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Abstract. Distributed systems use randomized work stealing to im-
prove performance and resource utilization. In most prior analytical stud-
ies of randomized work stealing, jobs are considered to be sequential and
are executed as a whole on a single server. In this paper we consider a
homogeneous system of servers where parent jobs spawn child jobs that
can feasibly be executed in parallel. When an idle server probes a busy
server in an attempt to steal work, it may either steal a parent job or
multiple child jobs.
To approximate the performance of this system we introduce a Quasi-
Birth-Death Markov chain and express the performance measures of in-
terest via its unique steady state. We perform simulation experiments
that suggest that the approximation error tends to zero as the number
of servers in the system becomes large. Using numerical experiments we
compare the performance of various simple stealing strategies as well as
optimized strategies.

Keywords: Performance analysis ·Matrix analytic methods ·Distributed
computing.

1 Introduction

Jobs in multithreaded computing systems consist of several threads [2,24]. Upon
starting the execution a main thread (which we call a parent job) several other
threads are spawned (which we call child jobs). These spawned child jobs are
initially stored locally, but can be redistributed at a later stage. One way of
redistributing jobs is called “randomized work stealing”: servers that become
empty start probing other servers at random (uniformly) and if the probed server
has pending jobs, some of its jobs are transferred to the probing server [2, 5].
Another option is to make use of “randomized work sharing”, where servers that
have pending jobs probe others to offload some of their work to other servers.
Work stealing solutions have been studied by various authors and are often used
in practice. They have been implemented for example in the Cilk programming
language [3, 6], Intel TBB [19], Java fork/join framework [12], KAAPI [9] and
.NET Task Parallel Library [13]. Some early studies on work sharing and stealing
include [5,16,22]. In [5] the performance of work stealing and sharing is compared
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for homogenous systems with exponential job sizes. Using similar techniques the
work in [5] was generalized to heterogeneous systems in [16]. The key takeaway
from these papers is that work stealing clearly outperforms work sharing in
system with high load. [22] focused on shared-memory systems and assumes
that migrated jobs have a higher service demand and migrating jobs requires
some time.
More recent work includes [8,14,15,21,23]. In [8] the authors analyse the system
consisting of several homogeneous clusters with exponential job sizes and where
half of the jobs are transferred when a probe is successful. A fair comparison
between stealing and sharing strategies is given for homogeneous networks and
exponential job sizes in [14,15] and for non-exponential job sizes in [23]. Further,
the comparison in [15] is extended to heterogeneous networks in [21]. The key
difference with the current paper is that in these prior works jobs are considered
to be sequential and are always executed as a whole on a single server.

In this paper, we consider a system of homogeneous servers that uses a ran-
domized work stealing policy. We consider a set of policies where if a server
with pending child jobs is probed by an idle server, some of its child jobs are
transferred. When a server is probed that does not have any pending child jobs,
a pending parent job is transferred instead (if available). The work presented
in this paper is closely related to [20], where two systems are considered: one
system where parent jobs can be stolen and the other system where child jobs
can be stolen one at a time. In the current paper we allow that several child jobs
can be stolen at once and the main objective is to provide insights on how to
determine the number of child jobs that should be transferred in such an event.
When several child jobs can be stolen at once, child jobs may be transferred
several times before being executed and this considerably complicates the anal-
ysis compared to [20]. In [20] we also introduced a mean field model and showed
that this mean field model has a unique fixed point given by the steady state
vector of a structured Markov chain. For the model considered in this paper a
similar type of result can be established (albeit with more effort). However, due
to the page limitations, we decided to directly present the structured Markov
chain instead.

The main contributions of the paper are the following:

1. We introduce a Quasi-Birth-Death (QBD) Markov chain describing a single
server queueing system with negative arrivals that is used to approximate
the performance of the work stealing system. We present simulation results
that suggest that as the number of servers becomes large, the approximation
error tends to zero.

2. We prove that this QBD has a unique stationary distribution for which we
provide formulas for the waiting, service, mean waiting and mean service
time. These are the main technical results of the paper.

3. We compare the performance of several stealing strategies. Our main insight
is that the strategy of stealing half of the child jobs performs well for low
loads and/or high probe rates and stealing all child jobs is a good heuristic
when the load is high and/or the probe rate is low.
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The rest of this paper is organized as follows. In Section 2 we describe the
system while the Quasi-Birth-Death (QBD) Markov chain is introduced in Sec-
tion 3 and the response time distribution is analyzed in Section 4. In Section 5
we describe the work stealing strategies considered and present the performance
of these strategies using numerical examples. Section 6 contains some concluding
remarks and possible future work. The QBD approximation is validated using
simulation in Appendix A.

2 System description and strategies

We consider a system with N homogeneous servers each with an infinite buffer to
store jobs. Parent jobs arrive in each server according to a local Poisson arrival
process with rate λ. Upon entering service a parent job spawns i ∈ {0, 1, . . . ,m},
with m ≥ 1, child jobs, the number of which follows a general distribution with
finite support pi (i.e., pi ≥ 0 for every i and

∑m
i=0 pi = 1). These child jobs are

stored locally and have priority over any parent jobs (either already present or
yet to arrive), while the spawning parent job continues service. Thus, when a
(parent or child) job completes service the server first checks to see whether it
has any waiting child jobs, if so it starts service on a child job. If there are no
child jobs present, service on a waiting parent job starts (if any are present).
We assume that parent and child jobs have exponentially distributed service
requirements with rates µ1 and µ2 respectively.

When a server is idle, it probes other servers at random at rate r > 0, where
r is a system parameter. Note that r determines the amount of communication
between the servers and increasing r should improve performance at the expense
of a higher communication overhead. When a server is probed (by an idle server)
and it has waiting (parent or child) jobs, we state that the probe is successful.
When a successful probe reaches a server without waiting child jobs, a parent job
is transferred to the idle server. Note that such a transferred parent job starts
service and spawns its child jobs at the new server.

When a successful probe reaches a server with pending/waiting child jobs,
several child jobs can be transferred at once. If the probed server is serving a
parent job and there are i child jobs in the buffer of the probed server, j ≤ i child
jobs are stolen with probability φi,j (i.e., for every i we have

∑i
j=1 φi,j = 1). On

the other hand if a child job is being processed by the probed server and there
are i child jobs waiting in the buffer of the probed server, j ≤ i child jobs are
stolen with probability ψi,j (i.e., for every i we have

∑i
j=1 ψi,j = 1). For ease of

notation we set φi,j = ψi,j = 0 if j > i. Probes and job transfers are assumed to
be instantaneous.

The main objective of this paper is to study how the probabilities φi,j and
ψi,j influence the response time of a job, where the response time is defined as
the time between the arrival of a parent job and the completion of the parent
and all its spawned child jobs. Given the above description, it is clear that we
get a Markov process if we keep track of the number of parent and child job in
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each of the N servers. This Markov process however does not appear to have a
product form, making its analysis prohibitive.

Instead we use an approximation method, the accuracy of which is inves-
tigated in Appendix A. The idea of the approximation exists in focusing on a
single server and assuming that the queue lengths at any other server are in-
dependent and identically distributed as in this particular server. Within the
context of load balancing, this approach is known as the cavity method [4]. In
fact all the analytical models used in [5,8,14–16,20–23] can be regarded as cavity
method approximations. A common feature of such an approximation is that it
tends to become more accurate as the number of servers tends to infinity, as we
demonstrate in Appendix A for our model. The cavity method typically involves
iterating the so-called cavity map [4]. However, in our case the need for such
an iteration is avoided by deriving expressions for the rates at which child and
parent jobs are stolen.

3 Quasi-Birth-Death Markov chain

In this section we introduce a Quasi-Birth-Death (QBD) Markov chain to ap-
proximate the system from the viewpoint of a single server. Let λp(r) denote the
rate at which parent jobs are stolen when the server is idle. Let λc,1(r), . . . , λc,m(r)
denote respectively the rates at which 1, . . . ,m child jobs are stolen. We pro-
vide formulas for these rates further on. The evolution of a single server has the
following characteristics, where the negative arrivals correspond to steal events:

1. When the server is busy, arrivals of parent jobs occur according to a Poisson
process with rate λ. When the server is idle, parent jobs arrive at the rate
λ+λp(r), while a batch of i child jobs arrives at rate λc,i(r) for i = 1, . . . ,m.

2. Upon entering service, a parent job spawns i ∈ {0, 1, . . . ,m},m ≥ 1, child
jobs with probability pi. Child jobs are stored locally.

3. Child jobs have priority over any parent jobs waiting in the queue and are
thus executed immediately after their parent job completes when executed
on the same server.

4. Parent and child jobs have exponentially distributed service requirements
with rates µ1 and µ2, respectively.

5. If there are parent jobs and no child jobs waiting in the buffer of the server
then a negative parent arrival occurs at the rate rq, where q = 1 − ρ is the
probability that a queue is idle (where ρ is defined in (1)).

6. If a parent job is in service and there are i ∈ {1, . . . ,m} child jobs in the
buffer of the server, a batch of j negative child job arrivals occurs at the rate
rqφi,j , for all j ∈ {1, . . . , i}.

7. If a child job is in service and there are i ∈ {1, . . . ,m−1} child jobs pending
in the buffer of the server, a batch of j negative child job arrivals occurs at
the rate rqψi,j , for all j ∈ {1, . . . , i}.

Note that the load of the system can be expressed as

ρ = λ

(
1

µ1
+

∑m
n=1 npn
µ2

)
. (1)
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Table 1: Transitions for the QBD in Section 3
From To Rate For

1. (0, 0, 0)→ (0, j, 0) λc,j(r) j = 1, . . . ,m,
2. (0, 0, 0)→ (0, j, 1) (λ+ λp(r))pj j = 0, 1, . . . ,m,
3. (X,Y, Z)→ (X + 1, Y, Z) λ X + Y + Z ≥ 1,
4. (X,Y, 1)→ (X,Y, 0) µ1 X ≥ 0, Y ≥ 1 or X = 0, Y = 0,
5. (X,Y, 0)→ (X,Y − 1, 0) µ2 X ≥ 0, Y ≥ 2 or X = 0, Y = 1,
6. (X, 1, 0)→ (X − 1, j, 1) µ2pj X ≥ 1, j = 0, 1, . . . ,m,
7. (X, 0, 1)→ (X − 1, j, 1) µ1pj X ≥ 1, j = 0, 1, . . . ,m,
8. (X,Y, Z)→ (X − 1, Y, Z) rq X ≥ 1, Y + Z = 1,
9. (X,Y, 1)→ (X,Y − j, 1) rqφY,j X ≥ 0, Y ≥ j, j = 1, . . . ,m,
10. (X,Y, 0)→ (X,Y − j, 0) rqψY −1,j X ≥ 0, Y ≥ j + 1, j = 1, . . . ,m− 1.

Denote by X ≥ 0 the number of parent jobs waiting, by Y ∈ {0, 1, . . . ,m} the
number of child jobs in the server (either in service or waiting), and by Z ∈ {0, 1}
whether a parent job is currently in service (Z = 1) or not (Z = 0). The possible
transitions of the QBD Markov chain are listed in Table 1, corresponding to: 1.
a batch of j child jobs arriving at an idle queue and the first child job proceeding
directly into service, 2. a parent job arriving at an idle queue and proceeding
directly into service, spawning j child jobs, 3. a parent arriving to a non-idle
queue, 4. completion of a parent in service, not succeeded by another parent
job, 5. child service completion, succeeded by either another child job or no job,
6. child service completion, succeeded by a parent job that enters service and
spawns j child jobs, 7. parent service completion, succeeded by a parent job that
enters service and spawns j child jobs, 8. negative parent job arrival, 9. a parent
is in service and a batch of negative child job arrivals occurs, 10. a child job is
in service and a batch of negative child job arrivals occurs.

The three dimensional process {Xt(r), Yt(r), Zt(r) : t ≥ 0} is an irreducible,
aperiodic Quasi-Birth-Death process. We state that the level ` = ∗ when the
chain is in state (0, 0, 0), while for any state with X = ` different from (0, 0, 0),
we state that the chain is in level ` (for ` ≥ 0). When the level ` ≥ 0, the phase
of the QBD is two dimensional and given by (Y, Z). The 2m+ 1 phases of level
` ≥ 0 are ordered such that the j-th phase corresponds to (Y,Z) = (j, 0), for
j = 1, . . . ,m and phase m+ 1 + j to (Y,Z) = (j, 1) for j = 0, . . . ,m.

As explained below, the generator of the process is

Q(r) =


−λ0(r)

∑m
j=1 λc,j(r)ej + (λ+ λp(r))α

µ B0(r) A1

A−1(r) A0(r) A1

. . .
. . .

. . .


with λ0(r) =

∑m
j=1 λc,j(r) + λ + λp(r), with ej a row vector with 1 in its

j-th entry and zeros elsewhere. The initial probability vector α records the
distribution of child jobs upon a parent job entering service and is given by
α =

[
0′m p0 p1 . . . pm

]
, where 0i is a column vector of zeros of length i. Indeed,
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at rate λc,j(r) a batch of j child jobs arrives in an idle server, causing a jump
to level 0 and phase j, while at rate λ+ λp(r) a parent job arrives that spawns
j child jobs with probability pj causing a jump to phase m+ 1 + j of level 0.

Define

S(r) =

[
S00(r) 0
S10 S11(r)

]
,

where S00(r) is an m×m matrix and S11(r) is an (m+ 1)× (m+ 1) matrix,

S00(r) = rq

 ψ1,1

...
. . .

ψm−1,m−1 . . . ψm−1,1

+


−µ2

µ2
. . .

. . .
. . .

µ2 −µ2

 ,

S10 =


0 . . .
µ1

µ1

. . .

 , S11(r) = rq

 φ1,1...
. . .

φm,m . . . φm,1

+


−µ1

. . .

. . .

−µ1

 .

The matrix A0(r) contains the possible transitions for which the level ` > 0
remains unchanged, this is when child jobs are stolen, or when a waiting child
moves into service. Hence

A0(r) = S(r)− λI − rqI.

Note that even when there are no child jobs waiting, the rate rq appears on
the main diagonal due to the negative parent arrivals. When ` = 0 there are
no parent jobs waiting and therefore the negative parent arrivals that occur in
phase 1 and m+ 1 have no impact. This implies that

B0(r) = A0(r) + rqV0

= S(r)− λI − rq(I − V0),

where V0 = diag(
[
1 0′m−1 1 0′m

]
). The level ` can only decrease by one due to a

service completion from a phase with no pending child jobs, that is, from phase
1 and m+1. To capture these events define µ =

[
µ2 0′m−1 µ1 0′m

]′
. The level can

also decrease due to a negative parent arrival when ` > 0. The matrix A−1(r)
records the transitions for which the level decreases and therefore equals

A−1(r) = µα+ rqV0.

Finally, parent job arrivals always increase the level by one:

A1 = λI.
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Denote by A(r) = A−1(r)+A0(r)+A1, the generator of the phase process, then

A(r) = S(r) + µα− rq(I − V0).

Define
π∗(r) = lim

t→∞
P [Xt(r) = 0, Yt(r) = 0, Zt(r) = 0],

and for ` ≥ 0,

π`(r) = (π`,1,0(r), . . . π`,m,0(r), π`,0,1(r), . . . , π`,m,1(r))

where
π`,j,k(r) = lim

t→∞
P [Xt(r) = `, Yt(r) = j, Zt(r) = k].

Due to the QBD structure [17], we have

π0(r) = π∗(r)R0(r), (2)

where R0(r) is a row vector of size 2m+ 1 and for ` ≥ 1,

π`(r) = π0(r)R(r)`, (3)

where R(r) is a (2m+ 1)× (2m+ 1) matrix and by [11] the smallest nonnegative
solution to

A1 +R(r)A0(r) +R(r)2A−1(r) = 0.

Also, due to the balance equations with ` = 0, we have

m∑
j=1

λc,j(r)ej + (λ+ λp(r))α+R0(r)B0(r) +R0(r)R(r)A−1(r) = 0

and due to [11, Chapter 6]

A1G(r) = R(r)A−1(r),

where G(r) is the smallest nonnegative solution to

A−1(r) +A0(r)G(r) +A1G(r)2 = 0.

Combining the above yields the following expression:

R0(r) = −

 m∑
j=1

λc,j(r)ej + (λ+ λp(r))α

 (B0(r) + λIG(r))−1, (4)

where B0(r) + λIG(r) is a subgenerator matrix and is therefore invertible. We
note that R(r) and G(r) are independent of λc,1(r), . . . , λc,m(r) and λp(r) and
can be computed easily using the toolbox presented in [1]. To fully characterize
the QBD in terms of λ, µ1, µ2 and the probabilities pi, φi,j and ψi,j , we need to
specify λc,1(r), . . . , λc,m(r) and λp(r).
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To determine these rates we use the following observation: as all parent and
child jobs are executed on some server, q = 1 − ρ should be the probability
that the QBD is in state (0, 0, 0). In this state batches of j child jobs arrive at
rate λc,j(r). Therefore qλc,j(r) should equal the parent arrival rate λ times the
expected number of times that a batch of j child jobs is stolen per parent job.
The main difficulty in using this equality lies in the fact that we must also take
into account that a child job can be stolen several times before it is executed.

To this end and as a preparation for Proposition 1, we define recursively
p0,i(r), i = 1, . . . ,m, as the probability that the QBD visits phase (i, 0) during
the service of a job and similarly p1,i′(r), i

′ = 0, . . . ,m that phase (i′, 1) is visited.
By conditioning on whether we first have a service completion or steal event, we
have

p1,m(r) = pm,

p1,i(r) = pi +
rq

rq + µ1

∑
j>i

p1,j(r)φj,j−i,

for i ∈ {0, . . . ,m− 1}, and

p0,i(r) =
µ1

rq + µ1
p1,i(r) +

µ2

rq + µ2
p0,i+1(r) +

rq

rq + µ2

∑
j>i

p0,j(r)ψj−1,j−i,

for i ∈ {1, . . . ,m}, with p0,m+1 = 0. Note that

p1,0(r) + p0,1(r) = 1, (5)

as phase (1, 0) or (0, 1) is visited before any job completes service.
We also define pji (r), for 1 ≤ i ≤ j ≤ m, as the probability that the QBD visits
phase (i, 0) given that it is in the phase (j, 0) before a job completes service. We
have

pjj(r) = 1,

pji (r) =
µ2

rq + µ2
pji+1(r) +

rq

rq + µ2

j∑
k=i+1

ψk−1,k−ip
j
k(r),

for i ∈ {1, . . . , j − 1}. Note that we have pj1(r) = 1, for 1 ≤ j ≤ m, as the QBD
visits phase (0, 1) before completing service if it is in phase (0, j). We are now
in a position to define λc,i(r) recursively as:

λc,m(r) =
λ

q
p1,m(r)

rq

rq + µ1
φm,m

λc,i(r) =
λ

q

rq

rq + µ1

∑
j≥i

p1,j(r)φj,i +
λ

q

rq

rq + µ2

∑
j>i

p0,j(r)ψj−1,i

+

m∑
j=i+1

λc,j(r)

j∑
k=i+1

pjk(r)ψk−1,i
rq

rq + µ2
(6)
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for i ∈ {1, . . . ,m − 1}. Note that p1,m(r)rqφm,m/(rq + µ1) indeed equals the
expected number of batches of size m that are stolen per parent job (as the job
must spawn m child jobs and these must be stolen as a batch before the parent
completes service). For i < m, the first two sums represent the expected number
of size i batches that are stolen from the original server, while the double sum
counts the expected number of such steals that occur on a server different from
the original server.

It remains to define λp(r), for this we demand that π∗(r) = q and that

π∗(r) +
∑
`≥0

π`(r)e = 1,

where e is a column vector of ones. Then from equations (2) and (3),

q
(

1 +R0(r)(I −R(r))−1e
)

= 1, (7)

where the inverse of I −R(r) exists due to Proposition 1. Using (4) and (7) we
get:

λp(r) =
(1− q)− q(

∑m
j=1 λc,j(r)ej + λα)w

qαw
, (8)

with w = −(B0(r)+λIG(r))−1(I−R(r))−1e. Note that λp(r) is well-defined for
q > 0, i.e. ρ < 1. This completes the description of the QBD Markov chain.

Proposition 1. The QBD process {Xt(r), Yt(r), Zt(r) : t ≥ 0} has a unique
stationary distribution for any r ≥ 0 if ρ < 1.

Proof. The positive recurrence of the QBD process only depends on the matrices
A−1(r), A0(r) and A1 [17]. These three matrices are the same three matrices
as those of the QBD characterizing the M/MAP/1 queue where the MAP ser-
vice process is characterized by (S0(r), S1(r)) with S0(r) = S(r) − rqI and
S1(r) = µα + rqV0. As such the QBD process is positive recurrent if and only
if the arrival rate λ is less than the service completion intensity of the MAP
(S0(r), S1(r)). This intensity equals θ(r)S1(r)e/θ(r)e, where the vector θ(r) is
such that θ(r)(S0(r) + S1(r)) = 0.

We note that S0(r) + S1(r) = A−1(r) +A0(r) +A1 = A(r) and define

θ
(r)
(0,1) =

1

µ2
p0,1(r),

θ
(r)
(0,i′) =

1

rq + µ2
p0,i′(r),

θ
(r)
(1,0) =

1

µ1
p1,0(r),

θ
(r)
(1,i) =

1

rq + µ1
p1,i(r),
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for i′ = 2, . . . ,m and for i = 1, . . . ,m. Define v(r) = θ(r)A(r). Then, using (5),

v
(r)
i = pi−m−1 − p1,i−m−1(r) +

rq

rq + µ1

∑
j>i−m−1

p1,j(r)φj,j−i−m−1 = 0,

for i = m+ 1, . . . , 2m+ 1, and

v
(r)
i′ = −p0,i′(r) + 1[i < m]

µ2

rq + µ2
p0,i′+1(r)

+
rq

rq + µ2

∑
j>i

p0,j(r)ψj−1,j−i′ +
µ1

rq + µ1
p1,i′(r) = 0,

for i′ = 1, . . . ,m. Hence θ(r)A(r) = θ(r)(S0(r) + S1(r)) = 0. As

θ(r)S1(r)e

θ(r)e
=

1

θ(r)e

(
µ2 + rq

µ2
p0,1(r) +

µ1 + rq

µ1
p1,0(r)

)
≥ 1

θ(r)e
(p0,1(r) + p1,0(r)) =

1

θ(r)e
,

it suffices that λ < 1/θ(r)e for the chain to be positive recurrent. For r = 0 we
have p1,i(r) = pi and p0,i′ =

∑
j≥i′ pj , which implies that θ(0)e = ρ/λ. Therefore

λ < 1/θ(0)e is equivalent to demanding that ρ < 1. As θ(r)e is the mean time
between two service completions of the MAP process where the state is reset
according to the vector α, we have that θ(r)e decreases in r. This completes the
proof as ρ < 1 implies that λ < 1/θ(0)e ≤ 1/θ(r)e.

4 Response time distribution

We define T (r) as the response time of a job in a system with probe rate r. The
response time is defined as the length of the time interval between the arrival of
a parent job and the completion of this parent job and all of its spawned child
jobs. T (r) can be expressed as the sum of the waiting time W (r) and the service
time J(r). The waiting time is defined as the amount of time that the parent job
waits in the queue before its service starts. Clearly, the waiting and the service
time of a job are independent in our QBD model.

Theorem 1. The distribution of the waiting time is given by

P [W (r) > t] = (e′ ⊗ π0(I −R(r))−1)eWtvec〈I〉

with W = ((A0(r)+A1)′⊗I)+((A−1(r))′⊗R(r)) and where vec〈·〉 is the column
stacking operator. The mean waiting time is

E [W (r)] =

∫ ∞
0

P [W (r) > t] dt = (e′ ⊗ π0(I −R(r))−1)(−W)−1vec〈I〉.
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Proof. We repeat the arguments of the proof of [20, Theorem 6.1]. Let (N(k, t))j,j′

be the probability that there are exactly k transitions that decrease the level by
one in (0, t) and the phase at time t equals j′ given that the level never decreased
below 1 and the phase was j at time 0. Due to the PASTA property we have

P [W (r) > t] =

∞∑
n=1

πn−1

n−1∑
k=0

N(k, t)e,

as (πn−1)j is the probability that a tagged parent job is the nth parent job
waiting in the queue immediately after it arrived and the service phase equals j.
In such case there can be at most n− 1 events that decrease the level otherwise
W (r) < t. Thus,

P [W (r) > t] =

∞∑
k=0

π0

∞∑
n=k+1

R(r)n−1N(k, t)e

= π0(I −R(r))−1
∞∑
k=0

R(r)kN(k, t)e.

Using the same arguments as in [18] or [10] one finds that

vec

〈 ∞∑
k=0

R(r)kN(k, t)

〉
= eWtvec 〈I〉 .

The proof is completed by noting that vec〈ABC〉 = (C ′ ⊗A)vec〈B〉.

The service time distribution J(r) is more difficult to compute compared to
the model in [20]. This is due to the fact that child jobs can be stolen multiple
times before finally going into service.

We define J0,k(r) as the distribution of the time that it takes for k child
jobs in a server to be completed (k = 1, . . . ,m). Similarly, we define J1,k(r) as
the distribution of the time that it takes for a parent job and k child jobs in a
server to be completed (k = 0, . . . ,m). The service time distribution can then
be expressed as

P [J(r) ≤ t] =

m∑
k=0

pkP [J1,k(r) ≤ t].

Clearly, P [J0,1(r) ≤ t] = 1 − e−µ2t and P [J1,0(r) ≤ t] = 1 − e−µ1t . For k > 1,
we can condition on the first service completion or steal event to find that

P [J0,k(r) ≤ t] =

∫ t

0

(
rq

k−1∑
j=1

ψk−1,jP [J0,k−j(r) ≤ t− s]P [J0,j(r) ≤ t− s]

+ µ2P [J0,k−1(r) ≤ t− s]

)
e−(rq+µ2)sds, (9)
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and for k > 0 this yields

P [J1,k(r) ≤ t] =

∫ t

0

(
rq

k∑
j=1

φk,jP [J1,k−j(r) ≤ t− s]P [J0,j(r) ≤ t− s]

+ µ1P [J0,k(r) ≤ t− s]

)
e−(rq+µ1)sds. (10)

While the above formulas recursively determine the service time, they are less
suited for numerical computations, we therefore also develop a recursive scheme
for the mean service time.

Consider a set of s servers, where the k-th server contains ik child jobs, where
s ≥ 1, 0 ≤ i1 + · · · + is ≤ m and ik ≥ 0 for k = 1, . . . , s. Let Ei1,...,is(r) be the
expected time until all these child jobs have completed service. Define similarly
Epi1,...,is(r), except that the first server contains i1 child jobs and a parent job
(that is in service).

By definition, we can drop ik’s that are zero (expect i1 in Epi1,...,is(r)) and
can permute the indices of Ei1,...,is(r) and all indices except the first one of
Epi1,...,is(r). We have for s ≥ 1

E1′s
(r) =

1

µ2

s∑
k=1

1

k
. (11)

We now define recursively, assuming ik ≥ 1 for k = 1, . . . , s:

Ei1,...,is(r) =
1

sµ2 + rq
∑s
k=1 1[ik ≥ 2]

(
1 + µ2

s∑
k=1

Ei1,...,ik−1,ik−1,ik+1,...,is(r)

+ rq

s∑
k=1

ik−1∑
n=1

ψik−1,nEi1,...,ik−1,ik−n,ik+1,...,is,n(r)

)
.

We have Ep0 (r) = 1/µ1 and we define recursively for s ≥ 1

Ep1′s(r) =
1

µ1 + (s− 1)µ2

(
1 + µ1E1′s

(r) + (s− 1)µ2E
p
1′s−1

(r)

)

=
1

µ1 + (s− 1)µ2

(
1 +

µ1

µ2

s−1∑
k=1

1

k
+ (s− 1)µ2E

p
1′s−1

(r)

)
,

where we have used (11) in the last equality. Finally, we define recursively, as-
suming ik ≥ 1 for k = 2, . . . , s:

Epi1,...,is(r) =
1

µ1 + (s− 1)µ2 + rq1[i1 ≥ 1] + rq
∑s
k=2 1[ik ≥ 2]

(
1

+ µ1Ei1,...,is(r) + rq

i1∑
n=1

φi1,nE
p
i1−n,i2,...,is,n(r)
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+ µ2

s∑
k=2

Epi1,...,ik−1,ik−1,ik+1,...,is
(r)

+ rq

s∑
k=2

ik−1∑
n=1

ψik−1,nE
p
i1,...,ik−1,ik−n,ik+1,...,is,n

(r)

)
.

The expectation E[J(r)] can now be computed as:

E[J(r)] =

m∑
k=0

pkE
p
k(r).

Note that when r → ∞, children spawned by a parent job get immediately
distributed amongst empty servers. Therefore, as r →∞, we get

E[J(r)]→
m∑
k=0

pkE
p
0,1′k

(r). (12)

5 Numerical experiments

In this section we perform numerical experiments to compare the performance
of several stealing strategies. Due to the lack of space, we present only a subset
of the experiments performed. The main conclusions in these additional exper-
iments (e.g., different µ2 values) are in agreement with the results presented.
Define Ψ as the matrix where [Ψ ]i,j = ψi,j and define Φ similarly. Note that
a strategy is fully characterized by Ψ and Φ. The strategies considered are as
follows:

1. Steal one: The strategy of always stealing one child job, that is φi,1 =
ψi,1 = 1 for every i.

2. Steal half: The strategy of always stealing half of the pending child jobs.
If n, the number of pending child jobs, is uneven, there is a fifty percent
chance that bn/2c child jobs get stolen and dn/2e jobs otherwise;

3. Steal all: The strategy of stealing all of the pending child jobs, that is
φi,i = ψi,i = 1 for every i.

Note that these strategies do not rely on any knowledge on the (mean) job sizes
or system load.

We compare the mean response time for these strategies with the optimal
monotone deterministic strategy. A strategy is called deterministic if for every
i ≤ m there exists a j ≤ i such that φi,j = 1 and a k ≤ i such that ψi,k = 1.
It is called monotone deterministic (MD) if in addition having ψi,j = 1 and
ψi′,j′ = 1 with i < i′ implies that j ≤ j′ for all i, j, i′, j′ and the same holds
for Φ. Experiments not included in the paper suggest that the optimal strategy,
that is, the optimal Ψ and Φ matrices, corresponds to an MD strategy. The
optimal MD strategy is determined using brute-force and its mean response
time is denoted as TMD(r). Let p = [p0, p1, . . . , pm].
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Fig. 1: Example 1 with ρ = 0.15 (left), ρ = 0.5 (mid) and ρ = 0.85 (right).

Example 1. In Figure 1 we examine the effect of increasing the steal rate on
how well the three strategies perform compared to the optimal MD strategy.
More specifically, we plot the mean response time E[T (r)] of our three policies
normalized by the mean response time E[TMD(r)] of the optimal MD policy. We
do this for ρ ∈ {0.15, 0.5, 0.85}, µ1 = 1, µ2 = 2,p = 1′5/5 and r ∈ [0.05, 50]. We
note that there exists no universal best strategy. The strategy of stealing one job
performs the worst. This is due to the fact that relatively very little work of the
pending jobs is transferred. When µ2 < µ1, examples can be constructed where
the strategy of stealing a single child outperforms the others. For moderately
high values of r or for low loads the strategy where half of the child jobs get
stolen is close to the optimal MD strategy. This is intuitively clear as in such case
there is a small chance that there are pending parent jobs in a queue, so stealing
half of the child jobs more or less balances the work. In fact, it seems that as r
becomes large enough the optimal strategy for systems where µ1 ≤ µ2 is stealing
bi/2c + 1 out of i children. For low values of r the strategy of stealing all child
jobs performs well, as there is a fair chance that there are pending parents in
the queue and it can take a long time until the server is probed again.

For ρ = 0.85 the matrices Ψ, Φ of the optimal MD strategy change as follows:
for low values of r the best strategy is the one of stealing all jobs, that is Ψ and
Φ are identity matrices of size m−1 and m respectively. Then, at approximately
r = 7.6, ψ3,2 becomes one. Around r = 13.5, the φ4,3 becomes one and finally
φ3,2 = 1 around r = 20.35. For ρ = 0.5 we see a similar evolution: for low values
of r the best strategy is stealing all child jobs. Then, at approximately r = 0.85,
ψ3,2 becomes one. Around r = 1.55, the φ4,3 becomes one and finally φ3,2 = 1
around r = 3.35.

The number of MD strategies grows quickly in function of m (in fact one
can prove that for a given m there exist C(m)C(m + 1) such strategies, where
C(k) denotes the k-th Catalan number). This implies that it can take a long
time to determine the optimal MD strategy for systems with larger m values.
We therefore introduce a smaller family of strategies and compare our three
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strategies with the optimal strategy in this smaller family to limit the brute-
force search. We call a strategy bounded monotone deterministic (BMD) if it
is monotone deterministic and ψi,j = 1 implies ψi+1,j = 1 or ψi+1,j+1 = 1
for every i and the same holds for Φ. Note that there are 2m−22m−1 = 22m−3

BMD strategies for a given m ≥ 2. The optimal BMD strategy is determined
using brute-force and we denote its mean response time by TBMD(r). The mean
response time of the optimal BMD strategy may exceed that of the optimal MD
strategy as indicated in the next example.
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Fig. 2: Example 2 with ρ = 0.15 (left), ρ = 0.5 (mid) and ρ = 0.85 (right).

Example 2. In Figure 2 we examine the effect of increasing the steal rate on
how well the three strategies perform compared to the optimal BMD strategy
when m = 6 instead of m = 4 as in the previous example. We do this for
ρ ∈ {0.15, 0.5, 0.85}, µ1 = 1, µ2 = 2,p = 1′7/7 and r ∈ [0.05, 50]. It is clear
that the main insights are similar as in the m = 4 case, except that more
substantial gains can be achieved by optimizing Ψ and Φ. We also performed
some experiments to compare the performance of the optimal MD and BMD
strategies and noted that for r ∈ [6.9, 7.4], the optimal MD strategy has ψ3,2 = 1
and ψ4,4 = 1, which is not BMD. The reduction in the mean response time was
however very limited.

Example 3. In Figure 3 we illustrate the effect of increasing the load ρ on the
mean response time. We do this for ρ ∈ [0.05, 0.95], µ1 = 1, µ2 = 2,m = 4,p =
1′5/5 and r ∈ {0.1, 1, 10}. These result confirm that stealing all is best when the
load is sufficiently high, while stealing half of the child jobs is good for systems
with a limited load.

6 Conclusions and future work

We introduced a model for randomized work stealing in multithreaded computa-
tions in large systems, where parent jobs spawn child jobs and where any number



16 G. Kielanski and B. Van Houdt

0 0.2 0.4 0.6 0.8 1
1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

0 0.2 0.4 0.6 0.8 1
1

1.05

1.1

1.15

1.2

0 0.2 0.4 0.6 0.8 1
1

1.05

1.1

1.15

1.2

1.25

Fig. 3: Example 3 with r = 0.1 (left), r = 1 (mid) and r = 10 (right).

of existing child jobs can be stolen from a queue per probe. We defined a QBD
Markov chain that approximates the behaviour of the system when the number
of servers tends to infinity. We showed the existence and uniqueness of a sta-
tionary distribution for this QBD, provided formulas for the waiting and service
times and provided a practical way of calculating expected service times. These
are the main technical contributions of the paper. Using numerical experiments
we examined the effect of changing the load ρ and the steal rate r. We concluded
that the stealing policy where the half of child jobs gets stolen every time is in
general a good stealing policy for higher values of r, while the strategy of stealing
all children performs best for low values of r. We concluded further that stealing
only one child performs the worst in most of the cases. Finally, using simulation,
we validated the accuracy of the QBD model.

Possible generalizations include stealing multiple parent jobs (up to some
finite amount) per probe and systems where offspring of a job can spawn further
offspring (multigenerational multithreading). One can also attempt to relax the
exponential service time requirements for child and/or parent jobs. This may be
challenging as this complicates several aspects of the model such as determining
the rates λc,j(r).
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A Model validation

Based on numerical experiments in the Section 5, we see that stealing all or half
of the children are good stealing policies: stealing all works best for low values
of r, while stealing half of the children works well for higher values. Therefore,
we validate the mean field model for the policy of stealing all or half of the
children. We always start the simulations from an empty system and simulate
the behaviour for T = 105 with a warm up period of 33% of T .

In Figure 4 we focus on the case where all children are stolen. The 95%
confidence intervals were computed based on 5 runs with N = 500 servers,
m = 4, µ1 = 1, µ2 = 2, ρ = 0.75, p = (1, 1, 1, 1, 1)/5 and r ∈ {1, 5}. We see that
there is an excellent match between the simulated waiting and service times and
those of the QBD model (calculated using Section 4).

http://doi.acm.org/10.1145/107972.107987
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Fig. 4: Waiting and response times from the QBD (blue dots) and simulations
(red dashed line) with confidence intervals for 5 runs.

In Table 2 we compare the relative error of the simulated mean response
time, based on 20 runs, to the one obtained from Section 4. We do this for
µ1 = 1, µ2 = 2, p = (1, 1, 1, 1, 1)/5, ρ ∈ {0.75, 0.85}, r ∈ {1, 10} and N ∈
{250, 500, 1000, 2000, 4000}.
The relative error in all cases is below 1.5% and tends to increase with the steal
rate r. Further, the relative error seems roughly to halve when doubling N , which
is in agreement with the results in [7].

Next we validate the model for the strategy of stealing half of the children
using the same simulation settings. In Figure 5, we see that there is an excellent
match between the simulated waiting and service times and those of the QBD
model. Similarly to Table 2, we see in Table 3 that the relative error is below
1.5% in all cases, tends to increase with the steal rate r and seems about halved
when doubling N .
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Table 2: Relative error of simulation results for E[T (r)], based on 20 runs

ρ = 0.75 ρ = 0.85
N sim. ± conf. rel.err.% sim. ± conf. rel.err.%

r = 1
250 3.7650 ± 1.08e-02 0.2986 5.5121 ± 3.08e-02 0.3386
500 3.7588 ± 6.98e-03 0.1334 5.5053 ± 1.62e-02 0.2157

1000 3.7568 ± 6.16e-03 0.0818 5.4980 ± 1.60e-02 0.0821
2000 3.7548 ± 3.28e-03 0.0283 5.4945 ± 8.76e-03 0.0197
4000 3.7541 ± 2.53e-03 0.0091 5.4953 ± 6.96e-03 0.0344
QBD 3.7537 5.4935

r = 10
250 1.7766 ± 2.11e-03 0.7247 2.1371 ± 6.32e-03 1.2816
500 1.7701 ± 1.53e-03 0.3553 2.1232 ± 3.96e-03 0.6249

1000 1.7671 ± 8.21e-04 0.1894 2.1165 ± 2.50e-03 0.3090
2000 1.7655 ± 7.12e-04 0.0957 2.1131 ± 1.88e-03 0.1454
4000 1.7646 ± 7.18e-04 0.0437 2.1119 ± 8.00e-04 0.0878
QBD 1.7638 2.1100
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Fig. 5: Waiting and response times from the QBD (blue dots) and simulations
(red dashed line) with confidence intervals for 5 runs.
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Table 3: Relative error of simulation results for E[T (r)], based on 20 runs

ρ = 0.75 ρ = 0.85
N sim. ± conf. rel.err.% sim. ± conf. rel.err.%

r = 1
250 3.9305 ± 1.45e-02 0.2392 5.8435 ± 2.91e-02 0.2830
500 3.9261 ± 1.26e-02 0.1271 5.8331 ± 1.68e-02 0.1045

1000 3.9231 ± 5.55e-03 0.0506 5.8288 ± 1.04e-02 0.0307
2000 3.9225 ± 4.63e-03 0.0353 5.8281 ± 1.33e-02 0.0187
4000 3.9219 ± 2.71e-03 0.0200 5.8279 ± 9.34e-03 0.0153
QBD 3.9211 5.8270

r = 10
250 1.7822 ± 2.34e-03 0.7748 2.1782 ± 5.92e-03 1.3017
500 1.7752 ± 2.00e-03 0.3790 2.1642 ± 3.21e-03 0.6506

1000 1.7720 ± 1.25e-03 0.1965 2.1576 ± 2.82e-03 0.3437
2000 1.7703 ± 8.84e-04 0.1007 2.1537 ± 1.82e-03 0.1623
4000 1.7695 ± 3.83e-04 0.0567 2.1520 ± 1.65e-03 0.0832
QBD 1.7685 2.1502
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