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ABSTRACT

In this paper we analyse a continuous review finite capacity production-inventory
system with two products in inventory. With stochastic order quantities and time
between orders, the model reflects a supply chain that operates in an environment
with high levels of volatility. The inventory is replenished using an independent
order-up-to (s, S) policy or a can-order (s, c, S) joint replenishment policy in which
the endogenously determined lead times drive the parameters of the replenishment
policy. The production facility is modelled as a multi-type MMAP[K]/PH[K]/1
queue in which there are K possible inventory positions when the order is placed
and the age process of the busy queue has matrix-exponential distribution. We
characterize the system and determine the steady state distribution using matrix
analytic methods. Using numerical methods we obtain the inventory parameters
that minimize the total ordering and inventory related costs. We present numerical
comparisons of independent and joint replenishment policies with varying lead times,
order quantities, and cost reductions. We further demonstrate the interplay between
the two products in terms of lead times, order quantities and costs.

KEYWORDS
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1. Introduction

Inventory management has been studied for decades, but volatile market conditions
have increased the complexity of modelling and analysis, as supply chain factors such as
production rate, demand rate, and lead time become more variable. While much of the
research in inventory management deals with single product analysis, companies need
to make decisions on many aspects of inventory management, and the replenishment
of multiple items is a common operational concern [6].

We study a continuous review production-inventory system with a single production
line, two products in inventory, stochastic order quantities, stochastic time between
orders, and where the objective is to determine the parameters of the inventory policy
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for each product that minimizes the total ordering and inventory related costs for both
products.

We consider two policies of replenishing each product’s inventory: an order-up-to
(s, S) policy in which each product is replenished independently (Arrow et al. [1]); and
a can-order joint replenishment (s, c, S) policy (Balintfy [5]), where if the inventory
position of one product reaches its reorder point s or below, all other products
whose inventory position is below their can-order level c, are included in the same
replenishment order and any order placed raises the inventory position of that product
to the order-up-to level S. Considerable savings may be realised by such coordinated
replenishments (Bastos et al. [8]) and an important factor making this approach cost
effective is the joint set-up cost structure. However, the interaction between items
makes determination of optimal parameters a difficult task.

The lead time is the time between the moment an order is placed and the moment
it is received in inventory and thus consists of a waiting time in queue (if the system is
busy), a setup time and a production time. The lead time depends on the way orders
are placed and the production process, and influences inventory levels and inventory
related costs.

Much of the inventory literature treats lead times as a fixed constant or as an
exogenous variable with a given probability distribution, which means that the time
required to deliver an order is assumed to be independent of the size of the current order
and independent of the lead time of previous orders (Kulkarni and Yan [22], Zipkin [40]).
This approach is justified when both production and inventory are decoupled through
a large inventory at the production; if the owner of the production system guarantees
a fixed delivery date; or if transportation lead times are much longer than production
lead times, as in these scenarios the inventory policy does not impact significantly on
lead times.

When multiple products are produced on the same production line, the order process
of each individual product loading the production queue, impacts the lead times for all
products ordered and all inventory levels are affected. Ignoring this impact may lead
to suboptimal inventory parameters and higher costs. For example, in the context of
a fixed order period (r, S) policy, it was shown that relying on exogenous lead times
can result in a severe underestimation of the required inventory on hand (Van Houdt
and Pérez [39]).

In an integrated production-inventory setting, the interaction between the inventory
control system and the production system is explicitly modelled: inventory influences
production by initiating orders, and production influences inventory by completing and
delivering orders to inventory. Accordingly, the lead times are endogenously determined
by the production system: as the orders of each product load the production line,
they determine the lead times, hence influence the time to replenish each product in
inventory, and impact the holding and backlogging costs. Thus there is correlation
between demand and lead times: high demand depletes inventory more, creating a
larger order to replenish inventory, which in turn takes longer to produce. In order to
characterize the retailer’s inventory behavior in a production-inventory system in an
exact way, we include this correlation in our analysis.

Much queueing theory literature assumes the arrival processes of customers are
independent processes. The introduction of the Markov arrival process with marked
transitions, MMAP[K] (He [17]), allowed modelling of complicated queues with multiple
types of customers and correlated arrival times (Artalejo [2]). Further, the application of
standard matrix analytic methods has allowed the development of efficient algorithms
for computing relevant performance measures (for example, He [15] and Horvath [18]).
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In this paper, the production facility is modelled as a MMAP[K]/PH[K]/1 queue
(He [16], Van Houdt and Blondia [38]). Queues of this type have a single server, correlated
interarrival times and K types of customers, where each customer type may have a
different phase-type service requirement. In our case, the customer types correspond
to the possible inventory positions when the order is placed.

The state space for the process records information on the type of order, the
inventory position when the order was placed, and the current state of production
or setup. The age process that observes this queue during the busy period keeps
track of the age of the order in production, the current production phase and has
matrix-exponential distribution (Sengupta [31,32]). To enable efficient computation of
the inventory level distribution, we construct a fluid queue to enable computation
of required matrices (Dziel et al. [13]) and from these we can determine the cost-
minimizing order quantity of the replenishment orders.

In our model the setup, change-over and production times are stochastic and follow
a phase-type distribution [24]. The advantage of a phase-type distribution is that its
Markovian nature allows for an exact analysis and performance evaluation.

The contribution of this work is to construct an exact evaluation for the can-order
joint replenishment policy while taking endogenous lead times into account, and hence
to study the complex interplay between mutually dependent product inventory levels.
We provide illustrations of the interaction between the inventory properties for the
two product case, in terms of lead times, order quantities, and cost reductions from
a can-order joint replenishment policy as compared with an independent order-up-to
policy. The analysis is applicable to more products but leads to state space explosion.

The structure of this paper is as follows: in Section 3 we define the production-
inventory model and then, in Section 4, define the associated Markov process
characterizing the production-inventory system. From the matrix exponential form
of the steady state distribution, we construct the associated fluid process in Section
5. In Section 6 we present results required for the computation of the expected costs,
outline the numerical method, and present some individual and joint replenishment
outcomes, illustrating the impact of different parameter values. Concluding remarks
are given in Section 7.

2. Background

Inventory analyses are generally aimed at minimizing ordering and holding costs while
satisfying demand and there is a vast literature addressing differing assumptions
on how customer orders and production systems are managed. We mention just
a few variations. For example, inventory control policies assuming independent
and identically distributed inter-event times have received most attention, but a
recent study of production policies to minimise expected holding and backlog costs,
while considering correlated inter-arrival and processing times, showed that effective
production control policies should take correlations in service and demand into account
(Dizbin [12]). We use a model that assumes customer orders are held until the item is
produced. Much research seeks ordering policies to maintain the inventory position
at a constant level, but a recent analysis illustrates opportunities for performance
improvement by using the current inventory level to set a dynamic target for inventory-
in-transit, and to place orders that follow this target (Stolyar [36]). Other work considers
situations where a customer may have a ready alternative source and sales are
lost (Faaland [14]), and situations where the supplier has access to an emergency supply
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to raise the inventory level (Barron [7]).
In the context of an inventory managing multiple items, the joint replenishment

problem deals with the prospect of saving resources through coordinated
replenishments, by considering interdependencies amongst product orders involving
a single supplier. Studies of joint replenishment have led to many models, solution
methods and applications [8]. As the complexity of many variations of the joint
replenishment problem has been determined to be NP-hard [11], studies focus on
approximate and heuristic methods.

Replenishment models cover both deterministic demand types, for examples see [8],
and stochastic demand types, for example see [6,21,22]. With the stochastic demand
models, there are two main replenishment policies: (i) the periodic replenishment policy
that considers a Poisson distributed demand, in which all products follow the same
replenishment periodic interval, and each one is replaced to a pre-determined inventory
level [4]. (ii) the continuous review can-order policy, in which if any item reaches a must-
order point, a replenishment order is made, and if the other items have inventory levels
below a can-order point, they are included in the same order [5,20,30]. On stochastic
demand models based on the can-order policyi, solution methods have focused mostly
on determining optimal values for re-order and can-order parameters in relation to the
selected policy [8].

Markov processes are valuable as approximate processes, due to their versatility
in matching key statistical properties of the demand process [10,26]. Phase-type
distributions [27] are often used, and in which their matrix structure supports efficient
computational implementation [7]. When general distributions are appropriate for
modeling the demand, phase-type distributions can be taken into account in a
natural way, as any non-negative continuous distribution of the probability can be
approximated with a phase-type distribution [3].

Prior studies of models incorporating endogeneous lead times include: early work on
assemble-to-order production-inventory systems with stochastic lead times, in which
one must allow for correlated demands by jointly managing inventories and production
capacities across several items – that work used matrix geometric methods for
exact analysis to evaluate order-fulfilment performance measures (Song, Hu, Liu [34]);
performance analysis of a single product production-inventory system with periodic
demands (Boute et al. [9]); and more recent work studying a single product dual-source
inventory system where the lead times at both sources are stochastic and endogeneous,
namely sojourn times in a queueing system – where the authors establish a new
approach to finding an optimal policy (Song et al. [35]), in part drawing on results
on endogeneous stochastic supply networks (Song and Zipkin [33]).

A key element influencing the complexity and usefulness of any Markov model is the
choice of the state space and transition function. In our model, the state representation
records information on the type of order, the inventory position when the order was
placed, and the current state of production or setup, and the analysis takes advantage
of matrix analytic and fluid queue results applicable to the associated age process. An
approach similar to ours was used by Noblesse et al. [28] for the single item problem,
but the analysis in the current paper allows for systems with batch demand arrivals,
variable order quantities, and non-exponential production times. Related approaches
in less complex settings than that studied here have been used by Horvath and Van
Houdt [19], Otten et al. [29], Van Houdt [37].
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3. Model description

Consider a production-inventory system with j ∈ {1, 2} products, where demands
arrive according to a compound Poisson process with rate λ(j). The sizes of the batch
demands are i.i.d. and follow a general discrete distribution with maximum demand

size mj . Let d
(j)
x denote the probability of a demand of size x for product j. If inventory

is insufficient to fulfill demand, unmet demand is backlogged.
The inventory of product j is replenished according to a (sj , cj , Sj) policy, where

cj ≥ sj : if the inventory position of product j reaches its reorder point sj , product
ℓ ̸= j will also place an order if its inventory position is at or below the can-order
level cℓ, otherwise it will not join the order. Setting cj = sj , the (sj , cj , Sj) policy
reduces to an (sj , Sj) policy, therefore our analysis holds for both joint and independent

replenishment policies. The maximum order size is o(j) = Sj − sj +mj − 1.
Orders are sent to the production queue and produced on a first-come-first-served

basis by a single machine which produces the units of each order sequentially. Each
order requires a major setup time and a production time per unit. If a joint order is
placed, only one major setup time is required and an additional minor change-over
time. Typically, the minor change-over time will be smaller than the major setup time,
although the model does not require this assumption.

When both the setup is complete and the last unit of the order is produced, the
order is replenished in inventory. If a joint order is placed, the order is only delivered
in inventory when the production for both products is completed. We assume the unit
production time is identical for both products and follows phase-type distribution
PH(γp, Up), that is, with subgenerator matrix Up and initial probability vector γp of
order np. The major setup time and minor change-over time are assumed to both follow
phase-type distributions with PH(γ+, V+) of order n+, and PH(γ−, V−) of order n−,
respectively.

Denote by ηj the expected number of orders placed per unit time of only product j
and ηcj the expected number of joint orders per unit time initiated by product j. An

inventory holding cost hj is incurred per unit per time and Φ+
j is the expected number

of units in inventory of product j at a random point in time. A backlogging cost pj is
incurred per unit per time and Φ−

j denotes the expected number of units of product
j backlogged at a random point in time. The expected total cost per unit of time for
both products is

E[C] =
∑2

j=1

(
(k̃ + kj)(ηj + ηcj) + kjη

c
3−j + hjΦ

+
j + pjΦ

−
j

)
, (1)

where a major fixed order cost k̃ is incurred per order placed and a minor fixed order
cost kj if product j is included in the order. For ease of reference, a summary of key
notation is provided in Table 1.

The objective is to determine the inventory parameters (sj , cj , Sj), j ∈ {1, 2}, that
minimize E[C]. We next describe the Markov process of the underlying model, and
key theoretical results are set out in the following two sections, enabling the iterative
procedure used for the numerical solutions discussed in Section 6.3.
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4. Markov process of the two product system

Below we describe the state representation and transitions (Section 4.1). For the busy
process we use a state space construct similar to that in He [15] and Noblesse et al. [28].
Then we present the transition rate and density matrices (Sections 4.2 and 4.3), and
introduce the product utilisation rate, ρp (Section 4.4) that is used in the inventory
level distribution that is derived in Section 5.3.

4.1. Process description

When the server is idle, we use as state space I = {(i, j) : s1 + 1 ≤ i ≤ S1, s2 + 1 ≤
j ≤ S2} where each element of I characterizes an inventory position. Clearly I has
dimension (S1−s1)(S2−s2). A Markov process (It : t ∈ R+) then records the inventory
depletions due to arrivals of demands.

When the server is busy, we represent the system using the Markov process (Xt, Lt :
t ∈ R+). The first component Xt ∈ R+ represents the age, i.e., the elapsed time since
the order in service was placed, and the second component Lt ∈ P represents the state
of the order in service at time t. This busy process describes the transitions in the
MMAP[K]/PH[K]/1 queue that models the production facility (He [17]).

For an order in production, the state space P is defined as P = P1 ∪ P2, where
the states in Pj describe the order when initiated by product j, i.e., the product that
reached its reorder point, and we set Pj = Pj,indiv ∪ Pj,joint, partitioned according to
whether the order in production is an individual or joint order.

For an order initiated by product 1, define

P1,indiv ={(i1, i2, z)
∣∣ s1 −m1 + 1 ≤ i1 ≤ s1, c2 + 1 ≤ i2 ≤ S2, 1 ≤ z ≤ z1,indiv},

where ij represents the inventory position of product j when the order in production
at time t was placed, i.e., at time t − Xt, and the third component, z, represents
the progress of the production: i.e., it is either in major setup (in a state in z ∈
{1, . . . , n+}), or in production with r− 1 remaining items to be produced to complete
the order and the server is currently in state k ∈ {1, . . . , np}. So z = n++(r−1)np+k.

Accordingly, z1,indiv = n+ + o(1)np.
Define

P1,joint =
{
(i1, z)

∣∣ s1 −m1 + 1 ≤ i1 ≤ s1, 1 ≤ z ≤ z1,joint
}
,

where z1,joint = n− + n+ + (o(1) + S2 − s2 − 1)np.
In contrast to P1,indiv, here we do not need to keep track of the inventory position

i2 as it will increase to S2 irrespective of the value of i2. We note that the range of z
is now larger as the order also involves at most S2− s2− 1 items of product 2 and the
server can also be in one of the states of the minor change-over time. If z ∈ {1, . . . , n−},
the server is in state z of the minor change-over time, if z ∈ {n− + 1, . . . , n− + n+}
a major setup is ongoing and the remaining z values correspond to the production of
an item.

When the inventory position of product 1, exceeds c1, the order only includes
product 2, while for inventory positions up to c1, the order is joint with product
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1. So, for an order initiated by product 2, define

P2,indiv =
{
(i1, z)

∣∣ c1 + 1 ≤ i1 ≤ S1, 1 ≤ z ≤ z2,indiv
}
,

where z2,indiv = n+ + o(2)np and

P2,joint =
{
(i1, z)

∣∣ s1 + 1 ≤ i1 ≤ c1, 1 ≤ z ≤ z2,joint
}
,

where z2,joint = n− + n+ + (o(2) + S1 − s1 − 1)np.
We have defined the model from the perspective of product 1 and thus the

sets P1,indiv and P2,indiv are structurally different. This representation provides
sufficient information to derive the inventory distributions, but enables smaller matrix
calculations than if we retained the same structure for P2,indiv as P1,indiv.

We also note that to obtain a Markov process it is not necessary to keep track
of the inventory position, i1 of product 1 (as the inventory position increases to S1

irrespective of the value of i1), but we have included this in the representation as it can
then be used in deriving the inventory level distribution of product 1 in Section 5.3,
which in turn is used in our iterative procedure to compute the expected cost in
Section 6.3.

The process evolves as follows: as the production of an order continues, Xt increases
linearly over time and a downward jump in Xt occurs when an order completes service.
Three types of transitions can occur from state (Xt, Lt) = (x, i):

• A transition to state (x, j) for j ̸= i ∈ P when the state of production/ change-
over/setup changes but the same order remains in service. Denote by (A0)i,j as
the rate of this transition.

• A transition to a state (y, j) with y ∈ [x− u, x), for 0 < u < x when an order
completes service and there is a subsequent order in the queue enters service.
When the inter-arrival time of the subsequent order is (at most) u, time units,
the order has waited at least x − u time units, illustrated in Figure 1. Denote
by Ai,j(u) the transition rate, with dAi,j(u) its corresponding density function.
The matrix A(u) of rates Ai,j(u) takes into account the correlation between j
(which represents the new order size) and u (the inter-arrival time between the
new order and the previous one).

• A transition to state (0, j) when the order completes service and the queue is
empty upon service completion. This occurs with rate

∫∞
x dAi,j(u).

The matrices A0 and dA(u) are described in the next sections.

4.2. Transition rate matrix A0

Define

A0 =

[
F

(1)
++ 0

0 F
(2)
++

]
, (2)
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where F
(j)
++ is an order |Pj | matrix that contains the rates when the order was initiated

by product j. Then

F
(1)
++ = Im1

⊗

[
F

(1)
++,indiv 0

0 F
(1)
++,joint

]
, (3)

where Im1
records the inventory position of product 1 the moment the order was

placed, the matrices F
(1)
++,joint and F

(1)
++,indiv describe the joint and individual orders

initiated by product 1, respectively, and ⊗ denotes the Kronecker product. Then,

F
(1)
++,joint =


V− 0

v+γ− V+

upγ+ Up

. . .
. . .

0 upγp Up

 , (4)

is an order z1,joint matrix and describes the transitions in production and setup phases
and where the vectors up = −Upe and v+ = −V+e denote the completion rates of the
unit production and the major setup time, respectively. Define,

F
(1)
++,indiv = IS2−c2 ⊗


V+ 0
upγ+ Up

upγp
. . .
. . .

. . .

0 upγp Up

 , (5)

an order (S2 − c2)z
1,indiv matrix. Since there is no minor setup time, we record the

inventory position of product 2 with IS2−c2 , the moment the order was placed. Then
we obtain a zero matrix, except for the S2 − c2 sub-matrices on the diagonal where
each of sub-matrix defines the transitions in production and setup and specifying i2.
Similarly, define

F
(2)
++ =

[
F

(2)
++,indiv 0

0 F
(2)
++,joint

]
, (6)

where

F
(2)
++,indiv = IS1−c1 ⊗


V+ 0
upγ+ Up

upγp
. . .
. . .

. . .

0 upγp Up

 , (7)
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is of order (S1 − c1)z
2,indiv and

F
(2)
++,joint = Ic1−s1 ⊗


V− 0

v+γ− V+

upγ+ Up

. . .
. . .

0 upγp Up

 , (8)

is of order (c1 − s1)z
2,joint. In both joint and individual orders, we keep track of the

inventory position of product 1 at the moment the order was placed.

4.3. Density matrix dA(u)

The density function of the rate matrix A(u) can be expressed as

dA(u) = F+−e
F−−uF−+, (9)

where F+− describes the transitions from the states in P prior to service completion
to the inventory positions of both products immediately after the order was placed.
The matrix exponential eF−−u gives the density of the inter-arrival time of u, where
F−− describes the evolution of the inventory position until the subsequent order is
placed. The matrix F−+ describes the transitions to the initial production state of the
subsequent order beginning at t−Xt + u.

4.3.1. Production completion of the order in service (F+−)

Denote by αj the vector of the steady state probabilities of the inventory position
immediately after a replenishment, then αj = (1, 0, . . . , 0) with length (Sj − sj). Let

F+− =

[
F

(1)
+−

F
(2)
+−

]
, (10)

where F
(j)
+− describes the transitions when the order was initiated by j. Recalling that

completion occurs after a major setup time in an individual order, or after a minor
change over time of a joint order, we have

F
(1)
+− = em1

⊗

[
α1 ⊗

(
IS2−c2 ⊗ ν

(1)
+

)
ν
(1)
− (α1 ⊗ α2)

]
, (11)

with dimensions |P|× (S1− s1)(S2− s2) and where ν
(j)
+ = (v⊺+, 0, . . . , 0)

⊺ is a vector of

length zj,indiv and ν
(j)
− = (v⊺−, 0, . . . , 0)

⊺ a vector of length zj,joint, where v⊺+ denotes
the transpose of v+. The vector em1

records the inventory level of product 1 during
production as a new order is about to begin. The upper sub-matrix in Equation (11)
describes an individual order of product 1, then the inventory position of product 1
is raised to S1 and we record the inventory position of product 2 with IS2−c2 . The
lower sub-matrix describes a joint order, in which case the inventory positions of both
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products are raised to their respective Sj . Similarly,

F
(2)
+− =

 IS1−c1 ⊗
(
ν
(2)
+ α2

)(
ec1−s1 ⊗ ν

(2)
−

)
(α1 ⊗ α2)

 , (12)

where IS1−c1 is used to keep track of the inventory position of product 1 when only
product 2 is replenished, and ec1−s1 records the inventory position of product 1 in a
joint order.

4.3.2. Inventory position until subsequent order (F−−)

The matrix F−− is of order (S1− s1)(S2− s2) and describes the transition rates in the
inventory positions of both products due to demand arrivals until the reorder point of
one of the products is reached. Then

F−− =


−λ(1) λ(1)d

(1)
1 . . . λ(1)d

(1)
S1−s1−1

0 −λ(1) . . . λ(1)d
(1)
S1−s1−2

...
. . .

...

0 . . . 0 −λ(1)

⊗ IS2−s2

+ IS1−s1 ⊗


−λ(2) λ(2)d

(2)
1 . . . λ(2)d

(2)
S2−s2−1

0 −λ(2) . . . λ(2)d
(2)
S2−s2−2

...
. . .

...

0 . . . 0 −λ(2)

 . (13)

The time u between subsequent orders is then equivalent to the time it takes for the
process to decrease from the inventory positions just after an order was placed until
absorption in one of the reorder points (or below), thus its density is given by eF−−u.

4.3.3. Start of production of the subsequent order (F−+)

Let F−+ = [F
(1)
−+ F

(2)
−+] where F

(j)
−+ records the transitions when the order was initiated

by product j and which has dimensions (S1 − s1)(S2 − s2)× |Pj |. Then

F
(1)
−+ =

m1−1∑
k=0

(
η
(1)
k ⊗ IS2−s2

)
Γ
(1)
k , (14)

where

η
(j)
k =

[
λ(j)d

(j)
Sj−sj+k λ(j)d

(j)
Sj−sj+k−1 . . . λ(j)d

(j)
k+1 0 . . . 0

]⊺
, (15)

is a column vector η
(j)
k of length Sj − sj and contains the rates of demand arrivals for

product 1 which result in an order of size S1 − s1 + k. The matrix Γ
(1)
k determines the

state in which production starts if the order size of product 1 equals S1− s1+k and if
the inventory position of product 2 is S2−i2+1 at the moment when product 1 initiates

an order, for i2 = 1, . . . , S2 − s2. If only product 1 is replenished, Γ
(1)
k also records the
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inventory position of product 2, i2. Thus Γ
(1)
k is an (S2 − s2) × |P1| matrix with all

its entries equal to zero, except for np entries given by γp. For i2 = 1, . . . , S2 − c2 the
inventory position of product 2 remains above c2 and the np nonzero entries of row i2

of Γ
(1)
k are on the columns corresponding to the states (k, S2− i2+1, n+

s +z) ∈ P1,indiv

with z = (S1 − s1 + k − 1)np + 1 to (S1 − s1 + k)np. For i2 = S2 − c2 + 1, . . . , S2 − s2

we have a joint order and the np nonzero entries on row i2 of Γ
(1)
k are on the columns

corresponding to the states (k, n−
s +n+

s +z) of P1,joint with z = (S1−s1+k+i2−2)np+1
to (S1 − s1 + k + i2 − 1)np as the joint order has size S1 − s1 + k + i2 − 1.

Similarly, F
(2)
−+ defines the transition rates when product 2 reaches its reorder point,

F
(2)
−+ =

m2−1∑
k=0

(
IS1−s1 ⊗ η

(2)
k

)
Γ
(2)
k , (16)

with Γ
(2)
k an (S1 − s1) × |P2| matrix with all its entries equal to zero, except that

each row contains np entries equal to γp. More specifically, the non-zero entries on row
i1 ∈ {1, . . . , S1 − c1} appear on the columns corresponding to the states (i1, n+ + z) ∈
P2,indiv with z = (S2 − s2 + k − 1)np + 1 to z = (S2 − s2 + k)np. For i1 ∈ {S1 − c1 +
1, . . . , S1 − s1} the columns corresponding to the states (i1, n− + n+ + z) of P2,joint

with z = (S2− s2+ k+ i1− 2)np+1 to (S2− s2+ k+ i1− 1)np holds the entries of γp.

4.4. Utilisation of the production system

Define ρp as the production utilisation rate, that is, excluding the setup times, then

ρp =

2∑
j=1

(
− λ(j)γpU

−1
p e

mj∑
i=1

id
(j)
i

)
, (17)

where γp (−Up)
−1 e is the mean unit production time and

∑mj

i=1 id
(j)
i is the mean

demand size for product j. The overall utilisation ρ is then determined by the number
of orders placed,

ρ = ρp −
(
γ+V

−1
+ e+ γ−V

−1
− e

)
(ηc1 + ηc2)−

(
γ+V

−1
+ e

)
(η1 + η2), (18)

where −γ+V
−1
+ e and −γ−V

−1
− e are the mean major setup and minor change-over

times, respectively.

5. Steady state analysis

We consider the form of steady state of the Markov process in Section 5.1 and construct
the associated fluid queue in Section 5.2. In Section 5.3 we obtain an expression for
the inventory position and the number of demand arrivals since an order was placed
and combine the results to determine the inventory level distribution.
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5.1. Preliminaries

For x > 0, j ∈ P, denote the steady state density of (Xt, Lt) as

δj(x) = lim
t→∞

d

dx
P [Xt < x,Lt = j] , (19)

and the corresponding vector δ(x) = {δj(x), j ∈ P}. If ρ < 1 the process (Xt, Lt) has

matrix exponential form (Sengupta [31,32]) and there exists a matrix T of order |P|
such that

δ(x) = δ(0)eTx, (20)

where the matrix T is the smallest non-negative solution to

T = A0 +

∫ ∞

0
eTxdA(x), (21)

and δ(0) = θ(−T ), where θ is the stationary vector of

A = A0 +

∫ ∞

0
dA(u). (22)

See Van Houdt [37] for details.

Using the matrices A0 and dA(x), the matrix T can be computed iteratively, Tn+1 =
A0 +

∫∞
0 eTnxdA(x), with T0 = 0 (Sengupta [31]). As this method results in linear

convergence and is therefore impractical under high loads, in the next section we
present a more efficient approach.

5.2. Reduction to a fluid queue

To employ a method for computing T that converges quadratically we construct a
fluid queue (Dzial et al. [13]). In order to obtain a fluid queue, the fluid process must
be skip-free in both directions so we replace the immediate downward jumps in Xt

by intervals of the appropriate length during which the level decreases linearly. Then
there are |P| phases in which the fluid increases and |I| artificial phases in which the
fluid decreases and the rate matrix of the underlying continuous-time Markov chain is

F =

[
F++ F+−
F−+ F−−

]
. (23)

The matrix F++ = A0 contains the rates at which the phase changes while the fluid
increases (the same order remains in service), F+− contains the transitions from
an increase to a decrease in fluid (a service completion occurs), F−+ contains the
transitions from a decrease to an increase in fluid (a new order enters service) and
F−− contains the transition rates while the fluid decreases (demands arrive depleting
the inventory, but no product has reached its order point).

When the fluid queue hits level zero the phase continues to evolve according to
F−− until an event part of F−+ occurs and the fluid level becomes positive again.

12



Censoring the queue only on the periods where the level increases we obtain the
Markov process of Section 4, in which the age always increases, unless there is a
downward jump. Due to Equation (9), a downward jump to level zero occurs with rate∫∞
x dAi,j(u) =

(
F+−e

F−−x(−F−−)
(−1)F+−

)
i,j

where the part (−F−−)
(−1)F+− captures

the evolution of the phase of the fluid queue at zero.
If we take the expression for the steady state of a fluid queue (Latouche [23]) and

observe the queue only when the level is increasing, the steady state has the form
given in Equation (20) with

T = F++ +ΨF−+, (24)

and δ(0) = θ(−T ), where θ is the stationary vector of A = A0 + F+− (−F−−)
−1 F−+

and matrix Ψ, the first return probabilities to the initial level, is the minimal non-
negative solution to an algebraic Riccati equation

ΨF−+Ψ+ F++Ψ+ΨF−− + F+− = 0. (25)

To reduce the computation time of θ, we employ the power method (Van Houdt
and Perez [39]). Further, as F++ has block diagonal form, we can apply the algorithm
of Meini [25], which exploits this structure to reduce the memory and time complexity.

Observing the phase process only during the intervals of time in which the fluid
level is decreasing, that is, when the production facility is idle, the rate matrix is

D = F−− + F−+Ψ. (26)

from which we obtain the steady state probabilities of the idle production facility, θ̂,
such that θ̂D = 0, θ̂e = 1.

5.3. Inventory level distribution of product 1

For i ≥ 0, denote by ϕi the probability the inventory level is S1 − i. To derive this
distribution, we separately consider the situations in which the server is busy and
where it is idle.

Firstly when the server is busy, define qk,n as the probability that the inventory
position of product 1 was S1−k at the moment when the order in production was placed
and n demand arrivals of product 1 have depleted inventory since. The corresponding
vector qn = {qk,n, k = 0, 1, . . . , o(1)} is partitioned such that

qn =
[
q(0:S1−c1−1),n q(S1−c1:S1−s1−1),n q(S1−s1:o(1)),n

]
, (27)

where the entries refer to individual orders placed by product 2, joint orders initiated
by product 2, and orders initiated by product 1 (joint or individual), respectively.
During the time x this order has spent in the system, the probability that the inventory
is further depleted by the arrival of n demands for product 1 is (1/n!)

(
λ(1)x

)n
e−(λ(1)x).

Let

pn(x) =

∫ ∞

0
δ(x)

(
λ(1)x

)n
n!

e−λ(1)xdx = δ(0)
(
λ(1)

)n (
λ(1)I|P| − T

)−(n+1)
, (28)
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then qn = pn(x)
[(
Im1

⊗ e|P1|/m1

)
, (Ic1−s1 ⊗ ez2,joint) , (IS1−c1 ⊗ ez2,indiv)

]
.

We can then write

ϕi = (1− ρ) gi + ρfi, (29)

where 1− ρ is the probability of a idle server in which the inventory level of product
1 is at least s1 + 1 and the idle probabilities gi are given by

gi =
(
θ̂(IS1−s1 ⊗ eS2−s2)

)
i+1

1[0 ≤ i ≤ S1 − 1], (30)

where θ̂ is derived from the fluid queue construction in Equation (26) and where
1[A] = 1 if A is true and 1[A] = 0 otherwise.

When the server is busy, with probability ρ, ϕi is obtained by qk,n and the n-fold
convolution of the demand size distribution,

fi =
∑
k≤i,

n≤i−k

qk,n
∑

k1,...,kn>0,
k1+...+kn=i−k

n∏
s=1

d
(1)
ks

. (31)

Then the expected number of units in inventory and expected number of units
backlogged are

Φ+
1 =

S1∑
i=0

ϕi(S1 − i), Φ−
1 =

∞∑
i=S1+1

ϕi(i− S1). (32)

Denote by L the lead time and define ζ(x) as its steady state density,

ζ(x) =
δ(x)η̂∫∞

0 δ(y)η̂dy
=

θ(−T )eTxη̂

θη̂
, (33)

where η̂ = F+−e, and with corresponding distribution function

Z(x) = 1− θeTxη̂

θη̂
, (34)

then the expected lead time of a random order is E[L] = −θT−1η̂(θη̂)−1. Conditioning
on the order if product 1 is included, the product dependent expected lead time is

E[L(j)] = −θT−1η̂(j)(θη̂(j))−1, (35)

where

η̂(1) =


F

(1)
+−

IS1−c1 ⊗
(
ν
(2)
+ α2

)(
ec1−s1 ⊗ ν

(2)
−

)
(α1 ⊗ α2)

 ◦

10
1

 , (36)
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using the expression for F
(2)
+− in Equation (12), and where ◦ denotes the Hadamard

product.

6. Expected total cost

For the computation of the expected total cost, we need to characterize the time
between orders. In Section 6.1 we consider the time, ηj , between individual orders,
and similarly in Section 6.2 for the time, ηcj , between joint orders. In Section 6.3 we
present the iterative procedure employed to derive the policy parameters for both
products and give numerical illustrations.

6.1. Expected number of individual orders per unit time

The time between two subsequent individual orders has distribution PH(π̂j , F̂
(j)
−−) of

order (S1−s1)(S2−s2) and the time to place the subsequent order is equivalent to the
time to reach absorption. The expected time between subsequent individual orders of

product j is given by η−1
j = π̂j

(
−F̂

(j)
−−

)−1
e. Define

D(j) =


∑mj−1

k=0 λ(j)d
(j)
Sj−sj+k

...∑mj−1
k=0 λ(j)d

(j)
1+k

 . (37)

The matrix F−− records the transitions in inventory position until the subsequent
replenishment, thus only a decrease in inventory positions is possible. However in

F̂
(j)
−−, an increase in inventory positions is possible when product i ̸= j places an order.

Then for j = 1,

F̂
(1)
−− = F−− +D(1)α1 ⊗

[
0

ec2−s2α2

]
+

[
IS1−c1 0
ec1−s1α1

]
⊗D(2)α2, (38)

where the second term refers to an increase in inventory positions due to a joint order
initiated by product 1, and the third term refers to a (joint or individual) order placed
for product 2. The vector π̂1 contains the probabilities of starting in a given state
following an individual order of product 1 and is the stationary distribution of

(
−F̂

(1)
−−

)−1

D(1)α1 ⊗


IS2−c2 0 . . . 0

0 0 . . . 0
...

...
...

0 0 . . . 0


 ,

as an individual order for product 1 can only occur if the inventory position of product 2
is at least c2 + 1. Similarly,

F̂
(2)
−− = F−− +D(1)α1 ⊗

[
IS2−c2 0
ec2−s2α2

]
+

[
0

ec1−s1α1

]
⊗D(2)α2, (39)
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and π̂2 is the stationary distribution of

(
−F̂

(2)
−−

)−1




IS1−c1 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0

⊗D(2)α2

 .

6.2. Expected number of joint orders per unit time

The time between two subsequent joint orders initiated by product 1 has distribution

PH(α1 ⊗ α2, F̂
(12)
−− ), then (ηc1)

−1 = (α1 ⊗ α2)
(
−F̂

(12)
−−

)−1
e. As the inventory position

of both products after placing a joint order is (S1, S2), the initial state vector is α1⊗α2

and

F̂
(12)
−− = F−− +D(1)α1 ⊗

[
IS2−c2 0

0 0

]
+

[
IS1−c1 0
ec1−s1α1

]
⊗D(2)α2, (40)

where the second term accounts for the individual orders placed of product 1, and
the third term refers for the orders placed by product 2. The time between two

subsequent joint orders initiated by product 2 is PH(α1 ⊗ α2, F̂
(21)
−− ) with (ηc2)

−1 =

(α1 ⊗ α2)
(
−F̂

(21)
−−

)−1
e, where

F̂
(21)
−− = F−− +D(1)α1 ⊗

[
IS2−c2 0
ec2−s2α2

]
+

[
IS1−c1 0

0 0

]
⊗D(2)α2. (41)

6.3. Iterative solution and numerical examples

To obtain the inventory parameters that minimize E[C] in Equation (1), we use
an iterative procedure to obtain successive approximations for both products using
neighbor search and steepest descent algorithms. Given a set of initial inventory
parameters for product 1, we determine the optimal inventory parameters for product
2. Then given this inventory policy for product 2, we determine the inventory
parameters for product 1 that minimize E[C] and repeat until convergence is reached.
We note that to compute the cost for both products simultaneously would involve
matrices with significantly larger dimensions and hence be less tractable.

We present results for six experiments for different values of the ordering costs
and minor change-over times, as these drive the order quantities, (Sj − sj) and (Sj −
cj). The parameter values are chosen to highlight the impact of changing the key
replenishment drivers and costs, being the ordering costs and setup times. The holding
and backlogging costs represent a service level of 90%. Parameter values common to
all experiments are listed in Table 2 and the different values are listed in Table 3. The
unit production time, major setup and minor change-over times are each exponentially
distributed and the demand size distribution is zero-truncated binomial.

We demonstrate the iterative procedure for deriving parameters for the case
of an independent replenishment (sj , Sj) policy and discuss the interplay between
the quantities of interest. We then illustrate the cost reduction by using a joint
replenishment policy compared to independent policy.
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Obtaining cost minimizing parameters for individual replenishment. For Experiment
1, we outline the solution for (s∗j , S

∗
j ). The iterations are listed in Table 4 with an initial

guess of S1 − s1 = 5, from which we obtain (s∗1, S
∗
1) = (16, 38) and (s∗2, S

∗
2) = (11, 27).

To understand how the quantities of interest change throughout the iteration,
Figures 2-4 illustrate how ρ, E[C] and sj evolve.

Iteration 1. For the initial order quantity S1− s1 = 5, the small size leads to multiple
setups, congested production, long lead times and high costs. The solid line
Figure 2(a) illustrates how ρ decreases as the order quantity of product 2
increases. The cost-minimizing reorder point s2 as a function of the order
quantity is illustrated in Figure 3(a) and Figure 4(a) illustrates the impact on
E[C]. Due to the small order of product 1, a large order of product 2 is optimal,
as this tempers the utilisation rate and lead times.

Iteration 2. Given S2−s2 = 52, the solid lines of Figures 2,3,4(b) illustrate the impact
of the order quantity of product 1 on the utilisation rate ρ, optimal reorder point
s1 and expected total costs E[C], respectively. Increasing the order quantity of
product 1 from 5 to 19, leads to more favorable lead times (due to a reduction
in setups) and lower total system costs.

Iteration 3. Given S1−s1 = 19, the dashed lines of Figures 2,3,4(a) illustrate how S2−
s2 impacts ρ, s∗2 and E[C], respectively. Compared to the scenario in Iteration
1, the order quantity of 1 is larger, thus the order quantity of 2 can be reduced
to 16 units while E[C] is also reduced.

Iterations 4-5. Given S2 − s2 = 16, the dashed lines in Figures 2,3,4(b) illustrate
quantities for iteration 4. We obtain (s1, S1) = (16, 38) with E[C] = 60.74
and ρ = 0.75. Proceeding to the next iteration with S1 − s1 = 22, we find
(s2, S2) = (11, 27) thus the procedure ends and the optimal inventory parameters
are (s∗1, S

∗
1) = (16, 38) and (s∗2, S

∗
2) = (11, 27).

The results for the all experiments are listed in Table 5. As expected, the minor
change-over time has no impact as no joint orders are placed. Different values of
k̃ and kj have no impact as long as k̃ + kj remains the same for product j, which
explains why the result of experiments 1 − 4 are the same for the (sj , Sj) policy. In

experiments 5 and 6 k̃ + kj = 0 and the optimal order quantities are only slightly
smaller compared to experiments 1 − 4 due to the impact of the order quantities on
setup times and lead times.

Comparison of independent and joint replenishments. Following a similar iterative
procedure, we present the solutions for (sj , cj , Sj) in Table 5. In Table 6 we give the
cost reductions of (s, c, S) compared to the (s, S) policy, listed alongside the ratios of
the fixed ordering costs k̃/kj and the mean setup time vs. the mean change-over time.
As expected, E[C] is lower in the joint replenishment scenarios.

In Experiment 6, due to the small change-over time, we find the highest gains with
a cost reduction of 10.73%, in which the benefit is mostly seen from the reduction in
setup time by placing joint orders. We see the benefit of joint replenishment is not
only influenced by the ratio of k̃/kj , but also by the ratio of the joint major setup time
and the changeover time. Comparing the individual and joint policies we find that the
mean number of orders placed reduces in our set of experiments by more than 14%.

We demonstrate that this cost discrepancy increases in the ratio of k̃ and kj and
in the ratio of the major setup time and the minor change-over time. The impact of
a can order policy on lead times is unclear. Although the number of setups reduces,
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lead times may not necessarily go down due to a batching time, i.e., waiting time after
production until the joint order is completed.

7. Concluding remarks

The analysis of sufficiently detailed production-inventory models is challenging when
accounting for the number of variable quantities in the supply-chain process. We
consider a continuous review finite capacity production-inventory system with two
products in inventory. As the order process of each individual product impacts the
utilisation rate of the production system and thus the lead times for all products, the
inventory levels are mutually dependent.

The contribution of this work is to construct an exact evaluation for the can-order
joint replenishment policy while taking endogenous lead times into account and hence,
using numerical examples, to study the complex interplay between product inventory
levels, adding to the relatively limited studies of multi-item inventory analysis. The
analysis in the current paper allows for systems with batch demand arrivals, variable
order quantities, and non-exponential production times. Modelling the production
facility as a multi-type queue, with correlated arrivals and type dependent service,
the matrix exponential form of the age process of the busy queue is used to compute
the inventory level distribution. For a given set of input values, our analysis generates
parameters to specify a minimal cost can-order policy, a well-known heuristic for the
joint replenishment problem.

We use numerical methods to obtain inventory parameters that minimize total
ordering and holding costs and provide examples of the interaction between the
inventory properties for the two product case, in terms of lead times, order quantities,
and cost reductions from a can-order joint replenishment policy as compared with
an independent order-up-to policy. We demonstrate scenarios where there is decreased
cost of a can-order (s, c, S) joint replenishment policy as compared with an independent
order-up-to (s, S) policy. Our analysis also can apply to a setting with multiple retailers
of a single product that is produced on the same production line (Zipkin [41]) and joint
replenishment in transport applications (Padilla Tinoco et al. [30]). A limitation is the
computation time, which grows rapidly with the number of products, the maximum
demand size or the order quantity. The analysis is applicable to more products but
further work includes establishing optimality of the solution obtained numerically, and
development of heuristics to manage combinatorial state space explosion. The analysis
can be extended to a system with MAP arrival processes, however this will increase
the dimension of the matrices involved (by a factor equal to the product of the number
of states of both MAPs).

Acknowledgements

This research was supported by the Research Foundation-Flanders (FWO-
Vlaanderen), grant no. G069016N.

18



References

[1] K. Arrow, T. Harris, and J. Marschak. Optimal inventory policy. Econometrica: Journal
of the Econometric Society, pages 250–272, 1951.
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Notation Definition

λ(j) demand arrival rate for product j

mj maximum batch demand size

d
(j)
x probability of a demand of size x

o(j) maximum order size

PH(γp, Up) unit production time of order np

PH(γ+, V+) major setup time of order n+

PH(γ−, V−) minor change-over time of order n−
ηj expected number of orders placed per unit time of only j
ηcj expected number of joint orders per unit time placed by j

Φ+
j expected number of units in inventory of j

Φ−
j expected number of units of j

hj inventory holding cost per unit per time
pj backlogging cost per unit per time

k̃ major fixed order cost per order

kj minor fixed order cost if j is included in the order

Table 1.: Summary of key notation

Parameter Product 1 Product 2

λ(j) (per hour) 1 1
Maximum demand size mj 8 6

Mean demand size 4 3
Holding cost hj (per hour) 1 2
Backlogging cost pj (per hour) 9 18
Mean unit production time (hours) 1/12 1/12

Mean major setup (hours) 1/2 1/2

Table 2.: Parameter values common to all numerical experiments

Experiment k̃ k1 k2 Mean minor change-over (hours)

1 8 2 0 1/4

2 8 2 0 1/100
3 0 10 8 1/4
4 0 10 8 1/100

5 0 0 0 1/4
6 0 0 0 1/100

Table 3.: Ordering costs and setup times for each experiment

Iteration Input Output Status

1 S1 − s1 = 5 (s2, S2) = (26, 78) ρ = 0.91, E[C] = 252.82

2 S2 − s2 = 52 (s1, S1) = (20, 39) ρ = 0.71, E[C] = 102.01

3 S1 − s1 = 19 (s2, S2) = (11, 27) ρ = 0.77, E[C] = 61.55
4 S2 − s2 = 16 (s1, S1) = (16, 38) ρ = 0.75, E[C] = 60.74

5 S1 − s1 = 22 (s2, S2) = (11, 27) ρ = 0.75, E[C] = 60.74

Table 4.: Parameters obtained for the iterative procedure in Experiment 1 for (s∗j , S
∗
j )
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Optimal replenishment parameters of product 1

Exp. (s∗1, S
∗
1 ) E[C] η1 E[L] (s∗1, c

∗
1, S

∗
1 ) E[C] η1 ηc1 E[L]

1 (16,38) 24.77 0.17 3.37 (18,24,38) 24.16 0.07 0.08 3.72
2 (16,38) 24.77 0.17 3.37 (16,28,33) 22.40 0.02 0.13 3.16

3 (16,38) 24.77 0.17 3.37 (18,22,39) 24.64 0.09 0.06 3.72
4 (16,38) 24.77 0.17 3.37 (15,25,33) 23.22 0.03 0.11 3.23

5 (17,38) 23.08 0.18 3.33 (18,23,37) 22.53 0.08 0.08 3.67

6 (17,38) 23.08 0.18 3.33 (15,29,32) 20.76 0.01 0.13 3.10

Optimal replenishment parameters of product 2

Exp. (s∗2, S
∗
2 ) E[C] η2 E[L] (s∗2, c

∗
2, S

∗
2 ) E[C] η2 ηc2 E[L]

1 (11,27) 35.97 0.17 3.01 (12,19,27) 34.68 0.08 0.05 3.49

2 (11,27) 35.97 0.17 3.01 (11,22,24) 31.92 0.03 0.11 3.11
3 (11,27) 35.97 0.17 3.01 (12,18,27) 35.13 0.11 0.03 3.36

4 (11,27) 35.97 0.17 3.01 (11,20,24) 32.88 0.05 0.10 3.12

5 (12,27) 34.50 0.18 2.98 (12,19,27) 33.64 0.09 0.04 3.44
6 (12,27) 34.50 0.18 2.98 (11,22,23) 30.64 0.02 0.14 3.08

Table 5.: Optimal replenishment parameters for each experiment

Exp. k̃
kj

E[Setup]
E[Change-over]

% Cost reduction

1 8 2 3.13%

2 8 50 10.57%
3 0 2 1.60%
4 0 50 7.64%

5 ∞ 2 2.45%
6 ∞ 50 10.73%

Table 6.: Ratio of ordering costs and setup times

Figure 1.: Sample path of Xt. Upon production completion of the nth order at age
x, the subsequent order in service has already spent at least x − u time units in the
system.
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Figure 2.: Order quantity (Sj − sj) vs. utilisation rate ρ.

Figure 3.: Order quantity (Sj − sj) vs. reorder points (s
∗
j ).

Figure 4.: Order quantity (Sj − sj) vs. expected total cost E[C].
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Collated Author’s Response
We would like to thank the reviewers and the editor for their constructive and detailed feedback
and the opportunity to resubmit. We have performed a thorough revision of the manuscript,
improving the presentation of the paper. We address each specific comment from the editor
and each reviewer in the tables below, and also provide the latexdiff comparison from the the
previous submission.

Editor comments Response
R1 recommends acceptance, subject to some minor revision. The
referee mentions that the paper is not easy to follow, but does
not have any good idea how to improve it, and therefore leave
it as is. R2 is also positive about the technical contribution of
the paper. He/she too complains about the paper’s writing and
exposition. This referee recommends a major revision to improve
the readability, clarity, and exposition, and provides some detailed
suggestions. R2 feels that the paper will be acceptable after the
paper’s clarity and exposition has improved to satisfactory level.
I would like to thank the referees for their valuable feedback. I
concur with the referees assessment of the paper. Given that both
reports are consistent in nature, and the remaining weakness is on
writing and exposition, I recommend a minor revision. But please
take this revision seriously, your contribution can be appreciated
and impactful only when the readers can understand it.

The Introduction (Section
1) has been restructured
including added clarity on
specific contributions of
the paper. Section 2 is new
and includes new literature
(pointed to by Reviewer
2). Particular effort has
gone into emphasising the
nature of the computation,
including adding more
signposts as to how
and why the model is
constructed in this fashion.
The language relating to
the iterative process has
been edited throughout to
improve clarity. The Model
description in Section
4.1 and Inventory level
distribution in Section 5.3
have also been improved.

Reviewer 1 comments Response
1. It seems to me that the paper is mathematically correct. 2. The
main contribution of the paper is the introduction of a Markov
process for an inventory model with two types of products. The
introduction of the Markov process, and a Markov modulated fluid
flow process, is highly technical and creative. Using the stationary
distribution of the Markov process, a number of quantities for the
inventory model are obtained, which makes it possible to find a
good inventory control policy. 3. It is not easy for me to follow the
details for the introduction of the Markov process. On the other
hand, I am not able to suggest a better way to do it. Thus, the
presentation of the paper, especially about the Markov process, is
acceptable to me. In summary, the methodology utilized in this
paper is innovative and the analysis is mathematically correct. I
recommend the paper be accepted for publication in Stochastic
Models.
Minor editorial comments. 1) Page 7, lines 17-18: Elaborate
English.

We have added a sentence
on the minor change-over
time.

2) Page 7, line 43 and line 47: Why is “where” used? Is it better
to use “and”?

Corrected

Continued on next page



Reviewer 1 comments Response
3) Page 7, equation (1): It seems that the variable “l” can be
replaced by “3− j”.

We have made this
suggested change.

4) Page 8, lines 17 - 24: I do not fully understand the meaning
of this sentence. I think it is related to the introduction of the
Markov process. For example, the sets P1,indiv and P2,indiv are
structurally different.

This paragraph has been
rewritten to improve the
explanation and a further
comment has been added in
Section 4.1 as to why they
are structurally different.

5) Page 8, line 46: Is it better to define the “state space I” by
(i, j), s1 + 1 <= i <= S1, s2 + 1 <= j <= S2?

This improvement has been
made.

6) Page 10, lines 36 – 43: It seems to me that this comment is true
for the joint order case (for both i1 and i2). P1,indiv has i1 and i2,
but P2,indiv does not have i2. (I think it is related to page 8, lines
17-24.)

We have expanded the
statement to improve the
clarity.

7) Page 14, in equation (11): Is “em1
” defined? The vector em1

was defined,
but the paragraph has
been rearranged to improve
clarity.

8) Page 14, line 43: Is the notation “T” for matrix transpose
defined?

Definition added.

9) Page 19, Section 5.2 [old reference Section 4.1] : It is not clear
how the border x = 0 (zero fluid level) is defined. How does the
underlying Markov chain changes when the fluid level enters or
leaves zero.

We have added further
detail of the boundary
behaviour on page 13.

10) Page 21, equation (28): Please make sure that the elements in
qn are arranged in consistent with that in equation (26).

The ordering is consistent.

11) Page 21, equation (30): Is there a short justification for it? Section 5.3 has been
rearranged to improve the
clarity of the construction
of the inventory level
distribution.

12) Page 22, equation (35): Please check the correctness of the
column vector with elements {1, 0, 1} on the right hand side.

This has been checked.

13) Page 23, line 13, the title of Subsection 5.1: Should “per unit
time” be added to it?

This modification has been
made.

14) Page 24, line 45, the tile of Subsection 5.2: Should “per unit
time” be added to it?

This modification has been
made.

15) Page 25, line 30, the title of Section 6: It might be better to
add “and numerical examples” to it.

We agree with the reviewer
and have modified the title
of Section 6.3.

16) Page 29: Any comments on whether or not the analysis can
be extended to a system with MAP arrival processes for the two
types of products?

We have added a comment
on the extension to MAP
arrival processes in the
conclusion - noting that this
will increase the dimension
of the matrices involved
(by a factor equal to the
product of the number of
states of both MAPs).

Continued on next page



Reviewer 1 comments Response
17) Page 29: Any comments on whether or not the analysis can
be extended to a system with different unit production times?

We note that in principle
this could be done, noting
that the number of phases
in the set P2,joint increases
quite significantly as we
need to keep track of both
order sizes, instead of just
the sum of the two. So
the size of for instance
the F++,joint matrix would

involve the product of o(1)

and (S2 − s2 − 1) instead of
its sum.

Reviewer 2 comments Response
The paper analyzes a continuous-review finite capacity
production-inventory system with two products in inventory.
Two replenishment policies are considered: the order-up-to (s, S)
policy and the can-order (s, c, S) policy. The main tool is the
matrix geometric method. Their aim is to derive the inventory
parameters that minimize the total ordering and inventory
related costs. Numerical examples, comparison and insights are
also provided. The model seems to be important, practical and
can be applied in many cases. However, some serious changes
should be made before acceptance. The Introduction and the
description Sections are poorly written, and thus, it makes the
manuscript difficult to understand. The introduction isn’t clear,
cumbersome, lacks necessary details, explanations and recent
studies. The analysis should be restructured. Numerical examples,
observations and insights should be expanded. Also, the language
needs some improvements; I recommend the use of a technical
editor. I recommend a major revision; Following, I detail my
comments.
Introduction. Motivation, Examples, Contribution. The authors
should motivate their model and add real-world examples of the
model. There are no real-world examples or applications of the
two policies. In fact, the policies are shortly described rather
than extendedly. The contribution of the paper is not clear.
Although there is a list of good papers, they are not described,
and their contribution is not clear. As a result, the contribution
and the uniqueness of the paper is not clear. In addition, no main
results, observations, conclusions and insights are provided in the
Introduction.

Section 1 has been reworked
to emphasise the motivation
and contribution, and added
comments on real world
interest.

Continued on next page



Reviewer 2 comments Response
Literature review. Although there is a list of good papers, most of
them are old (just 3 papers are from 2019). The literature review
is lacking relevant and recent papers. The paper deals with the
matrix geometric method and assume phase-type distributions,
thus, I suggest adding relevant papers. In the following, I
added few studies dealing with phase-type distributions, matrix
geometric approach and (s, S) policy. I believe the authors will find
them or part of them (and the examples, applications, motivations
and references therein) helpful and relevant.

Thank you to the
reviewer for their helpful
suggestions. The literature
has been updated,
specifically the inclusion of
References [7,10,12,14,26] that
the reviewer pointed to.
Further, we have also added
References [4,8,11]

Model description. Some of the assumptions of the model are
not clear or not well motivated. I suggest presenting a list of
assumptions and add some motivations or examples. For example,
one assumption is that if a joint order is placed, the order is only
delivered in inventory when the production for both products
is complete (P.7, L.23). Why? Please add some examples and
motivation; or if a joint order is placed, only one major setup
is required .... Again, why is the production process influenced
by the decision of the managers? I recommend adding real-world
examples.

Some motivations for model
description and assumptions
have been added on page 4.

The evolution of production and inventory processes under
different situations (individual and joint order) is unclear. The
presentation is unfocused and cumbersome; this makes the policy
very hard to understand. Can the authors provide typical sampling
paths of several scenarios of the processes (the inventory, the
production) for better explanation? Figure 1 is one example. I
recommend providing some more.

We have added several
signposts in Sections 3 and
4, rewritten Section 5.3 to
add further clarity to the
production-inventory model
and process.

There are many parameters in the paper. I recommend adding
a table summarizing all the notations, variables, parameters and
costs used.

We have added Table 1 that
contains the key notation for
the model inputs.

I recommend adding Preliminaries Section with a short description
of the phase-type distribution, Kronecker sum and Kronecker
product.

We believe that definitions
of phase-type distribution,
Kronecker sum and
Kronecker product are
assumed knowledge of
the reader, but to aid
we have added further
introductory references in
the introduction.

As I see, matrices (3) and (6) are similar except of their indexes.
The same with (5) and (7), and (4) and (8). So, why not to
use shared definitions, e.g., F( j)++, j=1,2, and thus makes this
section shorter, clearer and sharper?

We understand the
reviewers concern, but
since matrices (3) and (6) &
(5) and (7) are constructed
differently (as (3) and (8)
have additional terms) -
we believe reducing these
equations will not add to
the clarity.

Here, too, I recommend adding a summarize table of all the
matrices and their interpretations

We have not summarised
the matrices from the
fluid queue construction
as elements of these are
standard in the fluid queue
literature.
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Reviewer 2 comments Response
The model does not include a production cost, although for the up-
to-level (s, c, S) policy, the number of produced items is random.
Thus, the impact of a production cost per item can be significant.

The model includes
production time per unit
PH(γp, Up), thus the
concept is included in the
total cost.

Preliminaries Section. Many results are taken from previous
studies (Sengupta[21,22], Latouche [16] , and many others). I
recommend adding Preliminaries Section with a short description
of these results (as far as it works with the results and the course
of the manuscript), and also a short description of the phase-type
distribution, Kronecker sum and Kronecker product.

We have added further
preliminary references and
explanations in Section
1. Further signposts in
Sections 3 and 4, a new
Section 5.1, restructured
Section 6.

Examples. Can the authors provide some motivation for the
selected values in Tables 1 and 2? = The set of experiments (6)
is neither satisfying nor detailed. Consider the large number of
parameters, I recommend expanding the case studies to include
more values, more results and more insights.

We have added the
following statement on
the choice of parameter
values: “to highlight the
impact of changing the key
replenishment drivers and
costs, being the ordering
costs and setup times. The
holding and backlogging
costs represent a service
level of 90%.”

Concluding remarks. Please add some future research and
extensions.

We have added detail on the
extension to a system with
MAP arrival processes.

Minor remarks: Eq. (1) includes the terms ηcl and ηcj . What is ηcl
? Maybe a typo? Why both are included?

Each ηc refers to different
product, the notation has
been modified to make this
clearer.

2. Usually, the notation TC is used for the total cost, and C is
used to denote the cycle length. If possible, and in order to avoid
confusion and to keep consistency, please use TC for the total cost.

We have chosen to keep total
cost as C, as we believe this
is not uncommon notation.

Summarizing, I believe that the paper is interesting, relevant
and fits to the journal’s scope. However, the main lack is
its presentation. I suggest the authors reorganize the paper,
add explanations, typical sample paths, summary of notations,
definitions and parameters, assumptions, motivations, practical
and real-world examples and applications. Please expand the
literature review and the numerical studies and shorten the
presentation of the matrices used. Please make the manuscript
consist and comprehensive. By doing so, I recommend that the
paper will be acceptable for publication.

We have undertaken a
major restructure of the
presentation in Sections 1
and 2 (new) - including new
recent references and real
world motivation. We have
added several signposts
throughout Sections 3,4,5
to guide the reader as to
reasons the results are set
out in the current order.
We have added a summary
table of key notation. The
purpose of the numerical
examples is illustrative, to
show the iterative procedure
is feasible and to display
some of the tradeoffs, hence
we regard the number of
examples as sufficient.


