Performance Analysis of Load Balancing Policies with
Memory

Tim Hellemans®!*, Benny Van Houdt?

@ University of Antwerp, Middelheimlaan 1, Antwerp

Abstract

Joining the shortest or least loaded queue among d randomly selected queues
are two fundamental load balancing policies. Under both policies the dispatcher
does not maintain any information on the queue length or load of the servers. In
this paper we analyze the performance of these policies when the dispatcher has
some memory available to store the ids of some of the idle servers. We consider
methods where the dispatcher discovers idle servers as well as methods where
idle servers inform the dispatcher about their state.

We focus on large-scale systems and our analysis uses the cavity method. The
main insight provided is that the performance measures obtained via the cavity
method for a load balancing policy with memory reduce to the performance
measures for the same policy without memory provided that the arrival rate is
properly scaled. Thus, we can study the performance of load balancers with
memory in the same manner as load balancers without memory. In particular
this entails closed form solutions for joining the shortest or least loaded queue
among d randomly selected queues with memory in case of exponential job sizes.
Moreover, we obtain a simple closed form expression for the (scaled) expected
waiting time as the system tends towards instability.

We present simulation results that support our belief that the approximation
obtained by the cavity method becomes exact as the number of servers tends to
infinity.

1. Introduction

Load balancing is often used in large-scale clusters to reduce latency. A
simple algorithm, denoted by SQ(d), exists in assigning incoming jobs to a server
that currently holds the least number of jobs out of d randomly selected queues.
This is referred to as the power-of-d-choices algorithm [1, 16, 26]. Another
popular algorithm which has received quite some attention recently exists in
assigning an incoming job to the server which is the least loaded amongst d

*Corresponding author
Email address: timhellemanstim@gmail.com (Tim Hellemans)

Preprint submitted to Elsevier June 17, 2022

randomly selected queues, i.e. the server which is able to start working on the
job first receives the job. This policy is referred to as LL(d) and has been studied
in e.g. [10, 6, 19, 17].

The main objective of this paper is to generalize the analysis of the SQ(d)
and LL(d) policy to the case where the dispatcher has some (finite or infinite)
memory available to store the ids of idle servers. These ids may be discovered by
either probing servers to check whether they are idle or servers may inform the
dispatcher that they became idle. We focus on the performance of large scale
systems and as such make use of the cavity method introduced in [5]. The cavity
method relies on the assumption that the queue length (or load) of any finite
set of queues becomes independent as the number of servers tends to infinity,
called the ansatz.

The ansatz was proven in some particular cases, in [6] it was shown for
LL(d) with general job sizes and SQ(d) with decreasing hazard rate job sizes.
Recently, the ansatz was also proven a variety of load balancing policies which
are similar to LL(d) (see [21]). Our objective is not to prove the ansatz for load
balancers with memory, but to study these policies using the cavity method. To
demonstrate the usefulness of our analysis we present simulation results which
suggest that the cavity method captures the system behavior as the number of
servers tends to infinity.

A few papers have previously studied the use of some (bounded) memory
at the dispatcher in combination with a power-of-d policy. In [18] the authors
study a policy with a memory of size m, where at every job arrival d servers
are probed and the job is assigned to the server with the smallest number of
pending jobs amongst the d probed servers and m servers in memory. The
m servers with the shortest queue amongst the remaining d + m — 1 servers
form the memory for the next job arrival. In [9] the authors study the amount
of memory resp. probes required in order to obtain vanishing queueing delay.
In [23, 3] policies are studied where the dispatcher maintains an upper bound
on the queue length of each server and dispatches jobs based on these upper
bounds.

The main insight obtained in this paper is that studying a load balancing
policy with memory using the cavity method, corresponds to studying the same
load balancing policy without memory if we scale down the arrival rate in a
proper manner (see also Theorem 2, 3, 4 and 6). For the LL(d) policy, we do
not impose any restrictions on the job size distribution. For the SQ(d) policy,
we initially restrict our attention to exponential job sizes and then generalize
our main result to phase type and general job size distributions.

As a by-product, our results allow us to study the Join-Idle-Queue policy
(denoted by JIQ) with finite memory. JIQ exists in keeping track of the ids of
the idle queues and assigning incoming jobs to an idle queue whenever there is
an idle server in memory and simply assigning it to a random server otherwise.
This policy has vanishing delays when the number of servers tends to infinity
in case of infinite memory [15, 22, 8, 7.

Apart from the cavity method analysis, we additionally present explicit re-
sults for the heavy traffic limit by relying on the framework in [11] that allows

one to compute the limit limy_,;- — IOEER*] for load balancing policies with ex-

T—X
ponential job sizes. We show that (unsurp)risingly) for most memory schemes,
the heavy traffic limit remains unchanged when we add memory at the dis-
patcher. However, when the dispatcher has a memory of size A and servers
inform the dispatcher when they become idle, the heavy traffic limit is multi-
plied by A%rl for both the LL(d) and SQ(d) policy. In particular with a memory
size of 1, the response time under heavy traffic is halved compared to having no
memory at the dispatcher.

Finally, we analyze the low traffic limit in case of exponential job sizes. In
particular, we take a closer look at the ratio of the mean waiting time for two
different load balancing policies as the load tends to zero, for which we find a
simple closed form solution.

The paper is structured as follows. In Section 2, the model is introduced and
we shortly review previously obtained results for SQ(d) and LL(d). In Section
3 we present four approaches which make use of memory at the dispatcher and
show how to obtain the probability that the memory is empty for each of these
methods. Next we present our major analytical tool, the queue at the cavity in
Section 4 and we describe how it is defined for the memory dependent LL(d) and
SQ(d) policy. We carry out the analysis of the queue at the cavity in Section
5. Our analysis is verified by means of simulation in Section 6. In Section 7 we
show how our results may be used for numerical experimentation by studying
one specific setting. In Section 8 we study the heavy traffic limit, while in
Section 9 the low traffic limit is considered. We conclude the paper in Section
10 and discuss possible future work.

All code used to generate Table 1 and Figure 1 can be found at
https://github.com/THellemans/memoryDependentL B. git.

2. Model Description

We consider a system consisting of N identical servers (with N large). There
is some central dispatcher to which jobs arrive according to a Poisson(AN)
process. The dispatcher has some (finite or infinite) memory available to store
ids of idle servers. When a job arrives and the dispatcher has the id(s) of some
idle server(s) in its memory, the job is dispatched to a random server, the id of
which is in memory. If the dispatcher’s memory is empty, d servers are chosen
at random and the job is either send to the server with the shortest queue
(SQ(d), see Section 2.1) or to the server with the least amount of work (LL(d),
see Section 2.2). Setting d = 1 yields the JIQ policy where the job is simply
routed arbitrarily whenever there are no idle servers known by the dispatcher.
Before we proceed we provide some further details on the classic SQ(d) and
LL(d) policy.

2.1. Classic SQ(d)

The SQ(d) policy was first introduced in [16, 26] for a system with Poisson(AN)
arrivals and exponential job sizes (with mean 1/p). Whenever a job arrives, d

servers are probed at random and the incoming job is routed to the probed
server with the least number of jobs in its queue. It was shown (see [16]) that
in the limit as N — oo the system behavior converges to the solution of the
following set of ODEs:

d

S un(t) = AMug—1(6)* = ur(t)) — pur(t) — upsa(t)),

where we denote by ug(t) the probability that, at time ¢, an arbitrary server has
at least k jobs in its queue and ug(t) = 1. This set of ODEs also corresponds
to applying the cavity method to the SQ(d) policy. The fixed point of this set
of ODEs obeys a simple recursive formula:

pug g1 = M, (1)

k_
which has the closed form solution uy; = pddfl1 with p = A/u. In particular
one obtains from Little’s Law the closed form solution of the expected response

time:
oo

1 dk—l
= sz:: : (2)

2.2. Classic LL(d)

The LL(d) policy was analyzed in [10] for a system with arbitrary job sizes
with mean E[G] using the cavity method. Whenever a job arrives, d queues are
probed and the job is sent to the queue which has the least amount of work
left. This means that the job joins the queue at which its service can start
the soonest. In practice this can be implemented through late binding, see also
[19]. Let F(w) denote the equilibrium probability that an arbitrary queue has
at least w work left using the cavity method. It is shown in [10] that F(w)
satisfies the fixed point equation:

F<w>=p—A/0w<1— F(u))Gw — u) du, 3)

with p = AE[G] and G(w — u) the probability that a job has a size greater than
w — u. This fixed point equation can alternatively be written as the following
Integro Differential Equation (IDE):

Fl(w) = -\ [G(w) _ Fw)! + /Ow Flu)ig(w —) dul

with g the density function of the job size distribution. Both have the boundary
condition F'(0) = p. Moreover, this equation has a closed form solution in case
of exponential job sizes (with mean 1/p):

F(w) = (p+ (p'~" = p)eld-Dw)m=a, (4)

In particular, one obtains a closed form solution for the expected response time:

dn+1

)\Zl—i-n -1) (5)

3. Discovering idle servers

We now discuss a number of approaches for the dispatcher to discover ids
of idle servers. In the first few approaches the dispatcher discovers idle servers
by probing, while in the last approach the idle servers identify themselves to
the dispatcher. For each of these approaches we also compute the steady state
distribution of the number idle ids stored by the dispatcher given that a server is
busy with some fixed probability denoted as p(t). The usefulness of this steady
state analysis will become clear in Section 4, where we explain the concept of
time-scale separation used in our analysis of the queue at the cavity (and p(t)
will represent the fraction of the servers that is busy at time t).

3.1. Interrupted probing (IP)

In the first approach, called interrupted probing (IP), the dispatcher probes
d servers when its memory is empty upon a job arrival. If there are k > 1 idle
servers among the d probed servers, it sends the incoming job to one of the idle
servers and stores ids of the k — 1 other servers in memory. These k — 1 ids are
then used for the subsequent & — 1 arrivals. Thus for these k — 1 arrivals, the
dispatcher does not probe any servers. As p(t) is the probability that a server
is busy, we can find the probability mo(¢) of having no ids in memory when a
new job arrives by looking at the Markov chain with state space 0,...,d —1
and transition probability matrix M (p(t)):

Moo = (0 + (]
d
(+1

)pu)dl(l o),
M(p(t))os = (

M(p(t))kk—1 =1,

)p<t>d“<l),

and M (p(t))x,e = 0 otherwise.
As only the first row is non-trivial, it is not hard to check that () =

(mo(t), ..., ma—1(t)) given by:

k
T = To — d d—j — J
(1) = mo(t) | 1 ;O(j)p(t) (- o)y],

for k > 1 is an invariant vector of M (p(t)). From the requirement Zz;é () =
1 it then follows that

1
p(t)*+ (1 —p(t))d”
The number of probes used per arrival is clearly given by 7y (t)d which equals

1
L= plt) + 2

mo(t) = (6)

The main advantage of the IP approach is that it uses far less than d probes
per arrival when p(t) is not too large (see also Figure 1b).

3.2. Continuous probing (CP)

This approach is similar to the IP approach, except that whenever we use
a server id from memory for a job arrival, the dispatcher still probes d random
servers. The ids of the d servers that are idle are subsequently added to memory.
For a system with IV servers, the number of ids in memory is at most N. As
we are interested in the mean field regime, we let N — 0o, meaning we have an
unbounded memory size.

In order to determine the probability mo(¢) of having a server id in memory,
we need to study a Markov chain on an infinite state space. Note that the
probability that we probe a server with an id that is already stored in memory
is zero when there are £ > 0 ids stored in memory as we have an infinite
number of servers to select from. Its transition probability matrix M (p(t)) has
the following form:

MO0 = olt)"+ () 0= 1= o0,

LA o),

MO0 =,

for1 <¢<d-—1. For k > 1, we have
d\
MO = ()01 = pl0)'

for £ =0,...,d, and M(p(t))k,e = 0 otherwise. First note that if d > ﬁ—p, this
Markov chain is transient as the drift in state & > 0 is given by d(1 — p(¢)) — 1,
meaning after some point in time the chain never returns to state zero and all
incoming arrivals can be assigned to an idle server. When d < %M’ the chain
is positive recurrent and we need to determine mo(¢) < 1. A similar observation
was made in [23, 3].

The average time E[idle] the memory remains empty is equal to:

1 1
1—M(p(t)oo 1— p(t)d —dp(t)@ 11— p(1))’

Furthermore, when the memory becomes non-empty, the length that it remains
non-empty depends on the number of server ids that are placed into memory.
More specifically let E[T}, o] denote the expected first return time to 0 given that
the chain starts in state k£ > 0. As the jumps starting from any level k = 1,2, ...
are identically distributed and the chain can only decrease by one, we find that:

Elidle] =

E[Ty 0] = KE[T1,0],

and the mean time that the Markov chain stays away from state 0 given that it
just made a jump from state 0 to some state k > 0 is given by:

d—1 d—1
> P{Xo = E[T;0] = Y (P{Xo = (}E[T} o] = E[X(]E[T1 o],
=1 (=1

where Xy is the state immediately after the jump from state 0 and E[Xj] is
therefore given by

=, M(p(t)o.s d(1 - p(t) — (1 = p(t)?9)
BN = D A p®)os ~ T p7 — e 11— @)
Further, E[T} o] = m as
d
E[T1,0] =1+ Z M(p(t)1,6E[Te0] = 1+ d(1 — p(t))E[T1 0]
£=0

Putting this together we obtain

Elidle] 1—4d(1—p(t))
t frd - frng y 7
") = BT o] + Elidie] ~ pl0)")
when d < —L—. Note that the CP approach uses d probes per arrival.

1—p(t)"

3.3. Bounded Continuous Probing (BCP)

This approach is identical to the CP approach, but with finite memory size
A. Hence the transition matrix M (p(t)) is of size A + 1 and its transitions are
the same as in Section 3.2, except that any transition from a state k < A to a
state £ > A becomes a transition to state A. In particular for k > A —d+ 1 we

have:
d

MpOa= 3 (j)p@)d—ja (1)),

j=A—k+1

and for all other values, M (p(t)) coincides with the expressions given in Section
3.2. This Markov chain does not appear to have a simple closed form solution
for arbitrary values of d, however for d = 2 one finds:

1 (wm)g
. p(t)
mo(t) = o) 2AT
1= (1G])

For d > 2 a simple numerical scheme can be used to compute 7y (¢). Note that
this approach uses d probes per arrival unless the dispatcher sends the probes
one at a time and stops probing when the memory is full.

8.4. Other probing schemes

In this section we present a result that applies to any scheme where the
dispatcher discovers idle servers by probing and any idle server that is discovered
is stored in memory. Thus the result only applies to BCP if the probes are sent
one at a time.

Proposition 1. Assume all discovered idle servers are stored in memory. Then
for any LL(d)/SQ(d) memory based policy, the average number of probes used
per arrival is given by:
1 —mo(t)p(t)*
1= p(t)

Proof. If we think of the probes being transmitted one at a time and assigning

the job as soon as an idle server is discovered, the dispatcher uses on average
d—1 k . . .

> w_op(t)" probes for any job arrival that occurs when the memory is empty.

Further, for any arrival that uses an id in memory, an average of 1/(1 — p(t))

probes was used to discover that id. Hence, the average number of probes

transmitted can be written as:

(8)

1—p(t)? 1

7T0(t) 1— p(t) + (1 - Wo(t))m.

O

The above result indicates that for any such policy for which we either know
the average number of probed queues (as for CP) or can express this using 7 (t)
(as for IP), we immediately obtain mo(t). As the CP policy sends d probes per
arrival and the IP policy m(t)d, Proposition 1 yields (6) and (7) without the
need to analyze a Markov chain.

Remark 1. Of course, we do not require probes to be sent in sequence, the
computed values for mo(t) in this section are independent of this assumption.
However, it is only under this assumption that (8) holds.

3.5. Idle Server Messaging (ISM)

In this scheme the dispatcher does not probe to discover idle servers, instead
a server notifies the dispatcher whenever it becomes idle. In case of infinite
memory, the dispatcher knows all idle server ids at all times and the system
reduces to the JIQ policy when d = 1. Our interest lies mostly in knowing what
happens when the memory size is finite and the job is assigned to the shortest
of d queues whenever the memory is empty when a job arrives.

If we denote A as the number of ids that can be stored in memory, we show
that mo = lim;_,o 7o (t) is given by (with p = lim;_, o p(t)):

1—(1-phan

. (9)

T =

For SQ(d) this is shown in Proposition 4, while for LL(d) this is presented in
Proposition 6. In particular, this result entails that 7 is insensitive to the job
size distribution for SQ(d) and LL(d).

If we assume that the d probes are transmitted one at a time when memory
is empty and the dispatcher stops probing as soon as an idle server is discovered,
the number of probes and messages transmitted by the dispatchers and servers
per job arrival can be expressed as:

1—p?

1— d
=, + (1 = mop?),

where the first term corresponds to the number of probes send per arrival by
the dispatcher and the second correspond to the number of server messages per
arrival (which is equal to the probability that a job is assigned to an idle server).

4. Description of the queue at the cavity

Our analysis is based on the queue at the cavity method which was introduced
in [5] to analyze load balancing systems. The key idea is to focus on the evolution
of a single tagged queue, referred to as the queue at the cavity, and to assume
that all other queues have the same queue length (or workload) distribution at
any time ¢t. Moreover the queue length (or workload) of any finite set of queues
is assumed to be independent at any time t. We first explain the approach in
a system without memory and then indicate how to adapt it to incorporate
memory.

In a system without memory, the queue at the cavity experiences potential
arrivals at rate Ad as this is the rate at which a tagged queue is selected as
one of the d randomly selected queues. If a potential arrival occurs at time t,
d — 1 i.i.d. random variables are initialized which have the same queue length
(or workload) distribution as the queue at the cavity at time ¢. The potential
arrival becomes an actual arrival if the queue at the cavity has the shortest
queue (or smallest workload) amongst these d values (where ties are broken at
random). For SQ(d) with exponential job sizes with mean 1/u the queue length
of the queue at the cavity decreases at a constant rate equal to p in between
potential arrivals, while for LL(d) the workload decreases linearly at rate 1 when
larger than zero. For Phase Type distributed job sizes, one needs to include the
phase of the job at the head of the queue, while for general job sizes we need to
include the work left for the job at the head of the queue.

To incorporate memory into the cavity method we note that the state of the
memory (that is, the number of ids that it contains) evolves at a faster time scale
than the fraction of queues with a certain queue length (or workload). Indeed,
we find that for any A > 0, in an arbitrary time interval [¢,¢ + A], there are
(on average) AAN arrivals to the dispatcher (changing the state of the memory
for each arrival). Meanwhile there are only Ad (potential) arrivals to the queue
at the cavity in the same time period. As we let N — oo, we find that there
are an infinite number of arrivals at the dispatcher in each (arbitarily small)

time interval, while the number of arrivals to the cavity queue remains small.
As such the state of the memory at time ¢ is given by the steady state m(t) of
the discrete time Markov chain with transition matrix M (p(t)) that captures
the evolution of the memory, where p(t) is the fraction of busy servers at time
t. For more details on the concept of the time-scale separation we employ, we
refer the reader to [4].

Remark 2. As the amount of incoming work per server per unit of time is equal
to p < 1, no work is replicated, and all servers are identical, it follows that the
steady state probability that a server is busy is given by lim;_,o p(t) = p. For
SQ(d) with exponential job sizes this is shown explicitly in the proof of Theorem
1, while for SQ(d) with general job sizes the proof is carried out in Proposition
3. For LL(d) this easily follows from integrating both sides of (32).

Let mo(t), the first entry of 7(¢), represent the probability that the memory is
empty at time t. We modify the queue at the cavity by decreasing the potential
arrival rate to the queue at the cavity to Admg(t), i.e. potential arrivals only
occur when there is no empty queue to join in memory. These potential arrivals
are then dealt with in the exact same manner as in the setting without memory.
When the queue at the cavity is empty, we assume that on top of the potential
arrival rate of Admy(t), we have an effective arrival rate of)\117_7;0((5). The latter
arrival rate can be interpreted as follows: jobs arrive at rate AN, with probability
(1 — mo(t)) such a job is assigned to a queue in memory and with probability
1/((1=p(t))N) the queue at the cavity gets the job as it is one of the (1—p(t))N
idle servers at time ¢.

In the next section we study the cavity process of SQ(d) and LL(d) with
memory in detail. We assume job sizes have some general distribution with
probability density function (pdf) g, cumulative distribution function (cdf) G
and complementary cdf (ccdf) G. For a random variable with cdf H we let E[H|
denote its mean. Let u = ﬁ denote the mean service rate and note that we

have for the system load: p = A - E[G]. Furthermore we let G denote a generic
random variable with distribution G. We will sometimes assume that G is an
exponential random variable. Furthermore, for LL(d) we denote by f, F and F
the pdf, cdf and ccdf of the workload distribution of the queue at the cavity in
equilibrium (note that we have F(0) = p). For SQ(d) with exponential job sizes
we denote by uy the equilibrium probability that the queue at the cavity has k
or more jobs (with ug = 1 and u; = p).

5. Analysis of the queue at the cavity

We now analyze the queue at the cavity described in the previous section for
SQ(d) and LL(d). Note that the results presented in this section apply to any
of the memory schemes discussed in Section 3. To obtain results for a specific
memory scheme one simply replaces 7y by the appropriate expression. We show
that the equilibrium queue length and workload distribution of SQ(d) and LL(d)

10

with memory, respectively, have exactly the same form as in the same setting
without memory if we replace A by)\7r(1)/ 4 and divide by Wé/ . With respect
to the response time distribution, we show that the system with memory and
arrival rate A has the same response time distribution as the system without

. 1/d
memory and arrival rate)\71'0/ .

5.1. SQ(d)

In this section we develop the analysis of the queue at the cavity for the
SQ(d) policy, we start by assuming job sizes are exponential and subsequently
we consider Phase Type and general job sizes. While the proofs in this section
are similar to those for the classic SQ(d) policy (see e.g. [16, 25, 2]) we do present
them as we have the additional complexity of having a time dependent memory
size mo(t).

5.1.1. FExponential Job Sizes
We start by describing the transient behaviour of the queue at the cavity for

SQ(d):

Proposition 2. Consider the SQ(d) policy with memory, exponential job sizes
with mean 1/p and arrival rate A < p. Let ug(t) be the probability that the
queue at the cavity has k or more jobs at time t, then

d

27k (t) = Aro() (w1 ()" — wk (1)) = plun() — wepa (8), (10)

%Ul(t) = Ao (£)(uo (1) — ur(t)?) + A1 = 7m0 (t)) — plua(t) —ua(?)), (1)

for k> 2 and ug(t) = 1.

Proof. Let A > 0 be arbitrary, we first assume that k& > 2 and consider the
cases in which the queue at the cavity may have k or more jobs at time ¢ + A.
First, it may have exactly k jobs at time ¢ and no departures occur in [¢,t + A],
this occurs with probability:

Qui = (1 — pd)(ur(t) — urs1(t)) + (D). (12)

It may also have k + 1 or more jobs at time ¢, and at most 1 departure occurs
in [t,t+ Al

Q2,6 = urt1(t) +o(A). (13)
A third possibility is that it had exactly k& — 1 jobs at time ¢ and exactly one
arrival occurs in [t, ¢t + A] which joined the queue at the cavity, this occurs with

11

probability:

L (d - 1) (e () — () - (1Y + o(A)

=) (/A mo(t + 6)d5> (up—1 (1) — up(t)?) + o(A). (15)
0

‘We now obtain:
up(t+A) = Q1+ Qak + Q3.1

subtracting wug(t) on both sides, dividing by A and taking the limit A — 0
yields (10). For (11), one needs to consider the same Q1 , Q2% and Qs as for
k > 2 for the case of potential arrivals. There is however an additional term for
the case where the queue at the cavity is empty at time ¢ and it experiences an
arrival due to the memory induced arrival rate, this yields:

- A 1—7T0(t+(5)
Qa1 = A (/0 w1 0) —ul(t+5)d6> (uo(t) —u1(t)) +o(A),

one then obtains ui(t + A) = Q11 + Q21 + Q31 + Qa,1, subtracting u;(¢),
dividing both sides by A and taking the limit A — 0 yields (11). Finally the
last equation ug(t) = 1 is trivial by the definition of wug(t). O

From the transient regime, we are able to deduce the equilibrium workload
distribution:

Theorem 1. Consider the SQ(d) policy with memory, exponential job sizes
with mean 1/u and arrival rate X < p. Let uy be the equilibrium probability that
the queue at the cavity has k or more jobs, then

k-1
dkF—1 d —1 dakF—1

we=p T my = (pmg!) (16)

fork>1and p= X\ p.
Proof. Taking the limit of t — oo in (10-11) we find that the following holds:

)\(1 - 7'('0)
Uug — U1

0= /\770(“%71 - uﬁ) — - (up — up41),

OzAwo(ug—u‘f)—i— (ug —u1) — p - (w1 — ug),

for k > 2. Summing all of these equations yields u; = p, while taking the sum
for £ > j implies that u; =)\ﬂ'o’u?_l for 7 > 2. This simple recurrence relation
has (16) as its unique solution. O

12

Comparing (16) with the solution of (1), we see that wuy, is identical as in the
setting without memory if we replace p by ,071'(1)/ ¢ and divide by 773/ d

k=1).

(even for

Theorem 2. Let 0 < A\ < p be arbitrary and R the response time of a job sent
to the cavity queue associated to the SQ(d) policy with memory, exponential job
sizes with mean 1/p and arrival rate X. Further, let R denote the response time

for the same system without memory, but with arrival rate)mé/d, then R and
R have the same distribution.

Proof. Let us denote by u; and v the probability that the queue at the cavity
has at least k jobs for the system with and without memory, respectively. We
have uy = Wal/d-vk, for k > 1 and ug = vo = 1. Let F'x be the ccdf of X, then

o k
Fa(w) = (1= mo)e ™™ + 703 (uf — ufy) Zwﬁ)

k=0

as with probability (1 — mg) the job joins an idle queue from memory (meaning
the response time is simply exponential) and with probability mo(uf — u¢ +1)
the job joins a queue with length k (yielding an Erlang k + 1 response time).
Exchanging the order of the sums and using 7T07.Lk = vk, for k£ > 1, implies that

= wh = wh
Fr(w)=(1—m)e " + g e Hwyd o+ moe MY = E —e‘”wvﬁ.
nl n!
= n=0
Similarly,
o) k n e’} n
we o w _
E UkH E —e PO — E —e ’“”vz.
k=0 n=0 n n=0 n

5.1.2. Phase Type Job Sizes

Phase Type (PH) distributions consist of all distributions which have a mod-
ulating finite background Markov chain (see also [14]). They form a broad spec-
trum of distributions as any positive valued distribution can be approximated
arbitrarily close by a PH distribution. Moreover, various fitting tools are avail-
able online for PH distributions (e.g. [13, 20]). A PH distribution with G(0) =
is fully characterized by a stochastic vector & = («;); and a subgenerator ma-
trix A = (a;;)};—; such that G(w) = ae*1, where 1 is a column vector of
ones.

We find that the result found in Theorem 2 generalizes to the case of PH
distributed job sizes.

Theorem 3. Let 0 < A < p (with 1/p the mean of the job size distribution)
be arbitrary and R the response time for a memory dependent cavity queue

13

associated to the SQ(d) policy with PH distributed job sizes with parameters
(o, A). Further, let R denote the response time for the cavity queue of the
classic SQ(d) policy with the same job size distribution and arrival rate /\7r(1)/d,
then R and R have the same distribution.

Proof. Let us denote by uy, ;(t) resp. vy ;(t) the probability that, at time ¢, the
queue at the cavity has at least k jobs and the job at the head of the queue
is in phase j for the memory dependent scheme resp. the memory independent
scheme. Furthermore let uy ; and v ; denote the limit of ¢ — oo for these
values. We first show that uy; = ﬁal/d - Vg,j. Throughout we let v = —Al
(with 1 a vector consisting of only ones). For vy ; we find by an analogous
reasoning as in [24] that for k > 2:

d _ 174 Vk—1,5(t) — vk, (t)
%Uk’j(t) = Amo(t) /d vg—1(t) — v (t) (Uk_l(t)d - Uk(t)d

) Wk (DA + viep o (Dvjra) (17)

j/

where vy, (t) denotes >, vk, ;(t) (further on, we also use this notation for vy, u(t)
and ug). For k = 1 we find:
d
avl’j(t) = aj)\ﬂ'()(t)l/d<1 - Ul(t)d) + Z (’l}l,j/(t)Aj/’j + ’Ug,j/(t)Vj/Ozj) . (18)
Taking the limit of ¢ to infinity and multiplying by m, 14 we find that (17)
yields for the equilibrium distribution (with k& > 2):

(mg Y ok—1,5) = (g Moy) ~1/d d_(—1/d \d
0= moA 7 =y . ((71'0 vg—1)¢ — (my o))
(7T0 Vk— 1) — (mg " Tuk)
+ Z Mok) A + (15 orr o). (19)

while for £ =1 one may compute from (18):

0=ojA (1 - ﬂo(ﬂgl/dvl)d)
+Z (Y1) Ajr g+ (mg /dUQ,j')Vj'aj) (20)

For (u,;(t)) with & > 2, we find the same ODE as (17) but with Amo(t) rather
than)\ﬂ(l)/d(t). Taking the limit ¢ — oo it is not hard to see that uy ; satisfies
(19) with Wal/dvk,j replaced by wuy, ;. Furthermore for w; ;(¢) we find (similar
to Proposition 2):
d
%ul,j(t) = /\Oéjﬂ'o(t)(l — ul(t)d) +)\O&j(l — Tl'o(t))

+ > (g (A5 + uz jr (Hvyay).

14

Taking t — oo it is not hard to see how this equation for uy ; reduces to (20)

with 7r0_1/d

vi,; replaced by uy j. This shows that we indeed have for all £ and
J that uy ; = Wal/dka.

For the response time distribution we denote by X ; the response time of
a job that joins a queue with length %k in phase j. We find for the memory

dependent policy:

Fr(w) = (1 - 70)G(w) +m ((1 —u)C(w)

oo
Uk,j — Uk+1,5 d d
+ — = L (yp — U PiIXe i >w
DS (P, >)
= (1 — (my/ “ur)h)G(w)

0o 1/d 1/d

Ty Uk, — Tg Uk+1,5 1/d 1/d

Y5 M S (i (1) P >)
k=1 j To Uk — Ty Uk41

One can now easily check that R and R indeed coincide. O

5.1.3. Continuously distributed Job Sizes

We further generalize the results given in section 5.1.2 to the case of con-
tinuously distributed job sizes. The only restriction we put on the job size
distribution is the fact that it has a density g. In particular we show the fol-
lowing result :

Theorem 4. Let 0 < A < p (with 1/u the mean of the job size distribution) be
arbitrary and R the response time for the cavity queue of a memory dependent
version of the SQ(d) policy with an continuous job size distribution. Further, let
R denote the response time for the the cavity queue of the classic SQ(d) policy

with the same job size distribution and arrival rate)\ﬂ'é/d, then R and R have
the same distribution.

Proof. Let us denote by xy (¢, w) resp. yx(t,w) the density at which, at time ¢,
the queue at the cavity has exactly k jobs and the job at the head of the queue
has a remaining size exactly equal to w for the memory dependent scheme
resp. the memory independent scheme. Associated to these values, we denote
u(t) =[5 psp ze(t,w) dw and vg(t) =[5 > sy ve(t, w) dw. Furthermore
let i (w), yr(w) and uy, v denote the limit of t — oo for these values. We first
show that zx(w) = Wal/d -yr(w) (and consequently also uy = Wal/d “Vk).

Let us first consider xy (¢, w) for k > 2. Analogously to the proof for expo-

15

nential and Phase Type job sizes, we obtain:

A L fd-1
A w) = 2t w + A) — Adag(t, +A/ Py ST — (%7
xp(w) = zp(t, w) xR (t,w) ; o() jz_(:)]+1(j)

(up(t +6) — upsr (t + 6)Yupyr (t +6)7I71ds + Adag 1 (t, w + A)

A 1 fd-1 i
/0 m(w);j“(j)<uk1<t+5>—uk<t+6>>

A
Wt (t+ 0) 71 dg + / Trr1(t,0)g(w + A —) dd + o(A).
0

Subtracting x(¢,w) on both sides, dividing both sides by A and taking the
limit A — 0% we obtain the following system of IDEs:

Prt) - 2] ()) = (1)
amo () (a0 a0 + 0100)g)

Here 21 (t) = fooo Zg—1(t, w) dw denotes the probability that the cavity queue
contains exactly k — 1 jobs at time t.
Taking the limit of ¢ — oo we obtain:

sty = o) = o P L) e (09w
(21)

A differential equation for the system without memory can be inferred from (21)

by setting my = 1 and replacing A\ by)nré/d:

w —_1\w
v(w) = At/ a gy et @)y 0% g(w).

Yk Yk—1
Multiplying both sides by 1 d, we find that yi satisfies the following (for
k> 2):
—1/d —1/d
_ s w _ _ 7r _1(w
(my M) = A T) (b 3 (1,) — ey To Vet ()
Ty Yk Ty~ Yk-1

((mg o) = (g o)) = (g g (0F)) g (w),
which is identical to (21) if we replace x with ﬂ()_l/dyk.

It remains to look at the case £ = 1. For this case, the arrivals we need to
consider are those which occur when the queue at the cavity is empty. Therefore,
we need to consider two types of arrivals: those which occur due to the fact that
the queue at the cavity is in the memory and those which occur due to the queue

16

at the cavity being selected by the SQ(d) policy. For the arrivals incurred by

the memory we find :

o(A)
A

e
lim lim)\Z/O (I—mo(t+9))glw+ A —0)dé+ = A1 —m)g(w).

t—o00 A—0t+

The arrivals incurred from the SQ(d) policy are similar to the case k > 2, we
obtain that z (w) satisfies:

i) = wmo ™ o) — Ao (1 —) — 220)g(w) = A(1 = mo)g(w).
)

For the system without memory we replace 79 by 1 and A\ by)wré/ ¢ If we then

multiply both sides by W(;l/d, we obtain:
—1/d / Wal/dyl(w) “1/d \q ~1/d \d
(mo Ty (w))" = Amo—— 75— ((mg ""01)® = (my "))
o U1
= Ag(w) + Amog(w)(my 7 vr)? = (w5 ya (0))g(w). (23)

It is not hard to see that (22) and (23) are equivalent (with zj replaced by
Wal/dyk). This shows that we indeed have zy(w) = Wal/dyk(w) forall £ > 1
and w > 0.

For the response time distribution of the system with memory, we obtain:

Fr(w) = (1 —m)G(w)

(= af)Gw) +m0 > [PG > w - shas
k=170 k

= (1 - (r/"20) ") G(w)

+ Z/ xl;if:)((ﬂé/duk)d — (1 1) HPG™ > w — s} ds.
k=170

Analogously one can compute F 'z to complete the proof. O

Remark 3. When d =1 in Theorem 4, the system without memory reduces to
an ordinary M/G/1 queue with arrival rate Awé/d for which many results exist.
In particular, we find from the Pollaczek-Khinchin formula that the following
holds: Ldy e
T TAGH(w) +w —my' A
with R* and G* the Laplace transform of R and G, respectively. Using the ISM
scheme presented in Section 3.5, this allows one to analyze the JIQ policy with
1*(1*p)f‘#+1
P

finite memory by plugging o = into (24) (see also Proposition 4).

17

Using the ideas in Theorem 4 we are able to show that u; = p holds:

Proposition 3. For the cavity queue of the memory dependent SQ(d) policy
with continuous job sizes we have u; = p.

Proof. We use the same notation as in the proof of Theorem 4. Further-
more, we denote (w) = [xx(u)du. We now wish to show that u; =

Yot Jo wn(w) dw = p.
Integrating (22) from w to oo, we find:

z1(w) = —Amg ilx(zv) (u‘li — ug)
+ Amo(1 — ud)G(w) + 2(0F)G(w) + A(1 — 70) G (w). (25)

For k > 2 we find from (21) that (integrate from w to infinity):

P 0)+ a0 P) 4 (09)G),
k k—1

(26)

xp(w) = —Amg

It is now easy to see from taking the sum of (25) and (26) (for all k > 2) that
for any w:

ur(w) = M1 — mud)G(w) 4 ux(07)G(w). (27)
Integrating this expression from 0 to infinity, we obtain:
ur = (u2(0%) + A(1 — mouf)) E[G]. (28)
Furthermore, it is not hard to see that we have for any k& > 2:
A
up(t+A4A) = / (up(t+6) — zp(t+6,A = 8))dd
0
A
+)\/ ot +6) (wp—1(t +6)* — up(t + 6)%) dd + o(A),
0
wp(t) = —wp(t,07) + Ao (8) (ufl_y (£) — up(t)?),
letting ¢ — oo this leads to:
0=—xx(07) + Mmo(uf_, —uf).
Taking the sum of these equations for k£ > 2 we obtain:
u2(07) = Amud.

Using this allows us to conclude that uy = AE[G] = p from (28). O

In the following Proposition, we obtain 7y for the ISM memory scheme
presented in Section 3.5.

18

Proposition 4. For the cavity queue of the SQ(d) policy with continuous job
sizes and the ISM memory scheme presented in Section 3.5 we have

1—(1—ph)am

o =
d
P

Proof. We use the same notation as in the proof of Proposition 3. The rate
at which servers send probes is equal to x1(0") (which is equal to the rate at
which servers become idle). Therefore, the memory state evolves as a birth-
death process with birth rate x1(0") and death rate A\. From taking the limit
w — 0% in (27), we find that z1(07) = (1 — moug).

We consequently find that due to the birth-death structure:

1 - ropt
SA 1 —mpd)i 1= (1—mph)Att’

T —

From this one easily completes the proof. O

In particular, Proposition 4 holds for d = 1, which provides a closed form of
7 for JIQ with finite memory size.

5.2. LL(d)

For LL(d), we again start by describing the transient regime (the proof is
similar to the one presented in [10]).

Proposition 5. The density of the cavity process associated to the memory
dependent LL(d) policy satisfies the following Partial Integro Differential Equa-
tions (PIDEs):

of(t,w) Of(t,w)
ot ow

= Admo(t) /Ow ft,w)F(t,u)? g(w — u)du

+ Mo (t)(1 = F(t,0)M) g(w) — Mdmo(t) f(t, w) F(t,w)?*

+ A1 = mo(t))g(w) (29)

OF(t,0)
ot

= —F(t,07) + Amo(t)(1 = F(t,w)") + M1 = mo(t)),
(30)

for w > 0, where f(x,z") =limy,, f(z,y).

Proof. Assume w > 0 and let w > A > 0 be arbitrary. As for SQ(d), we write:

f(t + Aa w) = Ql,w + QQ,U; + Q3,w' (31)

For @1,, we consider the case where no arrivals occur in the interval [¢,¢ + Al:
if the cavity queue at time ¢ has a workload exactly equal to w+ A and receives

19

no arrivals in [¢,¢ + A], it has a workload equal to w at time ¢t + A. Therefore
we find:

A
Qrw = flt,w+A) — M </ mo(t+8)f(t+ 6w+ A —5)d6> +o(A).
0

For ()2,,, we consider the case where a single arrival occurs when the queue at
the cavity is busy: in this case at some time t + d,d € [0, A] an arrival of size
w 4+ A — u occurs, while the queue at the cavity has workload u — § for some
u € (8, w+ A]. This arrival only joins the queue at the cavity if the other d — 1
queues have a workload that exceeds u — §, hence we find:

A
QQJU =)\d/ 7T0(t + 5)
0
w+A B
/ ft46,u—0)F(t+6,u—0)""1g(w+ A — u)duds + o(A).

=0

Finally a single arrival may occur when the cavity queue is empty: in this case
a job of size w + A — § arrives at time ¢ + § for some ¢ € [0, A]. Hence,

n d
F(td—i— 5,01

A
Q3w —Ad/ Wo(t—i—é)(l_ w+ A —4)dd

Aqom (t _
+>\/ L ++563)(1 — F(t 4 6,0))g(w+ A — 8)d5 + o(A).
By subtracting f(¢,w + A), dividing by A and letting A decrease to zero, we
find (29) from (31).

We still require an equation for F(¢,0), the probability that the server is
idle. A server may be idle at time ¢t + A by remaining idle in [t,t + A] or by
having a workload equal to A — ¢, < A at time ¢t + . We therefore find:

F(t+46,0)%)
d

F(t+A,O):F(t,O)—)\d/Awo(t—i—é)(l_ ds
0

A mo(t+6) _ 2
_/\/0 1—F(t+5,0)(1_F(t+5’0))d6+/0 ft+6,A—0)dd+ o(A),

subtracting F(¢,0), dividing by A and letting A tend to zero yields (30) after
multiplying both sides by (—1). O

This result readily provides us with the equilibrium workload distribution
for the LL(d) policy with memory:

Theorem 5. The cedf of the equilibrium workload distribution for the cavity
process associated to an LL(d) policy with memory satisfies the following IDE:

F'(w) = =\ [G‘(w) + g - (—F(w>d + /0 Fu)g(w —u) duﬂ : (32)

20

with boundary condition F(0) = p. Equivalently we have:

Flw) = p— A /0 (1 = moPu))G(w — u) du. (33)

with gy the probability that the memory is empty.

Proof. To show this result, one first lets t — oo in (29-30), this way we re-
move the X2) apq Mg’o). One then integrates (29) once and uses (30) as a
boundary condition. Using Fubini, simple integration techniques and the fact
that f(w) = —F’(w) we obtain (32). The last equality (33) can be shown by

integrating once more and applying Fubini’s theorem. O

We can rewrite (33) as

7o/ F(w) = E[G) (Mg’) — (/) / "1 = (P @) G w — w) du,

Comparing this expression with (3), we note that F(w) in a system with memory
is equal to the same probability in a system without memory with arrival rate
/\7r(1)/ 4 Qivided by 7r(1)/ ¢ Due to (4) we therefore have the following corollary:

Corollary 1. The equilibrium workload of the queue at the cavity of an LL(d)
system with memory and exponential job sizes is given by

F(w) = (pmo + (o'~ = pmo)el D) o (34)
We are now able to show our main result for a memory dependent LL(d)
policy:

Theorem 6. Let 0 < p = AE[G] < 1 be arbitrary and R the response time of
the cavity process associated to the memory dependent LL(d) policy with mean
job size E[G] and arrival rate X. Further, let R denote the response time for the

same system without memory, but with arrival rate /\Wé/d, then R and R have
the same distribution

Proof. Let F(w) and H(w) be the ccdf of the workload for the system with and
without memory, respectively. We have F (w)wé/ ‘= f (w) which yields:

Fr(w) = (1 —m)G(w) +mo {/Ow F(w —u)?g(u) du + G(w)

which can easily be seen to be equal to Fp(w). O

By using the results in this section, one can easily generalise many of the
results presented in [10] including an analytical proof that LL(d) outperforms
SQ(d) and closed form solutions for the response time distribution, mean re-
sponse time and mean workload.

21

Setup | N=10 N=20 N=50 N=100 N =200
1 1.8839 1.5363 1.3556 1.3059 1.2832
1.4533 1.3119 1.2313 1.2045 1.1926
1.5906 1.3860 1.2787 1.2399 1.2215
1.9086 1.3981 1.1643 1.1158 1.0999
23918 2.0132 1.8200 1.7733 1.7407
1.7583 1.5920 1.4943 1.4578 1.4404
2.0504 1.8040 1.6643 1.6161 1.5901
8 2.2790 1.5924 1.2950 1.2352 1.2186
Setup | N =500 N =1000 N =3000 Cavity Method

N O Uk W N

1 1.2683 1.2638 1.2574 1.2583
2 1.1836 1.1810 1.1794 1.1787
3 1.2110 1.2097 1.2068 1.2058
4 1.0928 1.0921 1.0896 1.0888
) 1.7252 1.7178 1.7146 1.7138
6 1.4314 1.4304 1.4257 1.4256
7 1.5753 1.5736 1.5667 1.5660
8 1.2097 1.2096 1.2070 1.2056

Table 1: Comparison of mean response time for the finite system and the cavity method.

Proposition 6. For the cavity process of the LL(d) policy with the ISM memory

scheme presented in Section 3.5 we have
1-(1—phxa
To=

P

for any job size distribution.

Proof. The rate at which servers send probes is equal to f(0) = —F’(0) and it
follows from (32) that f(0) = A(1 — mgp?). The memory state therefore evolves
as a birth-death process with birth rate A\(1 — mop?) and death rate A. The
remainder of the proof is therefore identical to the proof of Proposition 4. [

6. Finite System Accuracy

The results presented in Section 5 all focused on the cavity process of SQ(d)
and LL(d) with memory. In Table 1 we present simulation results which il-
lustrate that the stationary mean response time in a finite stochastic system
consisting of N servers converges to the mean response time obtained using the
cavity method. We simulated a system with N = 10, 20, 50, 100, 200, 500, 1000
and 3000 servers. The arrival rate equaled AN, the runtime was set to 106/
and we used a warm-up period equal to a third of the runtime. Job sizes have
mean one and are either exponential or hyperexponential with balanced means
and a Squared Coefficient of Variation (SCV) equal to 2 or 3.

22

—o— No Memory 5 ®
--x- P ;/ X
4| CP /i
4+ BCP 4 i
—a—ISM /’ s
3 2 —6—No Memory X
— L 3f|--x-- 1P /%,
i b --e--CP ”
a 3 4+ BCP
2 2 2r|—s—ISM
1 1
0 0
05 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6 0.8 1
A A
(a) Mean response time. (b) Number of probes used per arrival.
1
—6—No Memory <
- xe- IP
0.8|~e~CP &
4+ BOP x
—s—ISM A

0.6
e
0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

A

(c) Prob. of having empty memory.

Figure 1: Performance of the different memory schemes for SQ(5) with exponential job sizes
with mean one.

The following 8 arbitrarily chosen settings have been considered:
Setup 1 : LL(4), A = 0.9, exponential job sizes and the IP memory scheme.
Setup 2 : LL(3), A = 0.8, exponential job sizes and the CP memory scheme
(meaning memory is of infinite size).
Setup 3 : LL(3), A = 0.8, hyperexponential job sizes with SCV equal to 2 and
BCP memory scheme with A = 5.
Setup 4 : LL(2), A = 0.85, hyperexponential job sizes with SCV equal to 3 and
the ISM memory scheme with A = 10.
Setups 5 through 8 are the same as 1 through 4, but using SQ(d) rather than
LL(d). In all cases the mean response time appears to converge towards the
response time of the cavity method. Note that in the last two setups we are
considering SQ(d) with memory and hyperexponential job sizes. In this case the
response time of the cavity method is simply computed as the response time in

the same system without memory, but with arrival rate Awé/ d

7. Numerical Example

In this section we briefly demonstrate the type of numerical results that
can be obtained using our findings. This section is not intended as a detailed
comparison of the different memory schemes presented in Section 3.

23

Figure 1 focuses on the SQ(5) policy with exponential job sizes with mean
one and a memory size A of 4 (except for CP). For the BCP and ISM memory
schemes the dispatcher is assumed to send its d probes one at a time (if memory
is empty upon a job arrival) and stops probing as soon as an idle server is found.
This is also the case for the setting without memory (labeled No memory). For
the CP memory scheme we assume that the dispatcher has infinite memory. We
plot the mean response times, the probabity of having empty memory my and
the average number of probes/messages used per job arrival.

In Figure la we see that the mean response time is nearly optimal for all
schemes when the load is low (say below 0.5). For higher loads we see that the
ISM scheme is the best, followed by the CP/BCP, IP and No Memory scheme.
The ISM scheme is especially powerful when the load is close to one as all the
other schemes use probing and probes are highly unlikely to locate an idle server.
The results of CP and BCP are very close to each other, which indicates that a
very small amount of memory may suffice.

In Figure 1b we depict the average number of probes that each of these
memory schemes use. If we look at the results for the No Memory, CP/BCP
and IP scheme, we see that the schemes that achieved a lower mean response
time use more probes. In this particular case the BCP scheme may appear to
be superior to CP as it has a similar response time and uses far less probes,
but keep in mind that probes are transmitted one at a time by BCP, while CP
can transmit the d probes at once (which is faster). Looking at both the mean
response time and number of probes/messages used, the ISM scheme is clearly
best in this case.

In Figure 1c we look at the probability of having an empty memory when a
job arrives. For the IP scheme and a load A = 0, the dispatcher almost always
discovers 5 idle servers and therefore 7 is close to 1/5. For (B)CP we note that
as long as the load is sufficiently low (that is, 5 < ﬁ or equivalently A < 4/5),
we have my =~ 0, but for larger A values it sharply increases to one. When
A ~ 4/5 we also see the most significant gain in response time for (B)CP (see
Figure 1a). For the ISM memory scheme, we observe that when) is sufficiently
small:

1 1 i 1—(1— pdyxss
EET AT oo P

)

which is independent of d. Only when A is close to one, 7 starts a very steep
climb to one.

8. Mean Field Limit Under Heavy Traffic

One thing people are typically interested in, is how well a system behaves
when the system load gets high (see e.g. [27, 12]). One typically sets A = 1-N—¢
for some v > 0, which ensures that A — 1~ as N — oo. Here we take a different
approach, we first let N — oo and only then we let A — 17. This approach was
for example used in [16, 11]. There, it was noted that in order to have a finite
non-zero limit, we need to scale down the expected response time by a factor

24

log(1 — A). The computed limit gives an indication on how well the studied
policy behaves when the load is high. We find that (somewhat unsurprisingly)
all push based memory schemes do not gain any benefits as the system load
tends to one. However, we find that using a pull based memory schemes can
have a huge impact on the system when the load is high.

Throughout this section and Section 9, we assume job sizes are exponential
with mean equal to one. The assumption that the mean equals one is merely a
technicality to ease notation. Our goal is to compute the limit:

: E[R,]
,\lgilf log(1 —A)’ (35)
where R) denotes the response time for some SQ(d)/LL(d) memory based load
balancing policy. To this end, we employ the framework developed in [11]. Note
that this limit gives an indication of the performance of the load balancing policy
under a high load. Moreover, it is easy to see that this limit remains unchanged
if we swap the mean response time by either the mean waiting time or the mean
queue length/workload. To emphasize that 7y depends on A, we denote 7y as
mo(\) in this section. Define

Ta(z) = Mmo(N)z?, (36)

and note that (u)y for SQ(d) resp. F(w) for LL(d) satisfy the relations ug41 =
Ty (ug) resp. F'(w) = Ta(F(w)) — F(w).

Theorem 7. For the cavity process of the memory dependent SQ(d) policy,
provided that limy_,1- 7)(A) < 0o and limy_,1- mo(\) = 1, we obtain the heavy
traffic limit:

im — E[R&SQ)] _ 1 (37)
A—1- log(1—X) log(d)’
while for the LL(d) variant we have:
E[R{“)] 1
lim — A = .
P log(1—X) d-1 (38)

Proof. We validate the requirements (a)—(g) of [11] from which the result di-
rectly follows.

(a) In this step we should show there exists some continuous function u. : A —
uy such that uy € (1,00), Ta(uy) = uy and limy_,;- uy = 1. For our
model, it is not hard to find an explicit formula for uy = T\ (uy), namely :

Uy = ()mo()\))l/(l_d).

(b) One trivially verifies that T)(0) = 0, and for any u € (0, 1) we have Ty (u) <
T (u)
<1

u

w and limy_, -

25

(c) We define hy(z) = %M, we now verify that h)(z) < 0 for any
x € [ux — 1,uy]. To this end, we first compute:

R\ (x) = Ao (AN (ux —)% — uy + Amg(N)dz(uy — x)41 |

x2

In case d = 1 this expression simplifies to —%3 (1 — Amo(A)) < 0. For d > 2
we compute the derivative of (z? - b} (x)):

(22 (x)) = =Amo(N)d(d — D)z (uy — 2)?72,

which is negative. As one easily verifies that (z2h) (z)) equals zero in x = 0,
this indeed shows h) is decreasing on [uy — 1, uy].

(d) This is a technicality which is automatically satisfied because h) is decreas-
ing on [uy — 1,uy], which we showed in the previous step.

(e) For this step we need to compute the value of:

A= lim hy(uy —1)= lim = Amo(N) _ ”O(A), —Amo(A)
A—1— A—1— uy — 1 A—1— wy
(39)
It is not hard to see that:
1
uy = m(AWO(/\))_d/(d_l) “(mo(A) + Amp(A)) -

Using the fact that limy_,;- mo(A) = 1, we obtain (continuing from (39)):

LimgQ) g ey
A= lim ——% of):d.
As1— 147 (N)
1—-d

(f) For this this step, we need to compute the value

_ _ i
B tim 0= o (= Vuy
Ao1- log(1—A) as1- uy—1

at this point, we use the assumption that limy ;- 7j(A) < oo, as this
implies that u) < oo, allowing us to use I’'Hopital only on 1}%3\17 by which
it trivially follows that B = 1.

(g) For the last step, we should verify that lim,_,q+ limy_,;- hr(e) = A. In-
deed,

lim lim hy(e) = lim
e—0t A—1— e—0+ €

26

It is not hard to see that Theorem 7 applies to all policies described in
Section 3, except the ISM policy which we discussed in Section 3.5. Indeed,
ISM is the only policy for which limy_,;- 7((\) = oo, see also Figure 1lc. We
therefore find the heavy traffic limit to be slightly different in case of ISM.

Theorem 8. For the cavity process of the memory dependent SQ(d) policy with
ISM and a memory size equal to A, we obtain the heavy traffic limit:

lim — E[RE‘SQ)] S ! (40)
As1- log(l1—A) A+ 1log(d)’
while for the LL(d) variant we have:
E[R{"Y 11

- log(l—N) A+ld—1

Proof. One can copy the proof of Theorem 7, except for step (f), as it was used
that limy_,1- 7((A) < oo, while it is easy to verify that this limit is indeed
infinite for ISM. Let us first compute u), using (9) we find:

= [y

)\ /
- <<1 —(1- Ad>1/<A+1>>1/<d—1>>

(A= 1D)(A+ 1) —dAY(1 — (1 — A aT) =1 (1 — M) 7T
- d— DA+ 11— (1L - MJ@AD/E1n

noting that (by a simple application of ’Hopital’s rule) we have limy_,;- ——= =

1—uy
0, we obtain:
li
B = tim =M%
A—=1— 1 —uy
I 1—A d\? (1-)\d)*A/(A“)
T AS?* L —uy (d—1D)(A+1)(1-01-)\d)l/(A+1))d/(d—l)}
d . 1-A
=————— lim
A DA+ 1) o= [(1= A)A/ATD(1 — uy)
d 11— (1 — AH/(A+D)
= — lim - lim —mnr———
(d*l)AJrl)/\—)l—lf)\d A—=1— 1—uy

(1 _)\d)l/(A+1)

B S
d—1)(A+1) avi-1—

X .
(1—(1—xd)1/<A+1))1/<d*1>

For ease of notation, let us define & = (1 — A%)1/(A+1) We find that the above
simplifies to :

1 €1 - gV 1

(d-1)(A+1) glir(lﬁ (1 -1 — (1 —gA+))1/d — A4 71’

B=-—

27

where the last equality follows from a final use of ’'Hopital’s rule. Combining
this with the proof of Theorem 7, we may conclude the proof. O

9. Mean Field Limit Under Low Traffic

In this section, we investigate the system in the low traffic limit rather
than the heavy traffic limit. In particular, we investigate the behaviour of
the expected waiting time in the low traffic limit, i.e. limy_,;- (E[R\] — 1). The
value of this limit is always zero but we show that in case of exponential job
sizes, we are able to obtain a closed form expression for

lim ———F———.
PO ERY) -1

Here Rg\l),Rg?) denote the response time distribution of two different load
balancing policies with arrival rate \. We take the quotient of the expected
waiting times rather than response times as the quotient for the expected re-
sponse times is trivially one for any 2 load balancing policies. This quantity
signifies the quality of a policy under a low arrival rate. In particular we have
the following result:

Proposition 7. Let Rg\i) (i = 1,2) denote the response time for the cavity

process of a memory dependent load balancing policy with probability F(()i)()\)
of having an empty memory, using either SQ(d;) or LL(d;). Furthermore, we
assume job sizes are exponentially distributed with mean 1. We find:

1. If di < ds, we have
E[R"] -1
lim 7[?2)] = 00.
A0t E[RP] — 1

2. If di = d2 = d and both policies use the same strategy (either SQ(d) or
LL({d)), we have:

lim % — lim 77(()1)()‘)
A0+ E[Rff)] 1 A0t W((f)()\)'

3. Ifdi = dy = d and Rf\l) employs the SQ(d) policy while Rg?) uses the
LL(d) policies, we find:

lim ——22 = — fjm —0 %
A0t ERP] -1 A0t dnlP ()

28

Proof. From (2) with arrival rate /\7ré/ ¢ and mean job size equal to 1, one finds
that the expected response time for SQ(d) is given by:

n=2

By Theorem 2, we find that this expression corresponds to the mean response
time of a memory based SQ(d) policy. Analogously, for LL(d) and using The-
orem 6, we obtain that the expected response time for a memory based LL(d)
policy with exponential job sizes of mean one is given by:

7.‘.(]5/‘1)dn

E[R)] — 1= Z:l 1(J/r\n(d—1)' (42)

In order to compute the sought limits, one only retains the terms with the lowest
power of \. For example, assume d; < dy and we wish to compare LL(d;) with

LL(ds), it follows from (42) that:

E[Rg\l)] -1 o)\dlﬂ'o 1 + (dg - 1) o

N0+ E[R&Q)] 1 Aemy 1+ (dy—1) o
As a second example let us consider case (3), we find:
1 1/d 1
BRI Q) dm ()
A0+ IE[RE\Q)} _1 (my/hHd A5t ﬂ((f)()\) ’

d
O

Remark 4. For the methods discussed in Section 3 we can easily compute the
limit lim,_,o+ mo(p). Indeed, by elementary calculus we find:

e For IP we have lim,_,q+ mo(p) = 5.
o For CP and BCP we have lim,_,o+ mo(p) = 0.

e For ISM with memory size A we have lim,_, o+ mo(p) = AL—H‘

In particular, we see that, while ISM is the dominant policy in heavy traffic, it
does not perform as well in low traffic. See also Figure 1c for an example.

10. Conclusions and Future Work

In this paper we studied the cavity process of the SQ(d) and LL(d) load
balancing policies with memory. The main insight provided was that the re-
sponse time distribution of the cavity process with memory is identical to the
response time distribution of the cavity process of the system without memory
if the arrival rate is properly set. This result holds for a large variety of memory

29

schemes including the ones presented in Section 3. This insight allowed us to
analyse the heavy and low traffic limit. Simulation results were presented which
suggest that the cavity process corresponds to the exact limit process as the
number of servers tends to infinity.

As future work, it may be possible to prove that the cavity process is the

proper limit process. For SQ(d) with exponential job sizes, one can build upon
the framework of [4], whilst for LL(d) it might be possible to extend the frame-
work in [21] to prove the ansatz for general job sizes.

References

1]

Reza Aghajani, Xingjie Li, and Kavita Ramanan. 2017. The PDE Method
for the Analysis of Randomized Load Balancing Networks. Proceedings of
the ACM on Measurement and Analysis of Computing Systems 1, 2 (2017),
38.

Reza Aghajani, Kavita Ramanan, et al. 2019. The hydrodynamic limit of
a randomized load balancing network. Annals of Applied Probability 29, 4
(2019), 2114-2174.

Jonatha Anselmi and Francois Dufour. 2020. Power-of-d-choices with mem-
ory: Fluid limit and optimality. Mathematics of Operations Research
(2020).

Michel Benaim and Jean-Yves Le Boudec. 2008. A class of mean field
interaction models for computer and communication systems. Performance
evaluation 65, 11-12 (2008), 823-838.

M. Bramson, Y. Lu, and B. Prabhakar. 2010. Randomized load balancing
with general service time distributions. In ACM SIGMETRICS 2010. 275—
286. https://doi.org/10.1145/1811039.1811071

M. Bramson, Y. Lu, and B. Prabhakar. 2012. Asymptotic independence
of queues under randomized load balancing. Queueing Syst. 71, 3 (2012),
247-292. https://doi.org/10.1007/s11134-012-9311-0

Anton Braverman. 2018. Steady-state analysis of the Join the Shortest
Queue model in the Halfin-Whitt regime. arXiv preprint arXiv:1801.05121
(2018).

Sergey Foss and Alexander L Stolyar. 2017. Large-scale join-idle-queue
system with general service times. Journal of Applied Probability 54, 4
(2017), 995-1007.

David Gamarnik, John N Tsitsiklis, Martin Zubeldia, et al. 2020. A lower
bound on the queueing delay in resource constrained load balancing. Annals
of Applied Probability 30, 2 (2020), 870-901.

30

[10]

[11]

[14]

[15]

[16]

[17]

[18]

[20]

[21]

[22]

T. Hellemans and B. Van Houdt. 2018. On the Power-of-d-choices with
Least Loaded Server Selection. Proceedings of the ACM on Measurement
and Analysis of Computing Systems 2, 2 (2018), 27.

Tim Hellemans and Benny Van Houdt. 2021. Mean Waiting Time in Large-
Scale and Critically Loaded Power of d Load Balancing Systems. Proceed-
ings of the ACM on Measurement and Analysis of Computing Systems 5,
2 (2021), 1-34.

Daniela Hurtado-Lange and Siva Theja Maguluri. 2020. Transform methods
for heavy-traffic analysis. Stochastic Systems 10, 4 (2020), 275-309.

Jan Kriege and Peter Buchholz. 2014. PH and MAP fitting with aggregated
traffic traces. In Measurement, Modelling, and Evaluation of Computing
Systems and Dependability and Fault Tolerance. Springer, 1-15.

Guy Latouche and Vaidyanathan Ramaswami. 1999. Introduction to matriz
analytic methods in stochastic modeling. Vol. 5. Siam.

Yi Lu, Qiaomin Xie, Gabriel Kliot, Alan Geller, James R Larus, and Albert
Greenberg. 2011. Join-Idle-Queue: A novel load balancing algorithm for
dynamically scalable web services. Performance Evaluation 68, 11 (2011),
1056-1071.

M. Mitzenmacher. 2001. The Power of Two Choices in Randomized Load
Balancing. IEEE Trans. Parallel Distrib. Syst. 12 (October 2001), 1094
1104. Issue 10.

Michael Mitzenmacher. 2019. The Supermarket Model with Known and
Predicted Service Times. arXiv preprint arXiv:1905.12155 (2019).

Michael Mitzenmacher, Balaji Prabhakar, and Devavrat Shah. 2002. Load
balancing with memory. In The 43rd Annual IEEE Symposium on Foun-
dations of Computer Science, 2002. Proceedings. IEEE, 799-808.

K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. 2013. Sparrow: Dis-
tributed, Low Latency Scheduling. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (Farminton, Pennsyl-
vania) (SOSP ’13). ACM, New York, NY, USA, 69-84. https://doi.
org/10.1145/2517349.2522716

A. Panchenko and A. Thiimmler. 2007. Efficient Phase-type Fitting with
Aggregated Traffic Traces. Perform. Fval. 64, 7-8 (Aug. 2007), 629-645.
https://doi.org/10.1016/j.peva.2006.09.002

Seva Shneer and Alexander Stolyar. 2020. Large-scale parallel server system
with multi-component jobs. arXiv preprint arXiv:2006.11256 (2020).

A. L. Stolyar. 2015. Pull-based load distribution in large-scale heteroge-
neous service systems. Queueing Systems 80, 4 (2015), 341-361. https:
//doi.org/10.1007/s11134-015-9448-8

31

[23]

Mark van der Boor, Sem Borst, and Johan van Leeuwaarden. 2019. Hyper-
scalable JSQ with sparse feedback. Proceedings of the ACM on Measure-
ment and Analysis of Computing Systems 3, 1 (2019), 1-37.

Ignace Van Spilbeeck and Benny Van Houdt. 2015. Performance of rate-
based pull and push strategies in heterogeneous networks. Performance
Evaluation 91 (2015), 2-15.

Ignace Van Spilbeeck and Benny Van Houdt. 2020. On the impact of job
size variability on heterogeneity-aware load balancing. Annals of Operations
Research 293, 1 (2020), 371-399.

N.D. Vvedenskaya, R.L. Dobrushin, and F.I. Karpelevich. 1996. Queue-
ing System with Selection of the Shortest of Two Queues: an Asymptotic
Approach. Problemy Peredachi Informatsii 32 (1996), 15-27.

Jiheng Zhang and Bert Zwart. 2008. Steady state approximations of limited
processor sharing queues in heavy traffic. Queueing Systems 60, 3 (2008),
227-246.

32

