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Abstract

Distributed Join-Idle-Queue load balancing is known to achieve vanishing wait-
ing times in the large-scale limit provided that the number of dispatchers re-
mains fixed, while the number of servers tends to infinity. When the number
of dispatchers m scales to infinity together with the number of servers n, such
that r = n/m remains fixed, the large-scale performance of Join-Idle-Queue
load balancing is less clear as waiting times no longer vanish.

In this paper we first discuss some existing mean field models for distributed
Join-Idle-Queue load balancing with r = n/m fixed and explain why the well-
known model introduced in [1] is not exact in the large-scale limit. The inex-
actness is caused by mixing two variants of distributed Join-Idle-Queue load
balancing: a variant with and one without token withdrawals. Next we intro-
duce mean field models for Join-Idle-Queue load balancing with and without
token withdrawals, where an idle server places a token at a dispatcher with the
shortest among d randomly chosen dispatchers.

The introduced mean field models in case of token withdrawals imply that
for phase type distributed service times and a total job arrival rate of λn < n,
the response time of a job corresponds to that in a standard M/PH/1 queue
with load λq0. The value of q0 can be determined numerically and depends on
λ, r and d, but not on the job size distribution (apart from its mean). This
simple behavior is lost if token withdrawals do not take place. For the models
without withdrawals we develop fast numerical algorithms to determine the
performance. We present simulation experiments that suggest that the unique
fixed point of the introduced mean field models provides exact results in the
large-scale limit.

1. Introduction

In traditional server farms jobs are distributed among the front end servers
by a single hardware load balancer/dispatcher. While such a load balancer can
support hundreds of servers, it is expensive, needs to be reconfigured when some
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of the servers are turned off during periods with low utilization and is not as
robust as a distributed system. For this reason the use of multiple software
based load balancers is preferential in a Cloud environment. While traditional
load balancers often made use of the join-the-shortest-queue (JSQ) algorithm,
as all the requests and responses tended to flow through the load balancer, a new
class of distributed load balancers called Join-Idle-Queue (JIQ) for systems with
multiple load balancers was introduced in [1]. Throughout this paper, which is
an extended version1 of [2], we use the terms load balancer and dispatcher
interchangeably.

Distributed JIQ load balancing operates as follows: each dispatcher main-
tains an I-queue that contains a list of server identities. These are servers that
reported that they became idle some time ago. We refer to these server identities
as tokens. When a new job arrives at a dispatcher, it is immediately assigned
to a server in the following manner:

• If the I-queue of the dispatcher is not empty, the job is assigned to a server,
the identity of which is selected from the list in its I-queue. In such case
the identity/token of the selected server is removed from the list.

• If the I-queue of the dispatcher is empty, a random server is selected.

From the server side we have that whenever a server becomes idle, it adds its
identity to the I-queue of a dispatcher. Two algorithms are considered in [1]:

• JIQ-Random, meaning the dispatcher is selected at random,

• JIQ-SQ(d), meaning the server selects d dispatchers at random and adds
its identity to a dispatcher with the shortest I-queue among the d selected
dispatchers. For d = 1 this scheme coincides with JIQ-Random.

Notice that a server may hold one or several jobs even if it is listed in an I-
queue of a dispatcher as other dispatchers may assign jobs to a server when
their I-queue is empty. This can be avoided by demanding that an idle server
withdraws its identity from the I-queue of the dispatcher as soon as a job is
assigned by another dispatcher. As such we distinguish between the JIQ load
balancing algorithm with and without token withdrawals. Without token
withdrawals, one can make a further distinction on whether or not a server is
allowed to add its token to more than one dispatcher as the server could become
idle again before its outstanding token is used.

The performance of JIQ load balancing has been studied in the large-scale
limit by various authors. When the number of dispatchers m remains fixed,
while the number of servers n tends to infinity, JIQ is known to have vanishing
waiting times in many settings [3, 4, 5] under subcritical load per server, that
is, if λn denotes the total arrival rate and the mean job size equals 1, then all
jobs are assigned to idle servers in the limit when λ < 1.

1Sections 6, 7 and 8 as well as Figures 1 and 2 are new.
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As any load balancer can only support a finite number of servers in any real
system, it might be more appropriate to look at the limit if both the number of
dispatchers m and the number of servers n tend to infinity, such that r = n/m
remains fixed. This limit was initially considered in [1] for JIQ-Random and JIQ-
SQ(d) under two assumptions that only hold for JIQ with token withdrawals.
However, as we explain in Section 2, the limit presented in [1] is inexact as
the authors mix properties of JIQ with and without withdrawals when deriving
their result.

A mean field model for JIQ-Random and JIQ-Pod with token withdrawals
and exponential job sizes is presented in [6]. JIQ-Pod operates as JIQ-Random,
except that the power-of-d-choices paradigm [7, 8] is used by the dispatcher when
a job arrives at a dispatcher with an empty I-queue. While JIQ-Pod improves
the performance of JIQ-Random under high loads, the downside is that some
jobs are not assigned immediately. While no convergence proofs are presented
in [6], simulation results suggest that the unique fixed point of the mean field
model corresponds to the exact limit. The authors in [6] also illustrate using
simulation that their model for JIQ-Random is more accurate than the model
in [1] for finite n, but no explanation is provided.

A number of variants of JIQ, including JIQ-SQ(d), without token with-
drawals and exponential job sizes are analyzed using mean field models in [9]
for the case where servers to not add their token to more than one dispatcher.
These models are significantly more complicated than the ones with token with-
drawals and even proving the existence of a unique fixed point was left as an
open problem, which is needed before one can even start thinking about con-
vergence proofs. The author does present simulation results that suggest that
the models provide exact results in the large-scale limit. The main insights
of the models in [9] are that the system behavior of JIQ-SQ(d) without token
withdrawals is quite complex as the servers experience queue length dependent
arrival rates and the order in which dispatchers select tokens from their I-queue
impacts performance.

In this paper we make the following contributions:

1. We explain why the large-scale analysis presented in [1] is inexact. On the
upside we show that the inaccuracy of the proposed limit for JIQ-SQ(d)
is small and decreases rapidly as d increases, except loads close to one.

2. We introduce a novel mean field model for JIQ-SQ(d) with token with-
drawals. We first consider exponential job sizes and then generalize to
phase-type distributed job sizes. Both models are validated by simula-
tion. Our results for JIQ-SQ(d) for exponential job sizes with d = 1
coincide with the results presented in [6] for JIQ-Random.

3. We generalize some of the mean field models in [9] to the setting with
phase-type distributed job sizes and develop fast numerical methods to
compute a fixed point. These models are also validated using simulation.

4. We compare the performance of JIQ load balancing with and without
withdrawals using our mean field models and demonstrate the impact of
the token selection method used by the dispatcher in case the tokens are
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not withdrawn.

It should be relatively easy to prove that our mean field models become exact
over finite time scales as the number of servers tends to infinity as our models
fall within the framework of density dependent population processes of Kurtz
[10].

Under the assumption (supported by simulation in Section 5 and 7) that
the mean field models presented in this paper are asymptotically exact, the
following insights are obtained for JIQ-SQ(d) with token withdrawals:

1. As n tends to infinity with r = n/m fixed, the response time distribution
of a job becomes identical to that in an M/PH/1 queue with load λq0.

2. The value of q0 depends on λ, d and r, but is independent of the job size
distribution (with mean 1).

3. The method used by the dispatcher to select a token from its I-queue when
an arrival occurs, has no impact on the performance.

When the tokens are not withdrawn, the large-scale queueing dynamics at the
server side become more involved and the token selection method used by the
dispatcher does affect performance. When comparing both variants using our
mean field models, we observe that withdrawing tokens gives slightly better
performance at low to medium loads (at the expense of adding work on the
critical path), but at high loads token withdrawals have a negative impact on
performance. Regarding the token selection method used by the dispatcher, we
show that Last-Come-First-Served (LCFS) reduces the mean response time by
a small margin compared to First-Come-First-Served (FCFS), which was also
observed in [9] for d = 1 and exponential job sizes.

We end this introduction with a short discussion of some other JIQ related
work. In [11] it was shown that JIQ is not heavy traffic optimal, which is not
surprising due to the random assignments used when a job arrives at a dispatcher
with an empty I-queue. The authors therefore propose and study Join-Below-
Threshold load balancing which is in the same spirit as JIQ-Threshold [9]. Load
balancers for homogeneous and heterogeneous systems using outdated queue
length information were considered both in the case of a single [12] or multiple
dispatchers [13, 14]. For heterogeneous systems that use JIQ load balancing
with a fixed number of dispatchers, vanishing waiting times were achieved in
the limit by exchanging tokens or using non-uniform token allotment in [15].
Finally, JIQ was also studied in a setting with service elasticity in [16] and [17].

The paper starts with a discussion of the large-scale limit analysis in [1] in
Section 2. Sections 3 to 5 are devoted to the JIQ-SQ(d) models with withdrawals
and their validation. Sections 6 and 7 discuss the mean field models for JIQ-
SQ(d) without withdrawals, explain how to quickly determine a fixed point and
validate the models using simulation. A performance comparison between the
different JIQ-SQ(d) variants considered in this paper is presented in Section 8.
The paper ends with some concluding remarks in Section 9.
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n q0 E[R]
50 0.3738 1.4878
500 0.3757 1.4708
5000 0.3752 1.4687
model in [1] 0.4000 1.5152

Table 1: Simulation results for JIQ-Random with token withdrawals and exponential job sizes,
λ = 0.85 and r = n/m = 10 for n = 50, 500 and 5000 servers. E[R] is the mean response time
and q0 the probability that a dispatcher holds zero tokens. There is no convergence to the
model as n tends to infinity.

2. Inexactness of an existing large-scale analysis

In this section we first demonstrate that the model in [1] for the large-scale
system is inexact and identify the reason for this inexactness. In Table 1 we
present an arbitrary simulation experiment for JIQ-Random with an increas-
ing number of servers n and compare these results with the model in [1]. This
model depends on two assumptions: (1) there is exactly one copy of each idle
server in the I-queues and (2) there are only idle servers in the I-queues. As
these assumptions are valid for JIQ-Random with token withdrawals, we sim-
ulated the system with token withdrawals. The fact that the model in [1] is
not asymptotically exact for the system without token withdrawals was already
demonstrated in [9, see Table I], which is not surprising as assumption (2) does
not hold without withdrawals. Table 1 strongly suggests that the model in [1]
is not asymptotically exact even with token withdrawals. Nevertheless, we will
demonstrate that it may still be regarded as a good to excellent approximation.

To understand the cause of the inexactness, we look at Theorem 1 in [1].
Denote q̂1 as the probability that an I-queue contains at least one token in
equilibrium when the number of servers n tends to infinity. Theorem 1 in [1]
then states that for JIQ-Random, we have

q̂1
1− q̂1

= (1− λ)r,

and for JIQ-SQ(d), we have∑
i≥1

q̂
(di−1)/(d−1)
1 = (1− λ)r.

We explain below that the left-hand sides are the mean I-queue lengths for JIQ-
Random and JIQ-SQ(d) without token withdrawals, while the right-hand side is
the mean queue length of an I-queue in a system with token withdrawals. Hence
Theorem 1 mixes two different JIQ systems and the analysis in [1] is therefore
asymptotically inexact for both systems.

The left-hand sides of the above equations can be understood by looking
at the mean field models in [9]. More specifically, looking at the ODEs in
[9, Section IV.C] implies that the distribution of the number of tokens at an
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Figure 1: Impact of λ on mean response time ratio of the Lu approcimation and the mean
field model for JIQ-SQ(d) with withdrawals presented in Section 4 for d = 1 and 2 and
SCV = 1, 3 and 10.

I-queue for JIQ-Random is geometric with parameter q̂1 = s1/λ, while for
JIQ-SQ(d) the probability that an I-queue contains at least i tokens equals

q̂
(di−1)/(d−1)
1 = (s1/λ)

(di−1)/(d−1). Therefore the average number of tokens in

an I-queue is indeed given by q̂1
1−q̂1

for JIQ-Random and
∑

i≥1 q̂
(di−1)/(d−1)
1 for

JIQ-SQ(d). The analysis in [9] is for the case without token withdrawals. Thus
the expressions on the left-hand side in Theorem 1 in [1] are the mean I-queue
lengths for the system without withdrawals. In such case the total number of
tokens residing in the I-queues does not match the number of idle servers.

However the right-hand side equals (1− λ)r for both equations in Theorem
1 in [1] and this is the mean queue length of an I-queue in a system with token
withdrawals. Indeed, when servers withdraw their token, the total number of
tokens residing in the I-queues perfectly matches the number of idle servers. As
(1 − λ) should be the limiting fraction of idle servers and there are r times as
many servers as dispatchers, the I-queue of a dispatcher contains on average
(1− λ)r tokens.

In Figure 1 we present the ratio of the mean response time computed by
the model in [1] with the mean response time of the mean field model presented
in Section 4. Simulation experiments presented in Section 5 suggest that this
model yields asymptotically exact results for JIQ-SQ(d) with token withdrawals.
The jobs sizes with SCV equal to one correspond to exponential job sizes, the
cases with SCV > 1 to an order 2 hyperexponential distribution with mean 1,
SCV = 3 or 10 and f = 1/2, where the latter means that we have balanced
means for both phases, that is, p1/µ1 = p2/µ2. Figure 1 confirms the asymptotic
inexactness of the Lu model for r = 10. We also performed the same experiment
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Figure 2: Impact of λ on mean response time ratio of the Lu approcimation and the mean field
model for JIQ-SQ(d) without withdrawals and FCFS token selection presented in Section
6 for d = 1 and 2 and SCV = 1, 3 and 10.

for other r values and noted that the errors tend to decrease with increasing r.
The figure also clearly shows that the accuracy improves as d increases from 1 to
2. Additional experiments (not presented) showed that the accuracy improved
even further when considering larger d values. The figure does suggest that the
Lu approximation yields asymptotically exact results when λ tends to one for
JIQ-SQ(d) with withdrawals.

In Figure 2 we perform a similar experiment as in Figure 1, but now with
JIQ-SQ(d) without withdrawals and FCFS token selection. The errors are all
well below 10%, but the approximation is not exact for JIQ-SQ(d) without
replacement when λ tends to one. It is fair to state that while the model in
[1] is not asymptotically exact for JIQ-SQ(d) with or without withdrawals, its
accuracy is outstanding for d > 1 whenever λ is not too close to one (and r is
sufficiently large).

3. Mean Field Model for JIQ-SQ(d) with withdrawals and exponen-
tial job sizes

In this section we present a new mean field model for JIQ-SQ(d) with servers
that withdraw their token when a job is assigned by another dispatcher. We
consider a system with m dispatchers, that each have an I-queue to hold tokens,
and n servers. As before let r = n/m. Poisson arrivals occur at rate λn and are
spread uniformly over the m dispatchers. For now the job size is exponentially
distributed with mean 1.

Let Qi(t) be the number of I-queues with exactly i tokens at time t, Si(t) the
number of servers with i jobs at time t. Hence,

∑
iQi(t) = m and

∑
i Si(t) = n.
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Let Q̂k(t) =
∑

i≥kQi(t) be the number of I-queues holding k or more tokens.

Define the fractions qi(t) = Qi(t)/m, q̂i(t) = Q̂i(t)/m and si(t) = Si(t)/n. Let
∆Q̂i(t) denote the expected change in Q̂i(t) over a small interval dt, that is,
∆Q̂i(t) = E[Q̂i(t+ dt)− Q̂i(t)]. As explained below, we have for i > 0

∆Q̂i(t) = −(λn)dt

(
Q̂i(t)

m
− Q̂i+1(t))

m

)
+ S1(t)dt

(
Q̂i−1(t)

d

md
− Q̂i(t)

d

md

)

− (λn)dtq0(t)i

(
Q̂i(t)

n
− Q̂i+1(t)

n

)
.

The first term is due to arrivals were (Q̂i(t)−Q̂i+1(t))/m is the probability that
a random arrival occurs at a dispatcher with exactly i tokens in its I-queue. The
second term is due to service completions as jobs are assumed to be exponential
in size with mean one and a server that becomes idle uses the power-of-d-choices
rule to select a dispatcher. The last term is due to servers withdrawing tokens
and can be understood as follows. First note that i(Q̂i(t)− Q̂i+1(t)) is the total
number of tokens residing at the I-queues that hold exactly i tokens. Therefore
i(Q̂i(t) − Q̂i+1(t))/n is the probability that an arrival at an empty I-queue is
assigned to a server that has a token at an I-queue with length i.

Dividing left and right by mdt yields

dq̂i(t)

dt
= −λr(q̂i(t)− q̂i+1(t)) + s1(t)r(q̂i−1(t)

d − q̂i(t)
d)

− λ(1− q̂1(t))i(q̂i(t)− q̂i+1(t)), (1)

where q̂0(t) = 1 for all t.
We now proceed with the servers for i > 0:

∆Si(t) = (λn)dtq0(t)

(
Si−1(t)

n
− Si(t))

n

)
− dt (Si(t)− Si+1(t))

+ 1[i = 1](λn)(1− q0(t))dt.

The first term corresponds to arrivals in empty I-queues, the second to service
completions and the last term to arrivals in a non-empty I-queue. Dividing by
ndt yields

dsi(t)

dt
= λq0(t)(si−1(t)− si(t))− (si(t)− si+1(t)) + 1[i = 1]λ(1− q0(t)). (2)

Similarly, we find

ds0(t)

dt
= −λq0(t)s0(t) + s1(t)− λ(1− q0(t)). (3)

Notice that all the above equations apply irrespective of the manner in which
a dispatcher selects a token from its I-queue, which is in contrast to JIQ-SQ(d)
without token withdrawals [9].
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Theorem 1. Let (s, q̂) be a fixed point of (1)-(3) such that
∑

i≥0 si = 1,∑
i≥0 isi <∞, q̂0 = 1 and

∑
i≥0 q̂i <∞, then λ =

∑
i≥1 si,

s1 = λ(1− λq0), (4)

sk = s1(λq0)
k−1, (5)

for k > 1, with q0 = 1− q̂1. Further,∑
i≥1

q̂i = (1− λ)r. (6)

Proof. The equality λ =
∑

i≥1 si follows from (2) as

0 =
∑
i≥1

i
dsi(t)

dt
= λq0(t)

∑
i≥0

si(t)−
∑
i≥1

si(t) + λ(1− q0(t)).

Using (2) and the fact that
∑

i≥k
dsi(t)
dt = 0 yields

sk = sk−1λq0,

for k ≥ 2, which implies (5). The expression for s1 in (4) is now immediate by
combining λ =

∑
i≥1 si with (5). To prove (6) we note that (1) implies

0 =
∑
i≥1

dq̂i(t)

dt
= −q̂1(t)λr + s1(t)r − λ(1− q̂1(t))

∑
i≥1

q̂i(t).

When combined with (4), we find that
∑

i≥1 q̂i = (1− λ)r.

Remarks: 1) Looking at the expression for sk in (5), we see that the queue
length distribution is identical to an M/M/1 queue with arrival rate λq0 when
the server is busy and with an increased arrival rate when the queue is idle
(such that the probability that the queue is idle is 1− λ instead of 1− λq0). As
increasing the arrival rate in an idle queue does not impact the response time
distribution, jobs have the same response time distribution as in an ordinary
M/M/1 queue with arrival rate λq0. Therefore the response time is exponential
with parameter 1 − λq0 (as the service rate equals 1). We indicate how to
compute q0 further on.

2) The equality λ =
∑

i≥1 si is natural as λ should be the probability that
a server is busy. The equality in (6) is also expected as every idle server has
exactly one token at one of the dispatchers and the fraction of idle servers is
(1 − λ) while there are r times as many servers as dispatchers. Therefore the
mean number of tokens per dispatcher should be (1− λ)r.

Theorem 2. Let (s, q̂) be a fixed point of (1)-(3) such that
∑

i≥0 si = 1,∑
i≥0 isi <∞, q̂0 = 1 and

∑
i≥0 q̂i <∞, then

q̂k+1 = q̂k − (q̂dk−1 − q̂dk)
1− λq0

1 + kq0
r

, (7)

for k ≥ 1 with q0 = 1− q̂1.
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Proof. For any fixed point we have
∑

i≥k
dq̂i(t)
dt = 0, which implies that

0 = −q̂kλr + s1rq̂
d
k−1 − λ(1− q̂1)

(
kq̂k +

∑
s>k

q̂s

)
,

for k ≥ 1. We can rewrite this as

q̂k =
s1rq̂

d
k−1 − λq0

(
(1− λ)r −

∑k−1
s=1 q̂s

)
λr + λq0(k − 1)

, (8)

due to (6). Although this expression can be used to compute q̂k, we derive a
more elegant recursion that is equivalent. We first note that by (8)

q̂k(λr + λq0k) =

(
s1rq̂

d
k−1 − λq0

(
(1− λ)r −

k−1∑
s=1

q̂s

))(
1 +

q0
r + q0(k − 1)

)
,

and

q̂k+1(λr + λq0k) = s1rq̂
d
k − λq0

(
(1− λ)r −

k∑
s=1

q̂s

)
.

Hence,

(q̂k − q̂k+1)(λr + λq0k) = s1r(q̂
d
k−1 − q̂dk)− λq0q̂k+(

s1rq̂
d
k−1 − λq0

(
(1− λ)r −

k−1∑
s=1

q̂s

))
q0

r + q0(k − 1)

= s1r(q̂
d
k−1 − q̂dk)− λq0q̂k + λq0q̂k.

When combined with (4) this proves (7).

Remarks: 1) When d = 1, (7) implies that

qk = q0

k∏
ℓ=1

1− λq0

1 + ℓq0
r

,

where qk = q̂k − q̂k+1. Further, as
∑

i≥0 qi = q̂0 = 1 this shows that q0 is a
solution of

q0
∑
k≥0

k∏
ℓ=1

1− λq0

1 + ℓq0
r

= 1,

which coincides with Theorem 2 in [6], where it is shown that q0 is the unique
solution of this equation on (0, 1).
2) Given q0 we can compute q̂k for k ≥ 2 using (7) (or (8)) as q̂1 = 1− q0.

Theorem 3. There exists a unique fixed point (s, q̂) of (1)-(3) such that
∑

i≥0 si =
1,
∑

i≥0 isi <∞, q̂0 = 1 and
∑

i≥0 q̂i <∞.
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Figure 3: Illustration of non-monotone behavior for λ = 0.98, r = 5 and d = 20 (top), ξk and
ψk for λ = 0.7, r = 5, and d = 3 (bottom).

Proof. Given Theorems 1 and 2, it suffices to show that there is a unique q̂1 ∈
(0, 1) such that (6) holds, that is, such that

∑
i≥1 q̂i = (1 − λ)r. It is clear

from (7) that q̂k is a continuous function of q̂1 (but not necessarily monotone,
see Figure 3(left) for an example) and when q̂1 = 1, then q̂k = 1 for any
k. Therefore for any k > (1 − λ)r we have for q̂1 sufficiently close to 1 that∑k

s=1 q̂s > (1− λ)r. Further q̂k+1 ≤ q̂k, meaning q̂k ≤ 0 for any k when q̂1 = 0.
Define ξk = 1 for k = 1, . . . , ⌊(1− λ)r⌋ as the smallest value of q̂1 ∈ (0, 1) such

that
∑k

s=1 q̂s = (1− λ)r for k > ⌊(1− λ)r⌋.
We now argue that the following two statements hold:

1. q̂k > 0 when
∑k−1

s=1 q̂s ≥ (1− λ)r,
2. q̂k has a positive derivative on (0, ξk−1].

The first statement is immediate from (8) as both s1rq̂
d
k−1 and λr+ λq0(k − 1)

are positive for any q̂1 ∈ (0, 1). Therefore
∑k

s=1 q̂s > (1 − λ)r when q̂1 equals
ξk−1, which shows that ξk ≤ ξk−1. In other words, ξk ∈ (0, 1] is non-increasing
in k as illustrated in Figure 3(right).

The second statement follows by induction on k as follows. The statement
clearly holds for k = 1. For k > 1, we have by induction that that q̂s is increasing
on (0, ξs−1) for s < k, meaning

∑k−1
s=1 q̂s is increasing on (0, ξk−1) as ξs is non-

increasing in s. By definition of ξk−1, we also have that
∑k−1

s=1 q̂s < (1 − λ)r
on (0, ξk−1). By (8) we now see that q̂k is increasing on (0, ξk−1) as s1rq̂

d
k−1 is

increasing and positive on (0, ξk−1), λr+q0(k−1)/r is decreasing and positive on

(0, ξk−1) and −λq0((1− λ)r −
∑k−1

s=1 q̂s) is negative and increasing on (0, ξk−1).

We proceed by using induction on k to argue that
∑k

s=1 q̂s > (1− λ)r when
q̂1 ∈ (ξk, 1). This trivially holds for k = 1. For k > 1, we have by induction

that
∑k−1

s=1 q̂s exceeds (1 − λ)r on (ξk−1, 1). By (8), we therefore have that q̂k
is positive on (ξk−1, 1), so

∑k
s=1 q̂s >

∑k−1
s=1 q̂s > (1 − λ)r. For q̂1 ∈ (ξk, ξk−1),

we know that q̂k is increasing and
∑k

s=1 q̂s = (1 − λ)r for q̂1 = ξk. This shows
that for k > ⌊(1 − λ)r⌋, there is a unique solution q̂1 = ξk on (0, 1) such that∑k−1

s=1 q̂s = (1− λ)r.
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The unique value of q0 such that
∑

i≥1 q̂i = (1 − λ)r is then found as 1 −
limk→∞ ξk as q0 = 1 − q̂1 and the limit of a decreasing sequence of values in
(0, 1) exists.

Remarks: 1) We see from the proof of Theorem 3 that for any k > 1
there exists a unique ψk such that q̂k = 0 if q̂1 = ψk. Further ψk ≥ ψk−1

as q̂k ≤ q̂k−1 (see Figure 3(right) for an illustration). This implies that if
q̂1 < limk→∞ ξk, then limk→∞ q̂k < 0, while limk→∞ q̂k > 0 if q̂1 > limk→∞ ξk.
Hence, limk→∞ ξk = limk→∞ ψk, where ξk is a decreasing sequence and ψk an
increasing one.

2) Looking at the proof of Theorem 3 and the previous remark, we have the
following simple algorithm to compute q0 = 1− q̂1. We start with k = ⌈(1−λ)r⌉
and determine ξk and ψk by performing a bisection algorithm on (0, 1) using
(7). Next we repeatedly increase k by one and determine ξk and ψk using a
bisection algorithm on (ψk−1, ξk−1) until ξk − ψk < 10−15 (see Algorithm 1).
Once q0 is found, we can compute the queue length distributions s and q̂ using
(4), (5) and (7). As noted before, the response time distribution of a job is
exponential with parameter 1− λq0.

Input: λ, d, r
Output: q0

1 k := ⌈(1− λ)r⌉;
2 Compute ξk using bisection on (0, 1);
3 Compute ψk using bisection on (0, ξk);
4 while ξk − ψk > 10−15 do
5 k := k + 1;
6 Compute ξk using bisection on (ψk−1, ξk−1);
7 Compute ψk using bisection on (ψk−1, ξk);

8 end
9 q0 := 1− ξk;

Algorithm 1: Computation of q0 for JIQ-SQ(d).

4. Mean Field Model for JIQ-SQ(d) with withdrawals and phase-type
job sizes

We now generalize the previous mean field model to phase-type job sizes
characterized by a 1 × b vector α and a b × b matrix T such that P [X >
t] = α exp(Tt)e, where X is the job size and e a vector of ones. For further
use denote t∗ = (−T )e. Phase-type (PH) distributions are distributions with a
modulating finite state Markov chain (see also [18]). Any general positive-valued
distribution can be approximated arbitrarily close with a PH distribution and
there are various fitting tools available for PH distributions (see e.g. [19]). The
main objective of this section is to show the following two properties:

1) The distribution of the number of tokens in an I-queue (given by q̂) does
not depend on the job size distribution. Hence, we have insensitivity in the
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mean field model for the manner in which the tokens are distributed over the
dispatchers. This also implies that the probability q0 that an I-queue is empty
is insensitive to the job size distribution.

2) The response time distribution of a job under JIQ-SQ(d) with phase-type
job size distribution X is identical to that of a job arriving in an M/G/1 queue
with arrival rate λq0 and job size distribution X. Note that this was already
shown for exponential job sizes in the previous section.

Let Si,j(t) be the number of servers in service phase j with i jobs at time t and

S0(t) be the number of idle servers at time t. Denote S⃗i(t) = (Si,1(t), . . . , Si,b(t)),

si,j(t) = Si,j(t)/n and s⃗i(t) = S⃗i(t)/n. If we look at the evolution of the number
of tokens in an I-queue we see that it is identical to the case of exponential job
sizes, except for the term that corresponds to the service completions. In the
exponential case this term was given by

S1(t)dt

(
Q̂i−1(t)

d

md
− Q̂i(t)

d

md

)
,

while in case of phase-type job sizes this becomes∑
j

S1,j(t)t
∗
j

 dt

(
Q̂i−1(t)

d

md
− Q̂i(t)

d

md

)
,

where the first sum can be written in matrix notation as s⃗1(t)t
∗. This implies

that (1) becomes

dq̂i(t)

dt
= −λr(q̂i(t)− q̂i+1(t)) + (s⃗1(t)t

∗)r(q̂i−1(t)
d − q̂i(t)

d)

− λ(1− q̂1(t))i(q̂i(t)− q̂i+1(t)), (9)

which is identical to (1) if we replace s1(t) by s⃗1(t)t
∗.

We now proceed with the expected change in Si,j(t):

∆Si,j(t) = (λn)dtq0(t)

(
1[i > 1]

Si−1,j(t)

n
+ 1[i = 1]

S0(t)

n
αj −

Si,j(t))

n

)
− dtSi,j(t)t

∗
j + dt

∑
k

Si+1,k(t)t
∗
kαj − dtSi,j(t)

∑
k ̸=j

Tj,k + dt
∑
k ̸=j

Si,k(t)Tk,j

+ 1[i = 1](λn)(1− q0(t))αjdt.

The first and last term are very similar to (2), the other terms correspond to
service completions and phase changes. As t∗ = −Te, this can be written in
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matrix form as

∆S⃗i(t) = (λn)dtq0(t)

(
1[i > 1]

Si−1,j(t)

n
+ 1[i = 1]

S0(t)

n
α− S⃗i(t))

n

)
− dtS⃗i(t)diag(t

∗) + dtS⃗i+1(t)t
∗α

+ dtS⃗i(t)(diag(t
∗) + diag(T )) + dt(S⃗i(t)T

− S⃗i(t)diag(T )) + 1[i = 1](λn)(1− q0(t))αdt,

where diag(v) of a vector v is a diagonal matrix with v on its main diagonal
and diag(A) of a matrix A is the diagonal matrix obtained by setting all off
diagonal entries of A to zero. After simplifying this implies that

ds⃗i(t)

dt
= λq0(t)(1[i > 1]s⃗i−1(t) + 1[i = 1]s0(t)α− s⃗i(t))

+ s⃗i+1(t)t
∗α+ s⃗i(t)T + 1[i = 1]λ(1− q0(t))α. (10)

Similarly, we find

ds0(t)

dt
= −λq0(t)s0(t) + s⃗1(t)t

∗ − λ(1− q0(t)). (11)

Theorem 4. Let (s, q̂) be a fixed point of (9-11) such that
∑

i≥0 s⃗ie = 1,∑
i≥0 is⃗ie <∞, q̂0 = 1 and

∑
i≥1 q̂i <∞ then λ =

∑
i≥1 s⃗ie,

s⃗1 = (1− λq0)αR/q0, (12)

s⃗k = s⃗1R
k−1, (13)

for k > 1, with q0 = 1 − q̂1 and R = λq0(λq0I − λq0eα − T )−1. Further,
s⃗1t

∗ = λ(1− λq0).

Proof. By demanding that
∑

i≥1
ds⃗i(t)
dt + s0(t)α = 0 and using the definition of

t∗, one finds that ∑
i≥1

s⃗i(T + t∗α) = 0.

Hence,
∑

i≥1 s⃗i is a multiple of the unique invariant vector β for which β(T +

t∗α) = 0 and βe = 1 holds. By considering the equality
∑

i≥1 i
ds⃗i(t)
dt e = 0, one

also finds that ∑
i≥1

s⃗it
∗ = λ.

As βt∗ = 1, this allows us to conclude that
∑

i≥1 s⃗i = λβ and thus that s0 =
1− λ. We may therefore write

λq0s0 + λ(1− q0) = λ
1− λq0
1− λ

s0,

14



which means that the fixed point equations associated with (10) and (11) can
be stated as

0 = 1[i > 1]λq0s⃗i−1 − λq0s⃗i + 1[i = 1]λ
1− λq0
1− λ

s0α+ s⃗i+1t
∗α+ s⃗iT,

and

0 = −λ1− λq0
1− λ

s0 + s⃗1t
∗.

These fixed point equations are identical to the balance equations of an M/PH/1
queue with arrival rate λ0 = λ(1 − λq0)/(1 − λ) when the queue is empty and
arrival rate λq0 otherwise. Therefore (12) and (13) hold due to Theorem 2 in
[20]. To verify that s⃗1t

∗ = λ(1− λq0), we note that

(λq0I − λq0eα− T )e = t∗,

which shows that Rt∗ = λq0e and therefore by (12) we find s⃗1t
∗ = λ(1 − λq0)

as required.

Theorem 5. There exists a unique fixed point (s⃗, q̂) of (9)-(11) such that∑
i≥0 si = 1,

∑
i≥0 isi <∞, q̂0 = 1 and

∑
i≥0 q̂i <∞. Further, q̂ is insensitive

to the phase-type distribution (α, T ).

Proof. By Theorem 4 we have that s⃗1t = λ(1 − q0λ), therefore the fixed point
equations associated with (1) and (9) are identical and have a unique solution
q̂ due to Theorem 3. As q0 = 1− q̂1, the s⃗ part of the fixed point (s⃗, q̂) is fully
determined by (12) and (13).

Remarks: 1) The unique fixed point (s⃗, q̂) can be computed by first com-
puting q0 in the same manner as in the exponential case. The vectors s⃗k, for
k ≥ 1 are then computed using (12) and (13).

2) The fixed point (s⃗, q̂) is such that the distribution s⃗ at the servers is
identical to an M/PH/1 queue with arrival rate λq0 and an increased arrival
rate λ0 when the queue is empty (such that the probability to have an empty
queue is 1 − λ). As such the response time distribution is the same as in an
M/G/1-queue with arrival rate λq0, therefore the mean response time E[R] is
given by the Pollaczek–Khinchin mean value formula:

E[R] =
λq0E[X2]

2(1− λq0)
+ 1,

as the mean job size E[X] = 1.

5. Validation of the JIQ-SQ(d) with withdrawals mean field model

In this section we present simulation results to verify the accuracy of the
mean field models presented in Sections 3 and 4. We performed a large number
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settings Job sizes n q0 E[R] rel.err. %

λ = 0.7
r = 5
d = 3

Exponential 50 0.1682 1.1457 0.0341
500 0.1482 1.1173 0.0030
5000 0.1463 1.1141 0.0003
∞ 0.1460 1.1138

HypExp 50 0.1712 1.8476 0.1364
SCV = 10 500 0.1477 1.6428 0.0104
f = 1/2 5000 0.1458 1.6271 0.0007

∞ 0.1460 1.6259

λ = 0.85
r = 10
d = 1

Exponential 50 0.3738 1.4878 0.0132
500 0.3757 1.4708 0.0017
5000 0.3752 1.4687 0.0002
∞ 0.3753 1.4684

HypExp 50 0.3790 3.8480 0.0707
SCV = 10 500 0.3765 3.6012 0.0070
f = 1/10 5000 0.3757 3.5825 0.0018

∞ 0.3753 3.5761

Table 2: JIQ-SQ(d) with replacement: approximation error of the simulated q0 and E[R] and
relative error of E[R].

of simulation experiments and present some arbitrarily selected cases in Table
2. We performed experiments with increasing values for the number of servers
n = 50, 500 and 5000. The number of dispatchers used equals m = n/r. The
system was simulated for a length of 107/m time units (where the mean job
size equals one time unit). A warm-up period of 33% was used and the results
were averaged over several runs. Apart from the simulation results, Table 2 also
contains the value of q0 determined by Algorithm 1 and the mean response time
E[R] of the corresponding M/PH/1 queue with load λq0. They are presented
on the line with n = ∞.

We considered both exponential job sizes and hyper-exponential job sizes
with mean 1. In the latter case, we set the parameters p, µ1, µ2, with α =
(p, 1−p) and T = diag(−µ1,−µ2), such that the squared coefficient of variation
(SCV) equals 10 and f = p/µ1. Table 2 clearly suggests that the mean field
models of Sections 3 and 4 are asymptotically exact as the simulation results
appear to converge towards the performance predicted by the unique fixed point
of the corresponding mean field model.

Having validated the mean field models, it seems fair to state that for JIQ-
SQ(d) with token withdrawals the response time of a job approaches the response
time in an ordinary M/PH/1 queue with load λq0 as the number of servers n
becomes large (with r = n/m fixed). Hence, the system behavior on the server
side becomes very simple. Unfortunately determining q0 is much harder due to
the withdrawal of tokens. If we consider JIQ-SQ(d) without token withdrawals,
then [9] suggests that the dynamics at the dispatcher side become very simple,
e.g., for d = 1 the number of tokens has a geometric distribution. However,
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Figure 4: Validation of the queue length distribution at server side for λ = 0.8, d = 2, r = 5
and hyper-exponential job sizes with SCV=10 and f = 1/2.

without token withdrawals the server dynamics are much more involved as the
job arrival rates become queue length dependent. The mean field model in [1]
can be regarded as combining the simple server side dynamics of JIQ-SQ(d) with
token withdrawals with the simple dispatcher dynamics of JIQ-SQ(d) without
token withdrawals. Remarkably, this combination yields a good to excellent
approximation as shown in Figures 1 and 2.

We also performed several simulation experiments that demonstrated that
our mean field models are also very accurate for the queue length distribution
at the servers (and not just the mean), only one such example is presented in
Figure 4.

6. Mean Field Model for JIQ-SQ(d) without withdrawals and phase-
type job sizes

In this section we extend and combine some of the mean field models in [9]
that considered exponential job sizes to a setting with phase-type distributed
job sizes. Let q̂i(t) be the fraction of dispatchers with i or more tokens at time
t, for i ≥ 1, s0,j the fraction of idle servers with a token in position j at time
t for j > 0 and let entry k of the vector s⃗i,j(t), for i > 0 and j ≥ 0, be the
fraction of servers with i jobs, service phase k and a token in position j where
j = 0 means that the server does not have a token at a dispatcher.

6.1. Drift equations with FCFS token selection

This model focuses on JIQ-SQ(d) without token withdrawals and considers
FCFS token selection at the dispatcher. It generalizes the model in [9, Section
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IV.C] to phase-type distributed job sizes. On the side of the dispatcher we have

dq̂i(t)

dt
= −λr(q̂i(t)− q̂i+1(t)) + s⃗1,0(t)t

∗r(q̂i−1(t)
d − q̂i(t)

d). (14)

The first term corresponds to arrivals that remove a token from a dispatcher
with exactly i tokens, while the second term corresponds to servers becoming
idle that place a token at a dispatcher with exactly i− 1 tokens. On the server
side we find for i > 1 and j ≥ 1

ds⃗i,j(t)

dt
= s⃗i,j(t)T + s⃗i+1,j(t)t

∗α+ λq0(t)(s⃗i−1,j(t)− s⃗i,j(t))

+ λr(s⃗i,j+1(t)− s⃗i,j(t)). (15)

Here the first term captures both phase changes and service completions in a
server with i jobs and a token in position j. The second corresponds to service
completions in servers with i+1 jobs and a token in position j. The next term
corresponds to jobs that are dispatched to a server because they arrived at a
dispatcher without tokens and the final term is due to arrivals in the dispatcher
holding the token of a server with i jobs. For i = 1 and j ≥ 1 we get the same
terms except for the third term where a new phase must be selected when a job
is dispatched to an idle server:

ds⃗1,j(t)

dt
= s⃗1,j(t)T + s⃗2,j(t)t

∗α+ λq0(t)(s0,j(t)α− s⃗1,j(t))

+ λr(s⃗1,j+1(t)− s⃗1,j(t)). (16)

The drift for i > 1 and j = 0 is similar to the drift with j > 0, but now the
fourth term changes as the server has no token when j = 0 and a job is assigned
if the token is in position 1:

ds⃗i,0(t)

dt
= s⃗i,0(t)T + s⃗i+1,0(t)t

∗α+ λq0(t)(s⃗i−1,0(t)− s⃗i,0(t)) + λrs⃗i−1,1(t).

(17)

Finally, for i = 1 the last two terms change as idle servers always have a token
placed at some dispatcher and a new phase must be selected if a job is assigned
to an idle server:

ds⃗1,0(t)

dt
= s⃗1,0(t)T + s⃗2,0(t)t

∗α− λq0(t)s⃗1,0(t) + λrs0,1(t)α. (18)

For the servers with no token at a dispatcher the drift for j ≥ 1 is given by

ds0,j(t)

dt
= s⃗1,j(t)t

∗ − λq0(t)s0,j(t) + λr(s0,j+1(t)− s0,j(t))

+ s⃗1,0t
∗(q̂j−1(t)

d − q̂j(t)
d). (19)
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6.2. Drift equations with LCFS token selection

We now present a model for JIQ-SQ(d) without token withdrawals and LCFS
token selection. The model generalizes the model in [9, Section IV.B] by allowing
d > 1 and by considering phase-type distributed job sizes. We discuss the
differences between the drift equations in Section 6.1 when the FCFS token
selection strategy is replaced by LCFS. In this case the position j is such that
new tokens are inserted in position 1, while all other tokens move back one
position. The drift equations for q̂i(t) are not affected by the token selection
strategy. The drift for s⃗i,j(t) also remains the same, except that an additional
term must be added because the position of a token can now increase by one
when some other server places a token at the same server. This implies that the
following term must be added to the drift of s⃗i,j(t) in (15):

rs⃗1,0(t)t
∗(1[j > 1]q̂j−1(t)

d−1s⃗i,j−1(t)− q̂j(t)
d−1s⃗i,j(t)). (20)

The drift for s⃗1,j(t) in (16) requires the same change as we need to add

rs⃗1,0(t)t
∗(1[j > 1]q̂j−1(t)

d−1s⃗1,j−1(t)− q̂j(t)
d−1s⃗1,j(t)),

due to possible new tokens that are placed by servers becoming idle. Equation
(17) and (18) do not change as it concerns servers without a token. Finally the
drift of s0,j(t) given in (19) changes in the following ways. First, when j > 1
the last term must be removed as all new tokens are placed in position 1. This
implies that for j = 1 we must add the term

s⃗1,0(t)t
∗

instead. Second a token can also be pushed backward by a new token which
adds the term

rs⃗1,0(t)t
∗(1[j > 1]q̂j−1(t)

d−1s0,j−1(t)− q̂j(t)
d−1s0,j(t)).

6.3. The fixed point with FCFS token selection

In this section we explain how to quickly compute the fixed point of the drift
equations given by (14)–(19) when FCFS token selection is used. Summing (14)
for i from j ≥ 1 to ∞ implies that for any fixed point we have

q̂j =
s⃗1t

∗

λ
q̂dj−1,

which implies that q̂j = (1 − q0)
∑j−1

i=0 di

with q0 = 1 − s⃗1t
∗/λ. This expression

simplifies to q̂j = (1− q0)
j for d = 1 and q̂j = (1− q0)

(dj−1)/(d−1) for d > 1.
Assume for now that we know q0. If we focus on the fixed point equations

for the variables s⃗i,j(t) for i ≥ 1, s0,j(t) and s⃗i,0(t) with q0 and q̂j fixed, we get
a system of linear equations. This allows us to construct a Quasi-Birth-Death
(QBD) Markov chain [18] with state space {(i, j)|i ≥ 1, j ≥ 0} ∪ {(0, j)|j ≥ 1}
such that its stationary vector corresponds to the solution of this linear system
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of equations. As before state (i, j) corresponds to a server with i jobs, while
its token is located in position j at some dispatcher for j > 0. State (i, 0)
correspond to a server with i jobs and no outstanding token. The rate matrix
of this chain has the following form:

Q(FCFS) =


B0 B1

C A0 A1

A−1 A0 A1

. . .
. . .

. . .

 , (21)

where the first block row corresponds to the states with i = 0, the second to
the states with i = 1 and so on. To determine the steady state numerically, we
truncate the value of j at some value B such that the matrix B0 has size B and
A0 has size B + 1. An appropriate value of B can be selected in advance as
it suffices to pick B such that q̂B < ϵ for ϵ sufficiently small. In the numerical
experiments we set ϵ = 10−20.

The number of jobs in a server can increase in two ways. Either because a
job is assigned by an empty dispatcher (at rate λq0) or because the token of the
server is in position one and a job arrives in that server (at rate λr). As a result
we have

A1 = (λq0IB+1 + λre2e
∗
1)⊗ Im,

where ej and e
∗
k are the j-th column and k-th row of the unity matrix of the ap-

propriate dimension, respectively. The e2e
∗
1 indicates that the token is initially

in position one and is removed after it is used. The Im matrix is a size m unity
matrix, where m is the number of service phases, and indicates that the service
phase does not change. The matrix A−1 corresponds to a job completion, in
which case a new job enters service and the token remains in the same position.
Hence,

A−1 = IB+1 ⊗ t∗α,

with t∗ = (−T )e. The state (i, j) with j > 1 also changes when a token moves
a position forward (at rate λr), which decreases j by one. It can also change
due to a change in the server phase. We therefore obtain

A0 = λr

[
02m,m 02m,(B−1)m 02m,m

0(B−1)m,m I(B−1)m 0(B−1)m,m

]
+ IB+1 ⊗ T

+

[
−λq0Im 0m,Bm

0Bm,m −λ(r + q0)IBm

]
,

with 0k,ℓ a size k × ℓ matrix with all entries equal to zero. The 2m zero rows
in the first matrix are due to the requirement that j > 1 and the third matrix
simply guarantees that the row sums are equal to zero. The matrix B1 captures
idle servers that become busy. This can happen in two ways. A job can be
assigned because the token was in position one. In this case the token is removed
(meaning j becomes 0) or a job can be assigned by an dispatcher without tokens
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(at rate λq0):

B1 =

[
λr

0B−1,1
λq0IB

]
,

where the matrix IB indicates that the position does not change in the latter
event. The state of an idle server can also change when its token moves forward:

B0 = −λ(r + q0)IB + λr

[
01,B−1 0
IB−1 0B−1,1

]
.

Finally, the matrix C captures busy servers that become idle. When these
servers have a token, it simply remains in place, otherwise the server places a
token. Such a token is placed in position j with probability q̂dj−1 − q̂dj , hence

C =

[
1− q̂d1 q̂d1 − q̂d2 . . . q̂dB−1 − q̂dB

IB

]
⊗ t∗,

where entry j on the first row equals q̂dj−1 − q̂dj . Notice that this first row is

the only place in which the truncation of j has an effect and for q̂dB sufficiently
small, the first row of C is numerically a stochastic row vector.

The stationary vector π of a QBD Markov chain has a matrix geometric
form [18], which implies that for k ≥ 1

πk = π1R
k−1,

with R the smallest non-negative solution to A1 + RA0 + R2A−1 = 0 and πk
contains the steady state probabilities belonging to the states with i = k jobs
in the server. For the two boundary vectors π0 and π1 we have

[π0 π1]

[
B0 B1

C A0 +RA−1

]
= 0,

normalized such that [π0 π1(I −R)−1]e = 1.
The problem that remains is finding the value of q0. Looking at the above

Markov chain it is clear that increasing q0 increases the rate to add a job. As
a result the sum of the probabilities in the vector π0 decreases as q0 increases.
Now for any fixed point of our set of ODEs we must have that π0e = 1 − λ
(as this must be the probability that a random server is idle). Hence, we can
simply perform a bisection algorithm on [0, 1] to find the unique q0 where we
compute π0e of a QBD Markov chain during each iteration. Once the correct
q0 is found, the mean response time can be expressed as

π1
∑
k≥1

kRk−1e/λ = π1(I −R)−2e/λ,

due to the matrix geometric form and Little’s law.
This numerical approach is very effective for d > 1 as the probabilities q̂j

decrease doubly exponential in such case. This implies that we can use a small
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B value and compute a fixed point of the set of ODEs in a fraction of a second.
When d = 1 the values of q̂j only decrease exponentially, meaning larger values
of B are required. This is mostly the case when (1 − λ)r is large as the mean
number of tokens in a dispatcher exceeds this value for JIQ-SQ(d) without token
withdrawals. Hence, for d = 1 and high loads this approach is still fast (i.e., for
r = 10 and λ > 0.8), but a more efficient approach is still desirable when d = 1
and λ is smaller.

We therefore propose a second numerical approach that flips the order of
the variables (i, j), such that state (j, i) corresponds to a server with i jobs and
a token in position j, for j > 0, and no token when j = 0. The rate matrix of
this Markov chain has the following form:

Q̄(FCFS) =


B̄0 B̄1 B̄2 B̄3 . . .
C̄ Ā0

Ā−1 Ā0

. . .
. . .

 , (22)

as the position of a token cannot increase once it is placed. In this case we need
to truncate the range of i to some value B. A sensible choice is to first compute
the queue length distribution of a server for JIQ-SQ(d) with withdrawals and
select B such that the probability of exceeding B can be neglected (e.g., is below
10−15). Note that there are Bm rows that correspond to the first block row as
any server without a token cannot be idle, while there are Bm+ 1 rows for all
other block rows. The expression for the size Bm × Bm + 1 matrices B̄j , for
j > 0, is given by

B̄j =

[
t∗ 0m,Bm

0(B−1)m,1 0(B−1)m,Bm

]
(q̂dj−1 − q̂dj ),

as they correspond to placing a token. The matrix Ā−1 corresponds to the token
moving a position forward, meaning Ā−1 = λrIBm+1. The matrices Ā0 and B̄0

and C̄ are slightly more involved, but not hard to obtain.
Let π̄ be the invariant distribution of Q̄(FCFS). Due to the structure of the

rate matrix we have

π̄0

B̄0 +
∑
j≥1

B̄j((−Ā0)
−1Ā−1)

j−1(−Ā0)
−1C̄

 = 0, (23)

π̄k = π̄0

∑
j≥k

B̄j((−Ā0)
−1Ā−1)

j−k(−Ā0)
−1

 , (24)

as the matrix between brackets in (23) is the rate matrix of the Markov chain
censored to the first Bm states and the matrix between brackets in (24) holds
the mean time spend in the states with j = k in between two visits to a state
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with j = 0. This means that

∑
k≥1

π̄k = π̄0

∑
j≥1

B̄j

j−1∑
k=0

((−Ā0)
−1Ā−1)

k(−Ā0)
−1

 , (25)

normalized such that π̄0e+
∑

k≥1 π̄ke = 1. The probability that a server is idle
is given by the first entry of

∑
k≥1 π̄k and must equal 1− λ when q0 is properly

set. This can be used to perform a simple bisection algorithm on [0, 1] to find
q0.

6.4. The fixed point with LCFS token selection

Here we explain how the approach used to compute the fixed point for FCFS
token selection can be modified such that it can be used to compute a fixed point
for LCFS token selection. As explained in Section 6.2 the drift equations for q̂j
remain the same as in the FCFS setting. This allows us to use a QBD Markov
chain with a rate matrix that is identical to Q(FCFS), except that the matrices
A0, B0 and C are replaced by some matrices Ã0, B̃0 and C̃, respectively.

The matrix C is replaced by

C̃ =

[
e1
IB

]
⊗ t∗,

as a token is always placed in position one when LCFS token selection is used.
The matrices Ã0 and B̃0 can be written as A0 and B0 with an additional term,
respectively, because the position of a token can now also increase by one when
a new token is placed at the dispatcher holding the token. The rate at which
servers empty is given by s⃗1t

∗. As q0 = 1 − s⃗1t
∗/λ holds for any fixed point

(see Section 6.1), the rate s⃗1t
∗ can be written in terms of q0 as λ(1− q0). This

implies that the rate at which a token moves from position j to j + 1 can be
expressed as λ(1− q0)rq̂

d−1
j (see (20)). Hence,

B̃0 = B0 + λ(1− q0)r

−q̂
d−1
1 q̂d−1

1

−q̂d−1
2 q̂d−1

2

. . .
. . .

⊗ Im,

while

Ã0 = A0 + λ(1− q0)r


0 0

−q̂d−1
1 q̂d−1

1

−q̂d−1
2 q̂d−1

2

. . .
. . .

⊗ Im.

Apart from the changes to the matrices A0, B0 and C, the computation of
the fixed point proceeds in exactly the same manner as in the FCFS case. As in
the FCFS case this procedure is very fast for d > 1 and still efficient from d = 1
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and λ close to one (say λ > 0.8). For d = 1 and smaller λ we can also flip the
order of the states (i, j) as in the FCFS. However, contrary to the FCFS case,
the position of a token always starts in one and can increase by one. When
d = 1 the flipped Markov chain for the LCFS token selection is also a QBD
Markov chain with rate matrix

Q̄(LCFS) =


B̄0 B̄∗

1

C̄ Ā∗
0 Ā∗

1

Ā−1 Ā∗
0 Ā∗

1

. . .
. . .

. . .

 .
The matrices Ā−1, B̄0 and C̄ are the same as in the FCFS case. The matrix B̄∗

1

is given by

B̄∗
1 =

[
t∗ 0m,Bm

0(B−1)m,1 0(B−1)m,Bm,

]
as a token is placed in position one when a busy server becomes idle. Ā∗

1 =
λ(1− q0)rIBm+1 as λ(1− q0)r equals the rate at which a token is pushed back
by one position when d = 1. Finally, the matrix Ā∗

0 = Ā0 − Ā∗
1.

7. Validation

In this section we present some simulation results to validate the mean field
models presented in Section 6 for JIQ-SQ(d) without token withdrawals and
FCFS or LFCS token selection. The parameter setting were chosen arbitrarily
and are presented in Table 3. As in Table 2 we considered both exponential and
hyper-exponential job sizes. The parameters of the order 2 hyper-exponential
distribution are again fully determined by matching the mean (to one), the SCV
and f = p1/µ1. The results in Table 3 illustrates that the error of the mean field
model seems to decrease to zero as the number of servers n tends to infinity.

8. Performance comparison

Having developed mean field models for JIQ-SQ(d) with and without with-
drawals, we are now in a position where we can compare the performance of
both variants. We should first of all note that the variant with withdrawals re-
quires more work and this work is on the so-called critical path, as an idle server
just received a job from a different dispatcher than the one that is holding its
token. Hence, the main question is whether the additional effort to withdraw
tokens helps the performance.

In Figures 5 and 6 we present the ratio between the mean response time of
JIQ-SQ(d) with withdrawals and the mean response time of JIQ-SQ(d) without
withdrawals and FCFS token selection as a function of λ for various choices of r
and d. Figure 5 focuses on exponential job sizes, while Figure 6 considers more
variable hyper-exponential job sizes. Various conclusions can be drawn from
these figures:
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settings Job sizes n q0 E[R] rel.err. %

λ = 0.8
r = 10
d = 2
LCFS

Exponential 50 0.1310 1.1703 0.0319
500 0.1269 1.1366 0.0021
5000 0.1275 1.1339 -0.0002
∞ 0.1277 1.1341

HypExp 50 0.1330 2.0014 0.2090
SCV = 10 500 0.1291 1.6838 0.0171
f = 1/2 5000 0.1287 1.6558 0.0002

∞ 0.1290 1.6555

λ = 0.65
r = 5
d = 1
FCFS

Exponential 50 0.3070 1.3433 0.0244
500 0.3366 1.3743 0.0018
5000 0.3394 1.3765 0.0002
∞ 0.3398 1.3768

HypExp 50 0.3140 2.6660 0.0138
SCV = 10 500 0.3418 2.7025 0.0003
f = 1/10 5000 0.3450 2.7020 0.0005

∞ 0.3452 2.7033

Table 3: JIQ-SQ(d) without replacement: approximation error of the simulated q0 and E[R]
and relative error of E[R].

1. When the load is not too large, withdrawing tokens helps. The gain is
more pronounced when r is small, d = 1 and for larger SCV. This is due
to the fact that when the load is not too large, the likeliness of selecting
a dispatcher without tokens is small and each token is guaranteed to cor-
respond to an idle server when we withdraw tokens. We should however
note that when d > 1 and r is not too small, the gain is very limited.

2. When the load is high, it is better not to withdraw tokens. This makes
sense as the likeliness of selecting a dispatcher without tokens is high when
the load is high. Therefore it is better to assign the job to a server that
was known to be idle some time ago (when it placed its token), instead
of assigning the job at random (as a random server under high load may
contain many jobs).

3. When looking at the limit when λ approaches one, we see that the ratio of
the response time between JIQ-SQ(d) with and without token withdrawals
becomes independent of d. This can be understood by noting that when
the load approaches one, there are very few tokens at the dispatchers, so
even setting d = 1 implies that a dispatcher without tokens is selected
with high probability when a server becomes idle.

With the third remark in mind, one may wonder how much gain we can still
expect as λ tends to one compared to simple random assignment, as dispatchers
with tokens become scarce when the load is very high so most jobs are assigned
at random. Under random assignment, all servers behave as M/G/1-queues
with load λ (as the mean service time is set to one). The mean field model
for JIQ-SQ(d) with withdrawals suggested that the servers also behave as an
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Figure 5: Ratio between mean response time of JIQ-SQ(d) without and with withdrawals for
exponential job sizes as a function of the arrival rate λ for various choices of r = n/m and d.

M/G/1-queue, but with a load given by λq0. Now in the heavy traffic limit,
the probability of having two tokens at the same dispatcher should tend to
zero. As there are on average r(1 − λ) tokens residing at a single dispatcher,
the probability q0 should converge to 1 − r(1 − λ) as λ tends to one. This
suggests that the limit of the ratio between the mean response time of random
assignment and JIQ-SQ(d) with withdrawals is given by

lim
λ→1−

1 + λE[G2]/2(1− λ)

1 + λq0E[G2]/2(1− λq0)
= lim

λ→1−

(1− λq0)

q0(1− λ)

= lim
λ→1−

1− λ+ r(1− λ)λ

(1− λ)
= r + 1.

as q0 ≈ 1 − r(1 − λ) for λ close to one. In other words, in heavy traffic JIQ-
SQ(d) with token withdrawals is expected to perform r + 1 times as good as
random assignment even though nearly all jobs are assigned at random. This
is confirmed by Figure 7 which illustrates that the limiting ratio tends to r + 1
irrespective of the value of d or the job size distribution. The limiting ratio
between random assignment and JIQ-SQ(d) without token withdrawals is harder
to characterize as the comparison in Figure 6 implies that this ratio will exceed
r + 1 and will depend on the shape of the job size distribution.

We end this section by investigating the impact of the token selection method
for JIQ without token withdrawals. Recall that with token withdrawals, this
method has no impact as all tokens correspond to idle servers. In [9] some
numerical results were presented that suggest that LCFS token selection achieves
a slightly lower mean response time than FCFS. The paper also stated that
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Figure 6: Ratio between mean response time of JIQ-SQ(d) without and with withdrawals for
hyper-exponential job sizes with balanced means as a function of the arrival rate λ for r = 10
and various choices of SCV and d.

this can be expected as a token selected using LCFS is a more recent token
and therefore is more likely to correspond to an idle server. However, one
might also say that under LCFS some tokens may spend a long time at the
dispatcher, which reduces their odds to correspond to an idle server. So the
superior performance of LCFS token selection is not completely obvious.

In Figure 8 we plot the ratio of the mean response time of JIQ-SQ(d) with-
out withdrawals and LCFS token selection, divided by the mean response time
when the LCFS selection is replaced by FCFS selection and this for d = 1, 2,
SCV=1, 3, 10 and λ ranging from 0 to 1. We note that LCFS indeed outper-
forms FCFS token selection in all cases, but the gain is quite limited: less than
2.5% for d = 1 and below 1% for d = 2.

9. Conclusions

In this paper we indicated that the well-known model introduced in [1] is
not asymptotically exact for JIQ-SQ(d) with or without token withdrawals.
We introduced a number of performance models for JIQ-SQ(d) load balancing
with and without token withdrawals. Simulation experiments suggest that these
models provide asymptotically exact results.

For JIQ-SQ(d) with token withdrawals these models suggest that the re-
sponse time distribution of a job becomes identical to that in an M/PH/1 queue
with load λq0 in the large-scale limit. The value of q0 depends on λ, d and r, but
is independent of the job size distribution (with mean 1). The token selection
method used by the dispatcher does not impact the system performance.
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Figure 7: Ratio between mean response time of random assignment and JIQ-SQ(d) with
withdrawals for exponential job sizes as a function of the arrival rate λ for various choices of
r = n/m and d (left) and forfor hyper-exponential job sizes with balanced means for r = 10
and various choices of SCV and d (right).

For JIQ-SQ(d) without token withdrawals the mean field model server dy-
namics are more complicated and depend on the token selection method used at
the dispatcher. However the difference in performance between FCFS and LCFS
token selection is quite limited and best for LCFS. When comparing JIQ-SQ(d)
with and without token withdrawals, it is fair to state that the additional effort
of withdrawing tokens mostly seems worthwhile for low to mean loads when
d = 1 and the job sizes are highly variable.
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