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ABSTRACT
The performance of flash-based solid state drives is greatly im-
pacted by the garbage collection algorithm. The d-choices garbage
collection algorithm, which selects a victim block with the fewest
number of valid pages among d randomly selected blocks, is known
to perform well in terms of the write amplification. However, the
number of erasures performed on a block may be quite unbalanced,
which reduces the lifespan of SSDs that can only tolerate a limited
number of erasures per block. This unequal wear is caused by the
hot/cold data separation used to achieve a low write amplification,
as blocks holding hot data tend to endure more erasures.

Methods to reduce this unequal wear often cause a significant
increase in the write amplification (which slows down the device).
In this paperwe propose a newmechanism that allows us to severely
reduce the unequal wear and thus improve the lifespan of the drive,
without a significant increase in the write amplification. In fact, in
many cases this mechanism even reduces the write amplification
(eliminating the trade-off between low write amplification and a
large lifespan altogether).

To assess the performance of this new mechanism we rely both
on a mean field model and simulation experiments.
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1 INTRODUCTION
Flash-based solid state drives (SSDs) contain several flash packages
and each such package is organized as an array of blocks. Each
block spans a fixed number of pages b and each page is either in the
erase, valid or invalid state. Any I/O operation reads or writes a full
page. While read operations are fast and can be performed at all
times, a write is more time consuming and can only be performed
on a page if the page is in the erase state (and changes the state of
the page to valid). Erase operations occur on a block level, meaning
in order to erase a specific page on a block, all the other pages on
the same block must be erased as well. As a result SSDs perform
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out-of-place writes, meaning new data does not overwrite the page
where the data was stored (as this would require an erase operation),
but is written elsewhere and the SSD controller maintains a table
that maps the logical to physical page numbers. At any point in
time some of the blocks are marked as special blocks and all new
data is written to the special blocks. When a special block runs
out of pages in the erase state, it becomes a regular block. The
garbage collection (GC) algorithm is responsible for creating the
special blocks and when invoked the GC algorithm selects a so-
called victim block. This victim block is erased and becomes a new
special block. Any valid pages on the victim block must be written
elsewhere before the block can be erased. Hence, the GC algorithm
performs internal writes not requested by the host system. As these
writes slow down the device, the ratio between the total number
of writes and the number of writes requested by the host, termed
the write amplification (WA), forms an important SSD performance
measure.

A lot of attention has gone to studying the impact of the GC
algorithm on the WA [3, 7, 11, 13, 15, 17, 19–21]. In case of uniform
random writes the greedy GC algorithm (that always selects the
block with the fewest number of valid pages) is optimal [23], but
this is no longer the case in general. A popular GC algorithm is the
d-choices GC algorithm that selects a block with the fewest number
of valid pages among a set of d randomly selected blocks. If some of
the logical pages (called the hot pages) are written more frequently
than the remaining set of logical pages (called the cold pages), the
WA can be reduced significantly by identifying and subsequently
separating the cold and hot pages (such that any block contains
either hot or cold pages) [5, 6, 10, 16]. This can be achieved using
two types of special blocks: a first to support hot page writes and a
second to support cold page writes.

Although hot/cold data separation is very effective to reduce
the write amplification, blocks that store hot data for a long period
of time experience far more erase operations compared to blocks
that contain cold data. This is due to the fact that the victim block
selected by the GC algorithm is more likely to be a block that stores
hot pages as hot pages are invalidated faster. While the number
of erase operations that a block can endure may be high in some
SSDs, blocks on many contemporary SSDs can only sustain as
few as several thousand erase operations [9, 12]. Blocks that are
erased too often can no longer guarantee the required data retention
times. Thus to improve the endurance of the drive, wear leveling
techniques have been developed that aim at reducing the variability
in the number of erasures that a block has experienced [4, 8, 14].
These techniques however often have a negative impact on the
WA. For instance, the dual pool algorithm of [4] simply exchanges
the content of a hot and a cold block at certain times. While such
exchange operations tend to level the wear, exchanging the valid
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pages of two blocks clearly increases the number of internal write
operations and thus the write amplification.

In this paper we revisit the setting considered in [21] and [22],
where the performance of the d-choices GC algorithm was studied
in the presence of hot and cold data. While [21] indicated that the
d-choices GC algorithm can achieve a low WA in the presence of
hot and cold data; simulation results in [22] showed that the wear
can be quite unequal (especially as the hot data gets hotter) and
this reduces the lifespan of the drive considerably. To avoid this
reduced lifespan, we propose a new mechanism in this paper, called
the HCWF(swap) write mode, that results in a much more balanced
wear. Furthermore contrary to existing wear leveling algorithms
(such as the dual pool algorithm [4]), this mechanism does not result
in a significant increase in the WA. In fact in many cases it even
slightly reduces the WA. An attractive feature of our mechanism,
which also distinguishes it from other existing methods, is that
there is no need to maintain erase counters.

The paper is structured as follows. We start by introducing some
SSD basics as well as the new HCWF(swap) write mode in Section 2.
The mean field model used to assess the WA of this new write mode
as well as the validation of this model is presented in Section 3. In
Section 4 we use this mean field model to show that this new write
mode reduces the WA somewhat in most cases. Simulation results
that illustrate large improvements with respect to the unbalanced
wear and the lifespan of the drive are presented in Sections 5 and 6,
respectively. Conclusions are drawn and future work is discussed
in Section 7.

2 SYSTEM OPERATION
2.1 Some SSD basics
As stated before, a flash package is organized as an array of blocks
that each span b pages. A page is in the erase, valid or invalid state.
At any point in time one or more of the blocks are marked as a
special blocks1, called the write frontiers (WFs). A write to a logical
page involves the following 3 steps: (i) the page is written to a page
on one of the WFs that is in the erase state, thereby changing the
state of this page to valid, (ii) the map maintained by the controller
is updated, (iii) the physical page that was mapped to the logical
page before the write occurred is marked as invalid.

When the b pages of a WF are full (that is, none are in the erase
state), the garbage collection (GC) algorithm selects a so-called
victim block and this block will become a new WF. The valid pages
on the victim block are temporarily moved (to RAM) such that
the victim block can be erased and are copied back afterwards2.
If the GC algorithm selected a victim block with j valid pages, j
internal write operations are performed on the new WF. These
internal writes are then followed by b− j external writes (i.e., writes
triggered by the host system) that fill the new WF. As such the
write amplification (WA) can be computed as b divided by b minus
the mean number of valid pages on a victim block. Hence, in order

1A flash package may be composed of multiple dies that each contain several planes,
where each plane is organized as an array of blocks that uses its own set of special
blocks.
2In an actual device the copy operation to RAM is avoided using a single free block.
When GC is performed, the victim becomes the new free block and the free block
becomes a new WF.

to achieve a lowWA, the mean number of valid pages on the victim
block should be low.

To guarantee that a certain fraction Sf of the physical pages
is either in the erase or invalid state at all times, SSDs use over-
provisioning. This means that the size of the physical storage space
exceeds the size of the logical storage space. If we denote Nloд
as the number of logical blocks on the SSD and N > Nloд as the
number of physical blocks, then 1 − Nloд/N is called the spare
factor Sf .

In the next section we discuss the manner in which the WFs are
used and selected by the GC algorithm.

2.2 Write modes and victim block selection
We start by discussing the HCWF approach studied in [21, 22],
which is closely related to [5] in the sense that it uses two write
frontiers: one for the cold and one for the hot pages:

Hot/Cold Write Frontier (HCWF). One block is labeled the hot
write frontier (HWF) and another the cold write frontier (CWF) at
all times. New hot (cold) data is sequentially written to the HWF
(CWF). All the remaining blocks are marked as either hot or cold at
all times, depending on whether the block was last used as a HWF
or CWF. The initial marking of the blocks (when the drive is empty)
is irrelevant. If the HWF becomes full the GC algorithm selects a
block, called the victim block. Assume the victim block contains j
valid pages, while the CWF has k pages in the erase state when the
GC algorithm was invoked.

• If the victim block was marked hot, the j valid pages are
copied back to the victim block after its pages have been
erased and the victim block becomes the new HWF.

• If the victim block was marked cold and k ≥ j, the j valid
pages are copied to the CWF and the victim block becomes
the new HWF (which contains b pages in the erase state) and
is labeled hot. Otherwise if k < j , k of the j valid pages of the
victim block are copied to the CWF, the remaining j−k pages
are written back to the victim block after its pages have been
erased and the victim block becomes the new CWF.

In the latter case (i.e., the victim block is marked cold and k < j),
the GC algorithm is immediately invoked again in search of a new
HWF. Finally, when the CWF becomes full, instead of the HWF,
the system operates as above if we exchange the terms hot and cold.

A key feature of the HCWF solution is that it dynamically dis-
tributes the spare fraction Sf among the hot and cold data partition
(formed by the hot/cold block markings) and blocks can move from
one partition to the other. As stated in the introduction some blocks
may remain hot for long periods of time which hurts the endurance
of the drive. To mitigate this we propose the HCWF(swap) write
mode. This mode aims at performing occasional swap operations
between hot and cold blocks without causing additional internal
writes.

Hot/Cold Write Frontier with swap (HCWF(swap)). This write
mode operates very similarly to the HCWF mode, except in the
following case. Assume the HWF is full, a cold block is the victim
and not all the valid pages on the victim block can be copied to
the CWF. In case of the HCWF mode the victim becomes the new
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CWF (which involves copying part of the valid pages to the old
CWF, erasing the block and rewriting the remaining valid pages)
and would trigger the GC algorithm again. Under the HCWF(swap)
mode we postpone erasing the victim block and instead select a
second victim block, which is forced to be a hot block (see further
for details). Thus, we now have two victim blocks: one cold and
one hot block. We now remove the valid pages from the cold victim,
erase it and copy the valid pages of the hot victim to this block and
this (previously cold) victim block becomes the new HWF. Next
we erase the hot victim block and copy the valid pages that were
stored on the cold victim to this block, which now becomes the
new CWF. In this manner a cold block became hot and vice versa
without performing an additional costly swap operation. A similar
modification is made when the CWF is full, a hot block is the victim
and not all the valid pages can be copied to the HWF.

Victim block selection. Whenever the GC algorithm is triggered
to select a victim block we make use of the d-choices GC algorithm.
Thus the victim block is a block holding the least number of valid
pages among a set ofd randomly selected blocks. The only exception
to this rule is when a second victim block is selected under the
HCWF(swap) write mode. In this case, if the first victim block is
cold, a hot victim is selected by picking a block with the least
number of valid pages among d∗ randomly selected hot blocks (and
similarly when the roles of hot/cold are reversed).

3 MEAN FIELD MODEL FOR HCWF(SWAP)
3.1 Model description
In this section we adapt the mean field model of [21] used to as-
sess the write amplification of the HCWF write mode, such that
it can be used to assess the write amplification of the newly de-
fined HCWF(swap) write mode. As in [7, 20, 21], we consider non-
uniform random writes modeled by the hot/cold data model of
Rosenblum [18]. In this simple model a fraction f of the logical
address space is termed hot and the remaining pages are termed
cold, while the logical page numbers of consecutive write requests
are independent and the probability that a hot page is requested
equals r .

We observe the system consisting of N blocks prior to any call to
the GC algorithm and prior to any write request. Let XN

n (t) ∈ S =
{0, . . . ,b} denote the number of valid pages in blockn ∈ {1, . . . ,N }

and YN
n (t) ∈ {h, c} reflect whether this block is labeled hot (h) or

cold (c) at the t-th point of observation (i.e., the t-th time the GC
algorithm is invoked or a write request is received).

LetMN (t) be the occupancy measure of XN
n (t) and YN

n (t), that
is,MN (t) = {MN

z,i (t)|z ∈ {h, c}, i ∈ S}, while

MN
z,i (t) =

1
N

N∑
n=1

1[XN
n (t) = i,YN

n (t) = z],

for z ∈ {h, c} and i ∈ S . In other words, MN
h,i (t) (M

N
c ,i (t)) is the

fraction of the total number of blocks N that are labeled hot (cold)
and contain i valid pages. To ease the notation we refer to such
blocks as type (z, i) blocks.

In [21] JN (t) ∈ Ω = {(k, l)|0 ≤ k, l ≤ b}\{(b,b)} represented
the number of pages written so far in the HWF and CWF. For the
HCWF(swap) approach this does not provide us with sufficient

information as we need to be able to distinguish between two cases
if one of the WFs is full. In the first case a WF just became full
(either by an external or internal write) and the victim block will be
selected by picking d random blocks. In the second case one of the
WFs is full, GC was just triggered, but the victim block was of the
other type and not all of the valid pages on the victim block could be
moved to the other WF (due to a lack of space). In this case the GC
algorithm will be executed again and will select d∗ blocks. In order
to separate these cases we extend Ω to Ω+ = Ω ∪ {(b + 1, l)|0 <
l < b} ∪ {(k,b + 1)|0 < k < b}, where the state (b + 1, l) represents
the situation where the HWF is full, l (cold) valid pages for which
there was no room left in the CWF remain on the victim block and
the GC algorithm will be triggered again to select another victim
block by picking d∗ hot blocks (i.e., we are in the second case). State
(k,b + 1) is defined similarly for a full CWF. As a result the GC
algorithm is executed at the t-th point of observation if JN (t) ∈ Ω+

is of the form (b, l), (b + 1, l), (k,b) or (k,b + 1).
It is easy to see that with this change in the range of JN (t),

the process {(MN (t), JN (t)), t ∈ N} is a Markov chain for the
HCWF(swap) write mode under the Rosenblum data model. As
a direct analysis of this Markov chain appears infeasible, we rely on
a mean field model by defining M̄N (τ ) as the re-scaled process such
that M̄N (t/N ) = MN (t), for t ∈ N and M̄N (t) affine in [t/N , (t +
1)/N ]. Using the mean field framework presented in [1], one can
show that the limit process of (M̄N (t)) as N tends to infinity is a
deterministic process ®µ(t), the evolution of which is captured by
the set of ODEs given by (1). In other words, for N large and finite t ,
we can approximateMN (t) by ®µ(t/N ), which is the unique solution
of (1) with ®µ(0) = ®m (whereMN (0) converges in probability to ®m).

The mean field model is defined by means of the deterministic
process ®µ(t) = {µz,i (t)|z ∈ {h, c}, i ∈ S}, the evolution of which is
given by the following set of ODEs:

d ®µ(t)

dt
= ®F (®µ(t)), (1)

with

®F ( ®m) =
∑

(k ,l )∈Ω+
πk ,l ( ®m) ®f ( ®m,k, l)

where the drift ®f ( ®m,k, l) = { f(z,i)( ®m,k, l)|z ∈ {h, c}, i ∈ S} is
defined below and ®π ( ®m) = {πk ,l ( ®m)|(k, l) ∈ Ω+} is the invariant
probability vector of K( ®m), where K( ®m) = limN→∞ KN ( ®m) and
(KN ( ®m))i , j = P[JN (t + 1) = j |JN (t) = i,MN (t) = ®m], with i, j ∈
Ω+. The entries of K( ®m) are described in detail further on.

When the GC algorithm is executed it either selects a block
with the least number of valid pages among a set of d randomly
selected blocks as the victim, or selects a blockwith the least number
of valid pages among a set of d∗ blocks that are either all hot
or all cold (depending on which WF is full). Given that the GC
algorithm is executed while the cooupancy vector equals ®m, we
denote the probability that the GC algorithm selects a type (z, i)
block as pz,i ( ®m) in the first case and as qz,i ( ®m) in the latter case
when the d∗ selected blocks are of type z. Hence we have

pz,i ( ®m) =


( b∑
s=i

ms

)d
−

( b∑
s=i+1

ms

)d 
mz,i

mi
,
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ifmi > 0 (and zero otherwise), wheremj =mh, j +mc , j for j ∈ S ,
as all the selected blocks must contain at least i valid pages, but not
all should contain i + 1 and ties are broken randomly. Similarly

qz,i ( ®m) =


( b∑
s=i

mz,s

)d∗

−

( b∑
s=i+1

mz,s

)d∗ 
/ ( b∑

s=0
mz,s

)d∗

.

Note that
∑b
i=0 qz,i ( ®m) = 1 for z = h and z = c . For further use

define pz,i+( ®m) =
∑
s>i pz,s ( ®m).

The drift f(z,i)( ®m,k, l) represents the expected change in the
number of type (z, i) blocks in between two points of observation
given that the occupancy measure equals ®m and the state of theWFs
is (k, l) ∈ Ω+ at the first point of observation. The drift is identical
as in [21] whenever k, l < b + 1 (and we refer to [21] for a detailed
discussion). When k = b + 1 a type (h, i) block is selected with
probability qh,i ( ®m), which implies that the number of type (h, i)
blocks reduces by one and the number of type (h,b) blocks increases
by one (which implies no change if the victim block contains only
valid pages). We therefore have (wheremh,b+1 = mc ,b+1 = 0 to
ease the notation)

fh,i ( ®m,k, l) = (2)

r
(i+1)mh,i+1−imh,i

bρf k < b, l < b,

−ph,i ( ®m) i < b,k = b or l = b,
1 − ph,b ( ®m) − pc ,(b−l )+( ®m) i = b,k = b,
ph,(b−k )+( ®m) − ph,b ( ®m) i = b, l = b,
−qh,i ( ®m) k = b + 1, i < b,
1 − qh,b ( ®m) k = b + 1, i = b,

and similarly one finds

fc ,i ( ®m,k, l) = (3)

(1 − r )
(i+1)mc ,i+1−imc ,i

bρ(1−f ) k < b, l < b,

−pc ,i ( ®m) i < b,k = b or l = b,
1 − pc ,b ( ®m) − ph,(b−k )+( ®m) i = b, l = b,
pc ,(b−l )+( ®m) − pc ,b ( ®m) i = b,k = b,
−qc ,i ( ®m) l = b + 1, i < b,
1 − qc ,b ( ®m) l = b + 1, i = b,

with ρ = 1 − Sf .
We now discuss the changes required in the transition probability

matrix K( ®m) compared to [21]. Note that due to the extra states
with k or l equal to b + 1, K( ®m) is now a size b(b + 4) − 2 matrix
instead of a size b(b + 2) matrix. Let (k, l) ∈ Ω+ be the state of the
WFs at time t and (k ′, l ′) ∈ Ω+ the state at time t +1. The transition
probabilities for the HCWF(swap) write mode are given by

K( ®m)(k ,l ),(k ′,l ′) = (4)



r k < b,k ′ = k + 1, l = l ′ < b,
1 − r l < b, l ′ = l + 1,k = k ′ < b,
ph,k ′( ®m) k = b,k ′ ≤ b, l = l ′ < b,
pc ,k ′( ®m) l = b, l ′ ≤ b,k = k ′ < b,
pc ,l ′−l ( ®m) k = b,k ′ = 0,b ≥ l ′ ≥ l,
ph,k ′−k ( ®m) l = b, l ′ = 0,b ≥ k ′ ≥ k,
pc ,b−l+l ′( ®m) k = b,k ′ = b + 1, 0 < l ′ ≤ l,
ph,b−k+k ′( ®m) l = b, l ′ = b + 1, 0 < k ′ ≤ k,
qh,k ′( ®m) k = b + 1, l = l ′,k ′ ≤ b,
qc ,l ′( ®m) l = b + 1,k = k ′, l ′ ≤ b,
0 otherwise .

The first eight cases are as in [21], except that the new state (k ′, l ′)
in case seven and eight equals (b + 1, l ′) and (k ′,b + 1) respectively,
as in these cases a new victim block will be selected next by picking
d∗ blocks that are all hot (in case seven) or all cold (in case eight).
Case nine and ten are new and make use of the probabilities qz,i ( ®m)

as the GC algorithm selects d∗ blocks.

3.2 Fixed point computation
While the framework in [1] allows us to show that the sample paths
of the sequence of Markov chains converge to the unique solution
of the set of ODEs given by (1) over any finite time interval [0,T ],
this does no necessarily imply that the convergence extends to the
stationary regime, unless we can show that the set of ODEs has a
fixed point that is a global attractor. Proving global attraction is
beyond the scope of the current paper and is still an open problem
even for the most basic mean field model used to assess the write
amplification in SSDs under uniform random writes [19]. Hence
similar to prior work, we compute a fixed point, use this to compute
the write amplification and validate its accuracy using simulation.

We determine a fixed point ®ν = {νz,i |z ∈ {h, c}, i ∈ S} by
solving the ODE numerically using Euler’s method. While the write
amplificationWA could be expressed purely in terms of b and the
probabilities pz,i (®ν ) in [21], we now need to take into account that
a GC call sometimes samples d random blocks and at other times
samples d∗ hot (or cold) blocks. Recall that we observe the system
just prior to any external write and any GC call. GC calls occur in
state (k, l) ∈ Ω+ where either k or l is at least b. Hence

pGC (®ν ) =
b−1∑
s=0

(πb ,s (®ν ) + πs ,b (®ν )) +
b−1∑
s=1

(πb+1,s (®ν ) + πs ,b+1(®ν )),

is the probability that we observe the system just prior to a GC
call, with πk ,l (®ν ) entry (k, l) of the invariant probability vector
π (®ν ) of K(®ν ). Further pGC ,d (®ν ) =

∑b−1
s=0 (πb ,s (®ν ) + πs ,b (®ν ))/pGC (®ν )

is the probability that a GC call samples d blocks, pGC ,d∗,h (®ν ) =∑b−1
s=1 πb+1,s (®ν )/pGC (®ν ) the probability that a GC call samples d∗

hot blocks and pGC ,d∗,c (®ν ) =
∑b−1
s=1 πs ,b+1(®ν )/pGC (®ν ) the probabil-

ity that a GC call samples d∗ cold blocks. Using these probabilities
we can express the write amplification as

WA =
b

b −
∑b
j=0 j

∑
z=h,c (pGC ,d (®ν )pz, j (®ν ) + pGC ,d∗,z (®ν )qz, j (®ν )

,

(5)

as the sum represents the average number of valid pages on a block
selected by the GC algorithm and a new HWF or CWF is only
selected when full.
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b Sf d/d∗ r/f ODE simul. (95% conf.)
64 0.15 4/1 0.96/0.24 3.1669 3.1674 ±0.0001
64 0.12 9/10 0.81/0.08 2.5600 2.5604 ±0.0001
64 0.09 12/5 0.94/0.02 1.6543 1.6542 ±0.0001
64 0.06 5/2 0.86/0.13 5.0861 5.0840 ±0.0003
32 0.15 15/40 0.8/0.07 2.1307 2.1312 ±0.0001
32 0.12 50/8 0.77/0.2 3.3725 3.3723 ±0.0002
32 0.09 3/1 0.92/0.12 3.7314 3.7302 ±0.0001
32 0.06 8/15 0.88/0.03 2.5401 2.5399 ±0.0003
16 0.15 4/100 0.8/0.05 1.8939 1.8943 ±0.0001
16 0.12 20/30 0.95/0.15 2.1511 2.1515 ±0.0001
16 0.09 6/3 0.7/0.2 4.2686 4.2670 ±0.0002
16 0.06 10/1 0.9/0.1 3.5805 3.5803 ±0.0002

Table 1: The write amplification for the HCWF(swap) ap-
proach: ODE-based results versus simulation experiments
for a system with Nρ = U = 10, 000 blocks for various pa-
rameter settings. Relative errors are less than 0.1%.

Euler’s method may require several thousand iterations to deter-
mine a fixed point. During each iteration the drifts ®f ( ®m,k, l) for all
(k, l) ∈ Ω+ must be computed and we need to determine the steady
state probability vector π ( ®m) of K( ®m) for some vector ®m. Due to the
size of the matrix K( ®m), each iteration would require O(b6) time
when using standard methods to compute π ( ®m).

To speed up the computation we can proceed in a manner similar
to [21] by noting that the drifts given by (2) and (3) do not depend
on k, l whenever k, l < b. Thus if we denote the drift with k, l < b
as f ( ®m, < b), then F ( ®m) can be written as

®F ( ®m) =
∑

(k ,l )∈Ω+
≥b

πk ,l ( ®m) ®f ( ®m,k, l)

+
©­­«1 −

∑
(k ,l )∈Ω+

≥b

πk ,l ( ®m)
ª®®¬ f ( ®m, < b),

where Ω+
≥b is the subset of Ω+ containing the 4b − 2 states with

min(k, l) ≥ b. Thus, it suffices to compute the 4b − 2 steady state
probabilities πk ,l ( ®m) with (k, l) ∈ Ω+

≥b . This can be done in O(b4)
time using similar ideas as in [21].

3.3 Model validation
To validate the mean field model, the write amplification for
the HCWF(swap) approach computed based on (5) is compared
to the write amplification obtained by simulating the Markov
chain {(XN

n (t),YN
n (t))n=1, ...,N , J

N (t)), t ∈ N}, with 10, 000 logi-
cal blocks (meaning, Nρ = 10, 000). Table 1 presents the results
for various choices of b, d , d∗, r , f and Sf . It illustrates an excel-
lent agreement between the mean field model and simulation with
relative errors below 0.1%. The 95% confidence intervals in Table
1 were computed based on 5 simulation runs, each consisting of
600, 000, 000 write requests with a warm-up period of 1, 000, 000
requests.

case 1 2 3 4
d∗ = 1 2.3626 3.8305 3.7314 3.0869
d∗ = 2 2.2602 3.5920 3.2453 2.8005
d∗ = 4 2.1921 3.4329 2.9638 2.6411
d∗ = 8 2.1553 3.3725 2.8269 2.5680
d∗ = 16 2.1382 3.3733 2.7663 2.5383
d∗ = 32 2.1316 3.3932 2.7394 2.5267
d∗ = 64 2.1299 3.4138 2.7266 2.5219
d∗ = 128 2.1299 3.4319 2.7202 2.5196

Table 2: The write amplification for the HCWF(swap) ap-
proach: impact of d∗ for the 4 cases in Table 1 with b = 32.

4 WRITE AMPLIFICATION OF HCWF(SWAP)
Before we compare the WA of the HCWF(swap) and the HCWF
mode, we perform some experiments to shed some light on the
impact of d∗. Intuitively it may seem that increasing d∗ should
always improve performance as we are selecting a victim block
among d∗ blocks that are all of the same type (being hot or cold).
Table 2 shows the impact of d∗ on the WA for increasing values
of d∗ for the four cases with b = 32 listed in Table 1. While the
WA does decrease as d∗ increases in three of the four cases, the
second case indicates that this is not necessarily true in all settings.
In case 2 of Table 2 the value of d is far from optimal and additional
experiments (not shown) suggest that if d is close to optimal, the
WA does appear to decrease as d∗ increases. For the remainder of
this section we set d∗ = 100 unless otherwise stated, keeping in
mind that this may not be optimal.

In Figure 1 we compare the WA of the HCWF and the
HCWF(swap) write mode (for b = 32 and Sf = 0.08 as in [21]).
In subfigures 1a and 1b the value of d∗ equals 100. In this case we
see that the HCWF(swap) write model outperforms the HCWF for
nearly any choice of d (except when r = 0.8, f = 0.025 and d ex-
ceeds 15). More importantly, the HCWF(swap) write mode achieves
a lower minimum (marked with a star) than the HCWF write mode
and the WA of the HCWF(swap) write mode is far less sensitive
to the value of d . Even for d = 2 or 3 the WA is not too far from
optimal, which is in stark contrast to the HCWF write mode.

Subfigure 1c is identical to 1b, except that we lowered d∗ to 1 in
the HCWF(swap) write mode. We can see that this increases the
WA for all d . Nevertheless for small choices of d HCWF(swap) is
still superior to HCWF, while for larger d values both write modes
perform somewhat similar with the HCWF being the better of the
two.

5 PROGRAM-ERASE FAIRNESS OF
HCWF(SWAP)

We refer to the number of times that a block has been erased as
the number of Program-Erase (PE) cycles that were performed on
a block. LetWmax reflect the number of PE cycles that a block can
tolerate without jeopardizing its required data retention time. In
[22] the PE fairness measure was defined as the mean number of
PE cycles performed on a block before any block reachesWmax PE
cycles divided byWmax . More formally, if Yk denotes the number
of times the GC algorithm is invoked before any block is erased for
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Figure 1: Write amplification of HCWF versus HCWF(swap) as a function of d for various f and d∗ values with b = 32 and
Sf = 0.08.

the k-th time, then the PE fairness is given by

PEf (Wmax ) =
∑
n≥1

P[YWmax = n]
n/N

Wmax
=

E[YWmax ]

WmaxN
,

as after n GC calls the mean number of PE cycles performed on
a block part of a set of N blocks equals n/N . The PE fairness is
clearly between 0 and 1 and the main purpose of a wear leveling
mechanism is to increase the PE fairness.

The HCWF write mode separates the hot from the cold pages
and this significantly reduces the WA [21] as the GC algorithm is
more likely to select a victim block containing fewer valid pages.
However, if a set of hot logical pages resides a long time on the
same set of physical blocks, these blocks endure many PE cycles
and this significantly lowers the PE fairness, which in turn hurts
the SSD endurance. Simulation experiments in [22] showed that the
PE fairness under the HCWF write mode drops sharply as the hot
data becomes hotter and values as low as 0.5 forWmax = 5000 are
not uncommon. One approach to improve the PE fairness would
be to perform occasional swaps between a hot and a cold block (as
proposed in [4]), but this would result in many additional internal
writes, which implies an increased WA.

Instead we suggest to use the HCWF(swap) write mode. In
the previous section we already indicated that although the
HCWF(swap) write mode also occasionally swaps the data between
a hot and cold block, it does so without increasing the WA (in
fact the WA even slightly decreased in most cases). In Figure 2a
and 2b we plot the PE fairness as a function ofWmax for various
combinations of d and d∗. These figures were generated using 50
simulation runs. We note that setting d∗ = 100 slightly increases
the PE fairness compared to setting d∗ = 1. We also performed
additional experiments with other d values and d∗ = 2, 5, 10 and
30 (not shown) and these suggest that in general the PE fairness
increases very slightly as d∗ increases. Intuitively this makes sense
as we expect that the mean time that a block has remained hot (or
cold) slightly increases as the number of valid pages that it contains
decreases and it is preferential to perform a swap on a block that has
remained hot (or cold) for a longer period of time. Thus, larger d∗
values result in a better PE fairness, but the impact of d∗ on the PE
fairness is very limited. With respect to the impact of d , Figure 2a

and 2b may give the impression that smaller d values yield a better
PE fairness (as was observed for the HCWF in [22]). While this is
true for the most part, the PE fairness decreases again if d is set
too small. For instance setting d = 1 in Figure 2a and 2b decreases
the PE fairness (we left the curves for d = 1 out to improve clarity).
We further note that achieving a high PE fairness is harder as the
hot data becomes hotter and it is therefore expected that the PE
fairness is higher for r = 0.9 when compared to r = 0.99 (with
f = 1 − r ).

To illustrate the effectiveness of the HCWF(swap) write mode
we also added the same PE fairness curves for the HCWF write
mode in Figure 2c (taken from [22]). Comparing Figures 2a and 2b
with Figure 2c clearly indicates that the HCWF(swap) achieves its
intended purpose of significantly increasing the PE fairness of the
HCWF write mode, especially for larger d values.

6 ENDURANCE OF HCWF(SWAP)
Themain reason for striving for a better PE fairness is to increase the
lifespan of the drive. Recall that the lifespan of a drive is determined
by the number of PE cycles that a block can endure. If a block is
erased too often it can no longer guarantee that its data can be
retained for long periods of time. To measure the lifespan, the SSD
endurance (SSDe ) which equals the expected total number of host
writes performed before any block reaches the predefinedmaximum
numberWmax of PE cycles was proposed in [22]. Hence,

SSDe (Wmax ) =
E[

∑YWmax
j=1

∑b
i=0(b − i)P[X j = i]]

bN
,

whereX j reflects the number of valid pages on the j-th victim block.
Note that the unit used to express the SSD endurance is the total
number of Full Drive Writes (FDWs). This endurance definition is
the same as the one used in [2] for USB flash drives and in [14] for
SSDs.

Figures 3a and 3b show the SSD endurance for various choices of
d ,d∗ and r . Note that despite the fact that the PE fairness for r = 0.99
is less than for r = 0.9, we see a much higher SSD endurance due
to the fact that the WA decreases as the hot data gets hotter. We
further note that large d∗ values give a better endurance, while the
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Figure 2: PE fairness as a function of the maximum number of PE cycles with f = 1 − r , b = 32 and Sf = 0.10.
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Figure 3: SSD endurance as a function of the maximum number of PE cycles with f = 1 − r , b = 32 and Sf = 0.10.

optimal d value depends on the workload and tends to increase
with the hotness of the hot data.

More importantly, if we compare the SSD endurance of the
HCWF(swap) write mode with the HCWF write mode (depicted in
Figure 3c), we see a much higher endurance for the HCWF(swap)
write mode. This is especially true for r = 0.99, thus as the hot
data gets hotter we see a more pronounced improvement. This is
in agreement with our expectations as the WA of the HCWF(swap)
write mode is never far below that of the HCWF write mode, while
it has a much better PE fairness.

For completeness we also included the results for d = 1. In
case of the HCWF write mode with d = 1, all victim blocks are
selected uniformly at random and therefore both the fairness and
SSD endurance are not influenced by the workload characteristics
(i.e., r and f ). For the HCWF(swap) mode with d = d∗ = 1 we do
see a better SSD endurance as the GC algorithm is often forced to
select a random hot block (which tends to hold fewer hot pages)
which reduces the WA and therefore improves the SSD endurance.
The hotter the hot data, the more significant the SSD endurance
increases.

7 CONCLUSIONS
Wear leveling techniques on flash-based SSDs aim to reduce the
variance of the number of erase operations that a block has endured.
However, these techniques often require additional internal write
operations which further increase the write amplification. In this
paper we proposed the HCWF(swap) write mode and showed that
it is able to reduce the unequal wear without increasing the write
amplification. In fact, the new write mode even improves the write
amplification somewhat in many cases.

Regarding the parameters d and d∗ of the HCWF(swap) write
mode, we showed that setting d∗ large and d small offers good
performance both in terms of the lifespan of the drive and its write
amplification.

The numerical experiments presented in this paper relied on
synthetic workloads (of the Rosenblum type). We believe that our
insights remain valid for trace-based workloads and plan to look
into this next. We also intend to compare the HCWF(swap) write
mode with other existing wear leveling mechanisms and to investi-
gate whether the use of erase counters allow any further significant
improvements.
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