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Abstract

A novel approach for obtaining the response time in a discrete time tandem

queue with blocking, using matrix analytic methods, is presented. The approach

sets up the appropriate Markov chain based on the age of the leading customer in the

first queue, together with other auxiliary variables. By this approach the response

time is obtained with only minor additional effort after obtaining the stationary

distribution of the Markov chain. The queue length distributions, if needed, can

still be obtained from the stationary distributions. We also study the stability

conditions of this system and carry out several numerical examples that give us

insight to how the system behaves.

Index Terms: Tandem queue, blocking, Markovian arrivals, phase type services, re-

sponse time, Matrix Analytic Method.
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1 Introduction

In most communication networks we are interested in obtaining the response time of jobs

as well as the number of jobs in the system. It has been common practice to first obtain

the queue length and then use that to obtain the response time. The two part procedure

could be cumbersome in many situations, especially when dealing with tandem queues.

This is because in order to obtain the queue length we have to set up the associated

Markov chain, obtain its stationary vector and then use that in a process that involves

a considerable amount of effort to obtain the response time. In this paper we present a

different and novel approach in which we set up the Markov chain, based on the age of the

leading job in the first queue and other auxiliary variables. The stationary distribution

of this Markov chain will lead us to the response time easily and the queue length can

also be computed from it using a simple procedure. We believe that the effort required

to compute the two quantities is less using this age process approach we are presenting

when compared to the traditional approach of using the Markov chain of queue length.

More importantly is that since the response time is sometimes the only key measure of

interest, our approach is very favorable in such cases.

Tandem queues with blocking have received considerable attention in the queueing,

communications and manufacturing literature because of their pervasiveness and signif-

icance in real life. A number of survey papers have been published during the last two

decades [7, 20, 10]. Some of the earlier works on this include those of Hunt [11] who first

studied the blocking effects in a sequence of waiting lines. Later Avi-Itzhak [1] studied

the system with arbitrary input and regular service times. There has been a plethora

of studies on this subject and an additional literature survey can be found in [21]. A

continuous time tandem queue with blocking, Markovian arrivals (MAP) and no inter-

mediate buffer was considered by Gómez-Corral [6]. Phase type service was assumed at

the first infinite queue whereas the other queue is assumed to have a general service time.

Results for the joint queue length distribution were provided and the stability issues were

partially addressed. Gómez-Corral used matrix analytical methods (MAMs), as we do, to

obtain his results, the difference in methodology being that we propose a novel approach

that keeps track of the age of the leading customer in the first queue as opposed to the

number of customers, as this more easily leads to the response time distribution. MAMs

have been used on a variety of occasions when studying tandem queues with blocking,

going back to Latouche and Neuts [14].

The bulk of the work done in this area of tandem queues focussed on continuous-time
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models. As pointed out by Daduna [4], the introduction of the Asynchronous Trans-

fer Mode as a multiplexing technique for broadband integrated services digital networks

has increased the studies in the areas of discrete time queueing models. Even though

carrying out discrete time analysis of tandem queues may be done, to some extent, in

a similar manner as their continuous time counterparts their analysis often introduce

some additional challenges. Setting up their transition matrices is more complex, and

obtaining the response times of such a system after that requires a more considerable

effort. Gün and Makowsky [8, 9] considered a discrete time tandem queue with blocking

(and failures), Bernoulli arrivals and phase-type services. They used the MAM approach

also and assumed both waiting rooms to be finite. Daduna [4] considered the case with

an infinite waiting room for the first queue, but restricted himself to Bernoulli service

processes. Desert and Daduna [5] focused on discrete time tandem queues with state

dependent Bernoulli service rates and a state dependent Bernoulli arrival stream at the

first node. They obtained the joint sojourn time distribution for a customer traversing the

tandem system under consideration. In our current paper we consider an infinite waiting

room in front of the first server and allow Markovian arrivals (D-MAP), enabling us to

model arrival processes that have some elements of correlations, which is more common in

the telecommunication field where arrivals are usually bursty. Moreover, while Gün and

Makowsky focus on the joint queue length distribution, we provide an algorithm for the

total response time of a customer and address the stability issues raised by the infinite

queue.

Other related works, in the sense that they focus on the response time as opposed to

the joint queue length, are those by van der Mei et al. [22] and Knessl and Tier [12], who

both studied the first two moments of the response time in an open two-node queueing

network with feedback for the case with an exponential processor sharing node and a FIFO

node (while the arrivals at the PS node are Poisson). Chao and Pinedo [3] considered the

case of two tandem queues with batch Poisson arrivals and no buffer space in the second

queue. They allowed the service times to be general and obtained the expected time in

system.

We start with a description of the model under consideration in Section 2, while the

GI/M/1 type Markov chain constructed to obtain the performance measures is given in

Section 3. Afterward, in Section 4 we indicate how to reduce this GI/M/1 type Markov

chain to a QBD. An efficient method to compute the response time and the joint queue

length distribution from the steady state vector is presented in Section 5, whereas Section

6 addresses the stability issues surrounding our model. We end by demonstrating the
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strength of our model through a variety of numerical examples.

2 Model Description

Consider two queues in tandem, where the first queue has an infinite waiting line and the

second has a finite one with capacity B. Customers arrive (to the first queue) according

to a discrete time Markovian arrival process (D-MAP), characterized by the l × l sub-

stochastic matrices D0 and D1. The matrix D = D0 + D1 is the stochastic matrix of

the underlying Markov chain that governs the arrival process. The element (Dk)i,j, 1 ≤

i, j ≤ l, k = 0, 1, represents the probability of making a transition from state i to j with

k arrivals. Let γ be the stationary distribution associated with D, then the arrival rate is

given by λ = γD11l, where 1l is a l× 1 column vector of ones. For more details on MAP

see [2] and [16].

The service required by a customer in the i-th queue is phase type (PH) distributed

with matrix representation (mi, αi, Ti), for i = 1, 2. It is well known that PH distributions

are very good for representing most of the types of services encountered in communication

systems [13]. The mean service time of a PH is given as µ−1
i = αi(Imi

− Ti)
−11mi

,

where Ix is an x dimensional identity matrix. The matrix Ti is sub-stochastic and is of

order mi, while ti is defined as 1mi
− Ti1mi

. The elements (αi)s of the stochastic vector

αi represent the probability that a customer starts his service in phase s. Let r
(k)
i be

the probability that the service time at node i lasts for k or more units of time, then

r
(k)
i = αiT

k−1
i 1mi

, k ≥ 1. Notice, the minimum service time at node i is at least 1 and the

probability that the service time equals exactly k is found as αiT
k−1
i ti. For more details

on the phase type distribution see [19].

Whenever a customer finishes service in the first queue it advances to the second

queue (at no switching cost), unless the waiting line of the second queue is already fully

occupied. In this case the customer remains within the service facility of the first queue

until there is a service completion in the second queue. Thereby, preventing any other

customers waiting in the waiting line of queue 1 from entering the server (meaning, we

adopt the blocking-after-service mechanism, see [20, Page 6]). Both queues serve their

customers in a FCFS order. All events such as arrivals, transfers from a waiting line to

the server and service completions are assumed to occur at instants immediately after the

discrete time epochs. This implies, amongst others, that the age of a customer in service

at some time epoch n is at least 1.
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3 The GI/M/1 type Markov Chain

A Markov chain (MC) that allows us to efficiently obtain the response time distribution of

an arbitrary customer, is constructed next. The state space of this MC will be subdivided

into an infinite number of groups, called levels. Level zero will contain all the states that

correspond to a situation in which the first server is idle. Whereas level i, for i > 0,

reflects the fact that the first server is occupied by a customer of age i (either because he

is being served or because he is blocked by the second queue). To be more specific, the

states of level 0 are divided into 2 sets:

• BI = {j| 1 ≤ j ≤ l}: The MC is said to be in state j of the set BI at time n, if

both servers are idle and the arrival process is in state j at time n.

• FI = {(b, s2, j)| 0 ≤ b ≤ B, 1 ≤ s2 ≤ m2, 1 ≤ j ≤ l}: If the first server is idle, the

second server is occupied by a customer whose service is in phase s2 and b customers

are waiting to be served by the second server, while the state of the D-MAP is j at

time n, then the MC is said to be in state (b, s2, j) of the set FI at time n.

The states of level i, for i > 0, are further subdivided into three sets:

• SI = {(s1, j)| 1 ≤ s1 ≤ m1, 1 ≤ j ≤ l}: The MC is said to be in state (s1, j) of the

set SI, at time n, in case the second server is idle, an age i customer is served by

server 1, the phase of his service equaling s1, while the arrival process is, at time

n− i+ 1, in state j.

• BS = {(b, s1, s2, j)| 0 ≤ b ≤ B, 1 ≤ sv ≤ mv, v = 1, 2; 1 ≤ j ≤ l}: The situation

in which, at time n, a customer of age i is being served by server 1, there are b

customers waiting for service in the 2nd waiting line, the phase of service in the

v-th server equals sv, for v = 1, 2, and the state of the D-MAP at time n − i + 1

equals j, will correspond to the state (b, s1, s2, j) of level i.

• BL = {(s2, j)| 1 ≤ s2 ≤ m2, 1 ≤ j ≤ l}: The scenario where, at time n, there is an

age i customer blocked in server 1, a customer is served by server 2, whose current

phase is s2, and the state of the D-MAP at time n − i + 1 equals j is represented

by state (s2, j) of the set BL.

Let |S| denote the number of elements in a set S. Define dt and db as |SI|+ |BS|+ |BL| =

(B + 1)m1m2l + (m1 +m2)l and |BI| + |FI| = (B + 1)m2l + l, respectively. As we shall
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explain later on, the transition matrix P of this MC has the following form:

P =















B1 B0 0 0 0 . . .

B2 A1 A0 0 0 . . .

B3 A2 A1 A0 0 . . .

B4 A3 A2 A1 A0 . . .
...

...
...

...
...

. . .















, (3.1)

where the matrices Ak are dt × dt matrices, Bk, for k ≥ 2, is a dt × db matrix, B0 a db × dt

and B1 a square matrix of dimension db. Notice, the matrix Ak represents the transition

probabilities of going from level i > 0 to level i − k + 1, for k ≤ i, whereas the matrices

Bk are related to transitions from and/or to level 0.

Let us now discuss the matrices Ak and Bk in detail, the structure of P will be apparent

from this discussion. Assume the MC is in some state of level i > 0 at time n, meaning

that an age i customer, referred to as customer c, is occupying server 1. In order to get a

transition to level i+ 1, customer c has to remain in server 1. This is because customers

are served in a FCFS order and there are no batch arrivals; hence, the age of the very

next customer who arrives after c cannot be larger than i at time n+ 1. There are three

scenarios that would cause customer c to remain in server 1: (i) his service (in server 1)

did not finish at time n, (ii) his service finished, but he is blocked by the second queue,

or (iii) customer c remains blocked. In case (i), the number of customers in the second

queue will either remain the same or decrease by one, depending on whether there is a

service completion in server 2. In case (ii) and (iii), the number of customers in the 2nd

waiting line has to remain equal to B, implying that there can be no service completion.

As a result, we find:

A0 = K0 ⊗ Il, (3.2)

where,

K0 =






















T1 0 0 . . . 0 0 0

T1 ⊗ t2 T1 ⊗ T2 0 . . . 0 0 0

0 T1 ⊗ t2α2 T1 ⊗ T2
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . T1 ⊗ T2 0 0

0 0 0 . . . T1 ⊗ t2α2 T1 ⊗ T2 t1 ⊗ T2

0 0 0 . . . 0 0 T2






















, (3.3)
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Ik represents the identity matrix of dimension k, ti = 1mi
− Ti1mi

, for i = 1, 2; and 1k is

a 1× k vector with each entry set to 1. Notice, this matrix does not depend on the age i

of customer c.

Next, we consider the transitions from level i to i − k + 1, for i ≥ k ≥ 1. Thus, as

before we have a customer, called c, occupying server 1 at time n. To get a transition

to level 1 ≤ i − k + 1 ≤ i, customer c has to leave server 1. Moreover, a new customer,

whose age should equal i− k+1 at time n+1, has to enter the server at time n, call him

customer c′. Meaning, the interarrival time between c and c′ has to equal k. The fact

that customer c leaves server 1 implies that the MC cannot make a transition to one of

the states SI ∪BL of level i−k+1. Also, given that the waiting line of server 2 was fully

occupied at time n, there should have been a service completion in server 2 (otherwise c

would become/remain blocked). Finally, if there still was a vacancy in the waiting line

of the second queue at time n, the number of waiting customers there either increases by

one or remains the same, depending on whether there is a service completion in server 2.

Hence, transitions from level i to i− k+ 1 are governed by the matrix Ak below (and are

thus independent of i):

Ak = K1 ⊗Dk−1
0 D1, (3.4)

where,

K1 =






















0 t1α1 ⊗ α2 0 . . . 0 0 0

0 t1α1 ⊗ t2α2 t1α1 ⊗ T2 . . . 0 0 0

0 0 t1α1 ⊗ t2α2
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . t1α1 ⊗ t2α2 t1α1 ⊗ T2 0

0 0 0 . . . 0 t1α1 ⊗ t2α2 0

0 0 0 . . . 0 α1 ⊗ t2α2 0






















. (3.5)

Let us now consider the possible transitions from level i to level 0. Again, our customer c,

who was occupying server 1 at time n, has to leave the server, while, at time n+1, server

1 should be idle. This can only be true if there are no arrivals at time n− i+1, n− i+2,

. . . , n. Thus, the interarrival time between customer c and the very next arrival should

be at least i + 1 time units. The state of the MC at time n + 1 cannot be part of the

set BI as customer c has to pass through the second queue (and needs at least one time

unit to do so). Therefore, level zero has to be entered (from a higher level) through one

of the states of FI. The exact state is once more determined by whether or not there was
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a service completion in server 2. Notice, if the waiting line of queue 2 was fully occupied

at time n, a service completion is necessary as costumer c would otherwise be blocked.

Transitions from level i into level 0 are characterized by the matrix Bi+1, thus

Bk =






















0 t1α2 0 . . . 0 0

0 t1 ⊗ t2α2 t1 ⊗ T2 . . . 0 0

0 0 t1 ⊗ t2α2
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . t1 ⊗ t2α2 t1 ⊗ T2

0 0 0 . . . 0 t1 ⊗ t2α2

0 0 0 . . . 0 t2α2






















⊗Dk−1
0 , (3.6)

for k ≥ 2.

Finally, consider the transitions from level 0. Due to the definition of the state space,

this means the first server is idle. Depending on whether an arrival occurs at time n, the

MC will be at level 0 (no arrival) or 1 (arrival) at time n + 1. If both servers were idle

at time n, then obviously this will still hold for server 2 at time n+ 1. This implies that

the MC will be in a state of the set SI, resp. BI, if an, resp. no, arrival occurs at time

n. If, on the other hand, server 2 was busy (at time n), the number of waiting customers

in its waiting line can either decrease by one or remain identical (depending on whether

there is a service completion). Finally, if an arrival occurs at time n, then this customer

cannot be blocked in server 1 as he requires service first. As a result, the matrices B0 and

B1 are found as

B0 =



















α1 0 0 . . . 0 0 0

α1 ⊗ t2 α1 ⊗ T2 0 . . . 0 0 0

0 α1 ⊗ t2α2 α1 ⊗ T2
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . α1 ⊗ T2 0 0

0 0 0 . . . α1 ⊗ t2α2 α1 ⊗ T2 0



















⊗D1, (3.7)
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and

B1 =



















1 0 0 . . . 0 0

t2 T2 0 . . . 0 0

0 t2α2 T2
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . T2 0

0 0 0 . . . t2α2 T2



















⊗D0, (3.8)

respectively.

Let π = [π0, π1, π2, . . .] be the steady state vector of P , where π0 is a 1 × db vector

and πi, for i > 0, a 1 × dt vector. Since, the MC characterized by P is an GI/M/1 type

MC, π exists if and only if θβ > 1, where θ
∑

k≥0Ak = θ, θ1dt
= 1 and β =

∑

k≥1 kAk1dt
.

A detailed discussion of the stability condition θβ > 1 is given in Section 6. The steady

state vector of an GI/M/1 type MC can be found by solving for the minimal non-negative

R in the following non-linear equation iteratively:

R =
∑

k≥0

RkAk. (3.9)

Instead we shall construct a Quasi-Birth-Death (QBD) MC, from which we can compute

π much more efficiently (both in terms of the time and memory complexity).

4 The QBD Markov Chain

In order to construct the QBD we add (B + 1)m2l states to each level i, for i > 0, to the

state space of P . These additional states are referred to as artificial states. The basic

idea behind this construction is to replace a transition from level i to i− k, for k ≥ 1, by

k + 1 transitions, where for each of the first k transitions we decrease the level by one,

while for the (k + 1)st transition the level will remain identical. Thus, instead of making

a transition from level i to i − k at once, the new MC will visit k intermediate states,

which shall all be artificial states. The fact that it suffices to add (B + 1)m2l artificial

states to obtain a QBD, is caused by: (i) The geometric nature of the matrices Ak and

Bk, for k ≥ 2 (indeed, these matrices only depend upon k through the geometric term

Dk−1
0 ). (ii) The states SI ∪ BL of level i − k, for k ≥ 1, are never directly visited from

level i. (iii) We can postpone the determination of the initial phase of a possible customer

entering server 1 until the k + 1th transition, during which we return to a non-artificial

state. Define d∗t as dt + (B + 1)m2l.
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Let us now introduce the resulting QBD characterized by the transition matrix P ∗:

P ∗ =















B1 B∗
0 0 0 . . .

B∗
2 A∗

1 A∗
0 0 . . .

0 A∗
2 A∗

1 A∗
0 . . .

0 0 A2∗ A∗
1

. . .
...

...
...

. . .
. . .















, (4.10)

where A∗
k, for k = 0, 1, 2; are square matrices of dimension d∗t , B

∗
2 is a d∗t × db matrix, B∗

0

a db × d∗t and B1 is the same matrix as before. The matrices A∗
k, for k = 0, 1, 2; B∗

0 and

B∗
2 are then constructed as

A∗
0 =




0 0

0 A0



 , A∗
1 =




0 0 IB+1 ⊗ α1 ⊗ Im2

⊗D1 0

0 A1



 ,

A∗
2 =




I(B+1)m2

⊗D0 0

B+
2 0



 , B∗
0 =

[

0 B0

]

, B∗
2 =




0 I(B+1)m2

⊗D0

0 B+
2





(4.11)

where B+
2 is found by removing the first l (zero) columns of B2. It is an easy exercise

to see that this QBD MC coincides with P when censored on the non-artificial states.

Moreover, this MC is ergodic if and only if P is (if π is the steady state vector of P , one

can easily construct a steady state vector π∗ of P ∗ and vice versa).

The key in finding the steady state probability vector π∗ = (π∗
0 , π

∗
1, . . .) of P ∗, where

π∗
0 and π∗

i , for i > 0, are 1 × db and 1 × d∗t vectors, respectively, is to solve the following

equation:

G = A∗
2 + A∗

1G+ A∗
0G

2. (4.12)

We propose to use the Cyclic Reduction algorithm to compute G. This algorithm is

very easy to implement, requires a low amount of memory, converges quadratically and is

numerically stable [17]. The memory requirements of the CR algorithm are about 5(d∗t )
2,

while 14(d∗t )
3 flops are needed for a single iteration. As the CR algorithm converges

quadratically, one typically needs less than 25 iterations, even if the arrival process is

very correlated and/or the system is close to instability. Having found G, one computes

R as A∗
0(I −A∗

1 −A∗
0G)−1 [15]. The steady state probability vectors π∗

i are then found as:

[π∗
0, π

∗
1] = [π∗

0, π
∗
1]




B1 B∗

0

B∗
2 A∗

1 +RA∗
2



 , (4.13)

π∗
i = π∗

i−1R, (4.14)

9



where i > 1, π∗
0 and π∗

1 are normalized as π∗
01db

+π∗
1(I−R)−11d∗

t
= 1. Denote π∗

i , for i > 0,

as [π∗
i (0), π∗

i (1)], with π∗
i (0) and π∗

i (1) a 1 × (B + 1)m2l and 1 × dt vector, respectively.

Then, we have the following relationship between π and π∗:

π0 = π∗
0/(1 − c) (4.15)

πi = π∗
i (1)/(1 − c), (4.16)

for i > 0. The constant c equals
∑

i>0 π
∗
i (0)1db

.

5 Performance Measures

In this section we demonstrate how to get the response time distribution from the steady

state vector π. We start by introducing the following set of random variables:

• TWi
: The amount of time a tagged customer has to wait in the ith waiting line, for

i = 1, 2.

• TSi
: The service time duration of a tagged customer in server i, for i = 1, 2.

• TB: The time that elapses while a tagged customer is blocked in server 1.

Having defined these variables the total response time TR of a tagged customer is defined

as TW1
+TS1

+TB +TW2
+TS2

, while the response time in queue 1, denoted as TR1
, equals

TW1
+ TS1

+ TB. We need two more variables before we can proceed:

• FN : The number of customers still requiring full service by server 2 before a tagged

customer who just left server 1 can start his service.

• FT : The remaining service time of the customer occupying server 2 when a tagged

customer leaves server 1.

Write πi as [πSI
i , πBS

i , πBL
i ] in accordance with the three sets of states of level i, then

P [TR1
= r, FN = b, FT = h] =

∑

s1

(t1)s1

λ






1{b=0&h=0}




∑

j

πSI
r (s1, j)



+

1{b<B|h=0}




∑

s2,j

πBS
r (b, s1, s2, j)(T

h
2 t2)s2










+

1{b=B&h=0}

λ




∑

s2,j

πBL
r (s2, j)(t2)s2



 ,
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where (x)i denotes the ith component of the vector x. From this it is straightforward to

compute the probabilities P [TR1
+ FT = r, FN = b]. The total response time distribution

is then found by

P [TR = i] =
∑

b

∑

r≤i−b

P [TR1
+ FT = r, FN = b]P [S

(∗b+1)
2 = i− r], (5.17)

where S
(∗x)
2 is the x-fold convolution of the PH service time distribution of server 2 char-

acterized by (m2, α2, T2).

The blocking probability pBL can be computed as

pBL =
1

λ

∑

r>0

∑

s1,s2,j

πBS
r (B, s1, s2, j)(t1)s1

(T2)s2
, (5.18)

and the blocking time distribution as

P [TB = t] =
1

λ

∑

r>0

∑

s1,s2,j

πBS
r (B, s1, s2, j)(t1)s1

(T t
2t2)s2

, (5.19)

for t > 0 and P [TB = 0] = 1 − pBL.

In order to compute the joint queue contents distribution (Q1, Q2)
1, we first define

hk,a(j) as the probability that k arrivals occur in an interval of length a that started in

state j. These vectors can be computed by means of the following recursion:

hk,0(j) = 1{k=0},

h0,a(j) = (Da
01l)j,

hk,a(j) =
∑

j′

{(D1)j,j′hk−1,a−1(j
′) + (D0)j,j′hk,a−1(j

′)} .

By means of these probabilities we can easily compute (Q1, Q2):

P [Q1 = q1, Q2 = q2] =
∑

r≥q1

∑

j

(

1{q2 6=0}

∑

s1,s2

πBS
r (q2 − 1, s1, s2, j)

+ 1{q2=0}

∑

s1

πSI
r (s1, j) + 1{q2=B+1}

∑

s2

πBL
r (s2, j)

)

hq1−1,r−1(j), (5.20)

for q1 > 0 and

P [Q1 = 0, Q2 = q2] = 1{q2 6=0}

∑

s2,j

πFI
0 (q2 − 1, s2, j) + 1{q2=0}

∑

j

πBI
0 (j). (5.21)

1The queue contents is equal to the number of customers that are either in the waiting room or in

service.
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6 Stability Condition

6.1 The stationarity of the GI/M/1 type Markov Chain

The GI/M/1 type Markov chain introduced in Section 3 is ergodic if and only if θβ > 1,

where θ
∑

k≥0Ak = θ, θ1dt
= 1 and β =

∑

k≥1 kAk1dt
. From Eq. (3.2) and (3.4) one easily

finds the following expressions for β

β = τ ⊗ (Il −D0)
−11l, (6.22)

where,

τ =
[

tT1 | (t1 ⊗ 1m2
)T , (t1 ⊗ 1m2

)T , . . . , (t1 ⊗ 1m2
)T , (t1 ⊗ t2)

T | tT2
]T
, (6.23)

and xT denotes the transposed of the vector x. The matrix A =
∑

k≥0Ak can be written

as A0 + (
∑

k>0Ak) = K0 ⊗ Il +K1 ⊗ (Il −D0)
−1D1 (see Eq. (3.2) and (3.4)). Moreover,

it is easily seen that K0 + K1 is stochastic. Let γ = γ(D0 + D1) and γ1l = 1, then

γ = γD1(Il − D0)
−1. As a result θ, the stochastic invariant vector of A, must equal

κ ⊗ (γD1/λ), where λ = γD11l is the arrival rate of the D-MAP and κ is the stochastic

left invariant vector of K = K0 +K1:

K = (6.24)




















T1 t1α1 ⊗ α2 . . . 0 0

T1 ⊗ t2 T1 ⊗ T2 + t1α1 ⊗ t2α2 . . . 0 0

0 T1 ⊗ t2α2 . . . 0 0
...

...
. . .

...
...

0 0 . . . t1α1 ⊗ T2 0

0 0 . . . T1 ⊗ T2 + t1α1 ⊗ t2α2 t1 ⊗ T2

0 0 . . . α1 ⊗ t2α2 T2





















,

Notice, K does not depend upon the arrival process. Given these results, we find that

the stability condition θβ > 1 can be written as

θβ = κτ
1

λ

=1
︷ ︸︸ ︷

γD1(Il −D0)
−11l = k/λ > 1, (6.25)

for some k = κτ ≥ 0 that is independent of the arrival process. Thus, the stability

condition is equivalent to λ/k < 1, meaning the arrival process only influences the stability

of the system through its mean arrival rate. The constant k is determined by both service

time distributions and the size of the intermediate waiting line B.

12



We end this subsection by having a closer look at the constant k = κτ . Denote

κ = [κSI , κ0, κ1, . . . , κB, κBL], where κSI is a 1 ×m1 vector, κBL a 1 ×m2 vector and κj,

for j = 0, . . . , B, a 1 ×m1m2 vector. Looking at the matrix K it should be clear that

κSI +
B∑

j=0

κj (Im1
⊗ 1m2

) = ψ1(1 − κBL1m2
), (6.26)

where ψ1 = ψ1(T1 + t1α1) and ψ11m1
= 1. Using this equality we find that k satisfies

k = κτ = ψ1t1(1 − κBL1m2
) + κB(t1 ⊗ (t2 − 1m2

)) + κBLt2. (6.27)

The vector κBL can be written as κB(t1⊗T2(Im2
−T2)

−1) = κB(t1⊗ ((Im2
−T2)

−1−Im2
)).

Therefore, Eq. (6.27) reduces to

k = ψ1t1(1 − κBL1m2
) + κB(t1 ⊗ (t2 − 1m2

+ (Im2
− T2)

−1t2 − t2)).

Now, (Im2
−T2)

−1t2 = 1m2
and ψ1t1 equals µ1 = 1/E[S1], where E[S1] is the mean service

time in server 1. In conclusion, k can be written as

k = µ1(1 − κBL1m2
). (6.28)

If we consider the system where there are always customers waiting in the waiting line of

queue 1, then κBL1m2
represents the probability that the customer occupying server 1 is

blocked. Thus, k equals the output rate of server 1 (in such a system). Therefore, the

probability that the second server is busy (1 − κSI1m1
) must equal k/µ2. As a result, we

have

k = µ1(1 − κBL1m2
) = µ2(1 − κSI1m1

). (6.29)

Remark: Eq. (6.29) suffices to prove that interchanging both service time distributions

does not affect the stability of the system. Indeed, if we add a ”‘bar”’ to all the variables of

the interchanged system we find: µ̄1 = µ2, µ̄2 = µ1, κ̄SI = κBL and κ̄BL = κSI (due to the

symmetric nature of K). This implies that k̄ = k. Intuitively, when studying the stability,

we may assume that there are always customers ready to be served in the infinite waiting

line. Now, using an argument by Melamed [18], we can regard the empty places (holes) in

the intermediate buffer as dual customers. For each regular customer that moves through

the system, a dual customer receiving identical service moves in the opposite direction.

Hence, the maximum stable thoughput of the regular customers and the dual customers

must be identical. Clearly, the dual system is identical to the interchanged system. This

type of interchangeability result was already established long ago for exponential servers

(and Poisson arrivals) [19, Section 5.2].
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6.2 Special case: no intermediate buffer (B = 0)

In the special case where the size of the intermediate waiting line B equals 0, we can prove

that 1/k is nothing but the mean of the maximum of both PH service time distributions.

This value equals the mean time a customer, called c, spends in server 1 provided that

another customer started his service in server 2 at the same time as customer c. The proof

goes as follows. Let Smax denote the maximum of both PH distributions, then Smax is also

a PH distribution characterized by (mmax = m1+m1m2+m2, Tmax, αmax = (0, α1⊗α2, 0)),

where Tmax is shown below:

Tmax =








T1 0 0

T1 ⊗ t2 T1 ⊗ T2 t1 ⊗ T2

0 0 T2







. (6.30)

Now, tmax = 1mmax
− Tmax1mmax

= [tT1 , (t1 ⊗ t2)
T , tT2 ]T . For B = 0, it is readily seen

that tmax = τ and Tmax + tmaxαmax = K. Now, the stochastic invariant vector ψmax of

(Tmax+tmaxαmax) multiplied with tmax equals 1/E[Smax]; therefore, the stability condition

θβ > 1 is reduced to λE[Smax] < 1. This result can be seen as a generalized, discrete time

counterpart of [6, Remark 8], where a similar result was obtained for a tandem queue

with Poisson arrivals.

6.3 The stability of the queue length process

In this section, we demonstrate that the MC characterized by P is ergodic if and only

if the queue contents of the infinite waiting line of queue 1 has a steady state. A MC

that describes the queue contents can be formed using the same state space as P . The

difference being that the variable i does not reflect the age of a possible customer in server

1, but the number of customers in queue 1 (in either the waiting line or the server). The

resulting MC, which we characterize by a transition matrix P+, is a QBD process. Its

corresponding matrices A+
0 , A+

1 and A+
2 can be found as:

A+
0 = K0 ⊗D1, (6.31)

A+
1 = K0 ⊗D0 +K1 ⊗D1, (6.32)

A+
2 = K1 ⊗D0. (6.33)

Therefore, A+ = A+
0 +A+

1 +A+
2 = K⊗D, where D = D0 +D1, which implies that θ+, the

left stochastic invariant vector of A+, equals κ⊗γ. If we multiply θ+ with β+ = A+
1 +2A+

2

we find:

θ+β+ = (κ⊗ γ) ((K ⊗D0)1dt
+ (K1 ⊗D)1dt

) = (1 − λ) + κτ, (6.34)
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which implies that the queue contents process is stable if λ/k < 1. This condition is

identical to the stability condition of the GI/M/1 MC characterized by P .

7 Numerical Results

In this section we present some numerical examples that provide insight on the system

behavior. Any other choice for the input parameters could have been made as long as the

dimension d∗t of the QBD matrices is not too large, say roughly below 1500.

7.1 Influence of the capacity B and the correlation of the D-

MAP arrival process

Consider an interrupted Bernoulli process (IBP), where the mean sojourn time in both

states equals xc and an arrival occurs in the on-state with probability xp. Thus,

D0 =




1 − 1/xc 1/xc

(1 − xp)/xc (1 − xp)(1 − 1/xc)



 , D1 =




0 0

xp/xc xp(1 − 1/xc)



 . (7.35)

The service time distribution in server 1 is hypergeometric with parameters:

α1 = [1/3, 2/3], T1 =




4/5 0

0 19/20



 , (7.36)

Thus, with probability 1/3 and 2/3 the service time is geometrically distributed with a

mean of 5 and 20 time units, respectively. The mean of this distribution is 15 time units.

The service time distribution of the second server is characterized by

α2 = [1/16, 1/8, 13/16], T2 =








3/4 1/8 0

1/10 4/5 0

0 0 xl







, (7.37)

where xl = 0.93887 is chosen such that the mean service time equals 15. We have chosen

the mean service time identical in both servers as this ought to create a strong coupling

between both queues.

Figures 1 depicts the response time distribution for various capacities B, for xp = 1/16

(meaning that the arrival rate λ = 1/32), and xc either 40 or 400. Clearly, the larger

xc the more correlated the arrival process. Obviously, stronger correlated arrivals give

rise to slower response times, while adding more capacity B between both servers reduces

the response time. However, at some point there is little use in further augmenting the
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Figure 1: Response time distribution for various capacities B, xp = 1/16 and a) xc = 40,

b) xc = 400.

capacity as the response time seems to converge for B large. This is easily understood as

the blocking probability tends to decrease to zero while increasing B. The figure further

illustrates that the rate of convergence is affected by the correlation of the arrival process:

stronger correlated arrival processes more easily justify increasing the capacity B.

7.2 The maximum arrival rate λ and the variation of the service

times

We consider the same IBP process as in the previous section. The service time distribution

is either geometric (Geo), Erlang-5 (Er5)2 or hypergeometric (HypGeo) characterized by

α1 = [9/10, 1/10], T1 =




4/5 0

0 104/105



 . (7.38)

The mean of each of these service time distributions is 15 time units. The HypGeo

distribution is the most variable of the three, followed by Geo and Er5.

Figure 2 shows the maximum stable load ρmax, defined as E[S1]λmax = 15λmax, as a

function of B for different server configurations. λmax is the maximum arrival rate λ for

which the system is stable. Recall, λmax = µ1(1− κBL1m2
) = µ2(1− κSI1m1

), see Section

6. The notation (X, Y ) indicates that the service time in server 1 and 2 is distributed as

X and Y , respectively. Figure 2 clearly demonstrates that more variable service times,

that is, HypGeo, give rise to a lower maximum stable input rate λmax. This result stems

2That is, the sum of 5 independent and identically distributed geometric random variables.
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Figure 3: Response time distribution for dif-

ferent server configurations for B = 10 and

IBP arrivals (xc = 40, xp = 1/16).

from the fact that a more variable service time, whether in the first or second server,

causes a higher degree of blocking in comparison with a more deterministic service time

distribution. As proved in Section 6, interchanging both service time distributions does

not alter the system stability. Notice, the actual nature of the D-MAP arrival process is

irrelevant as the stability is only affected by the arrival process through its mean.

The response time distribution for different server configurations is depicted in Figure

3. We assume that arrivals occur according to a IBP with xc = 40 and xp = 1/16,

see Section 7.1. The capacity of the intermediate waiting line B is assumed to be 10.

Figure 3 confirms that the response of the system slows down as the service times become

more variable. It further demonstrates that interchanging the service times generally

causes a (limited) change in the response time (as opposed to the stability). Placing the

more variable server first seems to result in a somewhat slower response. This might

be explained by noticing that the output process of server 1 is more bursty in such

case, causing a higher blocking probability. On the other hand, less variability in server 2

decreases the blocking probability, so when we interchange both service time distributions

both these effects influence the degree of blocking in the system. Various numerical

experiments, including Figure 3, seem to indicate that reducing the variation of server 1

should be slightly favored.
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