Performance Analysis of Workload Dependent Load
Balancing Policies

TIM HELLEMANS, TEJAS BODAS, BENNY VAN HOUDT, University of Antwerp, Belgium

Load balancing plays a crucial role in achieving low latency in large distributed systems. Recent load balancing
strategies often rely on replication or use placeholders to further improve latency. However assessing the
performance and stability of these strategies is challenging and is therefore often simulation based. In this
paper we introduce a unified approach to analyze the performance and stability of a broad class of workload
dependent load balancing strategies. This class includes many replication policies, such as replicate below
threshold, delayed replication and replicate only small jobs, as well as strategies for fork-join systems.

We consider systems with general job size distributions where jobs may experience server slowdown.
We show that the equilibrium workload distribution of the cavity process satisfies a functional differential
equation and conjecture that the cavity process captures the limiting behavior of the system as its size tends
to infinity.

We study this functional differential equation in more detail for a variety of load balancing policies and
propose a numerical method to solve it. The numerical method relies on a fixed point iteration or a simple
Euler iteration depending on the type of functional differential equation involved. We further show that
additional simplifications can be made if certain distributions are assumed to be phase-type.

Various numerical examples are included that validate the numerical method and illustrate its strength and
flexibility.

Additional Key Words and Phrases: Workload; Redundancy; Large Scale Computer Network; Differential
Equation; Fixed Point Equation; Load Balancing

ACM Reference Format:

Tim Hellemans, Tejas Bodas, Benny Van Houdt. 2019. Performance Analysis of Workload Dependent Load
Balancing Policies. Proc. ACM Meas. Anal. Comput. Syst. 3, 2, Article 35 (June 2019), 35 pages. https://doi.org/
10.1145/3326150

1 INTRODUCTION

Latency minimization is an important consideration in large scale data networks, server farms,
cloud and grid computing, etc. A key role in achieving low latency is played by the load balancer
responsible for distributing the jobs among the available servers. Popular load balancing schemes
include the join-shortest-queue among d randomly selected queues (JSQ(d)) [1, 5, 16, 22] and the
join-idle-queue (JIQ) [7, 15, 21] scheme. Under these schemes any incoming job is immediately
assigned to a single server in the system.

A recent trend to further reduce latency is to use redundancy, that is, to assign an incoming
job to multiple servers by distributing replicas of a job among the servers [2]. Initially this form
of redundancy was introduced to combat unexpected server slowdowns, that is, a short job may
suddenly experience an exceptionally long delay even if the server has low load. When redundancy

Author’s address: Tim Hellemans, Tejas Bodas, Benny Van Houdt, University of Antwerp, Middelheimlaan 1, Antwerp,
B-2020, Belgium, tim.hellemans@uantwerpen.be, tejaspbodas@gmail.com,benny.vanhoudt@uantwerpen.be.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2476-1249/2019/6-ART35 $15.00

https://doi.org/10.1145/3326150

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

https://doi.org/10.1145/3326150
https://doi.org/10.1145/3326150
https://doi.org/10.1145/3326150

35:2 Tim Hellemans, Tejas Bodas, Benny Van Houdt

is used, one can either cancel all remaining replicas as soon as one completes service [9] or as soon
as a replica starts service [4, 11]. The latter is useful to reduce the time that a job spends waiting in
the queue, but is less effective when servers are subject to unexpected slowdowns. Fork-join based
systems are another area where redundancy has been introduced to reduce latency [12, 13, 19]. In
a fork-join system, a task is subdivided into sub-tasks which are executed on different servers and
finally merged back as soon as the sub-tasks have been completed. Thus if one sub-task is delayed,
so is the complete task. By introducing redundancy it suffices that only a subset of the sub-tasks
complete.

To assess the performance of these load balancing schemes most prior work relied on mean-field
models, that is, studied the limiting behavior as the number of servers in the system becomes large
under the assumption of asymptotic independence (an assumption that is very hard to prove for
general service times, see [6]). In case of JSQ(d) and JIQ, where jobs are assigned immediately to a
single server, the stability condition is simple and the system state is fully captured by the queue
length at the different servers (plus the remaining job size in case of general job sizes). For systems
with redundancy such a state description no longer works and even the system stability becomes
complicated as replicas increase the actual workload and too much replication can easily lead to
system instability [19].

Most prior analytical work on systems with redundancy focused on the redundancy-d (Red(d))
policy which replicates incoming jobs on d randomly selected servers, where the remaining replicas
are either cancelled as the first replica starts or completes service. Product forms for the system
state of LL(d) resp. Red(d) under the assumption of exponential job sizes resp. exponential job sizes
and replicas that have independent sizes were presented in [4, 9]. Furthermore, in [3] a recent token
based framework to analyse product forms and relevant performance measures for a variety of
central queue based multi server models including LL(d) and Red(d) models was also introduced. A
mean-field model for Red(d) with cancellation on completion was developed in [9] for independent
replicas and in [10] for identical replicas. Red(d) with cancellation on start, which corresponds to
assigning the job to the least loaded server, was analysed in [11]. The stability issue of Red(d) with
cancellation on completion was avoided in [8] by the RIQ policy, which replicates incoming jobs
only on the idle servers among a set of d randomly selected servers (to mitigate the effect of server
slowdown). This also simplified the performance analysis somewhat as existing results on vacation
queues could be leveraged.

Another important contribution of [8] exists in introducing the S&X model. Under this model
any replica has the same inherent job size X, but the actual service time of a replica on a server
equals S times X, where S represents the slowdown that is assumed independent among replicas (as
it depends on the server). This model is clearly closer to reality than assuming that all the replicas
have independent job sizes (which is known to yield misleading insights such as more replication
always reduces response times).

While [11] and [10] studied two different systems with redundancy, both develop a mean-field
model that studies the evolution of the workload at a server. In this paper we show that a very
broad class of load balancing policies that rely on the workload information at a set of randomly
selected servers can be analysed in a unified manner. More specifically, using the cavity process
introduced in [5] we show that the workload distribution at a server is the solution of a functional
differential equation (FDE) under the assumption of asymptotic independence. We further study
this FDE for a variety of load balancing policies belonging to this class under the S&X model. These
include many load balancing schemes of practical interest for which no analytical method to assess
their performance existed so far. Examples include policies that use delayed replication, replicate
only on servers with a workload below some threshold, replicate only small jobs, replication in
fork-join queues, etc.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

Workload Dependent 35:3

The paper makes the following contributions:

(1) We define the cavity process for a broad class of workload dependent load balancing policies,
characterise its transient evolution and show that its equilibrium environment is the solution
of an FDE.

(2) We show that many practical load balancing policies fit within our class of workload depen-
dent policies and study their FDEs under the S&X model with general job size and slowdown
distributions.

(3) We propose different numerical methods to solve these FDEs, present numerical results
for both the stability and response times and validate the accuracy of our approach using
simulation.

(4) We demonstrate that the numerical method can be further simplified if some of the distribu-
tions are phase-type (PH).

With respect to the numerical method, we distinguish four different types of FDEs:

Type 1: Future independent policies with unknown system load.

Type 2: Future dependent policies with unknown system load.

Type 3: Future independent policies with known system load.
Type 4: Future dependent policies with known system load.

For each policy we obtain an FDE of the form F/(w) = T(F(u), u € A,,). For the future independent
policies we have A,, C [0, w] (Type 1, 3), which allows us to solve these policies using a simple
forward Euler scheme. For the future dependent policies A,, Z [0, w] (Type 2,4), for these policies
we rely on a fixed point iteration to obtain the equilibrium workload distribution. The second
distinction is made on whether or not the system load, F(0) is known (Type 3,4) or unknown (Type
1,2). When the load is unknown we use F(co) = 0 as a boundary condition, otherwise we simply
use the boundary condition on F(0). All code used to generate the figures used in the numerical
experiments can be found at https://github.com/THellemans/workload_dependent_policies.

The paper is organized as follows: in Section 2 we describe the model considered in this paper
in more detail. The terminology of the queue at the cavity is introduced in Section 3, we then
define some common notation in Section 4. This is followed by the analysis of the transient and
equilibrium behaviour of the queue at the cavity in Section 5. We then apply our general result to
many examples in Section 6. The equations for these examples are further studied when certain
random variables are PH distributed in Section 7. In Section 8 we propose a numerical method to
find the equilibrium distribution and the stability region from the results of Section 6 and 7. Results
that validate our approach are given in the Appendix, where we also elaborate on the redundancy
based policies in case there is no slowdown.

2 MODEL DESCRIPTION

We consider a generic power-of-d system consisting of N identical, infinite buffer servers which
serve jobs in a FCFS manner (here N is usually assumed to be large). Arrivals occur according
to a Poisson(AN) process and the service rate at each server equals one. Whenever a job arrives,
d distinct servers are chosen uniformly at random (with or without replacement). The job then
creates some (or possibly no) added work on each of the d chosen servers depending on the load
balancing policy used. The policy is chosen such that the added work (i.e. the actual arrival size)
solely depends on the workload at each of the chosen servers (and other variables, independent
of the chosen servers). For the load balancing policies considered in this paper, this added work
consists of either the arriving job, partial execution of the job or other overheads due to placeholders
as in the LL(d, k, §) policy studied in Section 6.5. We shall henceforth refer to this type of model as

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

35:4 Tim Hellemans, Tejas Bodas, Benny Van Houdt

a workload dependent load balancing policy. Note that for this model with finite N, the process
which only keeps track of the workload at each server, is a Markov process.

3 CAVITY PROCESS

We employ the cavity process methodology introduced in [5] to formulate a general method to
obtain the transient and equilibrium workload distribution for a workload dependent load balancing
policy in the mean-field regime. We first provide some intuition as to why the study of a queue
at the cavity might be of interest. Looking at the many server system, instead of attempting to
capture the global evolution of all N workload distributions, we single out one queue which we
will henceforth refer to as the queue at the cavity. It is not hard to see that, as arrivals occur at
rate AN and each arrival selects d queues, the queue at the cavity is selected with a rate equal to
Ad. Every time it is selected, we have to add some (or possibly no) work to it where the amount
of work depends on the workload of the d selected queues. As we are not keeping track of the
workload at any of the d — 1 other selected queues, we simply generate their workload as a random
variable which is independent of but identically distributed as the workload of the queue at the
cavity at the time of the arrival. This method is known to yield exact results as N — oo for some
policies (those for which Conjecture 3.5 holds) and can often be used as a good approximation for
sufficiently high values of N (see Appendix A.1)

In the cavity process method, potential arrivals occur according to a Poisson(Ad) process. When-
ever a potential arrival occurs, we create d — 1 random variables with the same distribution as
the queue at the cavity, add the actual arrival size to the queue at the cavity and discard these
d — 1 random variables again. Concretely: let Uy, ..., U; denote the (i.i.d.) workloads at the d
chosen servers just before the potential arrival, where w.l.o.g. U; represents the queue at the cavity.
Suppose we are given some additional random variables V1, . . ., V; (e.g., job size or server slowdown
variables) that influence the added work. Then, we denote by Q(Uy, . .., Uy, Vi, . .., V,) the random
variable which represents the new workload in the queue at the cavity U;. We call a potential
arrival to U; an actual arrival if and only if Q(Uy, . . ., Ug, Vi, . . ., V;.) > Uj. Note that while potential
arrivals occur according to a Poisson(Ad) process, the rate of actual arrivals strongly depends on
the chosen policy and is generally hard to compute. Furthermore, depending on the load balancing
policy, the actual arrival comprises of jobs that are either served completely at this server, jobs that
are partially executed at the server or even other overhead like fetching a job which is no longer
available. To illustrate what Q signifies, we present a few simple examples for policies which have
been studied before.

Example 3.1. Consider the LL(d) policy studied in [11], where an incoming job of a certain size
joins the least loaded server among d selected servers. In this case r = 1, V; = X is the job size
and Q(Uy, ..., Uy, X) isequal to Uy + X if U; < rnin?l:2 U; and it is equal to X with probability % if
U; = 0 for exactly m choices of j including j = 1. Otherwise Q(Uy, . .., Uy, X) = Uy.

Example 3.2. Two other examples are Red(d) with independent resp. identical replicas as studied in
[9] resp. [10], where an incoming job replicates itself onto d servers and experiences an independent
resp. identical service time on each server. The job is then cancelled as soon as one of the replicas
finishes. For the case of independent replicas, we have r = d and V; = X; where X;,i = 1,...,d are
the i.i.d. job size variables. In this case, we have Q(Uy, . .., Uy, X1, . . ., Xg) = max{Uj, minle{Ui +
X;i}}, indeed, a replica of the job finishes service by time min;.i:l{U,- + X;}. For the case when the
replicas are identical, we have r = 1 and V; = X where X is the job size. A replica finishes service
by time min?_ {U;} + X, which yields Q(Uy, . . ., Uz, X) = max{U;, min® {U;} + X}.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

Workload Dependent 35:5

Definition 3.3 (Cavity Process). Let H(t), t > 0, be a set of probability measures on [0, 00) called
the environment process. The cavity process UHON(t), t > 0, takes values in [0, o) and is defined
as follows. Potential arrivals occur according to a Poisson process with rate Ad. When a potential
arrival occurs at time ¢, the cavity process Uﬂ(')(t) becomes Q(Uﬂ(')(t—), U, ..., Ug, Vi, ..., V).
Here U, ..., Uy are d — 1 independent random variables with law H(t—), and V1, . . ., V;. are random
variables which are independent of the process U”)(-). The cavity process decreases at rate one
during periods without arrivals and is lower bounded by zero.

We now define the cavity process associated to the equilibrium environment process, which is
such that the cavity process itself has distribution H(t) at time t:

Definition 3.4 (Equilibrium Environment). When a cavity process UHC)(.) has distribution H(t)
for all t > 0, we say that H(-) is an equilibrium environment process. Further, a probability measure
H is called an equilibrium environment if H(t) = H for all t and UH()(t) has distribution H for all
L.

A modularized program for analyzing load balancing systems by using the cavity process method
was presented in [5]. In this program, one essentially needs to show asymptotic independence,
which allows to assume that the workloads at the different queues become independent random
variables and justifies that the behaviour of the entire system can be described by the behaviour of
the queue at the cavity. One then needs to find a defining equation for the equilibrium behaviour
of the queue at the cavity. This equation is given by (3) for our model. We use this equation to
study several workload dependent load balancing policies. As will become apparent further on,
all workload dependent load balancing policies which have been studied in the mean-field regime
thus far can be analysed using this approach.

The asymptotic independence between the different queues is something which is very difficult
to prove in general. Known proof techniques only exist for the LL(d) policy, the JSQ(d) policy
under decreasing hazard rate (DHR) service requirements and the fork-join system. We believe
that for the policies under consideration, the queues in the limiting regime satisfy this asymptotic
independence property and then proceed with applying the modularized program. The remarkable
accuracy between the performance measures obtained using our method and those obtained via
simulation (see Appendix A.1) supports our belief that the following conjecture holds:

CoNJECTURE 3.5. Consider a workload dependent load balancing policy with N servers (each
server has an FCFS discipline) as considered in Section 6 and assume this system is uniformly stable
for sufficiently large N. Then, in the large N limit, the system has a unique equilibrium workload
distribution under which any finite number of queues are independent. Moreover this equilibrium
distribution is given by the equilibrium distribution of the associated cavity process.

REMARK. The results in this paper characterize the queue at the cavity associated to workload
dependent policies. In case Conjecture 3.5 fails to hold for a policy, one can still analyse the associated
queue at the cavity regardless and this may be used as an (accurate) approximation for the actual
model.

4 NOTATION

For a random variable Y, we denote its cumulative distribution function (cdf) and complementary
cdf (ccdf) by Fy and Fy. Throughout, we assume all random variables Y used have no singular part
and can therefore be decomposed into a continuous Y, and a discrete part Y. Y, has a pdf fy, and
Y; can take values y,, with probability p,, where p, = P{Y; = y, } with /Om fr.(w)du+3,pp=11In

this case, for any function & : [0, c0) — R we have /Ooo h(u)dFy(u) = fom h(u) fy,(w) du+ 3., h(yn)pn.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

35:6 Tim Hellemans, Tejas Bodas, Benny Van Houdt

For ease of notation we write Q(Y) instead of Q(Y,Us,...,Uy, V4,...,V,) whenever the random
variables Uy, ..., Uy and Vi, .. ., V, are clear from the context. In words, given a workload of Y at
the cavity queue just before the potential arrival, Q(Y) indicates the effective workload in the cavity
queue after the potential arrival. The effective workload at a server is the actual work that will be
executed at the server and thus ignores jobs that were added to a queue and subsequently cancelled
without receiving any service. In most cases we have as Y the workload at the queue at the cavity
right before an arrival at time t: Y = U*)(t-) or the equilibrium workload distribution of the
queue at the cavity: Y = U, Furthermore both U*()(t—) and U™ will often be replaced by U; or
U.

We denote by f(t, -) the pdf for the workload of the queue at the cavity at time ¢, F(¢, -) its cdf
and F(t, -) its ccdf. In equilibrium, we drop the time dependence and simply denote the pdf, cdf and
ccdf by £(+), F(-) and F(-). For any workload dependent load balancing policy, we denote by R the
response time random variable for the queue at the cavity at equilibrium. This response time can
be found by generating d i.i.d. random variables Uy, . . ., Uy with distribution F and compute the
response time given these random variables as the workload at the d chosen queues. For example
for the LL(d) policy, if we let X denote a random variable which is distributed as the job size, one
finds that R = min?=l {U;} + X (many more examples can be found in Section 6).

5 MEAN-FIELD ANALYSIS
5.1 Transient Behaviour

We start with the transient behavior. Note that at each time ¢, the pdf of the workload of the queue
at cavity, i.e., f(t, -) integrates to _/000 f(t,u)du = F(t,0). As typically, F(¢,0) < 1 we have a point
mass at zero which is equal to F(t, 0). For the transient behaviour, we obtain the following Partial
Delayed Integro Differential Equation (PDIDE):

THEOREM 5.1. The workload of the queue at the cavity satisfies the following PDIDE:
af(t,w) of(t,w) _

_ w HOG-)) > w | UHO(12) = w
ey G = M fEWEQUT () > w [UT(-) = w)
— F(t,0)P{QUMO(t-)) = w | UNO(t-) = 0}
- / Wf(t, wWP{QUMO(t-)) = w | UMO(t-) = u}du] (1)
0
oF gt 0 _ -\ [F(t, 0P{QUMI(t-)) = w | UHO (1) = 0} + f(, o*)], (2)

forw >0, where f(t,w") = lim,,, f(t,v).

Proor. The proof is similar to the proof of Theorem 3.4 in [11] and is presented in Appendix
A4]

5.2 Equilibrium Environment

To compute the equilibrium distribution we need to take the limit t+ — oo, thereby leaving out the
dependence on t. In particular, we have % = 0. We now directly derive a Functional Differential

Equation (FDE) for the workload distribution from Theorem 5.1.

THEOREM 5.2. The equilibrium workload distribution of the queue at the cavity satisfies the following
FDE:

F'(w) = —AdP {UW <w,QU"M) > w} . (3)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

Workload Dependent 35:7

ProoF. For convenience we write U for UM). From (1) we readily obtain the following by
integrating w.r.t. w once:

F0) = f(w) = —Ad/ow [P{Q(U) >u,U =u}

-P{QU) =u,U =0} - /“ P{QU) =u,U = v} dv] du. (4)
0

The equality in (2) reduces to the boundary condition:
£(0) = 2dP{Q(0) > 0}F(0),
using the fact that F’(w) = — f(w) we obtain from (4):

F'(w) = -Ad [F(O)P{Q(O) >0} + / "B QWU) > wU = u) du]

+Ad/wP{Q(U):u,U:0}du+Ad/W/uP{Q(U):u,U:v}dvdu. (5)
0 o Jo

Note that the first line in (5) is the rate of all possible upward jumps of U after a potential arrival
when the workload in the cavity queue just before the potential arrival satisfies U € [0, w]. The
first term in the second line in (5) is the rate at which U jumps to somewhere below w when U = 0
at the time of a potential arrival. The last term in the second line in (5) is the rate at which U jumps
up to somewhere below w while U € (0, w]. The last two events are subsets of the first event and it
can be observed that the difference of these events is the rate at which the cavity process jumps to
a workload larger than w for U € [0, w]. This yields equality (3). O

REMARK. The left hand side of (3) is F'(w) = — f(w), where f(w) is the down-crossing rate through
w while the right hand side is minus the up-crossing rate through w.

6 LOAD BALANCING POLICIES

While our main result (Theorem 5.2) is applicable for any workload dependent load balancing
policy as described in Section 2, in this section we specialize this result for some practical workload
dependent policies. In many classic load balancing methods (like e.g. LL(d) and SQ(d)), a job is only
sent to one server and its processing time solely depends on the speed of that server. There are
however many load balancing policies, in particular those which employ some type of redundancy,
which use the processing power of multiple servers in order to complete service. In this case, the
question arises as to how one should treat the processing time at the different servers. Two popular
choices are to assume that the processing time at the chosen servers are independent (see e.g. [9])
or that the processing times are identical (see e.g.[10]). Recently the S&X model was introduced in
[8], this model is a combination of identical and independent replicas, each job has a size X which
is identical over all chosen servers and a slowdown S which is independent over the chosen servers.
In this section we analyse all considered policies in a setting which is a generalization of the S&X
model which we explain shortly. In this section, we also present various numerical results for these
policies to outline some important features. Simulation experiments that validate our approach can
be found in Appendix A.1 and A.2.

Each job has an inherent size X > 0 and on each of the servers a job replica experiences some
arbitrary slowdown denoted by the variable S;. Thus each arrival is defined by a random job size
variable X and d i.i.d. slowdown random variables Sy, .. ., S4. Using the notation of Section 5.1
wesetr =d+1,V; = S; and Vy,; = X. While the actual processing time of the i-th replica in
the S&X model of [8] then equals S; X, we consider a more general setting. We assume that there

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

35:8 Tim Hellemans, Tejas Bodas, Benny Van Houdt

exists some function g : [0, 00) X (0, c0) — (0, c0) which is non-decreasing in both components
such that if an arrival occurs, it has size g(S;, X) on the it" chosen server. For any s, x > 0, define
gx(s) = g(s, x) and assume it is a strictly increasing, continuous function. Note that in particular its
inverse exists and we assume the inverse is differentiable. In our numerical experiments we set
g(S,X) = X +S5X, where S and X are generally distributed random variables with X the inherent job
size and S the slowdown variable, such that the processing time cannot be less than X irrespective
of the slowdown.

Example 6.1. Consider the Red(d) policy where, at each arrival, the job is replicated on d
servers. Suppose the workload resp. the slowdown at each of the d servers is given by Uy, ..., Uy
resp. Si, . . ., Sqg and the job size is X. In this case we find that the workload U; is increased to:

d
Q) = max{Ul,m_iln{Ul- +9(S;, X)}.
Moreover, the response time is given by:
d
R= III_I{I{U, + g(SI,X)}

Before proceeding with the analysis of the different load balancing policies, we outline some
more notations used throughout the paper. For any sequence of random variables Y3, ..., Y, let
Y(x) denote its k’th order statistic such that Y(;) < ¥{3) < --- < Y{;), and ties are broken at random
(this is mainly used in the Appendix). In the S&X setting, we define R, = U + ¢x(S) as the sojourn
time of a job of size x if it is sent to a single server with workload U and slowdown S. In this case,
its ccdf is given by:

Fr.(w) = Fy (s)(w) + /0 F(u)fy.(s)(w—u)du

= Fs(gy'(w) + D F(w—w)P{Sq = g;"(w)}+

usw

/ Flw — u) s, (92) - (6")l .00y () dt ©)

0
where the second equality follows from the fact that the pdf of g.(S;) is given by f; (s.)(w) =
fs. (gt (w)) - (g;l)’(w)lgx([o,m))(w) (here I4(u) equals one if u € A and zero otherwise). Moreover
we denote by X = ¢(S, X) the job size distribution at a single server. Analogously to (6), we find for
Ry =U+X:

Fr (w) = Fy(w) + /0 F(u) fie(w — u) du,)

where the integral can again be split into a discrete and continuous part.

6.1 Type 1:Red(d,k,)

In this section, we analyse the redundancy based policy Red(d, k, §). Under this policy, an arriving
job of size k - X selects d servers uniformly at random and places an identical replica of size X
at each of the d servers. When any k of the d replicas have received service, the other redundant
replicas are cancelled. Additionally we assume that the cancellation of redundant replicas requires
a constant time § > 0. In other words, this means that once the k’th replica has been completed,
the other servers continue working on remaining replicas (if they happen to be in service at that
server) for a time §. We indicate how this policy is used in practice in Appendix A.3.1.

We now show that the FDE in Theorem 5.2 reduces to a Delayed Integro Differential Equation
(DIDE) without a boundary condition, meaning it is a Type 1 policy.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

Workload Dependent 35:9

0.94 5 —
——SCV =1/2 ——d=2,k=1
0.92 b |--%-8CV =1 P cexemd=4,k=2
o5V =2 P al|emd=6k=3
09l + SCV =3 »{,»#“2/0_ 000000 |
=
= 088l
& 0.88
£0.86"
<
0.84f
0.82f
0.8 0 . .
0 0.2 0.4 0.6 0.8 1 0 0.2 04 06 0.8
1 X k- E[X]

(@) AmaxE[X] versus q for different slowdown (b) E[R] versus the occupancy for different val-
distributions,d = 2 and k = 1. ues of d, k with d/k = 2.

Fig. 1. Numerical examples: Red(d, k, 9)

PROPOSITION 6.2. For the Red(d, k, §) policy, the FDE in equation (3) reduces to the following DIDE
(recall Fr, and Fg__ from (6-7)):

F'(w) = =Ad(Fry (w) = F(w)) ifws<d ®)
o k-1 _ o '
F(w) = —)Ld(/0 ;0 (d j 1)FRX (w—8YFg (w—8)1
(Fr.(w) = F(w)) fx(x) dx) otherwise. 9)
Proor. The proof is given in Appendix A.5. O

REMARK. In the special cased = k, this policy reduces to the classic fork-join policy and one finds that
Z;iz_ol (d;l)FRx (w = 8Y Fr (w—8)4~/=1 = 1. Therefore we simply have F'(w) = —Ad(FRX (w) — F(w)).

REMARK. Takingd =0,k =1,X 4 1 and g(S,X) = SX = S, we find that F satisfies:
F'(w) = —Ad(Fg,(w) — F(w))Fg, (w)*

Fg, = Fs(w) + /W F(w—u)fs,(u)du + ZF(W —w)P{Sy = u}.
0 u

It is not hard to see that these equations correspond to (20-21) in [9], this shows how previous work
on Red(d) with i.i.d. replicas fits into our framework. Furthermore, Appendix A.13.1 indicates how
Theorem 3 from [10] for the case of identical job sizes can be obtained by focusing on the case with no
slowdown (i.e., g(S, X) = X).

COROLLARY 6.3. For the Red(d, k, §) policy, the ccdf of the equilibrium response time distribution
for the queue at the cavity is given by:
k-1

Fr(w) = /00 (Z (G,I)FRX(w)jFRx(w)d_j fx(x) dx.
0 J

Jj=0

Proor. This follows from the fact that a job is finished as soon as its k’th replica finishes. This
time is given by the k’th order statistic of {U; + ¢g(S;, X)}. O

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

35:10 Tim Hellemans, Tejas Bodas, Benny Van Houdt

NS

06
S I PO
P A R LA S S
——d=2
0.2 -x--d=3
co-d =4
/ o = 5
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0.2 04 06 08 1 2) 5 3 4 5 5
A+ B[] 7
(a) F(0) versus AE[X] for different d (b) E[R] versus T for different d

Fig. 2. Numerical examples: RTQ(d, T)

Numerical examples

We take g(s, x) = (s + 1)x, X geometric with parameter 1/2 scaled down such that E[X] = 1 and set
S equal to zero with probability 1 — g and some other distribution with mean one with probability
q. In Figure 1a, we consider d = 2,k = 1,8 = 0.01 and plot the stability region, i.e., A