 � viwhen 
onditioned on Xa and X
 respe
tively. Thus the expression we are looking for isredu
ed to (7.25).(E2') Remark that the event Ra � i 
oin
ides with C(a)i�1 > 0. As the event C(a)i�2 � vi�1
ontains this last event, we 
an also write it as C(a)i�2 � vi�1 \ C(a)i�1 > 0. So, we want to�nd E[C(a)i�1 j Xa = k \ C(a)i�2 � vi�1 \ C(a)i�1 > 0℄: (7.29)Some straightforward reasoning based on the de�nition of the expe
ted value yieldsE[C(a)i�1 j Xa = k \ C(a)i�2 � vi�1 \ C(a)i�1 > 0℄ = E[C(a)i�1 j Xa = k \ C(a)i�2 � vi�1℄=(1� P [C(a)i�1 = 0 j Xa = k \ C(a)i�2 � vi�1℄): (7.30)



102 CHAPTER 7. THE ISAP ALGORITHM: ANALYSISApplying P [A j B\C℄ = P [A\C j B℄=P [C j B℄ we �nd the probability in the denominatorP [C(a)i�1 = 0 j Xa = k \ C(a)i�2 � vi�1℄ = P [C(a)i�1 = 0 \ C(a)i�2 � vi�1 j Xa = k℄P [C(a)i�2 � vi�1 j Xa = k℄ ; (7.31)due to our dis
ussion in (A1') we 
an substitute the super- and subs
ripts a for 
 in bothprobabilities without altering their values. Having done this we use (7.18) and (7.19) forthe 
omputation of the denominator, while the numerator is obtained based on a similarargument as in (A2')P [C(
)i�1 = 0 \ C(
)i�2 � vi�1 j X
 = k℄ =b k2 
Xu=vi�1 2(n�i+2)(k�2u)�C2n�i+22 �uC2i�2u C2i�2�uk�2uC2nk � 2n�i+12n�i+2 � 1�u : (7.32)The expression is the same as in (A2'), but with i � 1 substituted for i � 2 (rememberthat vi = 1 + ui�1).We end with the determination of the expe
ted value in the right-hand side of (7.30).Again, we 
an substitute the sub- and supers
ripts a for 
. Then, using the de�nition ofthe expe
ted value we getE[C(
)i�1 j X
 = k \ C(
)i�2 � vi�1℄ =Xl�vi�1E[C(
)i�1 j X
 = k \ C(
)i�2 = l℄ P [C(
)i�2 = l j X
 = k℄P [C(
)i�2 � vi�1 j X
 = k℄ : (7.33)Finally, we 
al
ulate the numerator of this sum using the same methodology as in (7.18)and (7.19), where we de�ne e(i � 1; s; k) as E[2i�1 � C(
)i�1 j X
 = k \ C(
)i�2 = 2i�2 �s℄P [C(
)i�2 = 2i�2 � s j X
 = k℄. This results in the following equations (the �rst equationis a 
onsequen
e of (7.3)):e(i� 1; 2i�2; k) = 2i�12(n�i+2)kC2i�2kC2nk (7.34)e(i� 1; s; k) = C2i�2s sXl1=0 2(n�i+2)l1  2s+ (2i�1 � 2s)Cmik�l1 + 2n�i+1Cmik�l1�1C2n�s2n�i+2k�l1 !
�Csl1C2n�s2n�i+2k�l1C2nk � 2i�2�sXx=1 Cs+xs e(i� 1; s+ x; k) (7.35)with mi equal to 2n � s2n�i+2 � 2n�i+1.Remark that the expe
ted number of slots used in this s
heme given that we had k 
on-tenders is independent of the way the slots (polling and 
ontention slots) are in
orporatedinto the frame stru
ture. Only the probability of having k 
ontenders depends upon theframe stru
ture.



7.2. ANALYSIS OF THE BINARY ISAP PROTOCOL 1037.2.3 Skipping the First Few Levels (STATIC)In this se
tion we des
ribe the ne
essary adaptations to Se
tion 7.2.2 in order to evaluatethe ISAP s
heme when some of the �rst levels of the tree are skipped. The performan
eof ISA with a higher starting level is obtained by setting Np equal to 0. The starting levelis denoted by Sl. The following random variables are de�ned:� X+a : the number of parti
ipants in a CC, this variable ranges from 0 to 2n.� R+a : the level at whi
h the ISAP s
heme is resolved, this variable ranges from Sl ton.� S(a+)i : the number of slots used at level i.� P+a : the level at whi
h we poll, if the s
heme is solved without polling, the variableobtains the value n+ 1.We start with the delay analysis.The Delay AnalysisTo solve this problem we follow the same lines of reasoning as in Se
tion 7.2.2. In thisse
tion we address the most signi�
ant di�eren
es with the evaluation in Se
tion 7.2.2.Before going into the mathemati
al details, let us summarize the two major di�eren
esregarding the behaviour of the proto
ol. First, the s
heme 
an no longer be solved beforelevel Sl as these levels no longer exist. Se
ondly, polling at level Sl is no longer possibleas level Sl � 1 is skipped.(A+) Let us start with R+a . Noti
e that if the s
heme was resolved at the �rst level Slthen it is also solved at or before level Sl with the ISA s
heme, with a �xed starting levelat 0, and vi
e versa. Se
ondly, the events R+a � x and Ra � x 
oin
ide if x > Sl. Thuswe have (due to (7.3))P [R+a = Sl j X+a = k℄ = 2(n�Sl)kC2SlkC2nk ; (7.36)P [R+a � Sl + x j X+a = k℄ = P [Ra � Sl + x j Xa = k℄; (7.37)for every value x > 0. This means that the probability of resolving the s
heme before orat level Sl might de
rease a bit, 
ompared to the situation where the CC starts at level 0.If so, the probability that it is solved at level Sl+1 in
reases together with the probabilityof polling at this level. Remark that the probability of solving the s
heme at level Sl + 1without polling remains identi
al. There are no 
hanges for the other levels. We de�nep+a (k; i) as P [R+a = Sl + i� 1 j X+a = k℄.



104 CHAPTER 7. THE ISAP ALGORITHM: ANALYSISF+a (i; k) is de�ned as the probability that a tagged request is su

essful at or beforelevel i. With similar arguments as used for R+a we getF+a (Sl; k) = C2n�2n�Slk�1C2n�1k�1 ; (7.38)F+a (Sl + x; k) = Fa(Sl + x; k); (7.39)for every positive value x. The remainder of the analysis is analogue to the one withstarting level zero.The Throughput AnalysisThe main obje
tive of this se
tion is to �nd the expe
ted number of slots used at ea
h level.On
e we have these values, the distribution of X+a allows us to 
al
ulate the throughput.This new s
heme 
learly never polls at level Sl (or before sin
e these levels do not exist),therefore the probability of polling at level Sl + 1 is in
reased. This 
auses the expe
tednumber of slots during level Sl and Sl + 1 to be di�erent from the ones we had before.All the other expe
ted values remain the same. The expe
ted number of slots at level Slmat
hes 2Sl be
ause we start at this level.The situation for level Sl + 1 is a bit more 
ompli
ated. We start with equation (7.24)(where we add a '+' to all random variables and set i equal to Sl + 1). In view of thedis
ussion in (A+), adding a '+' only 
hanges the �rst two values (of the right-hand side)in this expression. Based on the fa
t that the events at level Sl are similar to those of theISA s
heme with the starting level at 0, the produ
t of these two values is given byP [P+a = Sl + 1 j X+a = k℄E[S(a+)Sl+1 j X+a = k \ P+a = Sl + 1℄ =2n�Sl uSlXi=1 iP [C(
)Sl = i j X
 = k℄: (7.40)This 
on
ludes the throughput analysis.7.2.4 Skipping the First Few Levels (DYNAMIC)Having done the analysis for the stati
 starting level it is easy to extend these resultsto the proposed dynami
 model (see Se
tion 6.4). We use the same random variables asabove but substitute the '+' sign for a '�' to indi
ate the dynami
 nature of the s
heme.We also introdu
e a new random variable B� as the starting level.



7.2. ANALYSIS OF THE BINARY ISAP PROTOCOL 105The Delay AnalysisWe start with the sear
h for R�a when 
onditioned on X�a and B�. Assuming that thestarting level equals Sl we have the following (due to the STATIC part):P [R�a = Sl j X�a = k \ B� = Sl℄ = 2(n�Sl)kC2SlkC2nk ; (7.41)P [R�a � Sl + x j X�a = k \ B� = Sl℄ = P [Ra � Sl + x j Xa = k℄; (7.42)with x a positive number. Having found this we de�ne p�a(k; Sl; x+ 1) as P [R�a = Sl + x jX�a = k \ B� = Sl℄. To �nd the joint distribution of (X�a ; B�) it is suÆ
ient to 
onstru
tthe following transition matrix and to determine its steady state ve
tor:t�a(k;Sb; j;Sa) = P [X(a�)n+1 = j \ B�n+1 = Sa j X(a�)n = k \ B�n = Sb℄ =n+1�SbXt=1 (�t)je��tj! p�a(k; Sb; t)1f(t�Bl^Sa=Sb�1)_(Bl<t<Bm^Sa=Sb)_(t�Bm^Sa=Sb+1)g:Suppose that we observe the system at an arbitrary arrival instan
e, then the probabilitythat this CC has a length of k frames and started at level Sl is needed. We also need theprobability of having l 
ontenders and a starting level Sl in the next CC (the CC thatis pre
eded by the one 
ontaining the arbitrary arrival). These values are the naturalextensions of (7.5) and (7.6)P [X(a�)next = k \B�next = Sl℄ = P [X�a = k \ B� = Sl℄kE[X�a ℄ (7.43)and P [L(a�)
ur = k \ B�
ur = Sl℄ = �kE[X�a ℄ 2nXj=1 P [X�a = j \ B� = Sl℄p�a(j; Sl; k): (7.44)Finally, we need to �nd F�a (i; k; Sl), being the probability that a tagged arrival is su

essfulat or before level i, knowing that there were k� 1 other parti
ipants and the CC startedat level Sl. Again, using the results of the previous se
tion (see STATIC) we obtainF�a (Sl; k; Sl) = C2n�2n�Slk�1C2n�1k�1 ;F�a (Sl + x; k; Sl) = Fa(Sl + x; k):As before we 
an 
ombine these results to obtain the average delay of the system. Letus now fo
us on the delay density fun
tion. As in (7.10), s is the number of frames thatthe tagged element 
ompetes, j is the length of the CC (in frames) in whi
h the taggedrequest was generated and Sb the level at whi
h this CC started. While l�1 is the numberof other 
ompetitors next to the tagged request,



106 CHAPTER 7. THE ISAP ALGORITHM: ANALYSIS
D
(x) = bx
Xs=1 SmaxXSb=Smin n+1Xj=dxe�s 2nXl=1 �1F�a (f(Sb; j) + s� 1; l; f(Sb; j))j �Gj(l) P [L(a�)
ur = j \ B�
ur = Sb℄; (7.45)where Gj(l) was de�ned in Se
tion 7.2.1, the fun
tion f(Sb; j) is given byf(Sb; j) = 8<: max(Smin; Sb � 1) j � BlSb Bl < j < Bmmin(Smax; Sb + 1) j � Bm ; (7.46)and �1F�a(x; y; z) equals F�a (x; y; z)� F�a (x� 1; y; z).The Throughput AnalysisIn the se
tion above we obtained the joint distribution of (X�a ; B�). This is used to derivethe throughput T �a as follows:T �a = E[X�a ℄P2nk=0PSmaxSl=Smin P [X�a = k \ B� = Sl℄E[Pi S(a�)i j X�a = k \B� = Sl℄ ; (7.47)where the expe
ted values were obtained in the evaluation of the stati
 model.7.2.5 Delay and Throughput for Multiple Instan
esThe analysis 
an also be used to evaluate the s
enario with multiple instan
es. This isdue to the fa
t that the delay experien
ed by a tagged request only depends upon theevents happening in the instan
e it belongs to (be
ause L is not taken into a

ount).7.3 Analysis of the Q-ary ISAP Proto
olIn this se
tion we generalize the analysis of the binary s
heme to the Q-ary s
heme. Thework presented in this se
tion was published in [65℄. We demonstrate how the delay andthroughput 
an be 
al
ulated for the Q-ary ISAP s
heme if Sl = 0. The results for Sl > 0
an be obtained from those with Sl = 0. The pro
edure required to obtain the resultsfor a higher starting level Sl is very similar for both the binary and the Q-ary 
ase andtherefore all details on this pro
edure are omitted. Also, results for ISA 
an be obtainedby setting Np = 0.The following random variables will be used in the sequel of this se
tion.
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, resp. Xa, denotes the number of 
ontenders or parti
ipants in a CC for Q-aryISA, resp. ISAP.� R
, resp. Ra, denotes the level at whi
h the CC is resolved (i.e., the number offrames needed minus one) for the Q-ary ISA s
heme, resp. ISAP s
heme.� C(
)i and C(a)i , denotes the number of 
ollisions at level i for both proto
ols. Thesevariables range from 0 to Qi.� Pa denotes the level at whi
h we poll for the Q-ary ISAP s
heme. If the s
heme issolved without polling we let Pa be equal to n+ 1.The symbol Cnr is still used to denote the number of di�erent possible 
ombinations of rfrom n di�erent items.7.3.1 The Delay AnalysisMost of the steps presented below are straightforward generalizations of the binary equa-tions, ex
ept for (A2").(A") We start by studying P [Ra � i j Xa = k℄. Two 
ases 
an be 
onsidered: �rst, theCC might be solved before level i or at level i due to polling, se
ondly, the CC might besolved at level i without a swit
h to polling.P [Ra � i j Xa = k℄ = P [Ra � i� 1 [ Pa � i j Xa = k℄+P [Ra = i \ Pa > i j Xa = k℄: (7.48)The �rst probability is dis
ussed in (A1"), the se
ond in (A2").(A1") We 
al
ulate the 
omplementary probability mass. By de�nition of the pollingme
hanism (see Se
tion 6.3) we haveP [Ra � i \ Pa > i j Xa = k℄ = P [C(a)i�1 > � NpQn�i+1� j Xa = k℄: (7.49)The right-hand side is found using the following relationship:P [C(a)i�1 = � NpQn�i+1�+ x j Xa = k℄ = P [C(
)i�1 = � NpQn�i+1� + x j X
 = k℄; (7.50)for x � 1, but not ne
essarily for x � 0. The following variation on the In
lusion-Ex
lusionPrin
iple [29, 73℄ is proposed (where the �rst equality is easily proven by indu
tion on k):s(i; Qi; k) = Q(n�i)kCQikCQnk ; (7.51)s(i; l; k) = CQil lXl1=0Q(n�i)l1C ll1CQn�lQn�ik�l1CQnk � Qi�lXx=1 C l+xl s(i; l + x; k); (7.52)
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)i = Qi � l j X
 = k℄.(A2") For the binary splitting algorithm this probability is found easily by observingthat ea
h 
ollision at level i� 1 involves only two MSs, otherwise it 
annot be solved atlevel i. Clearly with Q-ary splitting this is no longer the 
ase. Nevertheless, we still havethe following equality:P [C(a)i�1 = � NpQn�i+1�+ x \ C(a)i = 0 j Xa = k℄ =P [C(
)i�1 = � NpQn�i+1�+ x \ C(
)i = 0 j Xa = k℄; (7.53)for x � 1. At level i we 
an subdivide the address spa
e in Qi subsets of size Qn�i basedon the �rst i digits of the addresses. Ea
h of these subsets is de�ned as a virtual slot atlevel i. We state that a virtual slot or subset at level i is 
ollision free during a CC whenthere is at most one 
ontender with an address that is part of that subset. Next, de�nep(i; l1; k) as the probability that at level i a spe
i�
 set of l1 virtual slots is 
ollision freeand that at level i+1 all virtual slots are 
ollision free, given that we had k 
ontenders inthe CC. Noti
e that the number of 
ollisions at level i might be smaller than Qi � l1, soother virtual slots that do not belong to the spe
i�
 set of size l1 might also be 
ollisionfree. Hen
e,p(i; l1; k) = 1CQnk l1Xj=0 Q(n�i)jC l1j CQi+1�l1Qk�j Q(n�i�1)(k�j): (7.54)Next, de�ne q(i; l1; k) as the probability that level i 
ontains Qi � l1 
ollisions and leveli + 1 is 
ollision free. Then, we have the following relationship between p(i; l1; k) andq(i; l1; k):q(i; Qi; k) = p(i; Qi; k); (7.55)q(i; l1; k) = CQil1 p(i; l1; k)� Qi�l1Xx=1 C l1+xl1 q(i; l1 + x; k): (7.56)This 
ompletes (A2").(B") Xa is the steady-state ve
tor of the Markovian pro
ess (X(a)n )n, where X(a)n denotesthe number of 
ontenders during the n-th CC. Due to (A"),ta(k; j) def= P [X(
)n+1 = j j X(
)n = k℄ = n+1Xt=1 (�t)je��tj! P [Ra = t� 1 j Xa = k℄; (7.57)for 0 � j � Qn � 1. For j = Qn we assign the remaining probability mass. Xa is thenfound by solving the related eigenve
tor problem.



7.3. ANALYSIS OF THE Q-ARY ISAP PROTOCOL 109(C") Observing the system at an arbitrary arrival instan
e On, we require the probabil-ity that the length of the CC, that 
ontains On, is k frames and that there are l 
ontendersin the next CC. We denote L(a)
ur and X(a)next as the length of the CC 
ontaining On andthe number of parti
ipants in the next CC. Some straightforward reasoning shows thefollowing relationship between X(a)next, L(a)
ur and Xa:P [X(a)next = l℄ = P [Xa = l℄lE[Xa℄ ; (7.58)and P [L(a)
ur = l℄ = �l QnXk=0 P [Xa = k℄P [Ra = l � 1 j Xa = k℄=E[Xa℄: (7.59)(D") De�ne Fa(i; k) as the probability that a tagged request is su

essful at or beforelevel i given that we had k 
ontenders in the CC (for ISAP). Next, de�ne vi = 1+b NpQn�i+1 
.We haveFa(i; k) = P [Ra � i� 1[Pa � i j Xa = k℄+Xs�vi P [Rt � i\C(
)i�1 = s j X
 = k℄; (7.60)where Rt denotes the level at whi
h our tagged request is su

essful. The �rst probabilitywas found in (A1"). The se
ond one is 
al
ulated using a similar method as in (7.51)and (7.52). We de�ne t(i; s; k) as P [Rt � i \ C(
)i�1 = Qi�1 � s j X
 = k℄. Then we get(where the �rst equation is a 
onsequen
e of (7.51))t(i; Qi�1; k) = Q(n�i+1)kCQi�1kCQnk (7.61)t(i; s; k) = � Qi�1�sXx=1 Cs+xs t(i; s+ x; k) + CQi�1s sXl1=0Q(n�i+1)l1 �Csl1CQn�sQn�i+1k�l1CQnk  l1k + �1� l1k� CQn�sQn�i+1�Qn�ik�l1�1CQn�sQn�i+1�1k�l1�1 ! : (7.62)With these values it is straightforward to �nd the se
ond term of expression (7.60).(A",B",C",D") Having done this we 
an 
al
ulate the mean delay. The delay 
an besplit into two parts. The �rst D1 is the time until the start of the next CC and the se
ondD2 is the number of frames needed until our tagged request is su

essful. Using expression(7.59) and knowing that the arrivals are distributed uniformly within a CC (see Se
tion7.1), the expe
ted value for the �rst part equalsE[D1℄ = n+1Xi=1 P [L(a)
ur = i℄i=2: (7.63)
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ted value the se
ond part equalsE[D2℄ = nXi=0 Xk�1 P [X(a)next = k℄(i + 1)(Fa(i; k)� Fa(i� 1; k)); (7.64)where Fa(i; k) was de�ned in (D"). The delay density fun
tion Da(x) (with x between 1and 2(n+ 1)) is the following:Da(x) = bx
Xs=1 n+1Xj=dxe�s QnXl=1 Fa(s� 1; l)�Fa(s� 2; l)j Gj(l)P [L(a)
ur = j℄: (7.65)where Gj(l); 1 � l � Qn is a probability distribution that is equal to (�j)l�1(l�1)! e��j for l < Qn(the remaining probability mass is assigned to Gj(Qn)). In equation (7.65), s denotes thenumber of transmissions (in
luding the su

essful transmission) a tagged request needsand j refers to the length (in frames) of the CC in whi
h our tagged request is generated.Finally, l � 1 equals the number of other 
ompetitors in the CC apart from our taggedone.7.3.2 The Throughput AnalysisThe throughput analysis for the Q-ary ISAP s
heme is very di�erent from the one usedto obtain the throughput of the binary s
heme. Although it is possible to use the samemethod as in the binary 
ase, we opt for a shorter but numeri
ally more sensitive method.The vital part of this method is to 
al
ulate the joint probability distribution of thenumber of 
ollision at level i and level i + 1 for the ISA s
heme. These probabilities are
al
ulated in a numeri
ally exa
t environment (Mathemati
a).De�ne a new set of random variables S(a)i , where S(a)i is the number of slots required atlevel i when using the ISAP s
heme. By de�nition of the throughput Ta we have thatTa = E[Xa℄PQnk=0 P [Xa = k℄E[Pi S(a)i j Xa = k℄ : (7.66)As the probabilities P [Xa = k℄ were obtained during the delay analysis, it is suÆ
ientto �nd E[Pi S(a)i j Xa = k℄. The expe
ted number of slots used during a CC equals thesum of the expe
ted number of slots used at ea
h level, we 
an fo
us on E[S(a)i j Xa = k℄.Some preliminary 
al
ulations are presented in (E") (in (E"), Np is equal to zero) andin (F") we 
al
ulate E[S(a)i j Xa = k℄ using the results of (E").(E") De�ne p(i; l1; l2; k) to be the probability that, at level i, a spe
i�
 
olle
tion of l1virtual slots is 
ollision free and, at level i+1, there are exa
tly l2 
ollision free virtual slotsgiven that we had k 
ontenders in the CC. The de�nition of a virtual slot was presentedin (A2"). Noti
e that the number of 
ollisions at level i might be smaller than Qi � l1;thus, other virtual slots that do not belong to the spe
i�
 
olle
tion of size l1 might also
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ollision free. A reasoning based on the In
lusion-Ex
lusion Prin
iple [29, 73℄ allowsus to state the following:p(i; l1; l2; k) = 1CQnk l1Xj=0 Q(n�i)jC l1j CQi+1�Ql1s sXj0=0Q(n�i�1)j0Csj0CQn�l1Qn�i�sQn�i�1k�j�j0� Qi+1�Ql1�sXx=1 Cs+xs p(i; l1; l2 + x; k); (7.67)with s = l2 � Ql1 and with p(i; l1; l2; k) = 0 for l2 < Ql1. Next, we de�ne s(i; l1; l2; k) asthe probability of having exa
tly l1 
ollision free virtual slots, at level i, and exa
tly l2
ollisions free virtual slots, at level i + 1, given that we had k 
ontenders in the CC. Wehave the following relationship between p(i; l1; l2; k) and s(i; l1; l2; k):s(i; Qi; l2; k) = p(i; Qi; l2; k); (7.68)s(i; l1; l2; k) = CQil1 p(i; l1; l2; k)� Qi�l1Xx=1 C l1+xl1 s(i; l1 + x; l2; k): (7.69)This 
on
ludes part (E").(F") Sin
e the expe
ted number of slots at level 0 and 1 are straightforward to obtain,we 
an fo
us on E[S(a)i j Xa = k℄ for i � 2. We distinguish between the following threeevents E(i)1 ; E(i)2 and E(i)3 :� E(i)1 : the CC is resolved within the �rst i � 2 levels (with or without polling) orpolling takes pla
e at level i� 1.� E(i)2 : the CC is resolved (without polling) at level i � 1 or polling takes pla
e atlevel i.� E(i)3 : the CC is not resolved within the �rst i� 1 levels and polling does not o

urat level i.Thus, E[S(a)i ℄ = P (E(i)1 )E[S(a)i j E(i)1 ℄ +P (E(i)2 )E[S(a)i j E(i)2 ℄ +P (E(i)3 )E[S(a)i j E(i)3 ℄. Pro-vided that the �rst event E(i)1 o

urs, the expe
ted number of slots S(a)i at level i equalszero. As for the other two, we 
an rewrite the previously mentioned events as: E(i)1 =C(
)i�2 < vi�1, E(i)2 = Ci�2 � vi�1 \ Ci�1 < vi and E(i)3 = Ci�2 � vi�1 \ Ci�1 � vi (vi wasde�ned in (D")). Moreover,P (E(i)2 j X = k)E[S(a)i j X = k \ E(i)2 ℄ =Xl1�vi�1 Xl2<vi s(i� 2; Qi�2 � l1; Qi�1 � l2; k) Qn�i+1 l2; (7.70)



112 CHAPTER 7. THE ISAP ALGORITHM: ANALYSISand �nallyP (E(i)3 j X = k)E[S(a)i j X = k \ E(i)3 ℄ =Xl1�vi�1 Xl2�vi s(i� 2; Qi�2 � l1; Qi�1 � l2; k) Q l2; (7.71)where s(i; l1; l2; k) was found in (E").7.4 Analysis of the Optional Parameter MpFor the de�nition and use of the parameter Mp we refer to Se
tion 6.7. As a reminder,the ISAP s
heme that uses the Mp parameter is referred to as the M -ISAP s
heme. Thefollowing random variables will be used in the sequel of this se
tion.� X
, Xa and ~Xa denote the number of 
ontenders or parti
ipants in a CC for theISA, ISAP and M -ISAP s
heme.� R
, Ra and ~Ra denote the level at whi
h the CC is resolved (i.e., the number offrames needed minus 1) for ISA, ISAP and M -ISAP.� C(
)i , C(a)i and ~C(a)i , denote the number of 
ollisions at level i for ea
h s
heme. Thesevariables range from 0 to Qi.� S(
)i , S(a)i and ~S(a)i denote the number of 
ontention slots at level i for ea
h s
heme.� Pa and ~Pa denote the level at whi
h we poll for the ISAP and M -ISAP s
heme. Ifa CC is solved without polling we let Pa and ~Pa be equal to n+ 1.Furthermore, we use the symbol Cnr to denote the number of di�erent possible 
ombina-tions of r from n di�erent items.7.4.1 Delay and Throughput AnalysisThe in
uen
e of the parameter Mp on the performan
e 
an be studied by introdu
ingsome modi�
ations to the original analysis of the ISAP as performed in Se
tions 7.2and 7.3. In this se
tion we summarize the main modi�
ations required. Most of themodi�
ations required make use of the following property. Consider the i-th level of a CCwith k 
ontenders. If i < Mp then both ISA and M -ISAP behave identi
al (polling is notallowed at these level by de�nition of Mp). For i > Mp we get an identi
al behavior forISAP and M -ISAP. For i = Mp the M -ISAP s
heme behaves di�erently from both theISA and ISAP s
heme.



7.5. ANALYSIS OF THE IMPACT OF L 113The following three sets of equations are all due to this property. First, ~Ra when 
ondi-tioned on ~Xa 
an be 
al
ulated as follows:P [ ~Ra � i j ~Xa = k℄ = P [R
 � i j X
 = k℄ i < Mp; (7.72)P [ ~Ra � i j ~Xa = k℄ = P [Ra � i j Xa = k℄ i �Mp: (7.73)Se
ond, de�ne F
(i; k);Fa(i; k) and ~Fa(i; k) as the probability that a tagged station issu

essful after at most i + 1 transmissions provided that the CC had k 
ontenders forea
h of the s
hemes. Then,~Fa(i; k) = F
(i; k) i < Mp; (7.74)~Fa(i; k) = Fa(i; k) i �Mp: (7.75)Finally, we also haveE[ ~S(a)i j ~Xa = k℄ = E[S(
)i j X
 = k℄ i < Mp; (7.76)E[ ~S(a)i j ~Xa = k℄ = E[S(a)i j Xa = k℄ i > Mp: (7.77)The �rst two modi�
ations are suÆ
ient to 
al
ulate the average delay and the delaydensity fun
tion for the M -ISAP s
heme. As for the throughput, we still need to obtainE[ ~S(a)Mp j ~Xa = k℄. Consider a CC with k 
ontenders, we mentioned that the M -ISAPs
heme behaves identi
al to ISA until level Mp � 1. Therefore,E[ ~S(a)Mp j ~Xa = k℄ = Xj�bNp=Qn�Mp+1
P [C(
)Mp�1 = j j X
 = k℄ Qn�Mp+1 j +Xj>bNp=Qn�Mp+1
P [C(
)Mp�1 = j j X
 = k℄ Q j: (7.78)An algorithm based on the In
lusion-Ex
lusion Prin
iple [29, 73℄ to 
al
ulate P [C(
)i = j jX
 = k℄ was provided in the previous se
tions.7.5 Analysis of the Impa
t of LIn the previous two se
tions we 
al
ulated the delay distribution and the throughput of theISAP s
heme where L, the maximum number of 
ontention slots allowed in a single frame,was not taken into a

ount. In this se
tion we fo
us on the parameter L. Unfortunately,it seems like there is no (apparent) pra
ti
al way to 
al
ulate the throughput and delaydistribution of ISAP when L is taken into a

ount. Theoreti
ally it is not too diÆ
ult todesign an algorithm that 
al
ulates the throughput and delay of ISAP. However, the timeand spa
e 
omplexity of the algorithm is too large. Also, the 
al
ulations are numeri
allysensitive and have to be 
ondu
ted in a numeri
ally exa
t environment (using rational
al
ulations).
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k is to obtain the probability that a CC requires i+1 frames (providedwe have k parti
ipants). In the previous two se
tions these probabilities were 
loselyrelated with P [Ra = i j Xa = k℄, but this is no longer the 
ase if a level requires multipleframes. It is however possible, by extending the method we used to obtain the jointdistribution of the number of 
ollisions at level i and i+1 (see Se
tion 7.3.2), to set up analgorithm that 
al
ulates the joint distribution of the number of 
ollisions (of ISA) at level0; 1; : : : ; n, from whi
h it is easy to obtain the above-mentioned probabilities. However, theamount of memory required to store this joint distribution is huge: Qn(n+1)=2 probabilitieshave to be stored. Therefore, for realisti
 values of n, this algorithm is out of rea
h of the
urrent 
omputer generations, but might be
ome realisti
 in 10 years time ,.Instead of waiting for another 10 years, we 
an however 
al
ulate some measures, i.e.,expe
ted values, that are 
losely related to the delay and the throughput of ISAP. Thesemeasures provide insight on the intera
tion between the parameter L and the other pro-to
ol parameters: Np and Sl. We restri
t ourselves to the binary 
ase Q = 2. The samete
hnique 
an also be used for Q > 2. This work was published in [67℄7.5.1 Delay and Throughput MeasuresAs a reminder, let us summarize the following important proto
ol parameters:� n : the length of the MAC addresses (in bits).� L : the maximum number of 
ontention slots allowed in one frame.� Np : the value that triggers the polling me
hanism.� Sl : the starting level.In this se
tion we 
al
ulate the following expe
ted values:� E[F j X = k℄: the expe
ted length of a CC (expressed in frames) with k � 2parti
ipants.� E[S j X = k℄: the expe
ted number of 
ontention slots that a CC with k � 2parti
ipants requires.The value E[F ℄ is strongly related with the delay experien
ed by the proto
ol, whereasE[S℄ is related with the throughput of the proto
ol. Also, noti
e that E[S j X = k℄ doesnot depend upon the value of L. Moreover, in the spe
ial 
ase of L = 1 both expe
tedvalues (E[F ℄ and E[S℄) are identi
al. Therefore, it is suÆ
ient to set up a s
heme to
al
ulate E[F j X = k℄ for any value of L.The �rst step of the 
al
ulation is identi
al to (E") (see Se
tion 7.3.2), where we 
al
ulatethe probabilities s(i; l1; l2; k) of having l1 
ollision free virtual slots at level i and l2 
ollisionfree virtual slots at level i+1 provided that we had k 
ontenders in the CC. See (A2") in
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tion 7.3.1 for the de�nition of a virtual slot. The remainder of the analysis is dividedinto two parts: in the �rst part Np � 0 and Sl = 0, while in the se
ond 
ase Np � 0 andSl � 0.Part 1: 0 � Np < 2n and Sl = 0De�ne the random variable F as the number of frames required to support a CC and therandom variable Fi as the number of frames required to support level i of the tree, thenE[F j X = k℄ = nXi=0 E[Fi j X = k℄: (7.79)For k � 2 and Np < 2n, we have F0 = 1 and F1 = 1, resp. 2, if L � 2, resp. L = 1.Therefore, we 
an fo
us on E[Fi j X = k℄ with i � 2. We separate the following threeevents E(i)1 ; E(i)2 and E(i)3 :� E(i)1 : the CC is resolved within the �rst i � 2 levels (with or without polling) orpolling takes pla
e at level i� 1.� E(i)2 : the CC is resolved (without polling) at level i � 1 or polling takes pla
e atlevel i.� E(i)3 : the CC is not resolved within the �rst i� 1 levels and polling does not o

urat level i.Thus, E[Fi℄ = P (E(i)1 )E[Fi j E(i)1 ℄ +P (E(i)2 )E[Fi j E(i)2 ℄ +P (E(i)3 )E[Fi j E(i)3 ℄. Given thatthe �rst event E(i)1 o

urs, the expe
ted number of frames Fi at level i equals zero. Thetwo other expressions are found as follows.De�ne Ci as the number of 
ollisions at level i. Suppose that Ci = N
, then the sizeof the remaining address spa
e is N
2n�i. Thus, at level i + 1 we have no polling whenN
 > Np=2n�i. Also, having N
 > Np=2n�i is equivalent to having N
 > bNp=2n�i
 for N
an integer value. Hen
e, polling does not o

ur at level i + 1 if Ci � 1 + bNp=2n�i
. Wedenote 1 + bNp=2n�i
 as 
i. Hen
e, we 
an rewrite the previously mentioned events as:E(i)1 = Ci�2 < 
i�2, E(i)2 = Ci�2 � 
i�2 \Ci�1 < 
i�1 and E(i)3 = Ci�2 � 
i�1 \Ci�1 � 
i�1.We already mentioned that E[Fi j X = k \ E(i)1 ℄ is zero. Also,P (E(i)2 j X = k)E[Fi j X = k \ E(i)2 ℄ =Xl1�
i�2 Xl2<
i�1 s(i� 2; 2i�2 � l1; 2i�1 � l2; k)�2n�i+1l2L � ; (7.80)and �nallyP (E(i)3 j X = k)E[Fi j X = k \ E(i)3 ℄ =Xl1�
i�2 Xl2�
i�1 s(i� 2; 2i�2 � l1; 2i�1 � l2; k)�2l2L � ; (7.81)



116 CHAPTER 7. THE ISAP ALGORITHM: ANALYSISwhere s(i; l1; l2; k) was found in (E") (see Se
tion 7.3.2).Part 2: 0 � Np < 2n and Sl � 0To avoid any 
onfusion with the previous we de�ne Fi(Sl) as the number of frames requiredto support level i knowing that the starting level is Sl. Clearly, for x < Sl and y > Sl + 1E[Fx(Sl) j X = k℄ = 0; (7.82)E[FSl(Sl) j X = k℄ = �2SlL � ; (7.83)E[Fy(Sl) j X = k℄ = E[Fy(0) j X = k℄; (7.84)where E[Fi(0) j X = k℄ was found in part 1. Thus, only the expe
ted number of framesto support level Sl + 1 remains to be determined. We separate three events:� E1(Sl): the CC is solved at level Sl.� E2(Sl): polling o

urs at level Sl + 1.� E3(Sl): the CC is not solved at level Sl nor does polling o

ur at level Sl + 1.Making use of the values 
i de�ned in Part 1, we 
an rewrite these events as CSl = 0,CSl > 0 \ CSl < 
Sl and CSl � 
Sl. Hen
e,E[FSl+1(Sl) j X = k℄ =Xl1 0�Xl2<
Sl s(Sl � 1; l1; 2Sl � l2; k)�2n�Sll2L � + Xl2�
Sl s(Sl � 1; l1; 2Sl � l2; k)�2l2L �1A ;for Sl > 0. The results for Sl = 0 were obtained in Part 1 of the analysis.



Chapter 8Results for the Identi�er SplittingAlgorithm 
ombined with Polling
This 
hapter investigates the in
uen
e of the di�erent ISAP proto
ol parameters. Ourmain obje
tive is to obtain a well-founded understanding of the impa
t of the di�erentproto
ol parameters on the delay and throughput 
hara
teristi
s and to reveal possibledelay vs. throughput tradeo�s. Petras, et al [50{52℄ have 
al
ulated the �rst two momentsof the length of an ISA CC, with k 
ontenders. From these values they estimated themean delay and throughput of ISA by assuming that a station generates a new arrivalduring a CC with probability p. Thus, the number of arrivals o

urring during a CCobeys a binomial distribution and is independent of the length of a CC. This assumedindependen
e results in mean delay and throughput results that are (far) too optimisti
.This 
hapter is subdivided into �ve se
tions. Se
tion 8.1 presents some numeri
al examplesfor the binary ISAP s
heme. In Se
tion 8.2 we investigate the impa
t of the splitting fa
torQ. Se
tion 8.3 demonstrates the in
uen
e of the optional parameterMp, while Se
tion 8.4fo
usses on the parameter L. Finally, in Se
tion 8.5, we summarize the main 
on
lusions.8.1 Results for the Binary ISAP S
hemeIn this se
tion we use the analyti
al model, presented in Se
tion 7.2, to investigate theimpa
t of the arrival rate �, the trigger value Np and the starting level Sl on the meandelay, the delay density fun
tion and the throughput for the binary ISAP s
heme. Thesystem parameters are set as follows. The number of mobiles is 128; that is, n = 7. Thearrival rate � (requests per frame) varies between 0:05 and 3:5. The values studied forthe polling threshold Np are 0, 20 and 40, where the �rst 
ase 
orresponds with the ISAs
heme. The starting level Sl will vary from level 0 to 2. When studying a system with adynami
 starting level, Bl and Bm are set to 1 and 4 respe
tively. Therefore, the startinglevel is de
reased by one if the CC is solved in 1 frame and is in
reased by one if theCC 
onsist of 4 or more frames. The boundary values are set as follows: Smin = 0 andSmax = 2. The number of instan
es varies between 1 and 4.



118 CHAPTER 8. THE ISAP ALGORITHM: RESULTSWe study four di�erent s
enarios. First, we investigate the impa
t of the polling thresholdNp, when the starting level Sl is �xed at 0. Next, the in
uen
e of the starting level Sl isdis
ussed. Then, the impa
t of using a variable starting level is 
onsidered. Finally, welook at the e�e
t of using multiple instan
es of ISA. Additional numeri
al results 
an befound in [72℄.8.1.1 The In
uen
e of the Polling Threshold on the System Per-forman
eFigures 8.1 and 8.2 show the in
uen
e swit
hing to polling has on the mean delay andthe throughput. As expe
ted we get a tradeo� between the delay and throughput 
har-a
teristi
s: the sooner the ISAP proto
ol swit
hes to polling, the shorter the mean delay,but the lower the throughput.
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Figure 8.1: The impa
t of polling on themean delay 0 0.5 1 1.5 2 2.5 3 3.5
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Figure 8.2: The impa
t of polling on thethroughputFrom Figures 8.1 and 8.2 we observe that the proto
ol behaves very similar for di�erentNp values when the arrival rate � is small (below 0:25). A similar result is obtained forlarge values of � (beyond 5). Both these results are intuitively 
lear. Polling is not anissue in these 
ases: for � very small, 
ollisions rarely o

ur and are solved before polling
an be 
onsidered; if � is very large, the remaining size of the address spa
e is too largeto swit
h to polling.Let us now 
onsider moderate values for �. Re
all that for a polling threshold Np = 40,resp. Np = 20, the proto
ol will never start polling until level 3, resp. level 4 (a single
ollision at level i 
orresponds to a remaining address spa
e of 27�i). Thus, the impa
t ofNp on the performan
e measures is low for small values of �. If the arrival rate in
reases(look at the range 0:5 till 1), the probability that 
ollisions at level 2, resp. 3 are introdu
edin
reases. In most 
ases these 
ollisions 
ontain very few parti
ipants; that is, o

asionally32, resp. 16, polling slots are provided at level 3, resp. 4, to poll very few 
ompetitors.Therefore, the throughput de
reases with in
reasing values of Np. If � is in
reased evenmore, beyond one, polling is postponed in most 
ases to a later level (as the expe
ted



8.1. RESULTS FOR THE BINARY ISAP SCHEME 119number of 
ollisions at level 2, resp. 3, be
omes larger than 1) and will 
ontain moreparti
ipants. This results in higher throughput values for a �xed value of Np.
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t of polling on thedelay density fun
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t of Skipping with� = 1 and Np = 20Figure 8.3 shows the impa
t of polling on the delay density fun
tion (for � = 1). It illus-trates that the main improvement of the delay is lo
ated within the tail of the distributionand is not merely an improvement of the mean delay.8.1.2 The In
uen
e of Skipping Levels (STATIC) on the SystemPerforman
eFigures 8.5 and 8.6 illustrate the impa
t of Sl on the average delay and the throughput. Inthese �gures we have three di�erent types of 
urves: full, dotted and dashed, 
orrespondingto Sl = 0; 1 and 2 respe
tively. Moreover, for ea
h value of Sl the results for Np = 0; 20and 40 are depi
ted. For a �xed value of Sl, the upper 
urve, in both the delay andthroughput results, 
orresponds to Np = 0, the middle 
urve to Np = 20 and the lowestto Np = 40.Skipping the �rst levels leads to a de
rease of the mean waiting time. Let us fo
us on theimpa
t of polling for variable values of Sl. First, Figure 8.5 shows a larger de
rease of thedelay due to polling, when the starting level is larger. This 
an be seen by observing thearea between the 
urves for Np = 0; 20 and 40. Se
ondly, noti
e that the 
urves 
onvergeslower for in
reasing values of Sl (observe the di�eren
es for � = 3:5 in Figure 8.5). Figure8.6 represents the throughput results for Np = 0; 20 and 40. We see that, for low values of�, skipping levels results in a lower throughput (as most of the 2Sl slots are wasted). If �be
omes larger, this loss is 
onverted in a small gain due to the fa
t that the majority ofthe slots before level Sl 
ontains 
ollisions. The in
uen
e of skipping levels on the delaydensity fun
tion is shown in Figure 8.4.
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e of skipping onthe mean delay. 0 0.5 1 1.5 2 2.5 3 3.5
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uen
e on the through-put for Np = 0, 20 and 40.8.1.3 The In
uen
e of Skipping Levels (DYNAMIC) on the Sys-tem Performan
eFrom the previous se
tions we may 
on
lude that a higher starting level has a positiveimpa
t on the delay and even on the throughput, espe
ially for larger values of �. Unfor-tunately a high pri
e is paid for this in terms of throughput if � is small. The aim of thisse
tion is to show that the dynami
 s
heme as proposed in Se
tion 6.4 solves this problem.That is, if � is small the results should tend to the results for Sl = Smin, while for � largethe behavior should be similar to the one 
orresponding to Sl = Smax. Figures 8.7 and8.8 show that this is the 
ase (for Np = 20), meaning that a system where the levels areskipped dynami
ally, is able to limit the maximum delay while keeping the throughputhigh.
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uen
e of Multiple Instan
es of ISA on the SystemPerforman
eThe analysis presented in Se
tion 7.2 
an be applied in order to evaluate the in
uen
e ofmultiple instan
es. In this �nal s
enario � varies between 0 and 6. Figures 8.9 and 8.10show the delay and throughput results for three 
on�gurations. In the �rst, we have oneinstan
e and the starting level Sl is �xed at 2. In the se
ond, we have two instan
es, withSl = 1. Finally, we have four instan
es, with Sl = 0.
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e of multiple in-stan
es on the delay. 0 1 2 3 4 5 6
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uen
e of multiple in-stan
es on the throughput.Clearly, the more instan
es we use, the better the average delay. Ex
ept for very smalland very large values of �, were all s
enarios perform alike. For more moderate values of�, there exists a tradeo� between the delay and throughput; thus, the more instan
es weuse, the smaller the delay and the lower the throughput. Still, the de
rease in throughputis 
onsiderably smaller, 
ompared to the throughput losses 
aused by the introdu
tion ofNp, thereby making the use of multiple instan
es attra
tive.8.2 Results for the Q-ary ISAP S
hemeIn this se
tion, we investigate the in
uen
e of the splitting fa
tor Q and its intera
tionwith the arrival rate �, the trigger value Np and, to some extent, the starting level Sl.Moreover, we 
he
k whether the main 
on
lusions for the binary ISAP s
heme are stillvalid for the Q-ary s
heme. The system parameters are set as follows. The splitting fa
torQ equals 2; 3 or 4, we refer to these three 
ases as the binary, ternary and quaternarys
heme. The number of digits n depends upon the value of Q. In the binary 
ase n equals8, in the ternary 
ase n equals 5 and �nally in the quaternary 
ase n equals 4. Thus, forthe binary and quaternary s
heme we are able to support 256 MSs, in the ternary 
ase we
an have at most 243 MSs. This small di�eren
e in the size of the address spa
e shouldhardly have any e�e
t on the results be
ause on average the number of parti
ipating MSs



122 CHAPTER 8. THE ISAP ALGORITHM: RESULTSin a CC is always mu
h smaller than Qn.8.2.1 The In
uen
e of the Splitting Fa
tor and the Polling Thresh-old on the System Performan
eIn Figures 8.11 and 8.12, the in
uen
e of Q on the mean delay and the delay densityfun
tion is shown for Np = 0 and Np = 20. First, a larger splitting fa
tor Q results in asmaller delay (mean and quantiles). Also, the delay di�ers mu
h more when we 
omparethe binary and ternary s
heme as opposed to the ternary and quaternary s
heme. Ingeneral, a larger value for Q results in a smaller delay. Also, the delay improvement weget from in
reasing Q by one de
reases as Q grows. Indeed, in
reasing Q by one resultsin 1=Q times as many slots to resolve a 
ollision.
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t of Q and Np onthe mean delay 2 4 6 8 10 12 14 16 18
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t of Q and Np onthe delay density fun
tionSe
ondly, Figures 8.11 and 8.12 show that the in
uen
e of the polling threshold Np de-
reases as the splitting fa
tor Q in
reases (mean and quantiles); thus, the polling featureis the most attra
tive for the binary ISAP proto
ol. A general remark on Np is that dif-ferent values of Np only result in a di�erent behavior when there is at least one multipleof Q2 in between.Figures 8.13 and 8.14 demonstrate the in
uen
e of Q on the throughput results for Np = 0and Np = 20. For Np = 0 the highest throughput is obtained with the ternary s
heme,ex
ept for very low load 
onditions where the binary s
heme is slightly superior. ForNp = 20 we have the best results for the ternary s
heme, in this 
ase the binary s
hemeno longer dominates the quaternary s
heme for � around 1. Taking both the delay andthroughput into a

ount, we may 
on
lude that it is better to use a ternary s
heme asopposed to a binary one. The 
hoi
e between the ternary and the quaternary is a tradeo�between the delay and throughput. It has to be mentioned that there do exist somevalues for Np for whi
h the binary s
heme has better throughput results than the ternarys
heme, e.g., for 27 = 33 � Np < 32 = 25.
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Figure 8.14: The impa
t of Q on thethroughput results for Np = 208.2.2 The Intera
tion between the Splitting Fa
tor and the Start-ing LevelWe only show results for Sl = 0 and Sl = 1, although the analyti
al model imposesno restraints on the value of the starting level Sl (expe
t that QSl is bounded by L).Figures 8.15 and 8.16 show the in
uen
e of the starting level Sl and its intera
tion withQ for Np = 0. First, the absolute delay improvement that we obtain for Sl = 1 isvery similar in all three 
ases (binary, ternary and quaternary). In general, the absolutedelay improvement that we obtain from a higher starting level is, to a 
ertain extent,independent of the splitting fa
tor Q.
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t of Sl and Q onthe mean delay 0 0.5 1 1.5 2 2.5 3 3.5 4
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t of Sl and Q onthe throughput resultsAs for the throughput, we always get a slight improvement when we in
rease the startinglevel to one, ex
ept under low load 
onditions. Also, the throughput losses su�ered underlow load 
onditions be
ome more severe as Q in
reases. Therefore, if we want to 
ombinea higher starting level (Sl � 1) with a higher splitting fa
tor Q, we suggest that it is best



124 CHAPTER 8. THE ISAP ALGORITHM: RESULTSto make the starting level Sl dynami
 between Smin and Smax, with Smin = 0 or 1 (seeSe
tion 6.4 for the details).8.3 Results for the M-ISAP S
hemeIn this se
tion we study the impa
t of the optional Mp parameter on the delay andthroughput, by making use of the analyti
al model presented in Se
tion 7.4. We restri
tourselves to the following s
enario: Q = 2, n = 8 and Np = 32. The optional Mpparameter is varied from 0 to 8. Noti
e, the behavior of M -ISAP and ISAP is identi
alif Mp � 4 (in general: Mp � n � blogQNp
 + 1) and the behavior M -ISAP and ISA isidenti
al if Mp = 8 (in general: Mp = n).
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t of Mp on thethroughputFigures 8.17 and 8.18 demonstrate the usefulness of the Mp parameter: in
reasing Mp re-du
es the throughput losses 
aused by the polling feature, but in
reases the mean waitingtime. The interesting part about Mp is that the throughput gains, for Mp = 5 and 6 (ingeneral: Mp = f(Np)+1 and f(Np)+2, where f(Np) = n�blogQNp
+1), are mu
h moresigni�
ant than the delay losses. For instan
e, for � = 0:75 we get an 8% throughput gainwhen in
reasing Mp from 4 to 5, while the mean delay in
rement is pra
ti
ally zero.8.4 The In
uen
e of L on ISAPIn this se
tion we investigate the in
uen
e of the L parameter, i.e., the maximum numberof 
ontention slots allowed in one frame (see Se
tion 6.1). The results presented wereobtained using the pa
kage Mathemati
a and are therefore exa
t. As indi
ated in Se
tion7.5, we restri
t ourselves to the binary 
ase, although the analyti
al model 
an easilybe generalized to 
apture splitting fa
tors Q > 2. We 
onsider MAC addresses withn = 7 bits, although n = 8 � 10 bits might be somewhat more realisti
. The number
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ipants (MSs) in the CC therefore varies from k = 2 to 128 (sometimes we onlyshow the results for k � 60 be
ause no signi�
ant di�eren
es were observed for k � 60).The number of 
ontention slots allowed in one frame equals L = 4s, with 4 � s � 16 orL = 128. The trigger value Np is also a multiple of 4 between 16 and 64.
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Figure 8.19: The intera
tion between L and Np with L = 488.4.1 Tuning the Trigger Value NpIn this se
tion we fo
us on the intera
tion between the polling threshold Np and the Lparameter. Figure 8.19 (L = 48) shows that the expe
ted length of the CC (in frames)de
reases as Np in
reases for Np � 48. Indeed as long as Np � L polling only lastsone frame and therefore it always results in a delay improvement. More surprisingly, allthe 
urves are almost identi
al when Np = 48; 52; 56 and 60. To understand this let us
ompare the 
ases Np = 48 and Np = 52. Both these 
ases behave identi
al ex
ept when,at some level i < 6, the size of the remaining address spa
e Y is larger than 48, butsmaller than (or equal to) 52. In su
h a 
ase we swit
h to polling if Np = 52, namely, Y
ontention slots are in
luded in the next two frames. Thus, the remaining length of theCC is two frames. When Np = 48 it is very likely that the remaining length of the CCis also two frames. Indeed, the �rst frame to 
ome 
ontains level i + 1 of the tree (onlyone frame is required to support level i + 1 as L = 48 and i < 6) and the se
ond frameto 
ome is most likely used to poll the remaining 
ontenders after level i + 1 (as it ishighly probable that the size of the remaining address spa
e will drop below 48). Finally,in
reasing Np even more (Np = 64) results in a somewhat larger delay for small values ofk. Therefore, 
hoosing Np > L might not be that useful.Figure 8.20 shows the results for L = 16. It 
on�rms that there is no use in 
hoosing apolling threshold Np > L when we look at the expe
ted delay. Moreover, the di�eren
ebetween two values of Np is only signi�
ant if there is a multiple of L in between.
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Figure 8.20: The intera
tion between L and Np with L = 16In general, with respe
t to the expe
ted delay of the s
heme, we 
on
lude that the optimal
hoi
e for Np is L. There is one ex
eption to this rule: setting Np = 2n with n small,e.g., n < 8, might result in a better delay: espe
ially if k be
omes large|that is, if the
ontention 
hannel is highly loaded. For example, in a system with Np = 128 and L = 16(as shown in Figure 8.20) the length of the CC would be �xed and equal to 8 frames. Themain disadvantage of 
hoosing Np = 2n is the low throughput that is obtained, leavingless slots available for 
ontention free transmissions (see Se
tion 6.1).
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Np = 16Figure 8.21: E[S℄ for di�erent values of NpThe throughput of a CC with k parti
ipants 
an be de�ned as k=E[S j X = k℄. Figure8.21 shows that the expe
ted number of slots in a CC (given that we have k 
ontenders)
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reases when Np in
reases. Moreover, as Np approa
hes zero, E[S j X = k℄approa
hes (de
reases to) a linear 
urve for k large. Combining Figures 8.19, 8.20 and8.21 we may 
on
lude that Np should always be 
hosen smaller than or equal to L. The
loser we 
hoose Np to L the better the mean delay but the worse the throughput be
omes.8.4.2 The In
uen
e of the Parameter LIn this se
tion we investigate the in
uen
e of the maximum number of 
ontention slots Lallowed in one frame on the delay and throughput measures de�ned in Se
tion 7.5. Figure8.22 shows E[F ℄ for di�erent values of L � Np = 16. A number of 
on
lusions 
an bedrawn from this �gure. Clearly, the less 
ontention slots we allow in one frame the largerthe delay be
omes. Moreover, the delay improvements that we get when we in
rease Lare the most signi�
ant if there is a power of 2 in between. In Se
tion 8.4.1 we saw thatdi�erent 
hoi
es for Np (� L) only resulted in a signi�
ant di�eren
e if there is a multipleof L in between. Be
ause Np = 16, a small power of two, it is tempting to believe thatthe di�eren
e between two 
hoi
es of L is the most signi�
ant if there is a multiple ofNp in between. Numeri
al experiments have shown that this is generally not the 
ase.Moreover, even if there is no power of two in between di�erent 
hoi
es of L, we still geta relevant impa
t on the mean delay.
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Figure 8.22: E[F ℄ for di�erent values of LDi�erent values L1 and L2 (both bigger than Np) do result in identi
al results when thenumber of 
ontenders k is smaller than min(L1; L2); this follows from the fa
t that anylevel that is part of a CC with k 
ontenders never requires more than k slots (in theQ-ary 
ase: kQ=2 slots). Thus, even if we do not take L into a

ount we 
an still getgood approximate results for low and medium load situations, validating our approa
hpresented in Se
tions 7.2 to 7.4.Although we already demonstated that there is little use in 
hoosing Np > L, we also
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Figure 8.23: E[F ℄ for di�erent values of Lin
lude Figure 8.23 for reasons of 
ompleteness. The main purpose of Figure 8.23 is todemonstrate that di�erent values L1 and L2 do not 
oin
ide for k smaller than min(L1; L2)when Np > min(L1; L2).8.4.3 Sele
ting the Starting Level SlIn this se
tion we investigate the intera
tion between the starting level Sl and the Lparameter. In Figure 8.24 the in
uen
e of the starting level Sl on E[F ℄ is shown (L = 16
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8.4. THE INFLUENCE OF L ON ISAP 129and Np = 0). For Sl � 4 the delay de
reases for all values of k when in
reasing thestarting level Sl. Moreover, the improvement that we get by in
reasing Sl by one is 
loseto one frame. For Sl > 4 we still have a delay improvement for large values of k (a moresigni�
ant one 
ompared to Sl � 4), but a pri
e is paid for smaller values of k. Note thatfor Sl = 7 we obtain a pure polling s
heme. In general, looking from the delay perspe
tive,we get the best results with Sl = log2(L) if the 
ontention 
hannel has a low to mediumload. For high loads a larger value for Sl might be 
onsidered.
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Sl = 7Figure 8.25: E[S℄ for di�erent values of SlIn Figure 8.25 the throughput results are shown for di�erent values of Sl. Noti
e thatthese results are independent of L. It demonstrates that in
reasing Sl, when the 
ontention
hannel 
arries a low or medium load, in
reases the number of slots a CC requires. Onthe other hand if the load is high, better results are obtained for high values of Sl.8.4.4 Stability IssuesIn this se
tion we investigate the in
uen
e of the proto
ol parameter L and the triggervalue Np on the stability of the s
heme under Poissonian input traÆ
. We de�ne the driftD[k℄ of the proto
ol as min(2n; �E[F j X = k℄) � k, where � is the expe
ted numberof arrivals per frame. A positive D[k℄ implies that a CC with k 
ontenders is generallyfollowed by a CC with more 
ontenders, a negative value indi
ates an expe
ted de
reasein the number of 
ontenders in the CC. Finally, when the number of 
ontenders k is su
hthat D[k℄ = 0 the number of 
ontenders is expe
ted to remain the same, therefore werefer to these points as stability points. The s
heme is expe
ted to operate around thesestability points for the majority of time.Figure 8.26 shows the drift for � = 2; 3:5; 5; 6:5; 8 and 9:5, with L = 32 and Np = 16or 32. With the ex
eption of � = 9:5 all the 
urves have a unique stability point. The
urve with � = 9:5 was in
luded on purpose to show that in some rare 
ases the unique
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Figure 8.26: Stability points for Poissonian input traÆ
stability point might split into two hardly separated stability points (this is due to theos
illations in the E[F ℄ 
urves). Nevertheless, these split stability points are not expe
tedto endanger the general stability of the proto
ol. Comparing the results for Np = 16 andNp = 32, we see that the stability point of the proto
ol remains the same for � � 5, asopposed to � < 5 where we get a smaller stability point for Np = 32. Thus, the delayimprovement that we get by in
reasing Np(� L) is the most signi�
ant for systems withlow to medium loads.In 
on
lusion, it should be 
lear that the introdu
tion of L does not a�e
t the stabilityof the proto
ol, though numeri
al experiments did show that the stability points mightshift somewhat to the right when we de
rease L in systems with a high load.8.5 Con
lusionsIn this se
tion we summarize the main 
on
lusions drawn from the numeri
al examplespresented in Se
tions 8.1 to 8.4. We dis
uss one parameter at a time starting with L,followed by Q, Np, Mp and Sl. Although we restri
ted ourselves to Q = 2, when studyingthe impa
t of L, we intuitively generalize these 
on
lusions to the Q-ary 
ase.The impa
t of L, the maximum number of 
ontention slots allowed in a single frame, 
anbe summarized as follows:� Obviously, in
rementing L redu
es the delay su�ered by a request.� An in
rement of L from l1 to l2 is the most signi�
ant if one or more powers of Qare lo
ated within the interval ℄l1; l2℄. Although, other in
rements are also useful.



8.5. CONCLUSIONS 131� Under low or medium load 
onditions the in
uen
e of L is minor when 
hosen largeenough.As for the splitting fa
tor Q, we have:� In
reasing the splitting fa
tor Q results in smaller delays (mean and quantiles).� From the throughput perspe
tive we obtain, for most s
enarios, the best results forthe ternary s
heme.� A ternary s
heme should be preferred above a binary one. The 
hoi
e between theternary and the quaternary is a tradeo� between the delay and throughput.The in
uen
e of the polling threshold, Np, 
an be summarized as follows:� The polling threshold Np should not be 
hosen larger than L, the maximum numberof 
ontention slots allowed in one frame.� When sele
ting an appropriate value for Np a tradeo� has to be made between thedelay and throughput 
hara
teristi
s where a better delay is obtained for largervalues of Np (� L).� Swit
hing to polling has a more signi�
ant impa
t for smaller splitting fa
tors Q.The delay improvements for Q > 3 do not seem to pay o� against the 
omplexityintrodu
ed by the polling me
hanism. Therefore, one should not implement it forQ > 3.As for the optional Mp parameter:� The optional Mp parameter, to be used in 
ombination with Np, is useful to makethe delay vs. throughput tradeo�, when sele
ting Np, more attra
tive.A �xed or variable starting level Sl has the following in
uen
e:� If the load of the 
ontention 
hannel is low (or medium) the starting level Sl shouldnot be 
hosen larger than logQ(L). For Sl � logQ(L) we get a similar tradeo� aswith the polling threshold Np, i.e., the larger Sl the better the delay and the worsethe throughput be
omes.� For highly loaded systems it might still be useful to sele
t Sl > logQ(L) as thismight result in better delay and throughput 
hara
teristi
s.� A higher starting level does however result in a serious throughput degradation ifthe 
hannel is poorly loaded. This throughput loss 
an be avoided by making thestarting level variable (see Se
tion 6.4).Finally, we also indi
ated that the ISAP proto
ol often has a single stability point andshould operate around this point for the majority of time. Further optimizations 
an bemade by implementing multiple instan
es of ISA.





Con
lusion
This thesis fo
uses on the performan
e evaluation of a family of algorithms used to solvethe so-
alled multiple a

ess problem that o

urs in 
ommuni
ation networks whenevermultiple sending and re
eiving nodes are all 
onne
ted to the same, single, shared link.Proto
ols, or algorithms, designed to solve this problem are known as multiple a

ess pro-to
ols. Within this thesis we have analyzed the performan
e of a spe
i�
 
lass of multiplea

ess proto
ols 
ommonly known as tree algorithms and this both from a theoreti
al anda more pra
ti
al point of view. The thesis is subdivided into two parts.The �rst analyzes the maximum stable throughput of tree algorithms, often referred to astheir eÆ
ien
y, under a number of idealized 
onditions. These 
onditions are used as thestandard model of a multiple a

ess link within the IEEE Information Theory So
iety [8℄;hen
e, the multiple a

ess problem is viewed from a theoreti
al perspe
tive. The maindi�eren
e with all prior work is that we have signi�
antly relaxed the assumptions madeon the arrival pro
ess|an arrival pro
ess is a sto
hasti
 pro
ess that spe
i�es how newpa
kets are generated by the users (senders) 
onne
ted to the shared link. Instead ofPoisson arrivals we 
onsider a ri
h 
lass of tra
table Markovian arrival pro
esses, whi
hlend themselves very well to modeling bursty arrival pro
esses arising in 
omputer and
ommuni
ation networks|namely, we 
onsider dis
rete time bat
h Markovian arrival pro-
esses (D-BMAPs). Tree algorithms 
an be further 
ategorized into three sub
lasses: theblo
ked a

ess, free a

ess and grouped a

ess 
lass. The methods used to analyze the�rst sub
lass|see Chapter 2|are fairly 
ommon and originated in the early 1980s [41℄.To a 
ertain extent the same 
an be said about the grouped a

ess 
lass (although some
ompli
ations do arise, see Chapter 5). The free a

ess 
lass is by far the most diÆ
ultto analyze (given the 
urrent state of the art results) and requested a very di�erent andnew approa
h, Chapters 3 and 4 are devoted to them. The key result is to view a treealgorithm with free a

ess as a tree stru
tured quasi-birth-death (QBD) Markov 
hain,the theory of whi
h was developed during the late 1990s, and to study the stability of thealgorithm by means of the re
urren
e of the Markov 
hain. The main 
on
lusion drawnfrom the �rst part of the thesis is that the good stability 
hara
teristi
s of tree algorithmsunder Poisson arrivals are maintained under this ri
h 
lass of arrival pro
esses, therebyfurther extending the established theoreti
al foundation of tree algorithms. More detailed
on
lusions and key results are found at the end of ea
h 
hapter.In the se
ond part of the thesis, we study tree algorithms from a more pra
ti
al per-spe
tive. Many a

ess systems|for instan
e, wireless broadband systems, hybrid �ber
oaxial (HFC) networks or passive opti
al networks (PONs)|have a point-to-multipoint
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hite
ture. The single end point, referred to as the a

ess point (AP), operates as a
entralized 
ontroller, that is, it de
ides whi
h of the end nodes gets to transmit a pa
ketto the AP. To make this de
ision, end nodes need to de
lare their bandwidth require-ments to the a

ess point (AP). This information is then used by the AP to s
hedule alluplink transmissions, that is, transmissions from an end node to the AP, a

ording to thetraÆ
 
hara
teristi
s and the quality of servi
e (QoS) agreed upon. A problem of 
entralimportan
e is how the end nodes inform the AP about their bandwidth needs, a prob-lem that has re
eived 
onsiderable attention of the IEEE Communi
ation So
iety. In these
ond part of this thesis, we address this problem in the 
ontext of wireless broadbanda

ess networks and we provide a detailed analysis of the Identi�er Splitting Algorithm
ombined with Polling (ISAP) |see Chapter 6. The Identi�er Splitting Algorithm is atree algorithm that was introdu
ed during the European RACE proje
t 2067 on MobileBroadband Systems (MBS). We have enhan
ed this algorithm with a polling me
hanismand studied the in
uen
e of its parameters on the delay and throughput 
hara
teristi
sby means of several analyti
al models. These models, presented in Chapter 7, 
ombineelementary probability theory, queueing theory, 
ombinatori
s and the theory of Markov
hains. A summary of the main 
on
lusions drawn from the numeri
al results, presentedin Chapter 8, is given in Se
tion 8.5.



Nederlandse Samenvatting
Deze thesis handelt over de performantie evaluatie van een verzameling algoritmen diegebruikt worden om het zogenaamde \multiple a

ess" probleem|dat optreedt in 
om-muni
atie netwerken telkemale meerdere zendende en ontvangende gebruikers gebruikmaken van �e�enzelfde, gezamelijke 
ommuni
atie link|op te lossen. Algoritmen, of pro-to
ols, die ontworpen zijn om aan dit probleem een antwoord te bieden, zijn gekend als\multiple a

ess" algoritmen. Binnen het kader van deze thesis wordt de performantievan een welbepaalde klasse van multiple a

ess algoritmen, genaamd tree algoritmen,ge�evalueerd. Deze evaluatie gebeurt zowel vanuit een theoretis
h oogpunt, alsook vanuiteen meer praktis
he invalshoek. Vandaar dat de thesis ook is opgesplits in twee delen.In het eerste deel wordt de maximale stabiele throughput, d.w.z., de maximale verwerk-ings
apa
iteit of eÆ
i�entie, bestudeerd, en dit onder een aantal ge��dealizeerde 
ondities.Deze 
ondities worden, door de IEEE Information Theory So
iety, veelal gehanteerd alshet standaard model voor multiple a

ess 
ommuni
atie links. Gegeven de ideologie diedeze organizatie hanteert, kunnen we stellen dat het probleem bekeken wordt vanuiteen meer theoretis
h oogpunt. Het grote vers
hil met al het voorgaande werk bestaaterin dat we de veronderstellingen gemaakt op het aankomstenpro
es|het aankomsten-pro
es is een sto
hastis
h pro
es dat aangeeft wanneer de gebruikers nieuwe pakkettenaanmaken|sterk versoepeld hebben. In plaats van Poisson aankomsten te veronder-stellen, bes
houwen we een erg rijke klasse van aankomstenpro
essen, die uiterst ges
hiktis voor het modeleren van de meer onregelmatige aankomstpatronen die we terug vin-den in moderne 
ommuni
atie netwerken| namelijk, dis
rete tijds bat
h Markoviaanseaankomstenpro
essen (D-BMAPs).De bes
houwde algoritmen, d.w.z. de tree algoritmen, kunnen verder ingedeeld worden indrie 
ategorie�en. De 
ategorie waartoe een bepaald algoritme behoort, hangt af van destrategie dat het hanteert om nieuwe aankomsten in het s
hema te betrekken. Zo zijn eralgoritmen met geblokkeerde, vrije en gegroepeerde toegang. De methode die gehanteerdwerd voor de evaluatie van de eerste 
ategorie van algoritmen|dat is, deze met geblok-keerde toegang, zie Hoofdstuk 2|is vrij gebruikelijk en werd reeds in het begin van dejaren ta
htig ontwikkeld [41℄. Tot op zeker hoogte kan hetzelfde gezegd worden omtrent dealgoritmen met gegroepeerde a

ess, zij het dat er to
h een aantal 
ompli
aties optreden,zie Hoofdstuk 5. De 
ategorie met de vrije toegang is veruit de moeilijkste om te evalueren,gegeven de huidige stand van zaken, vandaar dat deze ook vroeg om een geheel nieuwebenadering. Hoofdstuk 3 en 4 zijn hieraan gewijd. Het belangrijkste resultaat bestaaterin om deze algoritmen te zien als een boomgestru
tureerde QBD (\Quasi-Birth-Death")



136 NEDERLANDSE SAMENVATTINGMarkov keten, een theorie die zelf pas op het einde van de jaren negentig ontwikkeld is.De hoofd
on
lusie van het eerste deel van de thesis is dat de goede stabiliteitskenmerken,in het geval van Poisson aankomsten, bewaard blijven wanneer we D-BMAP aankomstenbes
houwen. Dit resultaat draagt dus erg bij tot de verdere theoretis
he onderbouw vantree algoritmen als oplossing voor het multiple a

ess probleem. De overige 
on
lusiesworden samengevat op het einde van elk hoofdstuk.In het tweede deel van de thesis worden de tree algoritmen vanuit een meer praktis-
he invalshoek bekeken. Vele a

ess netwerken|bijvoorbeeld, draadloze netwerken, HFC(\Hybrid Fiber Coaxial") netwerken en PON (\Passive Opti
al Networks") netwerken|hebben een ge
entralizeerde ar
hite
tuur. Con
reet betekent dit dat al het verkeer van ofnaar het netwerk loopt via een enkel knooppunt, dat we het a

ess punt (AP) noemen.Het AP bepaalt ook, en dit op elk ogenblik, welke eindgebruiker informatie mag versturennaar het AP (en dus naar het netwerk toe). Om deze beslissing te kunnen nemen, moetelk van de eindgebruikers zijn huidige behoefte aan bandbreedte kenbaar maken aan hetAP. Het AP zal dan een beslissing maken op basis van de verkregen informatie en dit inovereenkomst met het 
ontra
t dat bestaat tussen de eindgebruiker en de servi
e provider(die eigenaar is van de netwerk infrastru
tuur). Een belangrijke vraag hierbij is: Hoe kaneen eindgebruiker zijn huidige behoefte aan bandbreedte kenbaar maken aan het AP ? Ditprobleem heeft al heel wat aanda
ht gekregen van de IEEE Communi
ation So
iety. Inhet tweede deel van deze thesis bekijken we dit probleem in het li
ht van draadloze breed-band a

ess netwerken en maken we een uitgebreidde analyse van het Identi�er SplittingAlgoritme in 
ombinatie met Polling (ISAP)|zie Hoofdstuk 6.Het Identi�er Splitting Algoritme is een tree algoritme dat voor het eerste ge��ntrodu
eerdwerd tijdens het Europeese RACE 2067 proje
t dat handelt over mobiele breedband syste-men (MBS). In het kader van deze thesis hebben we dit algoritme verrijkt met een pollingme
hanisme en hebben we vervolgens, op basis van een aantal analytis
he modellen, deinvloed op de performantie|dat is, de wa
httijd en de eÆ
i�entie|van de vers
hillendeparameters van het algoritme bestudeerd. Deze analytis
he modellen worden voorgesteldin Hoofdstuk 7 en maken gebruik van elementaire kanstheorie, queueing theorie, 
ombina-toriek en Markov ketens. Een samenvatting van de belangrijkste 
on
lusies wordt gegevenop het einde van Hoofdstuk 8.
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