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Abstract—In this paper we compare the performance of the
pull and push strategy in a large homogeneous distributed system.
When a pull strategy is in use, lightly loaded nodes attempt to
steal jobs from more highly loaded nodes, while under the push
strategy more highly loaded nodes look for lightly loaded nodes
to process some of their jobs.

Given the maximum allowed overall probe rate R and arrival
rate λ, we provide closed form solutions for the mean response
time of a job for the push and pull strategy under the infinite
system model. More specifically, we show that the push strategy
outperforms the pull strategy for any probe rate R > 0 when
λ < φ− 1, where φ = (1 +

√
5)/2 ≈ 1.6180 is the golden ratio.

More generally, we show that the push strategy prevails if and
only if 2λ <

√
(R+ 1)2 + 4(R+ 1)−(R+1). We also show that

under the infinite system model, a hybrid pull and push strategy
is always inferior to the pure pull or push strategy.

The relation between the finite and infinite system model is
discussed and simulation results that validate the infinite system
model are provided.

Index Terms—Performance analysis, Distributed computing,
Processor scheduling

I. INTRODUCTION

Distributed networks typically consist of a set of nodes
interconnected through a network, each equipped with a single
server to process jobs. Jobs may enter the network via one
or multiple central dispatchers (e.g., [1], [2], [3]) or via the
processing nodes themselves (e.g., [4], [5], [6], [7]). In the
former case the dispatchers will distribute the jobs among the
nodes using some load balancing algorithm. In the latter case,
lightly loaded nodes may attempt to take/steal/pull jobs from
more highly loaded nodes or highly loaded nodes may try
to forward/push some of their pending jobs to lightly loaded
nodes. When the initiative is taken by the lightly loaded nodes
only, we say that a pull strategy is used. If only the highly
loaded nodes initiate the exchange of jobs, we say that a
push strategy is used. Pull strategies are often called work
stealing schemes, while push strategies are sometimes called
work sharing solutions.

To facilitate the exchange of jobs some central information
may be stored. Though as the network size grows continu-
ously updating this information becomes more challenging.
Therefore, fully distributed networks do not rely on centralized
information. Instead a node that wishes to pull/push a job will
transmit a probe to one (or multiple) other nodes that are
typically selected at random. If a node that receives such a
probe is willing to take part in the exchange, it will send a
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positive reply and the job exchange can proceed. Clearly, the
overall rate at which probe messages are sent by a strategy
plays a pivotal role in its effectiveness.

The performance of both push and pull strategies has been
studied by various authors. A comparison for a homogeneous
distributed system with Poisson arrivals and exponential job
lengths was presented in [4], [8]. The approach was based
on a decoupling assumption and relied on numerical meth-
ods to solve some nonlinear equation. Numerical examples
showed that pull strategies achieve a lower mean response
time under high loads, while push strategies are superior under
low to medium loads. Similar observations were made for
heterogeneous systems in [9] again by relying on a decoupling
assumption. A similar approach to study the influence of task
migrations in shared-memory multi-processor systems was
presented in [10]. In each of these papers, nodes send out
probes as soon as the number of jobs drops below some
threshold T ≥ 1 in case of the pull strategy, while for the
push strategy probes are sent whenever the number of jobs in
the queue is at least T upon arrival of a new job. When job
transfer and signaling delays are assumed negligible setting
T = 1 is optimal [9], [5]. Another common feature in these
papers is that the number of nodes N is not a model parameter,
instead they provide a numerical approach for a system with
N =∞, which we will call the infinite system model.

Although the insights provided by these comparisons are
very valuable, the strength of the push and pull mechanism
was only compared to some extent, mainly because the overall
probe rate R of both strategies may be very different (and
depends on the load λ < 1). This is especially true for the
hybrid pull/push strategy introduced in [5], where it has been
shown to outperform both the push and pull strategy for all
loads λ. However, as indicated in [5], such a hybrid strategy
results in a (far) higher probe rate R. Our aim in this paper is to
compare the pull and push mechanism given that both generate
the same overall probe rate R. Further, we also provide closed
form expressions for the main performance measures under the
infinite system model.

To this end we introduce a slightly different pull and push
strategy, where probes are not transmitted at job completion
or job arrival times. Instead idle nodes will generate probes
at some rate r under the pull strategy, while under the push
strategy nodes send probes at some rate r whenever they have
jobs waiting. A desirable property of both these strategies is
that they can match any overall probe rate R under any load
λ by setting r in the appropriate manner. More specifically,
let R be the average number of probes send by a node per
time unit, irrespective of its queue length. Clearly, the overall
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probe rate R will be less than the rate r. By establishing a
simple relationship between r and R, we will determine r to
match any predefined overall probe rate R. In fact, we show
that if rate based pull/push strategy matches the overall probe
rate of the traditional pull/push strategy, it also matches the
queue length distribution and therefore the mean response time
(under the infinite system model).

Given some R > 0, we will show that under the infinite
system model the push strategy outperforms the pull strategy
for any

λ <

√
(R+ 1)2 + 4(R+ 1)− (R+ 1)

2
,

in terms of the mean response time (as well as in the decay
rate of the queue length distribution). As R approaches zero,
the right-hand side decreases to φ−1, where φ = (1+

√
5)/2 is

the golden ratio, which indicates that the push strategy prevails
for any R when λ < (1 +

√
5)/2 ≈ 0.6108.

We also consider a hybrid strategy where idle nodes probe
at rate r1 and nodes with pending jobs probe at rate r2, where
r = r1 + r2 is again determined by matching R, leaving one
degree of freedom. We will show that for any for λ and R the
optimal policy exists in setting either r1 or r2 to zero. This
implies that the hybrid strategy is in fact never better when
the overall probe rate R is not allowed to increase.

The infinite system model corresponds to a distributed
system with an infinite number of nodes N . Using simulation
results, we will show that the infinite system is quite accurate
for both strategies and moderate to large size systems, e.g.,
for N ≥ 100 the relative error is typically below 1 percent.
For smaller systems, e.g., N = 25, the infinite system model
results in higher relative errors, especially for the pull strategy
under high loads. The loads for which the push strategy
outperforms the pull strategy are however still quite accurately
predicted by the infinite system model, even for small systems.

The paper is structured as follows. In Section II we in-
troduce the push, pull and hybrid strategy considered in this
paper and discuss its relation with many existing strategies
studied before. The infinite system model is presented in
Section III and closed form results are derived for the queue
length distribution and mean delay. Using these results we
identify the loads at which the push strategy outperforms
the pull strategy and prove that a hybrid strategy is always
inferior. Simulation results that validate the infinite system
model are presented in Section IV. In Section V we discuss
and prove the technical issues related to showing that the
infinite system model is indeed the proper limit process of
the sequence of finite system models, while in Section VI we
show that rate-based strategies matching the probe rate of the
traditional strategies also match the queue length distribution.
Conclusions are drawn and future work is discussed in Section
VII.

II. PULL AND PUSH STRATEGIES

We consider a continuous-time system consisting of N
queues, where each queue consists of a single server and
an infinite buffer. As in [4], [11], [9], [6]: each queue is
subject to its own local Poisson arrival process with rate λ,

jobs require an exponential processing time with mean 1 and
are served in a first-come-first-served (FCFS) order. We also
assume that the time required to transfer probe messages and
jobs between different nodes can be neglected in comparison
with the processing time (i.e., the transfer times are assumed
to be zero). We consider the following three basic strategies:

1) Push: Whenever a node has i ≥ 2 jobs in its queue,
meaning i − 1 jobs are waiting to be served, the node
will generate probe messages at rate r. Thus, as long
as the number of jobs in the queue remains above 1,
probes are sent according to a Poisson process with rate
r. Whenever the queue length i drops to 1, this process
is interrupted and will remain interrupted as long as the
queue length remains below 2. The node that is probed
is selected at random and is only allowed to accept a
job if it is idle.

2) Pull: Whenever a node has i = 0 jobs in its queue,
meaning the server is idle, the node will generate probe
messages at rate r. Thus, as long as the server remains
idle, probes are sent according to a Poisson process
with rate r. This process is interrupted whenever the
server becomes busy. The probed node is also selected
at random and the probe is successful if there are jobs
waiting to be served.

3) Hybrid: This strategy combines the above two strategies.
When queue length i equals 0 a node generates probes
at rate r1, while for i ≥ 2 the probe rate is set equal to
r2.

We will show that under the infinite system model (i.e.,
N =∞) the push and pull strategy result in exactly the same
queue length distribution when the same rate r is used. This
is even true for the hybrid strategy if we define r = r1 + r2
(i.e., the queue length only depends on the sum of r1 and
r2). However, when the same rate r is used by these different
strategies, the overall probe rate R will typically differ. Hence,
we aim at comparing these strategies when the rates r are set
such that the overall probe rate matches some predefined R.

The pull strategy considered in this paper is in fact identical
to the pull strategy with repeated attempts considered in
[11, Section 2.4], except that our nodes do not immediately
generate a probe message when the server becomes idle.
Generating probes in that way would automatically result in
a high probe rate R when the load λ is small and would
no longer allow us to match any R > 0 by setting r in the
appropriate manner.

The traditional pull and push strategies considered in [4],
[9], [5] and discussed in Section VI (for T = 1) are somewhat
different. The pull strategy tries to attract a job whenever a job
completes and the resulting queue length is below T , while the
push strategy tries to push arriving jobs that find T or more
jobs in the queue upon arrival. Further, instead of sending
a single probe, both strategies repeatedly send probes until
either one gets a positive reply or a predefined maximum of
Lp probes is reached. The overall probe rate R clearly depends
on T, Lp and the load λ, which makes it hard to compare the
pull and push strategies in a completely fair manner.

When the time required to transfer probes and jobs be-
tween nodes is neglected (as in [4]), setting T = 1 ensures
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that exchanged jobs can immediately start (as in our setup).
Assuming zero transfer time for probe messages is quite
realistic as transferring jobs typically requires considerably
more time than sending a probe. The models in [9], [5] do
take an exponentially distributed job transfer time into account
(while still assuming zero transfer time for the probes). The
results show that when increasing the transfer time, the delays
also increase, while the performance differences between the
pull and push strategies become less significant (but remain
similar). Further, the setting T = 1 minimizes the mean
response time when the job transfer times are sufficiently small
(but also results in a higher overall probe rate R).

The strategies considered in [6], [7] are more aggressive pull
and push strategies. In [6] a successful probe message results
in exchanging half of the jobs that are waiting, while in [7]
the number of probes send under the push strategy depends
on the current queue length. Although the push strategy of [7]
significantly reduces the mean response time and outperforms
the pull strategy, its overall probe rate is also much higher.

III. INFINITE SYSTEM MODEL

In this section we present various analytical results in closed
form for the system with N = ∞ nodes, termed the infinite
system model. The evolution of the infinite system model will
be captured by a set of ordinary differential equations (ODEs);
hence, the infinite system model is deterministic as opposed to
the finite system models where N <∞. To define the infinite
system we first consider a system with a finite number of nodes
N . Due to the assumptions on the arrival process, processing
times and transfer times, it suffices to keep track of the N
queue lengths in order to obtain a continuous time Markov
chain (CTMC). Further, as the system is homogeneous, it
also suffices to keep track of the number of nodes that have
i jobs in their queue for all i ≥ 1. More precisely, we
define a CTMC {X(N)(t) = (XN

1 (t), XN
2 (t), . . .)}t≥0, where

X
(N)
i (t) ∈ {0, . . . , N} is the number of nodes with at least

i jobs in the queue at time t (the superscript N is used to
indicate that we consider a finite system consisting of N
nodes). For any state x = (x1, x2, . . .) we clearly have that
xi ≥ xi+1 for all i ≥ 1.

Let us first indicate that the transition rates of this CTMC are
identical for the push, pull and hybrid strategy provided that
they use the same rate r. Transitions take place when either
one of the following three events takes place: an arrival, a job
completion, or a job exchange between an idle node and a
node with at least two jobs. Let q(N)(x, y) be the transition
rate between state x = (x1, x2, . . .) and state y = (y1, y2, . . .).
If an arrival occurs in a queue with i − 1 jobs, then xi will
increase by one. Thus, due to the arrivals we have

q(N)(x, y) = λ(xi−1 − xi),

for y = x+ei and i ≥ 1, where x0 = 1 and ei is a vector with
a 1 in position i and 0s elsewhere. Similarly, a job completion
in a queue with i jobs reduces xi by one:

q(N)(x, y) = (xi − xi+1),

for y = x − ei and i ≥ 1. A job exchange between an idle
node and a node with i jobs increases x1 by one and decreases

xi by one; hence, y = x + e1 − ei. Under the push strategy
the rate of such exchanges equals the number of nodes with
exactly i jobs xi − xi+1 times r times the probability that
a probe message is successful1, which equals (N − x1)/N .
Hence, for the push strategy we have

q(N)(x, y) = r(1− x1/N)(xi − xi+1),

for y = x + e1 − ei and i ≥ 2. Under the pull strategy this
event takes place with a rate equal to the number of idle nodes
(N − x1) times r times the probability (xi − xi+1)/N that
we select a node with i jobs. The transition rate is therefore
the same in both systems. For the hybrid strategy these events
occur at rate r1(1−x1/N)(xi−xi+1) (due to pull) plus r2(1−
x1/N)(xi−xi+1) (due to the push), which results in the same
overall rate. Using a coupling argument one can prove that this
CTMC is positive recurrent for all λ < 1 (see Appendix C).

We will now define the infinite system model, the evo-
lution of which is described by a set of ODEs, using the
rates q(N)(x, y). As these rates are the same for the three
strategies, they also result in the same set of ODEs. Define
β`(x/N) = q(N)(x, x+ `)/N , such that

βei(x/N) = λ(xi−1/N − xi/N),

β−ei(x/N) = (xi/N − xi+1/N),

for all i ≥ 2 and

βe1−ei(x/N) = r(1− x1/N)(xi/N − xi+1/N),

for i ≥ 2. Denote by

F (x) =
∑
i≥1

(eiβei(x)− eiβ−ei(x)) +
∑
i≥2

(e1 − ei)βe1−ei(x),

where x = (x1, x2, . . .), with xi ∈ [0, 1] and xi ≥ xi+1 for
i ≥ 1. The set of ODEs describing the evolution of the infinite
system model is now given by d

dtx(t) = F (x(t)), where xi(t)
represents the fraction of the number of nodes with at least i
jobs at time t in the infinite system. This set of ODEs can be
written as
d

dt
x1(t) = (λ+ rx2(t))(1− x1(t))− (x1(t)− x2(t)), (1)

and

d

dt
xi(t) = λ(xi−1(t)− xi(t))

−(1 + r(1− x1(t)))(xi(t)− xi+1(t)), (2)

for i ≥ 2. In Section V we will discuss the relation between
this dynamical system and the finite system models for large
N .

Let E = {(x1, x2, . . .)|xi ∈ [0, 1], xi ≥ xi+1, i ≥
1,
∑
j≥1 xj < ∞}. The next two theorems show that this set

of ODEs is Lipschitz on E and it has a unique fixed point in
E.

Theorem 1. The function F is Lipschitz on E.

1We assume that the probed node is selected at random, in fact we even
allow a node to select itself with probability 1/N . Disallowing nodes to select
themselves results in the same limiting process.
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Proof: F is Lipschitz provided that for all x, y ∈ E there
exists an L > 0 such that |F (x)− F (y)| ≤ L |x− y|. By
definition of F (x) one finds

|F (x)− F (y)| ≤ 2(λ+ 1 + 2r) |x− y|+

2r
∑
i≥2

|x1(xi − xi+1)− y1(yi − yi+1)| .

The above sum can be bounded by∑
i≥2

|(x1 − y1)(xi − xi+1) + y1(xi − xi+1 − yi + yi+1)| ,

which is bounded by 2 |x− y| on E. Hence, F is Lipschitz
by letting L = 2λ+ 2 + 8r.

As E is a Banach space the Lipschitz condition of F suffices
to guarantee that the set of ODEs d

dtx(t) = F (x(t)), with
x(0) ∈ E, has a unique solution2 φt(x(0)) [12, Section 1.1].

Theorem 2. The set of ODEs given by (1) and (2) has a unique
fixed point π = (π1, π2, . . .) with

∑
i≥1 πi <∞. Further,

πi = λ

(
λ

1 + (1− λ)r

)i−1
.

Proof: Assume π is a fixed point with
∑
i≥1 πi <

∞, meaning Fi(π) = 0 for i ≥ 1, where F (x) =
(F1(x), F2(x), . . .). When

∑
i≥1 πi < ∞, we can simplify∑

i≥1 Fi(π) = 0 to λ − π1 = 0. Hence, π1 must equal λ.
Further, by defining ηi = πi− πi+1, the condition Fi(π) = 0,
for i ≥ 2, readily implies that ηi+1 = ληi/(1 + (1 − π1)r)
and therefore by induction we find the expression for πi, for
i ≥ 2.

If we take the set of ODEs in (1) and (2) and replace the first
x2(t) by π2 in (1) and x1(t) by λ in (2), then we end up with
the Kolmogorov differential equation for a state dependent
M/M/1 queue with λ0 = λ+ rπ2, λi = λ, for i ≥ 1, µ1 = 1
and µi = 1 + (1− λ)r, for i ≥ 2. The arrival process of such
an M/M/1 queue is Poisson with rate λi and the service is
exponential with rate µi whenever the queue length equals i.
Hence, the fixed point π also corresponds to the steady state
of a state dependent M/M/1 queue (where πi is the probability
that the queue contains at least i packets).

The set of ODEs in (1) and (2) describes the transient
evolution of the infinite system, while we are in fact interested
in its behavior as t goes to infinity. Thus, we are interested in
the limit of all the trajectories of this set of ODEs. In Appendix
A we prove the following theorem:

Theorem 3. All the trajectories of the set of ODEs given by
(1) and (2), starting from x ∈ E converge towards the unique
fixed point π.

Due to the above theorem, we can now express the main
performance measures of the pull, push and hybrid strategy
via Theorem 2:

Corollary 1. The mean response time D of a job under the
push, pull and hybrid strategy equals

D = 1 +
λ

(1− λ)(1 + r)
.

2The solution φt(x) belongs to the class of continuously differentiable
functions as in the finite dimensional case.

Under the hybrid strategy the overall probe rate R can be
expressed as

R = (1− λ)r1 +
λ2r2

1 + (1− λ)r
,

with r = r1 + r2. Setting (r1, r2) = (r, 0) and (0, r) results in
the probe rate R of the pull and push strategy, respectively.

Proof: The mean response time D can be expressed as∑
i≥1 πi/λ = 1 + λ/(1 + (1 − λ)r − λ) by Little’s law. The

overall probe rate under the pull and push strategy equals r(1−
π1) and rπ2, respectively. Under the hybrid strategy the overall
probe rate equals r1(1− π1) + r2π2.

Our interest lies in comparing the mean response time D of
the three policies given λ and the overall allowed probe rate
R. Using the above result, we can easily set r such that the
overall probe rate equals some predefined R. For the hybrid
policy this still leaves one degree of freedom as only the sum
of r1+r2 has been determined. The above result also indicates
that R converges to λ2/(1−λ) as r goes to infinity under the
push strategy (which is in contrast to the pull strategy where
R also goes to infinity). This indicates that an overall probe
rate R close to λ2/(1 − λ) suffices to get a mean response
time close to 1 under the push strategy. We should however
also note that this rate R becomes large as λ approaches one.

Theorem 4. The mean response time D of a job under the
push strategy equals

Dpush =
λ

(1− λ)(λ+R)
,

for R < λ2/(1 − λ) and Dpush = 1 for R ≥ λ2/(1 − λ).
Under the pull strategy we get

Dpull =
1 +R

1− λ+R
.

Hence, given λ the push strategy outperforms the pull strategy
if and only if (1 +R) > λ2/(1− λ) and given R the push is
the best strategy if and only if

λ <

√
(1 +R)2 + 4(1 +R)− (1 +R)

2
.

Further, the push strategy outperforms the pull strategy for all
λ < φ− 1, where φ = (1 +

√
5)/2 is the golden ratio.

Proof: The expressions for Dpush and Dpull are readily
obtained from Corollary 1 by plugging in the appropriate
value for r in the expression for D. Requiring that Dpush =
Dpull results in a quadratic equation for R with roots in
0 and λ2/(1 − λ) − 1, which results in the condition for
(1 + R) and λ. The last result is obtained by noting that√

(1 +R)2 + 4(1 +R)/2− (1 +R)/2 is an increasing func-
tion in R and its limit for R going to zero equals

√
5/2−1/2.

Looking at the expression for the mean delay in Corollary
1, we note that a strategy with a lower mean response time
actually has a larger r value when matching R. By Theorem
2 we also know that the queue length distribution decays
geometrically with parameter λ/(1 + (1 − λ)r). Hence, a
smaller mean delay therefore also implies a faster decay of
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the queue length distribution. In fact, in this case a smaller
mean delay even implies that the queue length distribution
becomes smaller in the usual stochastic ordering sense [13].

We observe another fundamental difference between the
push and pull strategy when the load approaches 1. In this
case the mean delay of the push strategy still goes to infinity
as in the M/M/1 queue (the mean response time of which is
1/(1 − λ)). For the pull strategy the mean delay approaches
1 + 1/R, hence remains finite. We should note that r does go
to infinity when λ approaches 1 under the pull strategy (for
any R > 0).

Theorem 5. The mean delay under the hybrid strategy (r1, r2)
with overall probe rate R is minimized by setting r1 or r2
equal to zero. Hence, a pure pull or push strategy is always
optimal.

Proof: Let R1 and R2 = R − R1 be the overall probe
rate generated by the pull and push operations, respectively. By
Corollary 1, we have R1 = (1−λ)r1 and R2 = λ2r2/(1+(1−
λ)r), while we also note that D is minimized by maximizing
r = r1 + r2. Hence, by letting R2 = y and R1 = R − y, we
wish to maximize

g(y) =
R− y
1− λ

+
y(1 +R− y)

λ2 − (1− λ)y
,

for y ∈ [0, R] and R < λ2/(1− λ). For R ≥ λ2/(1− λ) the
response time is minimized by setting r1 = 0 as Dpush = 1.
Some basic algebraic manipulations show that

d

dy
g(y) =

(
(1 +R)− λ2

1− λ

)(
λ

λ2 − (1− λ)y

)2

,

on y ∈ [0, R] with R < λ2/(1 − λ). Depending on the sign
of (1 + R) − λ2/(1 − λ) the derivative of g(y) is therefore
positive or negative on the entire interval and the minimum is
found in y = 0 (i.e., r2 = 0) or y = R (i.e., r1 = 0).

IV. MODEL VALIDATION

In this section we validate the infinite system model by
comparing the closed form results of Theorem 4 with time
consuming simulation results for systems with a finite number
of nodes N . The infinite and finite system model only differ
in the system size. Hence, the rate r in the simulation exper-
iments is independent of N and was determined by λ and R
using the expression for R in Corollary 1. Each simulated point
in the figures represents the average value of 25 simulation
runs. Each run has a length of 106 (where the service time is
exponentially distributed with mean 1) and a warm-up period
of length 106/3.

Figure 1 compares the mean delay in a finite system with N
nodes with the mean delay in the infinite system model under
the push strategy with R = 1 for N = 25, 50, . . . , 1600 and
λ = 0.7, 0.8, 0.9 and 0.95. For each combination of N and
λ we also show the relative error. The error clearly decreases
to zero as N goes to infinity. Further, even for a system with
N = 100 nodes we observe a relative error of 1% only. It may
seem unexpected that the relative error is nearly insensitive to
the load, as one might expect higher errors as λ increases. In
fact, if r is kept fixed we would observe an increased error.
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Figure 1. Mean delay and relative error of the push strategy in a finite
vs. infinite system for R = 1
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Figure 2. Mean delay and relative error of the pull strategy in a finite
vs. infinite system for R = 1.

However, we are looking at the curves for R = 1, meaning
r = 1/(λ2 − (1 − λ)) decreases with λ (see Corollary 1).
As setting r = 0 gives exact results for any finite N , we
can expect an improved accuracy for smaller r values (if λ
remains fixed). Thus, in Figure 1 we see more or less the
same relative errors because higher loads, which worsen the
accuracy, correspond to lower r values, which improve the
accuracy.

Figure 2 depicts the same results as Figure 1, but for the pull
strategy. Although we still see the convergence as N goes to
infinity, the relative errors grow quickly with λ and an error of
9% is observed even for a system with N = 100 nodes. Under
the pull strategy r = 1/(1−λ) for R = 1, which implies that
larger λ values also correspond to larger r values. Therefore,
the less accurate results for higher loads are not unexpected.

The overall request rate observed in the simulation exper-
iments was typically within 0.1% of the targeted R value,
meaning the relation R = (1 − λ)r seems highly accurate
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Figure 3. Overall request rate of the push strategy in a finite vs. infinite
system for R = 1.
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Figure 4. Mean delay of the push and pull strategy in a finite system with
N = 100 nodes (crosses) vs. infinite system model (full lines) for R = 0.5
and R = 1.

even for finite systems. This is not unexpected as the fraction
of idle nodes should also match (1− λ) in the finite system.
Figure 3 shows the observed overall request rate for the
push strategy, which exceeds the targeted value of R and
decreases as a function of N and λ. Hence, the relation
R = λ2r/(1 + (1−λ)r) of Corollary 1 is not highly accurate
for small system sizes. This can be explained by noting that the
infinite system model is optimistic with respect to the queue
length distribution for N finite and therefore also predicts a
lower overall probe rate.

In Figure 4 we compare the mean delay of the push and
pull strategy in the infinite system model (full lines) with a
finite system consisting of N = 100 nodes (crosses) for λ ≥
0 and R = 0.5 and R = 1. The results indicate that the
infinite system model provides accurate results under any load
λ, while the pull strategy becomes less accurate as the load
increases (which is in agreement with the results in Figures 1
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Figure 5. Mean delay of the push and pull strategy in a finite system with
N = 100 nodes (crosses) vs. infinite system model (full lines) for R = 1.

and 2). Note, under the push strategy setting λ < (
√

5−1)/2 ≈
0.6180 implies that r can be chosen arbitrarily large such that
the overall probe rate R remains below 1 (see Theorem 4).
For r = ∞ the mean delay becomes 1 and there is little use
in simulating the system for finite N .

In Figure 5 we have zoomed in on the intersection of the
pull and push curves for R = 1 to indicate that the region
where the push strategy outperforms the pull strategy is in
perfect agreement with the infinite system model. This can
be understood by noting that the r value used during the
simulation is determined by the relation between R and r in
Corollary 1. When λ =

√
(1 +R)2 + 4(1 +R)/2−(1+R)/2,

we therefore make use of the same r value for the push
and pull strategy. Hence, the evolution of the finite system
model with N nodes is captured by the same Markov chain
(X(N)(t))t≥0, meaning both strategies have the same queue
length distribution and mean delay for all N . We should
however keep in mind that the observed overall probe rate
tends to exceed R under the push strategy, especially for small
systems. It is therefore fair to say that when N is small, the
region where the push strategy outperforms the pull strategy
is in fact overestimated by the infinite system model.

V. FINITE VERSUS INFINITE SYSTEM MODEL

In this section we discuss the relation between the set of
ODEs in (1) and (2) and the sequence of Markov chains
{X(N)(t)}t≥0 as N tends to infinity. More specifically, we
will identify and prove the technical issues related to formally
showing that the steady state measures π(N) of {X(N)(t)}t≥0
converge to the unique fixed point π. These issues arise from
having an infinite dimensional state space E. Replacing the
infinite size buffer in each node by a finite large buffer (such
that the loss rate can be neglected) would result in a finite
dimensional (compact) space E and would resolve most of
the issues. This also explains why large finite buffers are often
considered as opposed to infinite buffers (see [6], [7]).

We start by recalling the definition of a density dependent
family of Markov chains [14]. A set of Markov chains
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{X(N)(t)}t≥0, with N ≥ 1, where EN = E∩{k/N, k ∈ Zm}
is the state space of {X(N)(t)}t≥0, is a family of density
dependent Markov chains provided that the transition rates
q(N)(x, y) between state x ∈ EN and y ∈ EN can be written
as

q(N)(x, y) = Nβ(y−x)N (x),

where β` is a function from E ⊂ Rm to R+. Let F (x) =∑
`∈L `β`(x), where L is the set of all possible transitions.

Note, the set of CTMCs considered in Section III matches this
definition, with L = {ei, i ≥ 1}∪ {e−i, i ≥ 1}∪ {e1− ei, i ≥
2}, except that E is not a part of Rm for some finite m.
However, this definition was extended to R∞ in [15], where
the following generalization of Kurtz’s theorem was proven
[15, Theorem 3.13]:

Theorem 6 (Kurtz). Consider a family of density dependent
CTMCs, with F Lipschitz. Let limN→∞X(N)(0) = x̃ a.s. and
let φt(x̃) be the unique solution to the initial value prob-
lem d

dtx(t) = F (x(t)) with x(0) = x̃. Consider the path
{φt(x̃), t ≤ T} for some fixed T ≥ 0 and assume that there
exists a neighborhood K around this path satisfying∑

`∈L

|`| sup
x∈K

β`(x) <∞, (3)

then
lim
N→∞

sup
t≤T

∣∣∣X(N)(t)− φt(x̃)
∣∣∣ = 0 a.s.

In the finite dimensional case, the set L is finite and
therefore (3) is automatically met. For our system, condition
(3) corresponds to showing that there exists an environment
K such that

∑
i≥2 supx∈K(xi − xi+1) < ∞. The following

theorem is proven in Appendix B:

Theorem 7. Given x̃ ∈ E and T ≥ 0, there exists an envi-
ronment K of {φt(x̃), t ≤ T} such that

∑
i≥2 supx∈K(xi −

xi+1) <∞.

Hence, the set of ODEs given by (1) and (2) describes the
proper limit process of the finite systems over any finite time
horizon [0, T ].

A natural question is whether this convergence extends
to the stationary regime. Sufficient conditions for the finite
dimensional case can be found in [16]. We will instead
rely on a more general result in [17], which considers a
family of stochastic processes on some Polish space E,
which includes the set of infinite dimensional, separable and
complete spaces. As E = {(x1, x2, . . .)|xi ∈ [0, 1], xi ≥
xi+1, i ≥ 1,

∑
j≥1 xj < ∞} is a subspace of the space

l1 = {(x1, x2, . . .)|
∑
j≥1 |xj | < ∞}, it is separable. E

is clearly also complete and therefore Polish. Let π(N) =

(π
(N)
1 , π

(N)
2 , . . .) be the unique stationary measure of the

Markov chain {X(N)(t)}t≥0. Given that we have a unique
solution φt(x) (which is continuous in t for all x) and that
convergence over finite time intervals occurs, Corollary 1 of
[17] can be rephrased as:

Theorem 8 (Benaı̈m, Le Boudec). Given that φt(x) is contin-
uous in x for all t and that the sequence (π(N))N≥1 is tight,

we have

lim
N→∞

lim
t→∞

∣∣∣X(N)(t)− π
∣∣∣ = 0,

in probability.

The sequence (π(N))N≥1 is tight if for every ε > 0 there
exists some compact set Kε such that P{πN ∈ Kε} > 1 −
ε for all N . Note, if E is compact (as is often the case in
finite dimension), tightness is immediate. In our case E is not
compact and the following theorem is proven in Appendix C:

Theorem 9. The sequence of measures (π(N))N≥1 is tight.

The continuity of φt(x) in x for all t is guaranteed by
the uniqueness of the solution in finite dimensions, but this
result does not in general extend to Banach spaces of infinite
dimension [18]. However, for F Lipschitz, as in our case,
the classical finite dimensional results still hold and we may
conclude that convergence of the steady state measures to the
fixed point π occurs.

VI. RATE-BASED VERSUS TRADITIONAL STRATEGIES

The aim of this section is to show that the performance
of the rate-based pull/push strategies coincides with the tradi-
tional pull/push strategies when the former match the overall
probe rate of the latter. To this end, we introduce an infinite
system model for the following traditional pull and push
strategy:

1) Traditional Push: A server starts sending probes when-
ever a job arrives in a queue with i ≥ 1 jobs, meaning
i− 1 jobs are waiting to be served. The nodes that are
probed are selected at random and a node is only allowed
to accept a job if it is idle. The server starts by probing
a single node. If the probe fails (because the selected
node is not idle), the server sends another probe. This
procedure is repeated until a probe is either successful
or Lp unsuccessful probes were sent.

2) Traditional Pull: A server starts sending probes when-
ever the server becomes idle. The nodes that are probed
are selected at random and a node is only allowed to
transfer a job if its queue length exceeds one. Probes
are sent one at a time until one is successful or Lp
unsuccessful probes were sent.

Analytical models to assess the performance of a class of pull
and push strategies that include the above two strategies were
presented in [4], [8]. These models relied on a decoupling
assumption and the mean response time was expressed as the
solution to a nonlinear equation that was solved numerically.

In this section we present ODE models for the traditional
strategies similar to the ODE model in Section III for the
rate-based strategies and show that its unique fixed point
can be expressed in closed form. It is not hard to verify
that the nonlinear equation for the unique fixed point of the
ODE corresponds to the nonlinear equation in [4] for the pull
strategy with T = 1 and the one in [8] for the push strategy
with T = 1 and C = 0.
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A. Traditional push

Let si(t) denote the fraction of queues containing at least i
jobs at time t and set s(t) = (s1(t), s2(t), . . .). The dynamics
of the infinite system model for the traditional push strategy
is captured by the following set of ODEs:

ds1(t)

dt
= λ(1− s1(t)) + λs1(t)(1− s1(t)Lp)

− (s1(t)− s2(t)) (4)
dsi(t)

dt
= λ(si−1(t)− si(t))s1(t)Lp − (si(t)− si+1(t)) (5)

for i ≥ 2. The terms si(t) − si+1(t), for i ≥ 1, correspond
to the service completion events (as the job durations are
exponential with mean 1). The rate at which arrivals occur in a
node with exactly i−1 jobs is λ(si−1(t)−si(t)) and s1(t)Lp is
the probability that Lp probes are unsuccessful; hence queues
of length i are created at rate λ(si−1(t) − si(t))s1(t)Lp , for
i ≥ 2. Finally, queues of length 1 are created by new arrivals
(at rate λ(1− s1(t))) or job transfers. The latter occur at rate
λs1(t)(1− s1(t)Lp), as λs1(t) is the rate at which probes are
sent to the idle nodes and (1− s1(t)Lp) is the probability that
one of the probes is successful.

The set of ODEs given by (4) and (5) has a unique fixed
point π̂ = (π̂1, π̂2, . . .) with

∑
i≥1 π̂i <∞ given by

π̂1 = λ,

π̂2 = λLp+2,

π̂i+1 = π̂i − λLp+1(π̂i−1 − π̂i),

for i > 2, where the first equality follows from taking the sum
of (4) and (5) for i ≥ 1.

For the traditional push strategy, every busy node will send
on average

1 +

Lp−1∑
i=1

π̂i1 =
1− λLp
1− λ

probes at the task arrival rate λ, meaning that the overall probe
rate R̂ equals

R̂ = π̂1λ
1− λLp
1− λ

.

From the relationship R = rpushπ2, we observe that a rate-
based push strategy with

rpush =
λπ̂1
π2

1− λLp
1− λ

matches R̂. By substituting the rate rpush in Theorem 2
we find that under the infinite system model, the traditional
and rate-based push strategy have the same fixed point. This
indicates that the rate-based strategy matches the queue length
distribution of the traditional variant, provided that we match
the overall probe rate R.

B. Traditional pull

A similar set of ODEs describes the evolution of the
traditional pull strategy (for Lp = 1 this corresponds to the

model in [11]):

ds1(t)

dt
= λ(1− s1(t))− (s1(t)− s2(t))(1− s2(t))Lp (6)

dsi(t)

dt
= λ(si−1(t)− si(t))− (si(t)− si+1(t)) (7)

− (si(t)− si+1(t))

s2(t)
(s1(t)− s2(t))(1− (1− s2(t))Lp),

for i ≥ 2, where dsi(t)
dt = λ(si−1(t) − si(t)) if s2(t) = 0

and i ≥ 2. The intuition is similar as for the push strategy,
where we note that (s1(t)− s2(t)) is the rate at which probes
are generated, (1− (1− s2(t))Lp) is the probability that one
of the probes is successful and (si(t)− si+1(t))/s2(t) is the
probability that the accepting busy queue has length i, for
i ≥ 2.

The system given by (6) and (7) also has a unique fixed
point π̃ = (π̃1, π̃2, . . .) with

∑
i≥1 π̃i < ∞ . As π̃1 = λ, π̃2

is found as the unique positive real root of

g(x) = λ(1− λ)− (λ− x)(1− x)Lp = 0,

with x ∈ [0, λ]. The uniqueness follows by noting that
dg(x)/dx = (1−x)Lp−1(1−x+Lp(λ−x)) is strictly positive
on [0, λ], while g(0) < 0 and g(λ) > 0 (as λ < 1). Finally,
π̃i, for i > 2, is given by

π̃i+1 = π̃i −
λ(π̃i−1 − π̃i)

1 + (λ− π̃2)(1− (1− π̃2)Lp)/π̃2
.

For the traditional pull strategy, every node with exactly one
job will send on average

1 +

Lp−1∑
i=1

(1− π̃2)i =
1− (1− π̃2)Lp

π̃2

probes each time the server becomes idle (as a probe fails with
probability (1 − π̃2)), meaning that the overall probe rate R̃
for the traditional pull strategy equals

R̃ = (π̃1 − π̃2)
1− (1− π̃2)Lp

π̃2
.

From the relationship R = (1 − π1)rpull, we observe that a
rate-based pull strategy with

rpull =
π̃1 − π̃2
1− π1

1− (1− π̃2)Lp

π̃2

amounts to the same overall probe rate R̃. Substituting the
rate rpull in Theorem 2 allows us to conclude that the rate-
based pull strategy matches the queue length distribution of the
traditional variant, provided that we match the overall probe
rate R.

The mean overall probe rate R̂ and R̃ for the traditional
push and pull strategy respectively is shown in Figure 6. As
the probe rate of both strategies differs significantly, it is
sometimes hard to compare these strategies in a fair manner.
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VII. CONCLUSIONS AND FUTURE WORK

In this paper we compared the ability of the push and
pull strategy to reduce the mean delay in a homogeneous
distributed system given an overall probe rate R. We showed
that the push strategy outperforms the pull strategy if and
only if λ <

√
(R+ 1)2 + 4(R+ 1)/2 − (R + 1)/2 in the

infinite system model and showed, by simulation, that this
formula is also accurate for small finite systems, e.g., systems
with N = 25 nodes. We further demonstrated that a hybrid
strategy is always inferior to the pure push or pull strategy
when the overall probe rate R is not allowed to increase.
Some technical issues to formally prove the convergence of
the steady state measures of the finite system model to the
infinite system model were identified and proven. Finally, we
showed that rate-based strategies matching the probe rate of
traditional strategies, also match the queue length distribution.

For future work we intend to study push strategies where
the probe rate depends on the current queue length. The push
strategy considered in this paper generates probes at rate r
whenever the queue length i exceeds 1. We believe we can
further decrease the mean delay by making r a function of
i without increasing the overall probe rate R. Note, this is
very much related to the choice of the threshold T in [4], [9],
[5], where T = 1 was argued to be optimal in case the probe
and job exchange times are zero. However, for the strategies
studied in [4], [9], [5] smaller T values result in larger probe
rates R.
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APPENDIX A
PROOF OF THEOREM 3

We start by proving the following Lemma:

Lemma 1. Let x(t) be the unique solution of the ODEs given
by (1) and (2) with x(0) ∈ E. The L1-distance to the unique
fixed point

∑
i≥1 |xi(t)− πi| does not increase as a function

of t.

Proof: Define εi(t) = xi(t) − πi, for i ≥ 1, such that
Φ(t) =

∑
i≥1 |εi(t)| represents the L1-distance. As d

dtxi(t) =
d
dtεi(t) and π is a fixed point of (1) and (2), we find

d

dt
ε1(t) = −λε1(t) + (1 + r(1− π1))ε2(t)

−rε1(t)(ε2(t) + π2)− ε1(t), (8)

and

d

dt
εi(t) = λ(εi−1(t)− εi(t))

−(1 + r(1− π1))(εi(t)− εi+1(t))

+rε1(t)(εi(t)− εi+1(t) + πi − πi+1), (9)

for i ≥ 2. Assume for now that εi(t) 6= 0 for all i such that
d
dtΦ(t) is properly defined as

d

dt
Φ(t) =

∑
i:εi(t)>0

d

dt
εi(t)−

∑
i:εi(t)<0

d

dt
εi(t).
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If εi(t) has the same sign for all i, one finds that d
dtΦ(t) =

−|ε1(t)| by summing (8) and (9), we will show that this
inequality also holds in general. Let I = {i1, i2, . . .}, with
i1 < i2 < . . ., be the set of indices where εi(t) changes sign,
that is, εi−1(t) and εi(t) have a different sign if and only
if i ∈ I . Assume ε1(t) < 0 and let I+ = {i1, i3, . . .} and
I− = {i2, i4, . . .} such that i ∈ I+ implies that εi−1(t) < 0
and εi(t) > 0, while i ∈ I− implies that εi−1(t) > 0 and
εi(t) < 0. Then, by means of (8) and (9), we find

d

dt
Φ(t) = ε1(t) + 2

∑
i∈I+

(λεi−1(t)− (1 + r(1− π1))εi(t))︸ ︷︷ ︸
<0

−2
∑
i∈I−

(λεi−1(t)− (1 + r(1− π1))εi(t))︸ ︷︷ ︸
>0

+2
∑
i∈I+

rε1(t)(εi(t) + πi)− 2
∑
i∈I−

rε1(t)(εi(t) + πi).

(10)

Hence, d
dtΦ(t) ≤ ε1(t) provided that∑

i∈I+

(εi(t) + πi)−
∑
i∈I−

(εi(t) + πi) ≥ 0,

which clearly holds as this expression is equal to (xi1(t) −
xi2(t)) + (xi3(t)− xi4(t)) + . . . and xi(t) ≥ xj(t) for i < j.
Hence, d

dtΦ(t) ≤ −|ε1(t)| if ε1(t) < 0. A similar argument
can be used for ε1(t) > 0.

Finally, we consider the technical issue of defining d
dtΦ(t)

in case εi(t) = 0 for some i and t = t0. In this case the
above proof remains unchanged provided that we rely on the
upper right-hand derivative (as in [1, Theorem 3]), that is, if
we define d

dt |εi(t0)| as

d

dt
|εi(t0)| = lim

t→t+0

|εi(t)|
t− t0

.

The above lemma shows that the L1-distance to the fixed
point does not increase along any trajectory x(t) in E, and
only remains the same whenever x1(t) = π1 (as ε1(t) = 0 in
such a case).

Lemma 2. The only trajectory x(t) of the ODE given by (1)
and (2) with x(0) ∈ E for which x1(t) = π1 for all t is given
by x(t) = π for all t.

Proof: If x1(t) = π1 = λ for all t, then (1) implies that
x2(t) = π2. Similarly, for i ≥ 2, if xj(t) = πj for all j ≤ i
and t, then (2) implies that xi+1(t) = πi+1.

We now recall La Salle’s invariance principle for Banach
spaces, where a (positively) invariant subset of K ⊂ E of an
ODE defined on E is such that x(t) ∈ K for all t provided
that x(t) is the unique solution of the ODE with x(0) ∈ K.

Theorem 10 ([19]). Let V (x) be a continuous
real valued function from E to R with d

dtV (x) =
lim supt→0+

1
t (V (x(t)) − V (x)) ≤ 0, where x(t) is

the unique solution of an ODE with x(0) = x. Let
K = {x ∈ E| ddtV (x) = 0} and let M be the largest

(positively) invariant subset of K. If x(t) is precompact (i.e.,
remains in a compact set) for x(0) ∈ E, then

lim
t→∞

dist(x(t),M) = 0,

where dist(x,M) represents the Banach distance between the
point x ∈ E and the set M ⊂ E.

We are now in a position to proof theorem 3:
Proof of Theorem 3: We rely on La Salle’s invariance

principle for Banach spaces by setting V (x) equal to the L1-
distance to the fixed point, i.e., V (x) =

∑
i≥1 |xi − πi|.

Lemma 1 implies that d
dtV (x) ≤ 0, while Lemma 2 shows

that M = {π} is a singleton. Hence, π is a global attractor
provided that we can show that the trajectory x(t) remains in
a compact set if x(0) ∈ E. Let m =

∑
i≥1 |xi(0) − πi|,

then by Lemma 1 we know that x(t) remains in the set
Em = {x ∈ E|

∑
i≥1 |xi−πi| ≤ m}. This set is not compact

in the Banach space E equipped with the L1-norm, but La
Salle’s invariance principle holds in any Banach space. If E is
equipped with the weighted L1-norm

∑
i≥1

|xi|
2i , the sets Em

are compact and global attraction follows from Theorem 10.

APPENDIX B
PROOF OF THEOREM 7

We start by proving the following lemma:

Lemma 3. For any T > 0 and x(0) ∈ E, the unique solution
x(t) = (x1(t), x2(t), . . .) to the initial value problem defined
by (1) and (2) satisfies

∑
i≥2

sup
0≤t≤T

xi(t) ≤ exp(λT )

1 +
∑
i≥2

xi(0)

 . (11)

Proof: By (2) we have d
dtxi(t) ≤ λxi−1(t) for i ≥ 2.

Hence, for i ≥ 2

xi(t) = xi(0) +

∫ t

u=0

dxi(u) ≤ xi(0) + λ

∫ t

u=0

xi−1(u)du.

As x1(t) ≤ 1 we can use induction on i to show that

xi(t) ≤
i∑

j=2

xj(0)
(λt)i−j

(i− j)!
+

(λt)i−1

(i− 1)!
.

Interchanging the order of summation therefore yields∑
i≥2

sup
0≤t≤T

xi(t) ≤
∑
j≥2

xj(0)
∑
i≥j

(λT )i−j

(i− j)!
+
∑
i≥2

(λT )i−1

(i− 1)!
,

which implies (11).
Theorem 7 readily follows from (11) by defining K as

K = {x ∈ E|∃t, ∀i ≥ 0 : |xi − x̃i(t))| < 2−i},

such that∑
i≥2

sup
x∈K

xi <
∑
i≥2

(
sup

0≤t≤T
x̃i(t) + 2−i

)
≤ exp(λT )(1 +

∑
i≥2

x̃i(0)) + 1 <∞.
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APPENDIX C
PROOF OF THEOREM 9

Define the set Fm ⊂ E as Fm = {x ∈ E|
∑
i≥1 xi ≤ m}.

If we consider the metric space (E, ρ), where ρ is the weighted
L1-norm

∑
i≥1

|xi|
2i , then Fm is compact for any m > 0. Note,

it suffices to prove tightness in this metric space as Prokhorov’s
theorem holds in any separable metric space [20]. To prove that
the measures (π(N))N≥1 are tight, we will show that for any
ε > 0, setting mε = 1

(1−λ)ε implies that P{πN ∈ Fmε} > 1−ε
for all N .

We start by considering a modified system consisting of
N nodes in which we give preemptive priority to local jobs,
that is, transferred jobs are interrupted whenever a local job
arrives (and can be transferred to yet another node). Let
X

(N)
i,mod(t) ∈ {0, . . . , N} be the number of nodes with at least

i jobs in the queue at time t in the modified system. Due to the
exponential job size durations we have X(N)

i,mod(t) = X
(N)
i (t),

which implies that the modified system consisting of N nodes
has the same stationary measure π(N), meaning it suffices to
prove tightness for the modified system.

Using the modified system consisting of N nodes, we can
now rely on a simple sample path argument to show that the
length of queue i, for i = 1, . . . , N , in the modified system is
upper bounded by one plus the queue length of the i-th queue
in a system consisting of N independent M/M/1 queues. After
all, in the modified system service to the local jobs is never
prevented by a transferred job, each queue contains at most one
transferred job and some local jobs may even be transferred.
As the stationary queue length distribution in an M/M/1-queue
is geometric with a mean equal to λ/(1−λ), we may conclude
that the mean queue length in the i-th node of the modified
system is upper bounded by 1/(1− λ), for i = 1, . . . , N .

Let Y (N)
i,mod(t) be the random variable representing the queue

length of the i-th queue in the modified system at time t and
set Y (N)

i,mod = limt→∞ Y
(N)
i,mod(t), then

1

N

N∑
i=1

Y
(N)
i,mod(t) =

1

N

N∑
i=1

X
(N)
i,mod(t).

Therefore, by the Markov inequality,

P{πN ∈ Fmε} = 1− P

{
1

N

N∑
i=1

Y
(N)
i,mod > mε

}

≥ 1− E

{
1

N

N∑
i=1

Y
(N)
i,mod

}
/mε

≥ 1− 1

(1− λ)mε
= 1− ε,

with mε = 1
(1−λ)ε for all N .


