
35

Performance Analysis of Workload Dependent Load
Balancing Policies

TIM HELLEMANS, TEJAS BODAS, BENNY VAN HOUDT, University of Antwerp, Belgium

Load balancing plays a crucial role in achieving low latency in large distributed systems. Recent load balancing

strategies often rely on replication or use placeholders to further improve latency. However assessing the

performance and stability of these strategies is challenging and is therefore often simulation based. In this

paper we introduce a unified approach to analyze the performance and stability of a broad class of workload

dependent load balancing strategies. This class includes many replication policies, such as replicate below

threshold, delayed replication and replicate only small jobs, as well as strategies for fork-join systems.

We consider systems with general job size distributions where jobs may experience server slowdown.

We show that the equilibrium workload distribution of the cavity process satisfies a functional differential

equation and conjecture that the cavity process captures the limiting behavior of the system as its size tends

to infinity.

We study this functional differential equation in more detail for a variety of load balancing policies and

propose a numerical method to solve it. The numerical method relies on a fixed point iteration or a simple

Euler iteration depending on the type of functional differential equation involved. We further show that

additional simplifications can be made if certain distributions are assumed to be phase-type.

Various numerical examples are included that validate the numerical method and illustrate its strength and

flexibility.

Additional Key Words and Phrases: Workload; Redundancy; Large Scale Computer Network; Differential

Equation; Fixed Point Equation; Load Balancing

ACM Reference Format:
Tim Hellemans, Tejas Bodas, Benny Van Houdt. 2019. Performance Analysis of Workload Dependent Load

Balancing Policies. Proc. ACM Meas. Anal. Comput. Syst. 3, 2, Article 35 (June 2019), 35 pages. https://doi.org/
10.1145/3326150

1 INTRODUCTION
Latency minimization is an important consideration in large scale data networks, server farms,

cloud and grid computing, etc. A key role in achieving low latency is played by the load balancer

responsible for distributing the jobs among the available servers. Popular load balancing schemes

include the join-shortest-queue among d randomly selected queues (JSQ(d)) [1, 5, 16, 22] and the

join-idle-queue (JIQ) [7, 15, 21] scheme. Under these schemes any incoming job is immediately

assigned to a single server in the system.

A recent trend to further reduce latency is to use redundancy, that is, to assign an incoming

job to multiple servers by distributing replicas of a job among the servers [2]. Initially this form

of redundancy was introduced to combat unexpected server slowdowns, that is, a short job may

suddenly experience an exceptionally long delay even if the server has low load. When redundancy

Author’s address: Tim Hellemans, Tejas Bodas, Benny Van Houdt, University of Antwerp, Middelheimlaan 1, Antwerp,

B-2020, Belgium, tim.hellemans@uantwerpen.be,tejaspbodas@gmail.com,benny.vanhoudt@uantwerpen.be.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2476-1249/2019/6-ART35 $15.00

https://doi.org/10.1145/3326150

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

https://doi.org/10.1145/3326150
https://doi.org/10.1145/3326150
https://doi.org/10.1145/3326150

35:2 Tim Hellemans, Tejas Bodas, Benny Van Houdt

is used, one can either cancel all remaining replicas as soon as one completes service [9] or as soon

as a replica starts service [4, 11]. The latter is useful to reduce the time that a job spends waiting in

the queue, but is less effective when servers are subject to unexpected slowdowns. Fork-join based

systems are another area where redundancy has been introduced to reduce latency [12, 13, 19]. In

a fork-join system, a task is subdivided into sub-tasks which are executed on different servers and

finally merged back as soon as the sub-tasks have been completed. Thus if one sub-task is delayed,

so is the complete task. By introducing redundancy it suffices that only a subset of the sub-tasks

complete.

To assess the performance of these load balancing schemes most prior work relied on mean-field

models, that is, studied the limiting behavior as the number of servers in the system becomes large

under the assumption of asymptotic independence (an assumption that is very hard to prove for

general service times, see [6]). In case of JSQ(d) and JIQ, where jobs are assigned immediately to a

single server, the stability condition is simple and the system state is fully captured by the queue

length at the different servers (plus the remaining job size in case of general job sizes). For systems

with redundancy such a state description no longer works and even the system stability becomes

complicated as replicas increase the actual workload and too much replication can easily lead to

system instability [19].

Most prior analytical work on systems with redundancy focused on the redundancy-d (Red(d))
policy which replicates incoming jobs on d randomly selected servers, where the remaining replicas

are either cancelled as the first replica starts or completes service. Product forms for the system

state of LL(d) resp. Red(d) under the assumption of exponential job sizes resp. exponential job sizes

and replicas that have independent sizes were presented in [4, 9]. Furthermore, in [3] a recent token

based framework to analyse product forms and relevant performance measures for a variety of

central queue based multi server models including LL(d) and Red(d) models was also introduced. A

mean-field model for Red(d) with cancellation on completion was developed in [9] for independent

replicas and in [10] for identical replicas. Red(d) with cancellation on start, which corresponds to

assigning the job to the least loaded server, was analysed in [11]. The stability issue of Red(d) with
cancellation on completion was avoided in [8] by the RIQ policy, which replicates incoming jobs

only on the idle servers among a set of d randomly selected servers (to mitigate the effect of server

slowdown). This also simplified the performance analysis somewhat as existing results on vacation

queues could be leveraged.

Another important contribution of [8] exists in introducing the S&X model. Under this model

any replica has the same inherent job size X , but the actual service time of a replica on a server

equals S times X , where S represents the slowdown that is assumed independent among replicas (as

it depends on the server). This model is clearly closer to reality than assuming that all the replicas

have independent job sizes (which is known to yield misleading insights such as more replication

always reduces response times).

While [11] and [10] studied two different systems with redundancy, both develop a mean-field

model that studies the evolution of the workload at a server. In this paper we show that a very

broad class of load balancing policies that rely on the workload information at a set of randomly

selected servers can be analysed in a unified manner. More specifically, using the cavity process

introduced in [5] we show that the workload distribution at a server is the solution of a functional

differential equation (FDE) under the assumption of asymptotic independence. We further study

this FDE for a variety of load balancing policies belonging to this class under the S&X model. These

include many load balancing schemes of practical interest for which no analytical method to assess

their performance existed so far. Examples include policies that use delayed replication, replicate

only on servers with a workload below some threshold, replicate only small jobs, replication in

fork-join queues, etc.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

Workload Dependent 35:3

The paper makes the following contributions:

(1) We define the cavity process for a broad class of workload dependent load balancing policies,

characterise its transient evolution and show that its equilibrium environment is the solution

of an FDE.

(2) We show that many practical load balancing policies fit within our class of workload depen-

dent policies and study their FDEs under the S&X model with general job size and slowdown

distributions.

(3) We propose different numerical methods to solve these FDEs, present numerical results

for both the stability and response times and validate the accuracy of our approach using

simulation.

(4) We demonstrate that the numerical method can be further simplified if some of the distribu-

tions are phase-type (PH).

With respect to the numerical method, we distinguish four different types of FDEs:

• Type 1: Future independent policies with unknown system load.

• Type 2: Future dependent policies with unknown system load.

• Type 3: Future independent policies with known system load.

• Type 4: Future dependent policies with known system load.

For each policy we obtain an FDE of the form F̄ ′(w) = T (F̄ (u),u ∈ Aw). For the future independent

policies we have Aw ⊆ [0,w] (Type 1, 3), which allows us to solve these policies using a simple

forward Euler scheme. For the future dependent policies Aw * [0,w] (Type 2,4), for these policies

we rely on a fixed point iteration to obtain the equilibrium workload distribution. The second

distinction is made on whether or not the system load, F̄ (0) is known (Type 3,4) or unknown (Type

1,2). When the load is unknown we use F̄ (∞) = 0 as a boundary condition, otherwise we simply

use the boundary condition on F̄ (0). All code used to generate the figures used in the numerical

experiments can be found at https://github.com/THellemans/workload_dependent_policies.

The paper is organized as follows: in Section 2 we describe the model considered in this paper

in more detail. The terminology of the queue at the cavity is introduced in Section 3, we then

define some common notation in Section 4. This is followed by the analysis of the transient and

equilibrium behaviour of the queue at the cavity in Section 5. We then apply our general result to

many examples in Section 6. The equations for these examples are further studied when certain

random variables are PH distributed in Section 7. In Section 8 we propose a numerical method to

find the equilibrium distribution and the stability region from the results of Section 6 and 7. Results

that validate our approach are given in the Appendix, where we also elaborate on the redundancy

based policies in case there is no slowdown.

2 MODEL DESCRIPTION
We consider a generic power-of-d system consisting of N identical, infinite buffer servers which

serve jobs in a FCFS manner (here N is usually assumed to be large). Arrivals occur according

to a Poisson(λN) process and the service rate at each server equals one. Whenever a job arrives,

d distinct servers are chosen uniformly at random (with or without replacement). The job then

creates some (or possibly no) added work on each of the d chosen servers depending on the load

balancing policy used. The policy is chosen such that the added work (i.e. the actual arrival size)

solely depends on the workload at each of the chosen servers (and other variables, independent

of the chosen servers). For the load balancing policies considered in this paper, this added work

consists of either the arriving job, partial execution of the job or other overheads due to placeholders

as in the LL(d,k, δ) policy studied in Section 6.5. We shall henceforth refer to this type of model as

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

35:4 Tim Hellemans, Tejas Bodas, Benny Van Houdt

a workload dependent load balancing policy. Note that for this model with finite N , the process

which only keeps track of the workload at each server, is a Markov process.

3 CAVITY PROCESS
We employ the cavity process methodology introduced in [5] to formulate a general method to

obtain the transient and equilibrium workload distribution for a workload dependent load balancing

policy in the mean-field regime. We first provide some intuition as to why the study of a queue

at the cavity might be of interest. Looking at the many server system, instead of attempting to

capture the global evolution of all N workload distributions, we single out one queue which we

will henceforth refer to as the queue at the cavity. It is not hard to see that, as arrivals occur at

rate λN and each arrival selects d queues, the queue at the cavity is selected with a rate equal to

λd . Every time it is selected, we have to add some (or possibly no) work to it where the amount

of work depends on the workload of the d selected queues. As we are not keeping track of the

workload at any of the d − 1 other selected queues, we simply generate their workload as a random

variable which is independent of but identically distributed as the workload of the queue at the

cavity at the time of the arrival. This method is known to yield exact results as N → ∞ for some

policies (those for which Conjecture 3.5 holds) and can often be used as a good approximation for

sufficiently high values of N (see Appendix A.1)

In the cavity process method, potential arrivals occur according to a Poisson(λd) process. When-

ever a potential arrival occurs, we create d − 1 random variables with the same distribution as

the queue at the cavity, add the actual arrival size to the queue at the cavity and discard these

d − 1 random variables again. Concretely: let U1, . . . ,Ud denote the (i.i.d.) workloads at the d
chosen servers just before the potential arrival, where w.l.o.g.U1 represents the queue at the cavity.

Suppose we are given some additional random variablesV1, . . . ,Vr (e.g., job size or server slowdown
variables) that influence the added work. Then, we denote by Q(U1, . . . ,Ud ,V1, . . . ,Vr) the random
variable which represents the new workload in the queue at the cavity U1. We call a potential

arrival toU1 an actual arrival if and only if Q(U1, . . . ,Ud ,V1, . . . ,Vr) > U1. Note that while potential

arrivals occur according to a Poisson(λd) process, the rate of actual arrivals strongly depends on

the chosen policy and is generally hard to compute. Furthermore, depending on the load balancing

policy, the actual arrival comprises of jobs that are either served completely at this server, jobs that

are partially executed at the server or even other overhead like fetching a job which is no longer

available. To illustrate what Q signifies, we present a few simple examples for policies which have

been studied before.

Example 3.1. Consider the LL(d) policy studied in [11], where an incoming job of a certain size

joins the least loaded server among d selected servers. In this case r = 1, V1 = X is the job size

and Q(U1, . . . ,Ud ,X) is equal toU1 + X if U1 < min
d
i=2

Ui and it is equal to X with probability
1

m if

Uj = 0 for exactlym choices of j including j = 1. Otherwise Q(U1, . . . ,Ud ,X) = U1.

Example 3.2. Two other examples are Red(d) with independent resp. identical replicas as studied in
[9] resp. [10], where an incoming job replicates itself onto d servers and experiences an independent

resp. identical service time on each server. The job is then cancelled as soon as one of the replicas

finishes. For the case of independent replicas, we have r = d and Vi = Xi where Xi , i = 1, . . . ,d are

the i.i.d. job size variables. In this case, we have Q(U1, . . . ,Ud ,X1, . . . ,Xd) = max{U1,min
d
i=1

{Ui +

Xi }}, indeed, a replica of the job finishes service by time min
d
i=1

{Ui + Xi }. For the case when the

replicas are identical, we have r = 1 and V1 = X where X is the job size. A replica finishes service

by time min
d
i=1

{Ui } + X , which yields Q(U1, . . . ,Ud ,X) = max{U1,min
d
i=1

{Ui } + X }.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

Workload Dependent 35:5

Definition 3.3 (Cavity Process). Let H(t), t ≥ 0, be a set of probability measures on [0,∞) called

the environment process. The cavity process U H(·)(t), t ≥ 0, takes values in [0,∞) and is defined

as follows. Potential arrivals occur according to a Poisson process with rate λd . When a potential

arrival occurs at time t , the cavity process U H(·)(t) becomes Q(U H(·)(t−),U2, . . . ,Ud ,V1, . . . ,Vr).
HereU2, . . . ,Ud are d −1 independent random variables with lawH(t−), andV1, . . . ,Vr are random
variables which are independent of the processU H(·)(·). The cavity process decreases at rate one

during periods without arrivals and is lower bounded by zero.

We now define the cavity process associated to the equilibrium environment process, which is

such that the cavity process itself has distribution H(t) at time t :

Definition 3.4 (Equilibrium Environment). When a cavity processU H(·)(·) has distributionH(t)
for all t ≥ 0, we say that H(·) is an equilibrium environment process. Further, a probability measure

H is called an equilibrium environment ifH(t) = H for all t andU H(·)(t) has distributionH for all

t .

A modularized program for analyzing load balancing systems by using the cavity process method

was presented in [5]. In this program, one essentially needs to show asymptotic independence,

which allows to assume that the workloads at the different queues become independent random

variables and justifies that the behaviour of the entire system can be described by the behaviour of

the queue at the cavity. One then needs to find a defining equation for the equilibrium behaviour

of the queue at the cavity. This equation is given by (3) for our model. We use this equation to

study several workload dependent load balancing policies. As will become apparent further on,

all workload dependent load balancing policies which have been studied in the mean-field regime

thus far can be analysed using this approach.

The asymptotic independence between the different queues is something which is very difficult

to prove in general. Known proof techniques only exist for the LL(d) policy, the JSQ(d) policy
under decreasing hazard rate (DHR) service requirements and the fork-join system. We believe

that for the policies under consideration, the queues in the limiting regime satisfy this asymptotic

independence property and then proceed with applying the modularized program. The remarkable

accuracy between the performance measures obtained using our method and those obtained via

simulation (see Appendix A.1) supports our belief that the following conjecture holds:

Conjecture 3.5. Consider a workload dependent load balancing policy with N servers (each
server has an FCFS discipline) as considered in Section 6 and assume this system is uniformly stable
for sufficiently large N . Then, in the large N limit, the system has a unique equilibrium workload
distribution under which any finite number of queues are independent. Moreover this equilibrium
distribution is given by the equilibrium distribution of the associated cavity process.

Remark. The results in this paper characterize the queue at the cavity associated to workload
dependent policies. In case Conjecture 3.5 fails to hold for a policy, one can still analyse the associated
queue at the cavity regardless and this may be used as an (accurate) approximation for the actual
model.

4 NOTATION
For a random variable Y , we denote its cumulative distribution function (cdf) and complementary

cdf (ccdf) by FY and F̄Y . Throughout, we assume all random variables Y used have no singular part

and can therefore be decomposed into a continuous Yc and a discrete part Yd . Yc has a pdf fYc and

Yd can take valuesyn with probability pn where pn = P{Yd = yn} with
∫ ∞

0
fYc (u)du+

∑
n pn = 1. In

this case, for any function h : [0,∞) → Rwe have

∫ ∞

0
h(u)dFY (u) =

∫ ∞

0
h(u)fYc (u)du+

∑
n h(yn)pn .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

35:6 Tim Hellemans, Tejas Bodas, Benny Van Houdt

For ease of notation we write Q(Y) instead of Q(Y ,U2, . . . ,Ud ,V1, . . . ,Vr) whenever the random
variablesU2, . . . ,Ud and V1, . . . ,Vr are clear from the context. In words, given a workload of Y at

the cavity queue just before the potential arrival, Q(Y) indicates the effective workload in the cavity

queue after the potential arrival. The effective workload at a server is the actual work that will be

executed at the server and thus ignores jobs that were added to a queue and subsequently cancelled

without receiving any service. In most cases we have as Y the workload at the queue at the cavity

right before an arrival at time t : Y = U H(·)(t−) or the equilibrium workload distribution of the

queue at the cavity: Y = U H
. Furthermore bothU H(·)(t−) andU H

will often be replaced byU1 or

U .

We denote by f (t, ·) the pdf for the workload of the queue at the cavity at time t , F (t, ·) its cdf
and F̄ (t, ·) its ccdf. In equilibrium, we drop the time dependence and simply denote the pdf, cdf and

ccdf by f (·), F (·) and F̄ (·). For any workload dependent load balancing policy, we denote by R the

response time random variable for the queue at the cavity at equilibrium. This response time can

be found by generating d i.i.d. random variablesU1, . . . ,Ud with distribution F and compute the

response time given these random variables as the workload at the d chosen queues. For example

for the LL(d) policy, if we let X denote a random variable which is distributed as the job size, one

finds that R = min
d
i=1

{Ui } + X (many more examples can be found in Section 6).

5 MEAN-FIELD ANALYSIS
5.1 Transient Behaviour
We start with the transient behavior. Note that at each time t , the pdf of the workload of the queue

at cavity, i.e., f (t, ·) integrates to
∫ ∞

0
f (t,u)du = F̄ (t, 0). As typically, F̄ (t, 0) < 1 we have a point

mass at zero which is equal to F (t, 0). For the transient behaviour, we obtain the following Partial

Delayed Integro Differential Equation (PDIDE):

Theorem 5.1. The workload of the queue at the cavity satisfies the following PDIDE:

∂ f (t,w)

∂t
−
∂ f (t,w)

∂w
= −λd

[
f (t,w)P{Q(U H(·)(t−)) > w | U H(·)(t−) = w}

− F (t, 0)P{Q(U H(·)(t−)) = w | U H(·)(t−) = 0}

−

∫ w

0

f (t,u)P{Q(U H(·)(t−)) = w | U H(·)(t−) = u}du

]
(1)

∂F (t, 0)

∂t
= −λd

[
F (t, 0)P{Q(U H(·)(t−)) = w | U H(·)(t−) = 0} + f (t, 0+)

]
, (2)

forw > 0, where f (t,w+) = limv↓w f (t,v).

Proof. The proof is similar to the proof of Theorem 3.4 in [11] and is presented in Appendix

A.4. �

5.2 Equilibrium Environment
To compute the equilibrium distribution we need to take the limit t → ∞, thereby leaving out the

dependence on t . In particular, we have
∂f (s)
∂t = 0. We now directly derive a Functional Differential

Equation (FDE) for the workload distribution from Theorem 5.1.

Theorem 5.2. The equilibriumworkload distribution of the queue at the cavity satisfies the following
FDE:

F̄ ′(w) = −λdP
{
U H ≤ w,Q(U H) > w

}
. (3)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

Workload Dependent 35:7

Proof. For convenience we write U for U H(·)
. From (1) we readily obtain the following by

integrating w.r.t.w once:

f (0) − f (w) = −λd

∫ w

0

[
P{Q(U) > u,U = u}

− P{Q(U) = u,U = 0} −

∫ u

0

P{Q(U) = u,U = v}dv

]
du . (4)

The equality in (2) reduces to the boundary condition:

f (0) = λdP{Q(0) > 0}F (0),

using the fact that F̄ ′(w) = −f (w) we obtain from (4):

F̄ ′(w) = −λd

[
F (0)P{Q(0) > 0} +

∫ w

0

P{Q(U) > u,U = u}du

]
+ λd

∫ w

0

P{Q(U) = u,U = 0}du + λd

∫ w

0

∫ u

0

P{Q(U) = u,U = v}dv du . (5)

Note that the first line in (5) is the rate of all possible upward jumps ofU after a potential arrival

when the workload in the cavity queue just before the potential arrival satisfies U ∈ [0,w]. The

first term in the second line in (5) is the rate at whichU jumps to somewhere beloww whenU = 0

at the time of a potential arrival. The last term in the second line in (5) is the rate at whichU jumps

up to somewhere beloww whileU ∈ (0,w]. The last two events are subsets of the first event and it

can be observed that the difference of these events is the rate at which the cavity process jumps to

a workload larger thanw forU ∈ [0,w]. This yields equality (3). �

Remark. The left hand side of (3) is F̄ ′(w) = −f (w), where f (w) is the down-crossing rate through
w while the right hand side is minus the up-crossing rate throughw .

6 LOAD BALANCING POLICIES
While our main result (Theorem 5.2) is applicable for any workload dependent load balancing

policy as described in Section 2, in this section we specialize this result for some practical workload

dependent policies. In many classic load balancing methods (like e.g. LL(d) and SQ(d)), a job is only
sent to one server and its processing time solely depends on the speed of that server. There are

however many load balancing policies, in particular those which employ some type of redundancy,

which use the processing power of multiple servers in order to complete service. In this case, the

question arises as to how one should treat the processing time at the different servers. Two popular

choices are to assume that the processing time at the chosen servers are independent (see e.g. [9])

or that the processing times are identical (see e.g.[10]). Recently the S&X model was introduced in

[8], this model is a combination of identical and independent replicas, each job has a size X which

is identical over all chosen servers and a slowdown S which is independent over the chosen servers.

In this section we analyse all considered policies in a setting which is a generalization of the S&X

model which we explain shortly. In this section, we also present various numerical results for these

policies to outline some important features. Simulation experiments that validate our approach can

be found in Appendix A.1 and A.2.

Each job has an inherent size X > 0 and on each of the servers a job replica experiences some

arbitrary slowdown denoted by the variable Si . Thus each arrival is defined by a random job size

variable X and d i.i.d. slowdown random variables S1, . . . , Sd . Using the notation of Section 5.1

we set r = d + 1, Vi = Si and Vd+1 = X . While the actual processing time of the i-th replica in

the S&X model of [8] then equals SiX , we consider a more general setting. We assume that there

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

35:8 Tim Hellemans, Tejas Bodas, Benny Van Houdt

exists some function д : [0,∞) × (0,∞) → (0,∞) which is non-decreasing in both components

such that if an arrival occurs, it has size д(Si ,X) on the ith chosen server. For any s, x > 0, define
дx (s) = д(s, x) and assume it is a strictly increasing, continuous function. Note that in particular its

inverse exists and we assume the inverse is differentiable. In our numerical experiments we set

д(S,X) = X +SX , where S andX are generally distributed random variables withX the inherent job

size and S the slowdown variable, such that the processing time cannot be less than X irrespective

of the slowdown.

Example 6.1. Consider the Red(d) policy where, at each arrival, the job is replicated on d
servers. Suppose the workload resp. the slowdown at each of the d servers is given byU1, . . . ,Ud
resp. S1, . . . , Sd and the job size is X . In this case we find that the workloadU1 is increased to:

Q(U1) = max{U1,
d

min

i=1

{Ui + д(Si ,X)}.

Moreover, the response time is given by:

R =
d

min

i=1

{Ui + д(Si ,X)}.

Before proceeding with the analysis of the different load balancing policies, we outline some

more notations used throughout the paper. For any sequence of random variables Y1, . . . ,Yn , let
Y(k) denote its k’th order statistic such that Y(1) ≤ Y(2) ≤ · · · ≤ Y(n), and ties are broken at random

(this is mainly used in the Appendix). In the S&X setting, we define Rx = U + дx (S) as the sojourn
time of a job of size x if it is sent to a single server with workload U and slowdown S . In this case,

its ccdf is given by:

F̄Rx (w) = F̄дx (S)(w) +

∫ w

0

F̄ (u)fдx (S)(w − u)du

= F̄S (д
−1

x (w)) +
∑
u≤w

F̄ (w − u)P{Sd = д
−1

x (u)}+∫ w

0

F̄ (w − u)fSc (д
−1

x (u)) · (д−1

x)′(u)Iдx ([0,∞))(u)du, (6)

where the second equality follows from the fact that the pdf of дx (Sc) is given by fдx (Sc)(w) =

fSc (д
−1

x (w)) · (д−1

x)′(w)Iдx ([0,∞))(w) (here IA(u) equals one if u ∈ A and zero otherwise). Moreover

we denote by X̃ = д(S,X) the job size distribution at a single server. Analogously to (6), we find for

RX̃ = U + X̃ :

F̄RX̃ (w) = F̄X̃ (w) +

∫ w

0

F̄ (u)fX̃ (w − u)du, (7)

where the integral can again be split into a discrete and continuous part.

6.1 Type 1 : Red(d,k, δ)
In this section, we analyse the redundancy based policy Red(d,k, δ). Under this policy, an arriving

job of size k · X selects d servers uniformly at random and places an identical replica of size X
at each of the d servers. When any k of the d replicas have received service, the other redundant

replicas are cancelled. Additionally we assume that the cancellation of redundant replicas requires

a constant time δ ≥ 0. In other words, this means that once the k ′
th replica has been completed,

the other servers continue working on remaining replicas (if they happen to be in service at that

server) for a time δ . We indicate how this policy is used in practice in Appendix A.3.1.

We now show that the FDE in Theorem 5.2 reduces to a Delayed Integro Differential Equation

(DIDE) without a boundary condition, meaning it is a Type 1 policy.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

Workload Dependent 35:9

0 0.2 0.4 0.6 0.8 1

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

(a) λmaxE[X̃] versus q for different slowdown
distributions, d = 2 and k = 1.

0 0.2 0.4 0.6 0.8

0

1

2

3

4

5

(b) E[R] versus the occupancy for different val-
ues of d,k with d/k = 2.

Fig. 1. Numerical examples: Red(d,k, δ)

Proposition 6.2. For the Red(d,k, δ) policy, the FDE in equation (3) reduces to the following DIDE
(recall F̄Rx and F̄RX̃ from (6-7)):

F̄ ′(w) = −λd(F̄RX̃ (w) − F̄ (w)) ifw ≤ δ (8)

F̄ ′(w) = −λd

(∫ ∞

0

k−1∑
j=0

(
d − 1

j

)
FRx (w − δ)j F̄Rx (w − δ)d−j−1·

(
F̄Rx (w) − F̄ (w)

)
fX (x)dx

)
otherwise. (9)

Proof. The proof is given in Appendix A.5. �

Remark. In the special cased = k , this policy reduces to the classic fork-join policy and one finds that∑d−1

j=0

(d−1

j

)
FRx (w − δ)j F̄Rx (w − δ)d−j−1 = 1. Therefore we simply have F̄ ′(w) = −λd(F̄RX̃ (w) − F̄ (w)).

Remark. Taking δ = 0,k = 1,X
d
= 1 and д(S,X) = SX = S , we find that F̄ satisfies:

F̄ ′(w) = −λd(F̄R1
(w) − F̄ (w))F̄R1

(w)d−1

F̄R1
= F̄S (w) +

∫ w

0

F̄ (w − u)fSc (u)du +
∑
u

F̄ (w − u)P{Sd = u}.

It is not hard to see that these equations correspond to (20-21) in [9], this shows how previous work
on Red(d) with i.i.d. replicas fits into our framework. Furthermore, Appendix A.13.1 indicates how
Theorem 3 from [10] for the case of identical job sizes can be obtained by focusing on the case with no
slowdown (i.e., д(S,X) = X).

Corollary 6.3. For the Red(d,k, δ) policy, the ccdf of the equilibrium response time distribution
for the queue at the cavity is given by:

F̄R (w) =

∫ ∞

0

(k−1∑
j=0

(
d

j

)
FRx (w)j F̄Rx (w)d−j

)
fX (x)dx .

Proof. This follows from the fact that a job is finished as soon as its k ′
th replica finishes. This

time is given by the k ′
th order statistic of {Ui + д(Si ,X)}. �

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

35:10 Tim Hellemans, Tejas Bodas, Benny Van Houdt

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a) F̄ (0) versus λE[X̃] for different d

0 1 2 3 4 5 6

1.2

1.3

1.4

1.5

1.6

(b) E[R] versus T for different d

Fig. 2. Numerical examples: RTQ(d,T)

Numerical examples
We take д(s, x) = (s + 1)x , X geometric with parameter 1/2 scaled down such that E[X] = 1 and set

S equal to zero with probability 1 − q and some other distribution with mean one with probability

q. In Figure 1a, we consider d = 2,k = 1, δ = 0.01 and plot the stability region, i.e., λmaxE[X̃], as a

function of the slowdown probability q. Note that this value is constant and equal to one without

replication (i.e., when k = d = 1). Here λmax represents the value such that the system is stable for

all λ < λmax, but unstable for λ ≥ λmax. As explained in Section 8.2 λmax is found by looking at the

smallest λ such that the FDE no longer has a proper solution.

We considered different slowdown distributions (when the slowdown is non-zero) namely,

Erlang with 2 phases, mean 1 and SCV 1/2, exponential with mean one, and Hyperexponential with

balanced means, mean one and SCV 2 and 3. We observe in Figure 1a that, while for q = 0 the value

λmaxE[X̃] is evidently the same for different slowdown distributions (as there is no slowdown), a

slowdown with a higher coefficient of variation has larger values of λmaxE[X̃] for any q ∈ (0, 1].
Thus there is a more substantial risk to replicate if the slowdown is less variable. One perhaps

surprising observation is the fact that λmaxE[X̃] is not monotone, and an optimum value of q
emerges.

In Figure 1b we plot E[R] as a function of λ for different values of d and k while keeping the

amount of redundancy fixed to d/k = 2. We set k = 1, 2, 3 (and consequently d = 2, 4, 6) and
q = 0.2. We assume that the job size is geometric with unit mean (as before) and the slowdown is

exponential with unit mean. We observe that increasing the number of parts we divide the job into

generally decreases the mean response time, but the value of λmax decreases slightly as k increases.

See Section 8 for more details on how to obtain F̄ and λmax.

6.2 Type 1 : RTQ(d,T)
In this section we look at the RTQ(d,T) policy (redundant to threshold queue). For this policy,

we select d queues and replicate on all queues which have a workload of at most T (or assign

the job randomly in case all selected queues have a workload which exceeds T). As soon as one

replica finishes service, the others are cancelled. Such a scheme is useful in situations where the

communication overhead is costly as a server only needs to send a signal to the dispatcher at the

time of upcrossing or downcrossing of the threshold T . Note that the Replicate on Idle Queue

RIQ(d) policy studied in [8] is a special case of this policy when T = 0. A policy that was studied

by simulation in [8] is THRESHOLD-n where incoming jobs are replicated on servers with at most

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

Workload Dependent 35:11

n jobs. RTQ(d,T) can be seen as a workload equivalent of this policy. We discuss how this policy

can be implemented in a real system without using any knowledge about the work at the servers

in Appendix A.3.2.

As for Red(d,k, δ), we again find that (3) reduces to a DIDE without boundary condition.

Proposition 6.4. For the RTQ(d,T), the FDE (3) reduces to the following DIDE:

F̄ ′(w) = −λd

∫ ∞

0

F̄Rx (w)d−1(F̄Rx (w) − F̄ (w))fX (x)dx w ≤ T (10)

F̄ ′(w) = −λd

∫ ∞

0

(
Bx (w,T)(F̄ (T) + Bx (w,T))

d−1

)
fX (x)dx

− λ

∫ ∞

0

(F̄Rx (w) − F̄ (w) − Bx (w,T))F̄ (T)
d−1 fX (x)dx w > T . (11)

with:

Bx (w,T) = F̄дx (S)(w)F (T) +

∫ T

0

fдx (S)(w − u)(F̄ (u) − F̄ (T))du .

Here Bx (w,T) is the probability that an arrival of size x to a single queue increases its workload from
somewhere below T to a value abovew .

Proof. The proof can be found in Appendix A.6. �

From the equilibrium workload distribution, we obtain the response time distribution:

Corollary 6.5. For the RTQ(d,T) policy, the ccdf of the equilibrium response time distribution for
the queue at the cavity is given by:

F̄R (w) = F̄ (T)d +

∫ ∞

0

(
d∑
k=1

(
d

k

)
F̄ (T)d−kBx (w,T)

k

)
fX (x)dx w ≤ T

F̄R (w) =

∫ ∞

0

[
F̄ (T)d−1(F̄Rx (w) − Bx (w,T)) +

d∑
k=1

(
d

k

)
F̄ (T)d−kBx (w,T)

k
]
fX (x)dx w > T

where Bx (w,T) is defined as in Proposition 6.4.

Proof. The proof can be found in Appendix A.7. �

Numerical examples
We now consider some numerical examples for the RTQ(d,T) policy. We set d = 2, 3, 4, 5, assume a

scaled geometric job size distribution X as for Red(d,k, δ), the probability of a slowdown equals

q = 0.2 and the slowdown distribution is exponential with unit mean. We take д(s, x) = (1+ s)x and

recall that X̃ = д(S,X). In Figure 2a, we take T = 3 and show the load of the system given by F̄ (0)
as a function of the arrival rate for various values of d . We observe that the load F̄ (0) increases with
d and may be close to one for moderate values of λE[X̃]. Nevertheless the system remains stable as

long as λE[X̃] < 1 since we never replicate on queues with a workload exceedingT . Understanding
the actual system load may be of interest with respect to the energy usage of the servers.

In Figure 2b, we consider the same setting, but fix λ = 0.4 and show the mean response time for

the system as a function of the threshold T . We note that E[R] stabilizes as T increases. This is due

to the fact that for sufficiently large T the workload at all sampled queues is below the threshold

and the system behaves nearly identical to the Red(d, 1, 0) policy. For d = 2 we observe that the

mean response time E[R] decreases monotonically with T , this is due to the fact that the load is

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

35:12 Tim Hellemans, Tejas Bodas, Benny Van Houdt

0 5 10 15 20

0.5

0.6

0.7

0.8

0.9

1

(a) The system load as a function of T

0 5 10 15 20

10
-6

10
-4

10
-2

10
0

(b) Tail plot of the ccdf.

Fig. 3. Numerical examples: DR(d,T)

sufficiently low such that it is optimal to replicate all incoming jobs. For higher values of d , we
notice that E[R] initially decreases and subsequently increases. Remarkably we observe that d = 5

yields the lowest mean response time by choosing the optimalT but also has the worst performance

when we pick T too large. Further note that the optimal value of T decreases in d .

6.3 Type 2 : DR(d,T)
We now analyse the Delayed Replication policy: DR(d,T). This policy has a Type 2 FDE because, as

we shall see shortly, when rewriting (3) the right hand side depends on F̄ (u) for u > w . With this

load balancing policy, a job is sent to an arbitrary server (which we call the primary server) on

arrival. If the server has not finished service of this job within some fixed time T ≥ 0, the job is

replicated on d−1 other servers that are chosen uniformly at random. A cancellation-on-completion

policy is then employed on these d replicas of the same job. Note that for T = 0 this policy reduces

to Red(d) while for T = ∞, it reduces to random assignment. We obtain the following result:

Proposition 6.6. For the DR(d,T), the FDE (3) reduces to the following FDE:

F̄ ′(w) = −λ

∫ ∞

0

(F̄Rx (w) − F̄ (w))

(
(d − 1)F̄Rx (w)d−2F̄Rx (w +T) + 1

)
fX (x)dx w ≤ T

(12)

F̄ ′(w) = −λ

∫ ∞

0

(
F̄Rx (w) − F̄ (w)

) (
(d − 1)F̄Rx (w)d−2F̄Rx (w +T) + F̄Rx (w −T)d−1

)
fX (x)dx w > T

(13)

Proof. The proof can be found in Appendix A.8. �

Remark. For T = ∞, F̄Rx (w + T) = 0 and (12) reduces to: F̄ ′(w) = −λ(F̄R (w) − F̄ (w)). It is not
hard to see that this indeed corresponds to the DIDE for the random assignment policy. On the other
hand, for T = 0, (13) reduces to F̄ ′(w) = −λd

∫ ∞

0
fX (x)(F̄Rx (w) − F̄ (w))F̄Rx (w)d−1 dx , which indeed

corresponds to the Red(d, 1, 0) policy.

Corollary 6.7. For the DR(d,T) policy, the ccdf of the equilibrium response time distribution for
the queue at the cavity is given by:

F̄R (w) = F̄RX̃ (w) w ≤ T

F̄R (w) =

∫ ∞

0

F̄Rx (w)F̄Rx (w −T)d−1 fX (x)dx w > T .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

Workload Dependent 35:13

Proof. We make a distinction between the two casesw > T andw ≤ T . Forw ≤ T , after timew
has elapsed, the job is still only being run on one server, thus the probability that it is still running

after that time is the same as for random routing with job size X̃ . For w > T we find that d − 1

other servers start serving the job after timeT . As they have a backlog of timeT , they should finish

the job in timew −T to respond before timew . �

Numerical examples
We again take the probability of a slowdown q = P{S > 0} = 0.2, S exponential (if it is non-zero),

X geometric and assume that λ = 0.4. In Figure 3a we plot F̄ (0) as a function of T . For all values of
d, we observe that the system load decreases monotonically as a function of T and converges to

λ · E[X̃] = 0.48 as T tends to infinity, which is the load for random routing (as expected).

In Figure 3b, we plot the ccdf of the response time F̄R (w) as a function of T for different values

of d . We observe that initially the response time distribution is close to that of random routing, but

oncew passesT it quickly starts falling off in a similar fashion as in Red(d), i.e., whenT = 0. Taking

another look at Figure 3a we observe that when setting T ≥ 5 delayed replication can mitigate

so-called stragglers while only slightly increasing the load.

6.4 Type X : Replicate only small jobs
In replication based policies such as Red(d,k, δ), an incoming job is replicated on all the d sampled

servers. A drawback of this approach is that the stability region of the policy is typically reduced

due to the added work arising from the replicas. Therefore from a stability point of view, one may

wish to replicate jobs in a selective manner. One possible alternative, also considered in [8] for

RIQ, is to only replicate small jobs. For example, if we have some replication based policy (say

policy 1) and another policy which does not use replication (say policy 2), then one can design a

new policy where we set some threshold x̃ ∈ [0,∞) and assign jobs with inherent job size x ≤ x̃
as per policy 1 and the remaining jobs using policy 2. To rewrite equation (3) for such a generic

policy (say policy 3), we assume a job of size X samples d queues on arrival where it experiences

slowdown S1, . . . , Sd respectively and where the workloads are U1,U2, . . . ,Ud . For i = 1, 2, 3, let
Qi (U1,U2, . . . ,Ud , S1, . . . , Sd ,X), denote the new workload in the queue at cavity after a potential

arrival occurs in a system with policy i . One finds:

P{Q3(U1,U2, . . . ,Ud , S1, . . . , Sd ,X) > w,U1 ≤ w}

=

∫ x̃

0

P{Q1(U1,U2, . . . ,Ud , S1, . . . , Sd , x) > w,U1 ≤ w} fX (x)dx

+

∫ ∞

x̃+
P{Q2(U1,U2, . . . ,Ud , S1, . . . , Sd , x) > w,U1 ≤ w} fX (x)dx, (14)

where

∫ ∞

x̃+ denotes the integral starting in x̃ excluding this value. We can also easily compute the

response time distribution for policy 3. Let R(i)
denote the response time of a job sent using policy

i for i = 1, 2, 3 in a system which employs policy 3. The ccdf F̄R(i), i = 1, 2 can be computed in the

same manner as for policy i , but now using the workload distribution of policy 3. The response

time of a general job is then found as:

F̄R(3) (w) = P{X ≤ x̃}F̄R(1) (w) + P{X > x̃}F̄R(2) (w). (15)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

35:14 Tim Hellemans, Tejas Bodas, Benny Van Houdt

As a simple example, we now analyse a policy which applies Red(d, 1, 0) whenever the inherent
job size X ≤ x̃ and random assignment otherwise. It is not hard to see that (14) simplifies to:

F̄ ′(w) = −λd

∫ x̃

0

(F̄Rx (w) − F̄ (w))F̄Rx (w)d−1 fX (x)dx − λ

∫ ∞

x̃+
(F̄Rx (w) − F̄ (w))fX (x)dx .

Note that this is still a Type 1 FDE, which can be analysed in the exact same way as the regular

Red(d, 1, 0) policy (c.f. Section 8). Moreover, letting X1 = (X | X ≤ x̃) and X2 = (X | X > x̃), we
find that the response time distributions are given by:

F̄R(1) (w) =

∫ x̃

0

F̄Rx (w)d fX1
(x)dx

for the jobs which are replicated and

F̄R(2) (w) = F̄д(S ,X2)(w) +

∫ w

0

fд(S ,X2)(w − u)F̄ (u)du

for the randomly routed jobs. One can employ (15) to obtain the response time distribution for

an arbitrary job. There is of course nothing special about this choice for policies 1 and 2, and this

approach can be employed to combine any two arbitrary policies.

6.5 Type 3 : LL(d,k, δ)
For the Least Loaded LL(d,k, δ) policy, when a job consisting of k equally sized parts arrives, the

dispatcher sends a placeholder for this job to d ≥ k FCFS servers that are sampled uniformly at

random. When a placeholder reaches the head of a queue, the server informs the dispatcher and the

dispatcher assigns one of the k parts of the job to the server as long as at least one part remains. We

assume that the server requires a time δ ≥ 0 to inform the dispatcher (and to potentially receive the

part). Note that this request mechanism corresponds to the late binding mechanism used in [17]. In

what follows, we first analyse the LL(d,k)=LL(d,k, 0) policy. This is followed by the more general

analysis for LL(d,k, δ), δ ≥ 0. More discussion on the LL(d,k) policy can be found in Appendix

A.3.3.

For the LL(d,k) policy we denote Q(U1) = Q(U1, . . . ,Ud , S1, . . . , Sd ,X) for the workload of the

cavity queue after a potential arrival of size k · X occurs, where the d servers have workloads

U1, . . . ,Ud and experience slowdowns S1, . . . , Sd . In caseU1 > 0, Q(U1) is equal in distribution to

U1 + X̃ if U1 is one of the k least loaded servers among U1, . . . ,Ud and U1 otherwise (recall that

X̃ = д(S,X)). In caseU1 = 0, Q(U1) equals in distribution X̃ with probability min

{
1, k

| {i |Ui=0} |

}
and

0 otherwise.

Let ρ = kλE[X̃] denote the amount of work that one arrival creates. Note that a system operating

under the LL(d,k) policy is stable iff ρ < 1. In the following proposition, we derive a DIDE with

boundary condition which characterizes the equilibrium workload distribution:

Proposition 6.8. For the LL(d,k, δ), the FDE (3) reduces to the following DIDE:

F̄ ′(w) = −λ

(
F̄X̃ (w) + H (w) −

∫ w

0

H (u)fX̃ (w − u)du

)
, (16)

with:

H (w) =

d∑
j=1

min{j,k}

(
d

j

)
F̄ (w)d−j (1 − F̄ (w))j − 1 (17)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

Workload Dependent 35:15

0 5 10 15 20 25

1

1.5

2

2.5

3

(a) k = 1 fixed and d = 2, 3, . . . , 24.

0 5 10 15 20

0

0.5

1

1.5

2

2.5

3

(b) d = 20 fixed and k = 1, 2, . . . ,d .

Fig. 4. Numerical examples: LL(d,k, δ)

and F̄ (0) = ρ. Equivalently, this DIDE can be written as a fixed point equation (FPE):

F̄ (w) = ρ − λ

∫ w

0

(1 + H (u))F̄X̃ (w − u)du . (18)

Proof. The proof can be found in Appendix A.9. �

Remark. In case k = 1, we find that H (w) = −F̄ (w)d , and (18) reduces to the fixed point equation
that was obtained in [11]. In particular, (16) yields an alternative method to compute the ccdf of the
workload distribution in case job sizes are not PH distributed.

Remark. In case X̃ is exponential, one can show that (18) is equivalent to a simple ODE:

F̄ ′(w) = ρ − F̄ (w) − λ(1 + H (w)). (19)

The proof goes along the same lines as the proof of Theorem 5.1 in [11], unfortunately for 2 ≤ k < d
this ODE does not have a simple closed form solution.

We define ccdfρ as the set of all ccdfs which start in ρ, i.e. functions on [0, ρ][0,∞)
which satisfy:

F̄ (0) = ρ, limw→∞ F̄ (w) = 0, for all w, s > 0 : F̄ (w + s) ≤ F̄ (w) and lims→0
+ F̄ (w + s) = F̄ (w). We

can show the following:

Proposition 6.9. If we let T (k)
d : ccdfρ → [0, 1][0,∞) be defined by: T (k)

d F̄ (w) = ρ − λ
∫ w

0
(1 +

H (u))F̄X̃ (w − u)du. Then we have T (k)
d F̄ ∈ ccdfρ for all F̄ ∈ ccdfρ . Moreover for F̄1, F̄2 ∈ ccdfρ we

have (with dK the Kolmogorov distance):

dK (T
(k)
d F̄1,T

(k)
d F̄2) < A(d,k, λ)dK (F̄1, F̄2), (20)

with:

A(d,k, λ) = sup

x ∈[ρ ,1]

(
d
k−1∑
j=1

(k − j)(1 − x)d−j−1x j

)
≤ dk2λd−k −→

d→∞
0.

Proof. This proof can be found in Appendix A.10. �

Remark. As (16) and (18) are equivalent, we find (from the Banach-fixed point theorem) that all
these equations have a unique solution provided that dk2ρd−k < 1 (with boundary condition F̄ (0) = ρ).

Based on our analysis for LL(d,k) we now find the following result for the more general setting

with arbitrary δ .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

35:16 Tim Hellemans, Tejas Bodas, Benny Van Houdt

0 5 10 15 20 25 30

2

4

6

8

10

12

14

16

18

(a) E[R] versus T for various values of d

0 5 10 15 20 25 30

2

4

6

8

10

12

14

16

(b) E[R] versusT for different distributions of X̃ .

Fig. 5. Numerical examples: JTQ(d,T)

Proposition 6.10. For the LL(d,k, δ), the FDE (3) reduces to the following DIDE:

F̄ ′(w) = −λd(1 − F̄ (w)) w ≤ δ

F̄ ′(w) = −λd(F̄ (w − δ) − F̄ (w)) − λ

(
F̄X̃ (w − δ) + H (w − δ) −

∫ w−δ

0

H (u)fX̃ (w − δ − u)du

)
w ≥ δ ,

with boundary condition F̄ (0) = λ(E[X̃] + dδ)

Proof. This easily follows by applying the fact that Q(U1) = QLL(d ,k)(U1) + δ , where QLL(d ,k) is

defined as the Q−function corresponding to the LL(d,k) policy. The boundary condition follows

from the fact that each job brings E[X̃] + dδ work on average. �

If there is no slowdown (i.e. д(s, x) = x) and jobs are split into k identical parts, then it is

obvious that the response time of a job is given by its response time at the server with the k ′
th

lowest workload for which the ccdf is easy to compute. When computing the response time for the

LL(d,k, δ) policy in the S&X model, things are more involved, see Appendix A.11.

Numerical examples
We investigate how the choice of d and k impact the mean response time in the LL(d,k, δ) policy
described above in case there is no slowdown and each incoming job is split into k equal parts. We

fix λ = 0.8 and δ = 0.01, for the jobs we take Erlang distributed job sizes with mean 1 and SCV 1/2,

exponential job sizes with mean one, and Hyperexponential job sizes with balanced means, unit

mean and SCV 5 resp. 10.

In Figure 4a, we observe that increasing the value of d decreases the mean response time where

the gain is greater for the more variable jobs. As d becomes large, the mean response times seem to

coincide for all values of the SCV. For d sufficiently large the mean response time starts to increase

due to the extra load coming from the request time δ . Note that the system becomes unstable for

d = 25 as the system load is 0.8 + 0.01 · 25 · 0.8 = 1. In Figure 4b, we observe that splitting a job

into multiple parts initially yields a gain in response times, even driving response times below 1.

As we divide jobs into more and more parts, we observe that the response times start to increase as

the number of servers we can choose decreases. Note that there is a very strong increase when

going from k = 19 = d − 1 to k = 20 = d jobs, this is due to the fact that at k = d we completely

loose the power of d choices.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

Workload Dependent 35:17

6.6 Type 4 : JTQ(d,T)
In the JTQ(d,T) policy, on arrival of a job, d servers are sampled and the job is served on a randomly

chosen server (among the d servers) which has a workload below the threshold T . In case none

of the sampled d servers has a workload of at most T , the job is randomly routed to one of the d
servers. When T = ∞, this reduces to random routing. Like the RTQ(d,T) policy, JTQ(d,T) is a
policy that has low communication overhead as the servers need to only inform the dispatcher

about their level crossings of the threshold T .
We can use the following proposition to compute its equilibrium workload distribution.

Proposition 6.11. For the JTQ(d,T), the FDE (3) reduces to the following FDE:

F̄ ′(w) = −λ

(
1 − F̄ (T)d

1 − F̄ (T)
(F̄RX̃ (w) − F̄ (w))

)
w ≤ T

F̄ ′(w) = −λ

(
1 − F̄ (T)d

1 − F̄ (T)
A(w,T) + F̄ (T)d−1

[
F̄RX̃ (w) − F̄ (w) −A(w,T)

])
w > T ,

withA(w,T) = F̄X̃ (w)F (T)+
∫ w
w−T fX̃ (u)(F̄ (w −u) − F̄ (T))du and RX̃ the marginal response time (see

Section 4). Here we have the boundary condition F̄ (0) = λE[X̃].

Proof. The proof can be found in Appendix A.12 �

Remark. For numerical considerations we may define H (w) = F̄ (w)δ {w ≤T } , we find thatA(w,T) =
Ḡ(w) +

∫ w
0

д(w −u)H (u)du which can be quickly computed as it is a convolution. Here δ {w ≤T } is one
whenw ≤ T and zero otherwise.

Corollary 6.12. For the JTQ(d,T) policy, the ccdf of the equilibrium response time distribution for
the queue at the cavity is given by:

F̄R (w) =
1 − F̄ (T)d

1 − F̄ (T)

(
F̄X̃ (w)F (T) +

∫ T

0

fX̃ (w − u)(F̄ (u) − F̄ (T))du

)
+ F̄ (T)d−1

(
F̄X̃ (w −T)F̄ (T) +

∫ w−T

0

fX̃ (w −T − u)F̄ (T + u)du .

)
Proof. This follows from the fact that F̄R (w) is given by:

(1 − F̄ (T)d)P{U + X̃ > w | U ≤ T } + F̄ (T)dP{U + X̃ > w | U > T }.

�

Numerical examples
We now consider some numerical examples for the JTQ(d,T) policy without slowdown. In Figure

5a, we compare the mean response time E[R] as a function ofT for different values of d . We assume

that λ = 0.9 and X̃ is exponential with unit mean. Firstly, note thatT = 0 corresponds to JIQ(d). On
the other hand, T = ∞ corresponds to the random routing policy. We see that for different values

of d , E[R] first decreases and then increases to the same value (due to the resemblance to random

routing policy for large T) indicating that the parameter T should be chosen suitably. Furthermore,

the optimal value of T decreases with increase in d . Note that as d tends to infinity, JIQ(d) becomes

an optimal policy as expected.

In Figure 5b, we show E[R] versus T with different distributions for X̃ : Erlang with mean 1 and

SCV 1/2, exponential with mean one, and Hyperexponential with balanced means, mean one and

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

35:18 Tim Hellemans, Tejas Bodas, Benny Van Houdt

SCV 5 and 10. We again assume λ = 0.9 and d = 2. For the different distributions, we notice that

E[R] again has the same shape as in Figure 5a. Furthermore, the optimal value of T increases with

the SCV.

7 PHASE TYPE DISTRIBUTION
While the analysis presented till now assumes that the job sizes and slowdown variables are

generally distributed, in this section, we focus on the case where certain random variables have

a phase type (PH) distributions and for all x , д−1

x (w) is linear inw . Note that any distribution on

[0,∞) can be approximated arbitrarily close with a PH distribution, moreover there are various

tools available online for matching PH distributions (see e.g. [14], [18]).

A PH distribution with pdf b(·) and cdf B(·) with B(0) = 0 is fully characterized by a stochastic

vector α ∈ Rn and a subgenerator matrix A ∈ Rn×n such that B̄(w) = αeAw1 and b(w) = αeAw µ
with n ∈ N, µ = −A1 and 1 an n × 1 column vector consisting of ones. We note that for the choice

of д(s, x) = (s + 1)x that we consider in our numerical examples, and the choice of д(s, x) = sx as

considered in [8], д−1

x (w) is indeed linear inw .

The importance of the results in this section mostly relate to the computation time of the numeri-

cal solution methods. The idea is to replace integral equations with a system of differential equations

which are numerically less cumbersome to compute. If we let M denote the number of control

points used to define F̄ , the results involving PH distributions generally reduce computational

complexity by one order. For example, we find that solving the DIDE given in Proposition 6.8 with

a discrete job size distribution X requires O(M2
) time, whilst the DDE given by Proposition 7.3 can

be solved in O(M) time.

7.1 Red(d,k, δ)
For the Red(d,k, δ) policy, the integral is hidden in F̄Rx (w) (see (6)). We show that a simplification

in the analysis is possible for obtaining F̄Rx . Note that this speed-up applies to all policies which

use F̄Rx in their associated FDE:

Proposition 7.1. Assume д−1

x (w) is linear inw . Let a(x) = ∂(дx)−1

∂w and assume S is PH distributed
with parameters (α,A). We find:

F̄Rx (w) = F̄S (д
−1

x (w)) + αa(x)ξx (w)

ξ ′x (w) = F̄ (w − дx (0))µ +Aξx (w)a(x), w > дx (0)

ξx (w) = 0 w ≤ дx (0),

with µ = −A1.

Proof. As S is PH distributed, we find:

F̄Rx (w) = F̄S (д
−1

x (w)) + α

∫ w

дx (0)
F̄ (w − u)eд

−1

x (u)Aµ dua(x).

The result follows by letting ξx (w) =
∫ w
дx (0)

F̄ (w − u)eд
−1

x (u)Aµ du. Indeed, we first use a substitution

to write it as: ξx (w) =
∫ w
дx (0)

F̄ (u)eд
−1

x (w−u)Aµ du, one may then simply apply the Leibniz integral

rule to differentiate ξx (w). �

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

Workload Dependent 35:19

Remark. Using the result in Proposition 7.1 we can rewrite the DIDE given in (8-9) as:

F̄ ′(w) = −λd

[∫ ∞

0

(
F̄S (д

−1

x (w)) + αa(x)ξx (w)
)
fX (x)dx − F̄ (w)

]
w ≤ δ

F̄ ′(w) = −λd

(∫ ∞

0

k−1∑
j=0

(
d − 1

j

) (
1 − F̄S (д

−1

x (w − δ)) + αa(x)ξx (w − δ)
) j (

F̄S (д
−1

x (w − δ))

+ αa(x)ξx (w − δ)
)d−j−1

·
(
F̄S (д

−1

x (w)) + αa(x)ξx (w) − F̄ (w)
)
fX (x)dx

)
w > δ

ξx (w) = 0 w ≤ дx (0)

ξ ′x (w) = F̄ (w − дx (0))µ +Aξx (w)a(x), w > дx (0).

It is not hard to see how to generalize this result in case S is a combination of a discrete and a PH

distributed random variable. In our numerical examples, we assumed that S is PH distributed with

probability q and zero with probability 1 − q and д(s, x) = (s + 1)x . Let us denote A = (S | S > 0)

the PH distribution S has with probability q, assume it has parameters (α,A) and let µ = −A1. It is
not hard (See also the proof of Proposition 7.2) to show that:

F̄Rx (w) = 1 ifw ≤ x

F̄Rx (w) = q

(
F̄A

(w − x

x

)
+
αξx (w)

x

)
+ (1 − q)F̄ (w − x) ifw > x

ξx (w) = 0 ifw ≤ x

ξ ′x (w) = F̄ (w − x)µ +
Aξx (w)

x
ifw > x .

The case of no slowdown and PH distributed job sizes can be found in Appendix A.13.1.

7.2 RTQ(d,T)
For the RTQ(d,T) policy, we have an additional integral for Bx (w,T) besides F̄Rx (w). We show how

this integral can be eliminated in case S is a combination of a discrete and a PH distribution:

Proposition 7.2. If in the setting of Proposition 6.4, S is PH distributed with parameters (α,A),
µ = −A1 with probability q, and zero otherwise and (д−1

x)′(w) = a(x) does not depend onw , then:

Bx (w,T) = F̄S (д
−1

x (w))F (T) + qαφx (w)a(x)

+ (1 − q)(F̄ (w − дx (0)) − F̄ (T))I[дx (0),T+дx (0)](w),

where φx (w) satisfies:

φx (w) = 0 w ≤ дx (0)

φ ′
x (w) = (F̄ (w − дx (0)) − F̄ (T))µ +Aφx (w)a(x) дx (0) < w ≤ T + дx (0)

φ ′
x (w) = Aφx (w)a(x) T + дx (0) < w .

Proof. Let A = (S | S > 0), one finds that
∫ T

0
fдx (S)(w − u)(F̄ (u) − F̄ (T)du equals:

q

∫ T

0

fдx (A)(w − u)(F̄ (u) − F̄ (T))du + (1 − q)(F̄ (w − дx (0)) − F̄ (T))I[дx (0),T+дx (0)](w).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

35:20 Tim Hellemans, Tejas Bodas, Benny Van Houdt

Furthermore as дx (A) ≥ дx (0) we find that fдx (A)(w − u) = 0 forw − u < дx (0) which happens if

w − дx (0) < u. The result now follows by setting:

φx (w) =

∫
min{T ,(w−дx (0))}

0

eд
−1

x (w−u)A(F̄ (u) − F̄ (T))duµ .

�

As for Red(d,k, δ), we obtain an alternative characterization of the equilibrium workload distri-

bution for the RTQ(d,T) policy by combining Proposition 6.4, 7.1 and 7.2. The case of no slowdown

and PH distributed job sizes is discussed in Appendix A.13.2.

7.3 LL(d,k, δ)
In this section, we look at the scenario where the actual job size X̃ = д(S,X) is PH distributed. It

was already noted in [11] and [10] that for the LL(d) policy, when job sizes are PH distributed, the

associated IDE can be reduced to a DDE which can be solved more efficiently. We show a similar

result for LL(d,k, δ).

Proposition 7.3. If X̃ is PH distributed with parameters (α,A) we find that the DIDE given in
Proposition 6.10 simplifies to the following DDE:

F̄ ′(w) = −λd(1 − F̄ (w)) ifw ≤ δ

F̄ ′(w) = −λd(F̄ (w − δ) − F̄ (w)) − λ

(
F̄X̃ (w − δ) + H (w − δ) − αξ (w − δ)

)
ifw ≥ δ

ξ ′(w) = Aξ (w) + H (w)µ,

with boundary condition ξ (0) = 0 and µ = −A1.

Proof. This easily follows from Proposition 6.8 by noting that fX̃ (w) = αewAµ and setting

ξ (w) =
∫ w

0
H (u)fX̃ (w − u)du. �

This result can be further generalized in case X̃ is a combination of a discrete and a PH distribution.

8 NUMERICAL METHOD
In this section we discuss the numerical algorithm used to generate the numerical examples for the

system stability and workload/response time distribution presented in the paper. As stated earlier,

a comparison with results obtained using time consuming simulation experiments is presented in

Appendix A.1 and A.2.

8.1 Computing the workload distribution
The equilibrium workload distribution can be obtained from a simple forward Euler scheme for

future independent policies (Type 1 and Type 3) as the right hand side of these equations only

depends on F̄ (u) for u ≤ w . For future dependent policies (Type 2 and Type 4), we observe that the

right hand side also depends on F̄ (u) for u > w , therefore, one may rely on a Fixed Point Iteration

to obtain the equilibrium workload distribution. However, note that Theorem 5.2 does not specify

a boundary condition for F̄ (0). This is not surprising as F̄ (0) corresponds to the actual system

load which is unknown for some policies. When this load is known, i.e. for Type 3 and Type 4

systems, we can simply use this system load as a boundary condition, i.e. set F̄ (0) = λ(dδ + E[X̃])

for LL(d,k, δ) and F̄ (0) = λE[X̃] for JTQ(d,T). However for other policies (mostly those that contain

some type of redundancy), F̄ (0) is unknown.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

Workload Dependent 35:21

We do know that if F̄ is the ccdf of a workload distribution, it must satisfy infw>0 F̄ (w) = 0.

Based on this trivial observation, we obtain an algorithm which can be used to find the solution F̄
for (3) when the system is stable (i.e. the equilibrium workload distribution is not infinite) and an

algorithm to obtain the highest value of λ for which it is still stable. To this end we first define two

simple operators, T1 : (0, 1) → R[0,∞)
and T2 : R[0,∞) × (0, 1) → R[0,∞)

. Here T1 maps a value x0 to

the solution found by solving the corresponding DIDE with boundary condition F̄ (0) = x0, using a

forward Euler iteration. To define T2 we first define:

Rx0
F̄ = x0 − x0

F̄ (0) − F̄

F̄ (0)
,

which scales F̄ to satisfy F̄ (0) = x0. Secondly, we defineHd as:

Hd F̄ (w) = x0 − λd

∫ w

0

F̄ ′(u)du = x0 − λd

∫ w

0

P{Q(U) > u,U ≤ u}du .

We now let T2(F̄ , x0) denote the operator which first applies Rx0
to F̄ and then repeatedly applies

Hd until ∥F̄ −Hd F̄ ∥∞ is sufficiently small. Using the operators T1 and T2, we propose an algorithm

to obtain the equilibrium workload distribution. This algorithm is basically a simple bisection

algorithm (on T1 for future independent and T2 for future dependent policies), where we look for

F̄ (0) such that infw>0 F̄ (w) = 0.

Step 1: Set lb = 0, ub = 1,n = 0 and F̄0(w) = F̄X̃ (w).

Step 2: Set x0 =
lb+ub

2
and compute F̄n+1 = T1(x0) for a future independent resp. F̄n+1 = T2(F̄n, x0)

for a future dependent policy.

Step 3: Compute y = infw>0 F̄n+1(w) and increment n by one.

Step 4: Set lb = x0 if y ≤ 0 otherwise set ub = x0, return to Step 2.

Terminate the algorithm when | infw>0 F̄ (w)| is sufficiently small.

Remark. For the policies where F̄ (0) is known, one can simply set lb = ub = F̄ (0) in step 1 and the
equilibrium workload distribution is given by F̄1.

It is not hard to see that if F̄ satisfies any of the future (in)dependent FDEs considered in this

work and infw ≥0 F̄ (w) = 0, then F̄ is indeed a ccdf. To this end one essentially needs to show that

F̄ (w) is non-increasing. For example for Red(d,k, δ), one can establish that F̄RX̃ (w) ≥ F̄ (w) for allw

and F̄Rx (w) ≥ F̄ (w) for allw, x . From this it then follows that F̄ is indeed decreasing, the property

infw ≥0 F̄ (w) = 0 then ensures that F̄ (w) ≥ 0 and limw→∞ F̄ (w) = 0.

However, to be certain that this algorithm converges to the equilibrium workload distribution,

one needs to show that if F̄1 and F̄2 are two solutions of the same FDE, that satisfy F̄1(0) ≤ F̄2(0)

and infw>0 F̄2(w) < 0 then also infw>0 F̄1(w) < 0. Proving this seems difficult, but numerical

experiments suggest that this is indeed the case for all examples considered. For LL(d,k, δ) with
exponential job sizes this trivially holds as the DIDE is equivalent to the ODE (19) (this is also the

case for Red(d) with independent replicas and exponential job sizes). Moreover, convergence in our

algorithm is not guaranteed (except to some extent for LL(d,k) by Theorem 6.8).

8.2 Stability
We let λmax denote the smallest arrival rate λ for which the load balancing policy is no longer stable,

i.e., for all λ < λmax stability is ensured while for λ ≥ λmax the system is unstable.

In order to approximate the unknown value of λmax we need to find the smallest value of λ for

which there does not exist any F̄ (0) ∈ (0, 1) s.t. the associated solution of Theorem 5.2 satisfies

infw ≥0 F̄ (w) = 0, equivalently we must find the smallest value of λ s.t. for each choice of F̄ (0) we
have infw>0 F̄ (w) > 0. In order to approximate this value we pick some sufficiently small ε > 0 and

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

35:22 Tim Hellemans, Tejas Bodas, Benny Van Houdt

set x0 = 1 − ε . We then let F̄ = T1(x0) resp. F̄ = T2(F̄X̃ , x0), and check whether infw>0 F̄ (w) > 0, if it

is, we conclude that the system is (or at least is very close to being) unstable and if infw>0 F̄ (w) ≤ 0

we conclude that the system is stable. One can thus find an approximation for λmax using a simple

bisection method.

9 FUTUREWORK
This paper provides a numerical method to practitioners to assess the performance of workload

dependent policies without the need to resort to simulation. In some rare cases, analytical results

have been found by solving the FDE obtained in this work (see [11] and [9]). A theoretical follow-

up may exist in proving the asymptotic independence for specific policies. Another alley worth

investigating is letting d scale with N . A disadvantage of this is that many of the policies become

unstable for all λ > 0 if dN → ∞. It would also be of interest to generalize these results to the

setting of heterogeneous servers, in this case one would need to take a queue at the cavity for each

server type. Another interesting application of this method is the case with energy aware servers,

where servers shut down when idle and take some time δ > 0 to restart when a job arrives.

REFERENCES
[1] R. Aghajani, X. Li, and K. Ramanan. 2017. The PDE Method for the Analysis of Randomized Load Balancing Networks.

Proc. ACM Meas. Anal. Comput. Syst. 1, 2, Article 38 (Dec. 2017), 28 pages. https://doi.org/10.1145/3154497

[2] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. 2013. Effective Straggler Mitigation: Attack of the Clones..

In NSDI, Vol. 13. 185–198.
[3] U Ayesta, T Bodas, JL Dorsman, and IM Verloop. 2019. A token-based central queue with order-independent service

rates. arXiv preprint arXiv:1902.02137 (2019).

[4] U. Ayesta, T. Bodas, and I. M. Verloop. 2018. On a unifying product form framework for redundancymodels. Performance
Evaluation 127 (2018), 93–119.

[5] M. Bramson, Y. Lu, and B. Prabhakar. 2010. Randomized load balancing with general service time distributions. In

ACM SIGMETRICS 2010. 275–286. https://doi.org/10.1145/1811039.1811071

[6] M. Bramson, Y. Lu, and B. Prabhakar. 2012. Asymptotic independence of queues under randomized load balancing.

Queueing Syst. 71, 3 (2012), 247–292. https://doi.org/10.1007/s11134-012-9311-0

[7] S. Foss and A. L. Stolyar. 2017. Large-scale join-idle-queue system with general service times. Journal of Applied
Probability 54, 4 (2017), 995–1007. https://doi.org/10.1017/jpr.2017.49

[8] K. Gardner, M. Harchol-Balter, A. Scheller-Wolf, and B. Van Houdt. 2017. A better model for job redundancy: Decoupling

server slowdown and job size. IEEE/ACM Transactions on Networking 25, 6 (2017), 3353–3367.

[9] K. Gardner, M. Harchol-Balter, A. Scheller-Wolf, M. Velednitsky, and S. Zbarsky. 2017. Redundancy-d: The Power of d

Choices for Redundancy. Operations Research 65, 4 (2017), 1078–1094.

[10] T. Hellemans and B. Van Houdt. 2018. Analysis of redundancy (d) with identical replicas. In Performance evaluation
review. Vol. 46. 74–79.

[11] T. Hellemans and B. Van Houdt. 2018. On the Power-of-d-choices with Least Loaded Server Selection. Proceedings of
the ACM on Measurement and Analysis of Computing Systems 2, 2 (2018), 27.

[12] G. Joshi, Y. Liu, and E. Soljanin. 2012. Coding for fast content download. In Communication, Control, and Computing
(Allerton), 2012 50th Annual Allerton Conference on. IEEE, 326–333.

[13] G. Joshi, E. Soljanin, and G. Wornell. 2017. Efficient redundancy techniques for latency reduction in cloud systems.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems (TOMPECS) 2, 2 (2017), 12.
[14] J. Kriege and P. Buchholz. 2014. PH and MAP Fitting with Aggregated Traffic Traces. Springer International Publishing,

Cham, 1–15. https://doi.org/10.1007/978-3-319-05359-2_1

[15] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Greenberg. 2011. Join-Idle-Queue: A novel load balancing algorithm

for dynamically scalable web services. Perform. Eval. 68 (2011), 1056–1071. Issue 11.
[16] M. Mitzenmacher. 2001. The Power of Two Choices in Randomized Load Balancing. IEEE Trans. Parallel Distrib. Syst.

12 (October 2001), 1094–1104. Issue 10.

[17] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. 2013. Sparrow: Distributed, Low Latency Scheduling. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP ’13). ACM, New York, NY, USA, 69–84.

https://doi.org/10.1145/2517349.2522716

[18] A. Panchenko and A. Thümmler. 2007. Efficient Phase-type Fitting with Aggregated Traffic Traces. Perform. Eval. 64,
7-8 (Aug. 2007), 629–645. https://doi.org/10.1016/j.peva.2006.09.002

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

https://doi.org/10.1145/3154497
https://doi.org/10.1145/1811039.1811071
https://doi.org/10.1007/s11134-012-9311-0
https://doi.org/10.1017/jpr.2017.49
https://doi.org/10.1007/978-3-319-05359-2_1
https://doi.org/10.1145/2517349.2522716
https://doi.org/10.1016/j.peva.2006.09.002

Workload Dependent 35:23

[19] N. B Shah, K. Lee, and K. Ramchandran. 2016. When do redundant requests reduce latency? IEEE Transactions on
Communications 64, 2 (2016), 715–722.

[20] V. Shah, A. Bouillard, and F. Baccelli. 2017. Delay comparison of delivery and coding policies in data clusters. In

Communication, Control, and Computing (Allerton), 2017 55th Annual Allerton Conference on. IEEE, 397–404.
[21] A. L. Stolyar. 2015. Pull-based load distribution in large-scale heterogeneous service systems. Queueing Systems 80, 4

(2015), 341–361. https://doi.org/10.1007/s11134-015-9448-8

[22] N.D. Vvedenskaya, R.L. Dobrushin, and F.I. Karpelevich. 1996. Queueing System with Selection of the Shortest of Two

Queues: an Asymptotic Approach. Problemy Peredachi Informatsii 32 (1996), 15–27.
[23] W. Wang, M. Harchol-Balter, H. Jiang, A. Scheller-Wolf, and R. Srikant. 2017. Delay Asymptotics and Bounds for

Multi-Task Parallel Jobs. (2017).

A APPENDIX
A.1 Validation : Workload distribution
In this section we illustrate the accuracy of our numerical method, that is, we numerically obtain

the equilibrium workload distribution for different policies from their associated FDEs and compare

with results obtained via simulation. All simulation experiments are for N = 10, 50 and 300 servers,

where we simulate the system up to time 10
7/N with a warm-up period of 30% and start with an

empty system. The results are presented in Figure 6. The plots indicate that while the accuracy of

our approximation is quite poor for N = 10, it becomes more and more accurate as N increases

and is already very accurate for N = 300 in each of the considered cases. In the remainder of this

section we list the parameters settings in each of the 5 examples considered in Figure 6.

In Figure 6a, we validate the Red(d,k, δ) policy found from Propositions 6.2 and 7.1 for the

parameters d = 3,k = 2, δ = 0.02. The slowdown S is equal to zero with probability 1 − q = 0.8
and exponentially distributed with parameter 1 with probability q = 0.2. X follows a geometric

distribution with parameter 1/2 scaled down such that E[X] = 1.

In Figure 6b, we consider the RTQ(d,T) policy with d = 2 and T = 3. We choose λ = 0.75,

while the slowdown and job size distribution are chosen the same as for Red(d,k, δ) above. The
equilibrium workload distribution is obtained using the combination of Propositions 6.4, 7.1 and

7.2.

In Figure 6c, we consider the DR(d,T) policy with parameters d = 2,T = 3, λ = 0.7 and S and X
taken as for Red(d,k, δ) and RTQ(d,T) above. The equilibrium workload distribution is obtained

using Proposition 6.6.

We then consider the LL(d,k, δ) policy with the following parameters. We consider d = 3,k =
2, δ = 0.02 and λ = 0.9. For this policy we assume that X̃ = д(S,X) follows an hyperexponential

distribution with two phases and balanced means (i.e. the load from the large and small jobs is the

same). Furthermore, E[X̃] = 1 and its SCV= 9. The equilibrium workload distribution is obtained

using Propositions 6.8 and 7.3. The accuracy of our approximation method for large N is illustrated

in Figure 6d.

Finally, in Figure 6e we consider the JTQ(d,T) policy with parameters d = 2,T = 3, λ = 0.7 with

X̃ the same as for LL(d,k, δ). The equilibrium workload distribution is obtained using Proposition

6.11.

These plots are only a small subset of all numerical validation we have done. We have considered

other values for the parameters and other slowdown/job size distributions. However the results are

all similar to the ones shown in Figure 6.

A.2 Validation : Stability
In this subsection, for the DR(d,T) and the Red(d,k, δ) policy, we investigate its stability, i.e., the
maximum value of arrival rate λmax such that the system remains stable for λ < λmax, but is unstable

for all λ ≥ λmax. For the Red(d,k, δ) policy, we consider a systemwithN = 300,d = 2,k = 1, δ = 0.01

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

https://doi.org/10.1007/s11134-015-9448-8

35:24 Tim Hellemans, Tejas Bodas, Benny Van Houdt

0 2 4 6 8 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(a) Red(d,k, δ)

0 10 20 30 40
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(b) RTQ(d,T)

0 5 10 15 20
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(c) DR(d,T)

0 10 20 30 40 50
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(d) LL(d,k, δ)

0 20 40 60 80 100
10

-3

10
-2

10
-1

10
0

(e) JTQ(d,T)

Fig. 6. Limiting workload distribution vs. simulation for the N server system with Red(3, 2, 0.02), RTQ(2, 3),
DR(2, 3), LL(3, 2, 0.02) and JTQ(2, 3) policies respectively under different settings of arrival rate λ, service
requirement X and the slowdown variable S .

and q = 0.2. As earlier, we assume that S is exponential with probability q and zero with probability

1 − q and X is a scaled geometric random variable with parameter 1/2 and mean 1. We obtain

λmax using the algorithm presented in Section 8.2. We find that for this set of parameters, we have

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

Workload Dependent 35:25

0 0.5 1 1.5 2 2.5 3

10
4

0

20

40

60

80

(a) Red(d,k, δ)

0 0.5 1 1.5 2 2.5 3

10
4

0

5

10

15

20

25

(b) DR(d,T)

Fig. 7. Simulations for Red(d,k, δ) and DR(d,T) around their respective values of λmax .

λmax = 0.7145. To verify this, we consider a simulation of the system with N = 300 and values of

λ just above resp. below λmax . We simulate the system for a time span equal to 3 · 10
4 ≈ 10

7/N
and start with an empty system. In Figure 7a, we observe that while the mean workload for

λ = λmax − 0.001 seems to converge, it appears to diverge for λ = λmax + 0.001.

A similar experiment was performed for the DR(d,T) policy, where we consider d = 2, ,T =
3,q = 0.2 and again the same slowdown and job size distribution. For this setting of the parameters,

we observe that λmax = 0.7571. Figure 7b seems to indicate that our approach to find λmax is

indeed quite accurate even for finite N .

A.3 Policies in practice
A.3.1 Red(d,k, δ). The Red(d,k, δ) policy is of interest in distributed storage systems with coding

[12, 13, 19, 20]. Here, a file of size k · X is encoded into d sub-files and each of these sub-files is

stored on a unique server. Due to the underlying coding scheme involved, any k of the d sub-files

are sufficient to retrieve the original file. With the Red(d,k, δ) policy, once any k of the d sub-files

are retrieved or downloaded, the original file can be recreated.

A.3.2 RTQ(d,T). This policy assumes the servers know their workload (or at least whether or not

their workload exceeds some threshold T). This information is generally not available, therefore

we could implement this policy by replicating each job onto d chosen servers and cancelling the

replicas which have not yet entered service after some timeT . If none of the replicas started service
by time T , one replica is retained at random and the other d − 1 are cancelled.

Remark. One could argue that a more realistic policy would be to assume that an incoming job
is assigned to a primary server and d − 1 other servers are selected at random. The replicas on the
other d − 1 non-primary servers get cancelled if they did not enter service by time T . When one of
the replicas completes service, the other d − 1 replicas are automatically cancelled. For this policy, no
information on the workload is required and the only communication needed is when one job finishes
service. This policy can be studied analogously.

A.3.3 LL(d,k, δ). The LL(d,k) policy finds its application in systems with parallel processing and

multi-task jobs [23]. For such applications, one can reinterpret the LL(d,k) policy in a slightly

different manner as follows. We assume that an arriving job has a service requirement of k · X
which is split into k identical parts. An arriving job samples d servers at random and the k subtasks

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

35:26 Tim Hellemans, Tejas Bodas, Benny Van Houdt

of the jobs receive service from the k least-loaded servers among the d that were sampled. We say a

job has been processed when all of its subtasks are processed. Note that while in Red(d,k), we can
have upto d subtasks being served simultaneously (due to its cancellation-on-completion nature),

in LL(d,k) one can have at most k subtasks to be simultaneously in service. In this sense, LL(d,k)
can be viewed, as a cancellation-on-start version of the Red(d,k) policy.

Remark. For applications such as distributed storage, we need to consider the LL(d,k) policy with
k identically distributed (not necessarily independent nor identical) jobs denoted by X1 . . .Xk . Let ˜Q

denote the Q function associated to the LL(d,k) policy with identically distributed sub-jobs. It is not

hard to see that if we let X d
= X1 and let S1, . . . , Sd denote independent slowdown variables we have:

˜Q(U1, . . . ,Ud , S1, . . . , Sd ,X1, . . . ,Xk) = Q(U1, . . . ,Ud , S1, . . . , Sd ,X).

Therefore we have:
P{ ˜Q(U) > w,U ≤ w} = P{Q(U) > w,U ≤ w},

which entails that the FDE one finds for this more general model is the same as for simply taking
identical job sizes. Thus, the analysis is the same as for identical job sizes, and we may restrict ourselves
to the case of identically distributed sub-jobs. Note that this is indeed consistent with the encoding of X
into d sub files: only the first k sub files are used.

Additional variants to LL(d,k, δ) are for example: sending the largest job to the least loaded

server, the second largest to the second least loaded etc. One could also allow to send multiple jobs

to the same server if that server has a very low load.

A.4 Proof of Theorem 5.1
Proof. Let ∆ > 0 be arbitrary, and consider the events where the workload of the queue at

cavity becomesw at time t + ∆ by looking at its value at time t and the behaviour in [t, t + ∆]. As
potential arrivals occur according to a Poisson process, all events which involve more than one

arrival in [t, t + ∆] are o(∆). We do distinguish the following three events which do not involve

more than one arrival on [t, t + ∆]:

• The queue at the cavity has workloadw +∆ at time t and its workload is not increased by arrivals
in [t, t + ∆], this occurs with density:

Q1 =

(
1 − λd

∫ ∆

0

P

{
Q(U H(·)((t +v)−) > w + ∆ −v,U H(·)((t +v)−) = w + ∆ −v

}
dv

)
.

• The queue at the cavity has workload 0 at time t and its workload is increased tow + (∆ −v) at
time t +v . This event has density:

Q2 = λd

∫ ∆

0

P

{
Q(U H(·)((t +v)−) = w + (∆ −v),U H(·)((t +v)−) = 0

}
dv .

• The queue at the cavity’s workload lies in the interval (v,w +∆−v) at time t +v and its workload

is increased tow + ∆ −v by a potential arrival, we find:

Q3 =λd

∫ ∆

0

∫ w+∆−v

v
P{Q(U H(·)((t +v)−) = w + (∆ −v),U H(·)((t +v)−) = u}du dv .

We therefore find that:

f (t + ∆,w) = Q1 +Q2 +Q3 + o(∆),

by subtracting f (t,w) on both sides, dividing by ∆ and taking the limit ∆ → 0 we find that the

claimed equality (1) indeed holds. We now investigate the boundary condition which characterizes

the events associated with the evolution of the workload on [t, t + ∆] such that it is zero at time

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

Workload Dependent 35:27

t + ∆. The workload can either be zero at time t and no potential arrivals occur in [t, t + ∆] or
the workload is in (0,∆) at time t and no potential arrival in the interval [t, t + ∆] increases its
workload. We find:

F (t + ∆, 0) = F (t, 0)

(
1 − λd

∫ ∆

0

P{Q(U H(·)((t +v)−) > 0 | U H(·)(t) = 0})dv

)
+

∫ ∆

0

f (t,u)

(
1 − λd

∫ ∆

0

P{Q(U H(·)((t +v)−)) > max{0, (u −v)} | U H(·)(t) = u}

)
dv du + o(∆).

By subtracting F (t, 0) on both sides, dividing by ∆ and taking the limit ∆ → 0 we find that (2)

indeed holds. �

A.5 Proof of Proposition 6.2
Proof. Assume that the selected servers have workloads U1, . . . ,Ud and an arriving job of size

X experiences slowdown S1, . . . , Sd on the selected servers. Ifw ≤ δ , it is obvious that Q(U1) > w

if and only if its response time at the queue at the cavity RX̃
d
= U1 +д(S1,X) > w . We therefore find

from Theorem 5.2 forw ≤ δ :

F̄ ′(w) = −λdP{U1 + д(S1,X) > w,U1 ≤ w},

which leads to (8). Now, assumew > δ . For i = 1, . . . ,d we define Yi = Ui + д(Si ,X) as the effective
workload after addition of a copy. We have

Q(U1) = max

{
U1,min{Y1,Y(k) + δ }

}
. (21)

In words, this means that the new workload at the cavity queue can take one of the values below

due to the potential arrival.

• Q(U1) = U1. This happens whenU1 > Y(k) + δ .
• Q(U1) = Y1. This happens when Y1 < Y(k) + δ .
• Q(U1) = Y(k) + δ . This happens when Y1 ≥ Y(k) + δ andU1 ≤ Y(k) + δ .

Let us consider the term P{U1 ≤ w,Q(U1) > w}. Note that the event {U1 ≤ w,Q(U1) > w} implies

that Y1 > w . Further, Y1 > w implies that Q(U1) , U1 and hence from (21) we have:

P{U1 ≤ w,Q(U1) > w} = P{U1 ≤ w,min{Y1,Y(k) + δ } > w} = P{U1 ≤ w,Y1 > w,Y(k) + δ > w}.

Now Y(k) + δ > w only if at most k − 1 of the sampled queues have an effective workload which

is bounded above by w − δ . Given that Y1 > w for the queue at cavity, we have that its effective

workload is not bounded by w − δ . By conditioning on the random variable X , we have from

Theorem 5.2, the ansatz property (that the queues have independent workloads) and the discussion

above that (9) indeed holds. �

A.6 Proof of Proposition 6.4
Proof. We again assume a potential arrival of sizeX occurs to servers with workloadsU1, . . . ,Ud

where it experiences slowdown S1, . . . , Sd . It is not hard to see that for the RTQ(d,T) policy, we
have:

Q(U1) =

max

{
U1,min

d
i=1

{Ui + д(Si ,X) | Ui ≤ T }
}

ifU1 ≤ T

U1 + д(S1,X) w.p. 1

d ifU1, . . . ,Ud > T

U1 otherwise,

where min
d
i=1

{Ui + д(Si ,X) | Ui ≤ T } is the minimum taken over those i for which Ui ≤ T . We

compute the probability P{Q(U1) > w,U1 ≤ w,X = x} the result then follows from Theorem 5.2

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

35:28 Tim Hellemans, Tejas Bodas, Benny Van Houdt

(after integrating out X). Forw ≤ T we find that P{Q(U1) > w,U1 ≤ w,X = x} is equal to:

P{U1 + дx (S1) > w,U1 ≤ w} · P{(U1 + дx (S)) > w orU1 > T }
d−1, (22)

but note that ifU > T then surely alsoU + дx (S) > w holds. Therefore, (22) further simplifies to:

F̄Rx (w)d−1(F̄Rx (w) − F̄ (w)),

this shows the first part. Assume w > T , we split P{Q(U1) > w,U1 ≤ w,X = x} by writing it as

P{Q(U1) > w,U1 ≤ T ,X = x} + P{Q(U1) > w,T < U1 ≤ w,X = x}. When T < U1, the workload

can only increase when the workload at all other servers also exceed T , therefore we have

P{Q(U1) > w,T < U1 ≤ w,X = x} =
1

d
F̄ (T)d−1P{U1 + дx (S) > w,T < U1 ≤ w}. (23)

For the workload to jump from below T to abovew , one requires that all the other selected queues

either have a workload which exceeds T (thus the job will not be replicated on them) or a response

time which exceedsw . This allows us to find:

P{Q(U1) > w,U1 ≤ T ,X = x} = P{U1 + дx (S) > w,U1 ≤ T } · (F̄ (T) + P{U1 + дx (S) > w,U1 ≤ T })d−1

(24)

It is not hard to verify that Bx (w,T) = P{U1 + дx (S) > w,U1 ≤ T }. Combining (22-24) with this

equality, we may conclude the proof. �

A.7 Proof of Corollary 6.5
Proof. Forw ≤ T we find that all selected queues which have a workload that exceeds T won’t

be able to finish the job in timew . For each of the queues which have a workload which does not

exceed T , we find that Bx (w,T) is the probability that they won’t finish the job before timew . For

w > T we first have a term corresponding to the case where all d selected queues have a workload

which exceeds T . In the second term we consider the case where k out of d selected queues have a

workload smaller than T . �

A.8 Proof of Proposition 6.6
Proof. In order to apply Theorem 5.2, we assume a potential arrival occurs to queues with

workloads U1, . . . ,Ud , and where jobs with job size equal to X experience a slowdown equal to

S1, . . . , Sd . We make the distinction whether or not the queue at the cavity is the primary server

which is initially selected. We find that P{Q(U1) > w,U1 ≤ w} equals:

P{Q(U1) > w,U1 ≤ w,U1 not the primary server } (25)

+ P{Q(U1) > w,U1 ≤ w,U1 the primary server }. (26)

For (25) we obtain that it is equal to:

d − 1

d

∫ ∞

0

(F̄Rx (w) − F̄ (w))F̄Rx (w)d−2 · F̄Rx (w +T)fX (x)dx, (27)

which reads: the queue at the cavity has a response time which exceedsw but its workload does

not exceedw , the other d − 2 selected servers’ response times all exceedw and the primary server’s

response time exceedsw +T . For (26) we make a distinction between the casesw ≤ T andw > T .
Forw ≤ T , we find that it equals:

1

d

∫ ∞

0

(F̄Rx (w) − F̄ (w))fX (x)dx, (28)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

Workload Dependent 35:29

while forw > T , we find that the job is replicated onto the other servers after time T thus to finish

after the queue at the cavity reaches workloadw , they must process the job in at leastw −T time.

1

d

∫ ∞

0

(F̄Rx (w) − F̄ (w)) · F̄Rx (w −T)d−1 fX (x)dx, (29)

where we note that F̄Rx (w) = 1 ifw < 0. Putting (27-29) together, we obtain the sought result. �

A.9 Proof of Proposition 6.8
Proof. Suppose that at some arbitrary point in time at equilibrium, a potential arrival of size

k · X arrives to servers with queue lengthsU1, . . . ,Ud and slowdowns S1, . . . , Sd . From Theorem

5.2 we find that the equilibrium workload environment satisfies:

F̄ ′(w) = −λd(P{Q(U) > w,U ≤ w} = −λdP{Q(U) > w,U = 0} (30)

− λdP{Q(U) > w, 0 < U ≤ w}. (31)

It can be seen that (30) is equal to the following:

− λdF (0)F̄X̃ (w) ·

d−1∑
j=0

min

{
1,

k

j + 1

} (
d − 1

j

)
F̄ (0)d−1−jF (0)j = −λF̄X̃ (w)(H (0) + 1) (32)

Similarly, (31) is equal to the following:

−λd

∫ w

0

f (u)
k−1∑
j=0

(
d − 1

j

)
(1 − F̄ (u))j F̄ (u)d−j−1F̄X̃ (w − u)du . (33)

To further simplify this, we first define

h(u) = f (u)
k−1∑
j=0

(
d − 1

j

)
(1 − F̄ (u))j F̄ (u)d−j−1

and show that H ′(w) = d · h(w) where H (w) is given by (17). Towards this, note that

H ′(w)/f (w) = −

k∑
j=1

j(d − j)

(
d

j

)
F̄ (w)d−j−1(1 − F̄ (w))j (34)

−

d∑
j=k+1

k(d − j)

(
d

j

)
F̄ (w)d−j−1(1 − F̄ (w))j (35)

+

k∑
j=1

j2
(
d

j

)
F̄ (w)d−j (1 − F̄ (w))j−1

(36)

+

d∑
j=k+1

kj

(
d

j

)
F̄ (w)d−j (1 − F̄ (w))j−1. (37)

It is not hard to see that (36) is equal to:

k−1∑
j=0

(j + 1)

(
d

j

)
(d − j)F̄ (w)d−j−1(1 − F̄ (w))j .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

35:30 Tim Hellemans, Tejas Bodas, Benny Van Houdt

This allows one to find that the sum of (34) and (36) simplifies to the following.

k−1∑
j=0

(d − j)

(
d

j

)
F̄ (w)d−j−1(1 − F̄ (w))j − k(d − k)

(
d

k

)
F̄ (w)d−k−1(1 − F̄ (w))k . (38)

Similarly (37) can be re-written as

k
d−1∑
j=k

(d − j)

(
d

j

)
F̄ (w)d−j−1(1 − F̄ (w))j

and adding this to (35) gives us the following.

k(d − k)

(
d

k

)
F̄ (w)d−k−1(1 − F̄ (w))k . (39)

The addition of (38) and (39) equals d · h(w) which proves that H ′(w) = d · h(w). We split (33) over

its continuous and discrete part using F̄X̃ = F̄X̃c
+ F̄X̃d . Using integration by parts and the fact that

H ′(u) = d · h(u), for the continuous part we find:∫ w

0

d · h(u)F̄X̃c
(w − u)du = F̄X̃c

(0)H (w) − H (0)F̄X̃c
(w) −

∫ w

0

H (u)fX̃c
(w − u)du . (40)

For the discrete part we find by setting ι(w) = max{n | xn ≤ w} that:∫ w

0

d · h(u)FX̃d (w − u)du = F̄X̃d (0)H (w) − H (0)F̄X̃d (w) −

ι(w)∑
j=0

pjH (w − x j). (41)

Using (32) for (30) and the combination of (40-41) for (31) we find that the sought equality indeed

holds.

The FPE (18) follows by integrating (16) w.r.t.w and applying Fubini. �

A.10 Proof of Proposition 6.9
Proof. To show the first part, let F̄ ∈ ccdfρ be arbitrary. We note that:

1 + H (w) ≤ k ·

d∑
j=0

(
d

j

)
F̄ (w)d−j (1 − F̄ (w))j ≤ k,

which shows that limw→∞T (k)
d F̄ (w) ≤ 0. To show the other inequality, we note that for large values

ofw we have 1 + H (w) ≥ k · (1 − F̄ (w))j .

To show (20) we let F̄1, F̄2 ∈ ccdfρ . It is clear that we should bound:���� d∑
j=1

min{j,k}

(
d

j

) (
F̄1(w)d−j (1 − F̄1(w))j − F̄2(w)d−j (1 − F̄2(w))j

)����.
Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

Workload Dependent 35:31

To this end, we define the function fj ,d (x) =
∑d

j=1
min{j,k}

(d
j

)
x j · (1 − x)d−j . We may bound its

first derivative by:

f ′j ,d (x) =
d∑
j=1

min{j,k}

(
d

j

)
(1 − x)d−j−1x j−1(j − d · x)

≤ k
d∑
j=1

j

(
d

j

)
(1 − x)d−j−1x j−1 − d

d∑
j=1

min{j,k}

(
d

j

)
(1 − x)d−j−1x j

= d
k−1∑
j=1

(k − j)(1 − x)d−j−1x j .

By applying the mean value theorem, this completes the proof. �

A.11 Response time for the LL(d,k, δ) policy
The queue with the highest workload need not be the last queue to finish serving its part of the job.

The response time of a job is given by R = max
k
i=1

{U(i) + д(Si ,X)}. We find:

F̄R (w + δ) = 1 −

∫ ∞

0

P
{

k
max

i=1

{U(i) + дx (Si)} ≤ w
}
fX (x)dx

and F̄R (w) = 1 forw ≤ δ . By applying the fact that the pdf of the joint distribution (U(1), . . . ,U(k))

in u1, . . . ,uk is given by
d !

(d−k)! f (u1) · · · · · f (uk)F̄ (uk)
n−k

we find:

P{
k

max

i=1

{U(i) + д x
k
(Si) ≤ w}} =

d!

(d − k)!

∫ w

0

f (u1)Fд x
k
(S)(w − u1)

∫ w

u1

f (u2)Fд x
k
(S)(w − u2)∫ w

u2

· · ·

∫ w

uk−1

Fд x
k
(S)(w − uk)f (uk)F̄ (uk)

d−k duk . . .du1. (42)

When d > k ≥ 2, this integral becomes hard to solve, we may therefore first compute the workload

distribution and thereafter use simulation to obtain the response time distribution. More precisely,

whenever an arrival occurs, we simulateX , S1, . . . , Sd according to their distribution andU1, . . . ,Ud
as i.i.d. random variables distributed as the obtained workload distribution. One can then simply

apply the LL(d,k, δ) policy to obtain the response time for this specific set of simulated values.

Note that in this simulation one need not keep track of any values, simply simulate arrivals and

compute their response times based on the obtained workload distribution.

A.12 Proof of Proposition 6.11
Proof. Note that for this policy, Q(U1) = Q(U1, . . . ,Ud , X̃) is given by:

Q(U1) = U1 + X̃ w .p.
1

|{k ∈ {1, . . . ,d} | Uk ≤ T }|
ifU1 ≤ T

Q(U1) = U1 + X̃ w .p.
1

d
ifU1, . . . ,Ud > T

Q(U1) = U1 otherwise.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

35:32 Tim Hellemans, Tejas Bodas, Benny Van Houdt

We first compute the probability P{Q(U1) > w,U1 ≤ w} for the casew ≤ T . We find that it is equal

to: (
d−1∑
j=0

(
d − 1

j

)
F (T)j F̄ (T)d−1−j 1

j + 1

)
P{U1 + X̃ > w,U1 ≤ w}

=

(
1

d

d∑
j=1

(
d

j

)
F (T)j F̄ (T)d−j

F (T)

)
P{U1 + X̃ > w,U1 ≤ w} =

1 − F̄ (T)d

dF (T)
P{U1 + X̃ > w,U1 ≤ w}.

This shows the first part. Assume w > T , we first write P{Q(U1) > w,U1 ≤ w} as P{Q(U1) >
w,U1 ≤ T } + P{Q(U1) > w,T < U1 ≤ w}. We then find that P{Q(U1) > w,U1 ≤ T } is given by:

(1 − F̄ (T)d)

dF (T)
P{U1 + X̃ > w,U1 ≤ T }.

while P{Q(U1) > w,T < U1 ≤ w} is given by:

1

d
P{U2, . . . ,Ud > T ,U + X̃ > w,T < U ≤ w} =

1

d
F̄ (T)d−1(F̄RX (w) − F̄ (w) − P{U ≤ T ,U + X̃ > w}).

One finds that A(w,T) = P{U ≤ T ,U + X̃ > w}, which completes the proof. �

A.13 No Slowdown
In this subsection we take another look at some of the policies studied in Section 6, and revisit them

under the assumption that the servers experience no slowdown (i.e. д(S,X) = X). We first note

that the analysis for LL(d,k, δ) and JTQ(d,T) under the no slowdown assumption easily follows by

taking X̃ = X . We now focus on the Red(d,k, δ), RTQ(d,T) and DR(d,T) policy for the case without

slowdown.

A.13.1 Red(d,k, δ). For Red(d,k, δ) with no slowdown, we find that the results in Proposition 6.2

can be simplified, which allows to obtain an analog to Proposition 7.1 in case X is PH distributed.

Proposition A.1. The ccdf of the workload distribution for Red(d,k, δ) without slowdown satisfies
the following DIDE:

F̄ ′(w) = −λd

(
F̄X (w) +

∫ w

0

fX (w − u)F̄ (u)du − F̄ (w)

)
w ≤ δ (43)

F̄ ′(w) = −λd

[
F̄X (w) − F̄ (w)F̄X (w − δ) +

∫ δ

0

F̄ (x)fX (w − x)dx

+

∫ w−δ

0

L(w − x − δ)(F̄ (w − x) − F̄ (w))fX (x)dx

]
w > δ (44)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

Workload Dependent 35:33

with L(w) =
∑k−1

j=0

(d−1

j

)
F (w)j F̄ (w)d−j−1. Furthermore if X is PH distributed with parameters (α,A)

and µ = −A1 we find that the above DIDE reduces to a DDE:

F̄ ′(w) = −λd
(
F̄X (w) + αξ1(w) − F̄ (w)

)
w ≤ δ

F̄ ′(w) = −λd

(
F̄X (w) − F̄ (w)F̄X (w − δ) + α

(
ξ1(w) + ξ2(w) − ξ3(w)F̄ (w)

))
w > δ

ξ ′
1
(w) = Aξ1(w) + F̄ (w)µ w ≤ δ

ξ ′
1
(w) = Aξ1(w) w > δ

ξ ′
2
(w) = L(w − δ)F̄ (w)µ +Aξ2(w) w > δ

ξ ′
3
(w) = L(w − δ)µ +Aξ3(w) w > δ .

with boundary condition ξ1(0) = ξ2(δ) = ξ3(δ) = 0.

Proof. We find:

F̄RX̃ (w) = P{U + X ≥ w} = F̄X (w) +

∫ w

0

fX (w − x)F̄ (x)dx .

Moreover we have:

F̄Rx (w) = F̄ (w − x).

This allows us to compute:

F̄ ′(w) = −λd

∫ ∞

0

L(w − x − δ)
(
F̄ (w − x) − F̄ (w)

)
fX (x)dx

= −λd

∫ w

0

L(w − x − δ)(F̄ (w − x) − F̄ (w))fX (x)dx − λdF̄X (w)F (w).

From this it is clear that (43-44) holds.

Now assume that X is PH distributed with parameters (α,A). This last statement follows by

defining:

ξ1(w) =

∫ w

0

e(w−x)AF̄ (x)dxµ w ≤ δ

ξ1(w) =

∫ δ

0

e(w−x)AF̄ (x)dxµ w > δ

ξ2(w) =

∫ w−δ

0

L(x)F̄ (x + δ)e(w−x−δ)Aµ dx

ξ3(w) =

∫ w−δ

0

L(x)e(w−x−δ)Aµ dx

�

A.13.2 RTQ(d). For RTQ(d,T) with no slowdown, we find that the result in Proposition 6.4 can be

simplified, which allows to obtain an analogous simplification to Proposition 7.1, 7.2 in case X is

PH distributed.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

35:34 Tim Hellemans, Tejas Bodas, Benny Van Houdt

Proposition A.2. The ccdf of the workload distribution for RTQ(d) without slowdown satisfies the
following DIDE:

F̄ ′(w) = −λd

[
F (w)F̄X (w) +

∫ w

0

F̄ (w − x)d−1
(
F̄ (w − x) − F̄ (w)

)
fX (x)dx

]
w ≤ T (45)

F̄ ′(w) = −λd

[
F (T)F̄X (w) +

∫ T

0

F̄ (T − x)d−1
(
F̄ (T − x) − F̄ (T)

)
fX (x +w −T)dx

]
− λF̄ (T)d−1

[(
F̄ (T) − F̄ (w)

)
F̄X (w −T) +

∫ w−T

0

(
F̄ (w − x) − F̄ (w)

)
fX (x)dx

]
w > T (46)

When X has a PH distribution with parameters (α,A) and µ = −A1 we find that (45-46) simplifies to
the following DDE:

F̄ ′(w) = −λd

[
F (T)F̄X (w) + α ·

(
ξ1(w) − ξ2(w)F̄ (w)

)]
w ≤ T

F̄ ′(w) = −λd

[
F (T)F̄X (w) + α

(
ξ1(w) − ξ2(w)F̄ (T)

)]
− λF̄ (T)d−1

[
(F̄ (T) − F̄ (w))F̄X (w −T) + α

(
ξ3(w) − F̄ (w)FX (w −T)

)]
w > T

ξ ′
1
(w) = Aξ1(w) + F̄ (w)d µ w ≤ T

ξ ′
1
(w) = Aξ1(w) w > T

ξ ′
2
(w) = Aξ2(w) + F̄ (w)d−1µ w ≤ T

ξ ′
2
(w) = Aξ2(w) w > T

ξ ′
3
(w) = Aξ3(w) + F̄ (w)µ .

With boundary condition ξ1(0) = ξ2(0) = ξ3(T) = 0.

Proof. We first note that we have F̄Rx (w) = F̄ (w − x) and Bx (w,T) = 0 if T ≤ w − x and

F̄ (w − x) − F̄ (T) ifw − x < T . This allows us to find forw ≤ T :

F̄ ′(w) = −λd

∫ ∞

0

fX (x)F̄ (w − x)d−1
(
F̄ (w − x) − F̄ (w)

)
dx

which easily simplifies to (45). Forw > T we obtain:

F̄ ′(w) = −λd

∫ ∞

w−T

(
F̄ (w − x) − F̄ (T)

)
F̄ (w − x)d−1 fX (x)dx (47)

− λ

∫ ∞

0

[∫ w−T

0

(
F̄ (w − x) − F̄ (w)

)
fX (x)dx +

∫ ∞

w−T

(
F̄ (T) − F̄ (w)

)
fX (x)dx

]
.

In order to conclude that (46) indeed holds, it suffices to note that (47) is equal to:

− λd

[∫ w

w−T

(
F̄ (w − x) − F̄ (T)

)
F̄ (w − x)d−1 fX (x)dx +

∫ ∞

w
(1 − F̄ (T))fX (x)dx

]
.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

Workload Dependent 35:35

The result for PH distributed job sizes X follows by defining:

ξ1(w) =

∫ w

0

F̄ (w − x)dexAµdx w ≤ T

ξ1(w) =

∫ T

0

F̄ (T − x)de(x+w−T)A dx w > T

ξ2(w) =

∫ w

0

F̄ (w − x)d−1exAµ dx w ≤ T

ξ2(w) =

∫ T

0

F̄ (T − x)d−1e(x+w−T)A dx w > T

ξ3(w) =

∫ w−T

0

F̄ (w − x)exAµ dx .

�

A.13.3 DR(d,T).

Proposition A.3. The ccdf of the workload distribution for DR(d,T) without slowdown satisfies
the following FDE:

F̄ ′(w) = −λ

[∫ w

0

fX (x)(F̄ (w − x) − F̄ (w))((d − 1)(F̄ (w − x)d−2F̄ (w +T − x) + 1))dx

+ (1 − F̄ (w))

∫ T

0

fX (w + x)((d − 1)F̄ (T − x) + 1)dx + dF̄X (w +T)(1 − F̄ (w))

]
w ≤ T

F̄ ′(w) = −λ

[∫ w−T

0

(F̄ (w − x) − F̄ (w))((d − 1)(F̄ (w − x)d−2F̄ (w +T − x) + F̄ (w −T − x)d−1)

fX (x)dx +

∫ w

w−T
fX (x)(F̄ (w − x) − F̄ (w))((d − 1)F̄ (w − x)d−2F̄ (w +T − x) + 1)dx

+ (1 − F̄ (w))

∫ T

0

fX (x +w)((d − 1)F̄ (w − x) + 1)dx + (1 − F̄ (w))F̄X (w +T)

]
w > T .

Proof. This follows from Proposition 6.6 by simple computation. �

Received February 2019; revised March 2019; accepted April 2019

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 35. Publication date: June 2019.

	Abstract
	1 Introduction
	2 Model Description
	3 Cavity Process
	4 Notation
	5 Mean-field analysis
	5.1 Transient Behaviour
	5.2 Equilibrium Environment

	6 Load balancing policies
	6.1 Type 1 : Red(d,k,)
	6.2 Type 1 : RTQ(d,T)
	6.3 Type 2 : DR(d,T)
	6.4 Type X : Replicate only small jobs
	6.5 Type 3 : LL(d,k,)
	6.6 Type 4 : JTQ(d,T)

	7 Phase Type Distribution
	7.1 Red(d,k,)
	7.2 RTQ(d,T)
	7.3 LL(d,k,)

	8 Numerical Method
	8.1 Computing the workload distribution
	8.2 Stability

	9 Future Work
	References
	A Appendix
	A.1 Validation : Workload distribution
	A.2 Validation : Stability
	A.3 Policies in practice
	A.4 Proof of Theorem 5.1
	A.5 Proof of Proposition 6.2
	A.6 Proof of Proposition 6.4
	A.7 Proof of Corollary 6.5
	A.8 Proof of Proposition 6.6
	A.9 Proof of Proposition 6.8
	A.10 Proof of Proposition 6.9
	A.11 Response time for the LL(d,k,) policy
	A.12 Proof of Proposition 6.11
	A.13 No Slowdown

