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ABSTRACT
Queueing systems with redundancy have received considerable

attention recently. The idea of redundancy is to reduce latency by

replicating each incoming job a number of times and to assign these

replicas to a set of randomly selected servers. As soon as one replica

completes service the remaining replicas are cancelled. Most prior

work on queueing systems with redundancy assumes that the job

durations of the different replicas are i.i.d., which yields insights

that can be misleading for computer system design.

In this paper we develop a differential equation, using the cavity

method, to assess the workload and response time distribution in

a large homogeneous system with redundancy without the need

to rely on this independence assumption. More specifically, we

assume that the duration of each replica of a single job is identical

across the servers and follows a general service time distribution.

Simulation results suggest that the differential equation yields

exact results as the system size tends to infinity and can be used to

study the stability of the system.
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1 INTRODUCTION
Redundancy is regarded as an effective technique to reduce latency

in a variety of systems including large scale computer clusters

[9]. The idea of redundancy is to create a number of replicas of

each incoming job and to assign these replicas to a set of random

servers. When the first of these replicas is processed by a server,

the remaining replicas get canceled. An attractive feature of this
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scheme is that the replicas can be assigned immediately without

the need to consult the server states or the need to maintain such

information. Queueing models to study the effect of redundancy

on the job response time have been introduced recently (e.g., [1, 6]).

One of the key assumptions to enable their analysis often exists

in assuming that the processing times of the replicas are indepen-

dent and identically distributed (i.i.d.) across servers. While this

may be applicable in some contexts, this assumption may result

in misleading insights in a computer systems setting. For instance

this i.i.d. assumption suggests that mean response time reduces as

a function of the number of replicas (for sufficiently variable job

sizes), while without such an assumption the mean response time

may increase sharply if too many replicas are used.

In this short paper we present a fixed point equation, based on

the cavity process, to assess the workload and response time distri-

bution of a queueing model with redundancy when the processing

times of the replicas are assumed to be identical across servers as
opposed to assuming they are i.i.d.. Next, we rewrite this fixed point

equation as an Integro-Differential Equation (IDE) in case the job

sizes are continuously distributed (i.e. has no atoms) and a Delayed

Differential Equation (DDE) in case the job sizes are deterministic.

We conjecture that this IDE/DDE has a unique solution (when the

queueing system is stable) that corresponds to the limit of the wor-

kload distribution as the number of servers tends to infinity. We

propose a numerical scheme to solve the IDE/DDE and illustrate

that its accuracy improves with the system size for various job

size distributions (i.e., for bounded Pareto, (hyper)exponential and

deterministic job sizes) using simulation.

The model considered in the paper is introduced in Section 2.

The cavity process associated to this queueing system is presented

in Section 3, while the IDE/ODE are derived in Section 4. Numerical

results are found in Section 5 and Section 6 discusses some future

work.

2 MODEL DESCRIPTION
We consider a system with N identical servers (for large N ), each

having an infinite waiting room. Arrivals occur according to a

Poisson process with rate λN . Each incoming job is replicated d
times and each replica joins a random server (in total d , distinct,
random servers receive an identical arrival). As soon as one replica

finishes service, the remaining replicas are canceled (whether in

service or not). Cancellation is assumed to be immediate, although

this assumption can be relaxed. It is important to stress that the

processing times of the d replicas of a job are identical in our setting

and not assumed to be i.i.d. as in [6]. The service discipline at each

server is assumed to be first-come-first-served (FCFS) and jobs are

processed at a constant rate 1. The job sizes are distributed with

cumulative distribution function (cdf) G(·), complementary cdf
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(ccdf) Ḡ(·), probability density function (pdf) д(·) (if it exists) and
mean E[G]. We assumeG(0) = 0. In what follows we will generally

employ the notation: a capital letter for cdf, a capital letter with an

overline for ccdf, a lowercase letter for pdf and E for expectation.
The model described corresponds to the Redundacy(d) model

with identical replicas, we use the notation Red(d) to denote this

model. Just as in [7] the corresponding Markov process only needs

to keep track of the workload at each of the N queues. The model

is stable if λE[G] < 1/d and unstable for λE[G] ≥ 1, its stability is

however unclear for λE[G] ∈ (1/d, 1).

3 CAVITY PROCESS
We now apply the cavity process methodology introduced in [3] to

Red(d). The cavity process intends to capture the evolution of the

workload of one queue for the limiting system when the number

of servers N → ∞.

Definition 3.1 (Red(d) cavity process). Let H(t), t ≥ 0, be a set of

probability measures onR called the environment process. The cavity
process XH(·)(t), t ≥ 0, takes values in R and is defined as follows.

Potential arrivals occur according to a Poisson process with rate

λd . When a potential arrival of size x occurs at time t , we compare

x + XH(·)(t−), where XH (·)(t−) is the state just prior to time t ,
with the minimum of d − 1 independent random variables with

law x +H(t) (call this minimum Y ). The potential incoming job is

then of size y = min

{
x + XH(·)(t−),Y

}
− XH(·)(t−) provided that

Y > XH(·)(t−) and of size y = 0 otherwise. Next, we immediately

add the job to the queue, that is, XH(·)(t) = XH(·)(t−) + y. The
cavity process decreases at rate one during periods without arrivals

and is lower bounded by zero.

We now define the cavity process associated to the equilibrium

environment process, which is such that the cavity process has

distribution H(t) at time t :

Definition 3.2 (Equilibrium Environment). When a cavity process

XH(·)(·) has distribution H(t) for all t ≥ 0, we say that H(·) is
an equilibrium environment process. Further, a probability measure

H is called an equilibrium environment if H(t) = H for all t and

XH(·)(t) has distribution H for all t .

The modularized program for analyzing load balancing systems

presented in [3] when applied to Red(d) involves the following steps

(assuming stability for N large):

a. Asymptotic Independence. Demonstrate ΠN → Π as

N → ∞, where ΠN
is the stationary distribution for the

Red(d) system with N queues and Π is a stationary and ergo-

dic distribution on [0,∞)∞. Show that the limit Π is unique,

depending only on the service time distribution. Show that,

for every k :

Π(k ) =
k⊗
i=1

Π(1),

where Π(k )
is Π restricted to its first k coordinates.

b. The queue at the cavity. Let BN
s denote the arrival size

distribution (which may be zero with a non-zero probability)

in case of a potential arrival when the queue at the cavity

has workload s . Show that the arrival process of a queue in

the system of size N converges to a Poisson process with

rate λd and a job size distribution Bs that depends on the

workload s at arrival time. Denote B = {Bs , s ≥ 0}.
c. Calculations. Given B, the arrival size distributions, ana-

lyze the queue at the cavity in the large N limit using queu-

eing techniques to express Π(1)
as a function of B:

Π(1) = T (B).

The arrival size distribution is determined by the workload

distribution Π(1)
(as explained above) we thus have:

B = H (Π(1)).

We then must solve these two fixed point equations to obtain

the equilibrium environment Π(1) = H .

In this work, we focus on c, the computational step of the pro-

gram. We present a numerical method to compute the Equilibrium

Environment H corresponding to Red(d) and validate it with simu-

lation. Therefore we conjecture (numerical evidence to support this

conjecture is presented in Section 5.1):

Conjecture 3.3. Consider a load balancing system operating
under the Red(d) policy on N servers, assume λ,d and G are such
that this system is uniformly stable for sufficiently large N and the
local service is FCFS. Then, in the large N limit, there is a unique
equilibrium distribution. Under this distribution, any finite number
of queues are independent. Moreover, this equilibrium can be found
as the unique fixed point in step c.

We now characterize the evolution of the cavity process associ-

ated with the equilibrium environment process. Let f (t , s), t ∈
[0,∞), s ∈ (0,∞) describe the density at which a random ser-

ver, at time t , has workload s > 0. Note that f (t , ·) is not a real

pdf as the probability that the server is empty is non-zero. Let

F (t , s) = F (t , 0) +
∫ s
0
f (t ,u)du denote the cdf of the workload of a

random server, here F (t , 0) = 1 −
∫ ∞
0

f (t , s) is the probability that

a random server is idle.

We define cd (t , s, r ) as the double density that, if a potential

arrival occurs at time t , the queue at the cavity has workload s > 0

and its workload is increased to r > s by the potential arrival. Lastly
we let Cd (t , r ) denote the density at which, if a potential arrival

occurs at time t , the queue at the cavity has workload 0 and its

workload is increased to r > 0.

We now obtain a partial IDE (PIDE) which describes the transient

evolution of the cavity queue in function of cd ,Cd in a similar

fashion as in [7].

Theorem 3.4. The evolution of the cavity process associated to the
equilibrium environment process of the Red(d) model is captured by
the following set of equations:

∂ f (t , s)
∂t

− ∂ f (t , s)
∂s

= λd ·
(
−
∫ ∞

s
cd (t , s, r )dr

+Cd (t , s) +
∫ s

0

cd (t ,u, s)du
)

(1)

∂F (t , 0)
∂t

= −λdF (t , 0) + f (t , 0+), (2)

for s > 0, where f (x , z+) = limy↓z f (x ,y).
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Proof. We first let t , s > 0 and 0 < ∆ < s be arbitrary. We now

describe the possible evolution of the workload of the queue at the

cavity in the interval [t , t + ∆] s.t. it has exactly workload s at time

t + ∆. We write:

f (t + ∆, s) = Q1 +Q2 +Q3 + o(∆), (3)

and now describe how to obtain these Qi .

(Q1) First, we consider the case where the queue at the cavity has

s + ∆ work at time t and no potential arrivals in [t , t + ∆]
make its workload increase. For this case we find:

Q1 = f (t , s + ∆) − λd

∫ ∆

0

∫ ∞

s+∆−v
cd (t +v, s + ∆ −v, r )drdv .

(Q2) Second, we consider the case in which the queue at the cavity

is empty at time t+v,v ∈ [0,∆] and its workload is increased
to s+(∆−v) by a potential arrival. This happens with density:

Q2 = λd

∫ ∆

0

Cd (t +v, s + (∆ −v))dv .

(Q3) Lastly, the queue at the cavity may be non-empty at time

t +v,v ∈ [0,∆] and its workload increases to s + (∆ −v) by
a potential arrival. This case has density:

Q3 = λd

∫ ∆

0

∫ s+∆

v
cd (t +v,u −v, s + (∆ −v))dudv .

We find from subtracting f (t , s + ∆), dividing by ∆ and taking the

limit ∆ → 0 on both sides of (3) that (1) indeed holds.

We have not yet considered the case s = 0, for this we need to

consider which events on [t , t + ∆] result in the workload of the

queue at the cavity to be 0 at time t + ∆. To this end one readily

shows:

F (t + ∆, 0) = F (t , 0)(1 − λd∆) +
∫ ∆

0

f (t +v,∆ −v)dv + o(∆).

Subtracting F (t , 0), dividing by ∆ and taking the limit ∆ → 0 on

both sides results in (2). �

Remark. The PIDE found in Theorem 3.4 could alternatively have
been derived using the generalized Master Equation given in [8], (7.25-
7.26).

We still require an exact expression for cd andCd . Moreover, we

need an efficient method to compute the quantities

∫ ∞
s cd (t , s, r )dr

and

∫ s
0
cd (t ,u, s)du. Therefore, in the next proposition, we describe

how to determine cd ,Cd , where (4-6) are valid for general job size

distributions and the latter three equalities hold for continuous job

size distributions only (i.e., assuming G has a pdf д).

Proposition 3.5. We have cd (t , s, r ) = cd,1(t , s, r )+cd,2(t , s, r )+
cd,3(t , s, r ) such that:∫ ∞

s
cd,1(t , s, r )dr = Ḡ(s)f (t , s)(1 − F̄ (t , 0)d−1) (4)∫ ∞

s
cd,2(t , s, r )dr = f (t , s)F̄ (t , s)d−1

(5)∫ ∞

s
cd,3(t , s, r )dr = (d − 1)f (t , s)

(
F̄ (t , ·)d−2 f (t , ·) ∗ Ḡ(·)

)
(s) (6)∫ s

0

cd,1(t ,u, s)du = д(s) · (F (t , s) − F (t , 0))(1 − F̄ (t , 0)d−1)∫ s

0

cd,2(t ,u, s)du =
(
д(·) ∗ f (t , ·)F̄ (t , ·)d−1

)
(s)∫ s

0

cd,3(t ,u, s)du = (d − 1)F (t , s) ·
(
д(·) ∗ f (t , ·) · F̄ (t , ·)d−2

)
(s)

− (d − 1)
(
д(·) ∗ F (t , ·)f (t , ·)F̄ (t , ·)d−2

)
(s),

(7)

where (f1 ∗ f2)(s) =
∫ s
0
f1(u)f2(s − u)du denotes the convolution

product. These quantities can all be computed quickly which simplifies
solving (1-2) significantly. Lastly, we have Cd (t , s) = F (t , 0) · д(s).

Proof. First we define cd,1, cd,2 and cd,3 as follows:

• At least one of the d − 1 independent random variables with

law H(t) is zero and the incoming job has size r . We find

(for s < r ):

cd,1(t , s, r ) = д(r )f (t , s)(1 − F̄ (t , 0)d−1).
• The queue at the cavity is the queue with the minimal wor-

kload (i.e. s) and the size of the arrival is exactly r − s:

cd,2(t , s, r ) = д(r − s)f (t , s)F̄ (t , s)d−1.

• The queue with minimal workload has 0 < u < s workload,
where s is the workload of the queue at the cavity, and the

arrival size is r − u:

cd,3(t , s, r ) = (d − 1)f (t , s)
∫ s

0

д(r − u)F̄ (t ,u)d−2 f (t ,u)du .

now the claimed equalities all follow from direct computation and

applying Fubini (which is allowed as all integrands are positive

functions). It is trivial to derive the expression for Cd . �

Remark. One can readily employ the strategy used in the proof of
Proposition 3.5 to get a similar result for deterministic job sizes.

The PIDE (1-2) can now be solved using an (improved) Euler

scheme. This result is also of interest to obtain a fixed point equation

for the equilibrium environment, i.e., workload distribution. In the

subsequent section, we provide an efficient method to compute the

equilibrium workload (and thus also response time) distribution.

4 EQUILIBRIUM REGIME
For the equilibrium we use the same notations as in the transient

case, but we leave out the time dependence (e.g., we write f (s)
instead of f (t , s)) and set

∂f (s)
∂t = 0. We now find from (1-2) a fixed

point equation for F̄ , this is our first main result and is applicable

for a general job size distribution.
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Theorem 4.1. The stationary workload distribution associated
to an equilibrium environment satisfies the following fixed point
equation:

F̄ (s) = F̄ (0) + λd ·
[ ∫ s

0

Ḡ(u)
(
F̄ (u)(1 − F̄ (0)d−1) − (1 − F̄ (0)d )

)
+ (d − 1)F̄ (u)(Ḡ ∗ f F̄d−2)(u) − d(Ḡ ∗ f F̄d−1)(u)du

]
(8)

Proof. Integrating (1-2) once, we find:

f (s) = λd

(
F (0) −

∫ s

0

Cd (u)du +
∫ s

0

∫ ∞

u
cd (u, r )dr du

−
∫ s

0

∫ u

0

cd (v,u)dv du
)

= λd

(
F (0)Ḡ(s) +

∫ s

0

∫ ∞

s
cd (u,v)dvdu

)
.

Note that as in [2] the left hand side of this equality corresponds

to the down-crossing rate through s and the right hand side corre-

sponds to the up-crossing rate through s . Using (4-6) and integrating
once more, we find the claimed equality (8). �

We now show that:

• If the job size distribution is continuous, the fixed point

equation (8) can be written as an IDE.

• For deterministic job sizes, the fixed point equation (8) sim-

plifies significantly and we obtain F̄ as the solution of a

simple DDE.

First we consider the case of continuous job sizes, this is our second

main result:

Theorem 4.2. The stationary workload distribution associated to
the equilibrium environment satisfies the following IDE:

F̄ ′(s) = −λd
(
Ḡ(s)(1 − F̄ (s))

+

∫ s

0

д(u)F̄d−1(s − u)(F̄ (s − u) − F̄ (s))du
)
. (9)

Proof. The claimed equality follows from differentiating (8)

once and using integration by parts on (Ḡ ∗ f F̄d−2) and (Ḡ ∗ f F̄d−1).
�

We have the following result for deterministic job sizes, this is

our third (and last) main result:

Theorem 4.3. Assume job sizes are deterministic of size 1, the
stationary workload distribution associated to the equilibrium envi-
ronment satisfies the following DDE:

F̄ ′(s) = λd · (F̄ (s) − 1) s ≤ 1 (10)

F̄ ′(s) = λd · (F̄ (s) − F̄ (s − 1))F̄ (s − 1)d−1 s > 1. (11)

Proof. In this case we have Ḡ(s) = 1 if s ≤ 1 and 0 otherwise.

Substituting this into (8) and differentiating once, we obtain (10-

11) �

Remark. There is a striking resemblance between this DDE and
the DDE presented in [7] for the stationary workload distribution in
case of a Least Loaded policy. There we had the DDE:

F̄ ′(s) = λ · (F̄ (s) − 1) s ≤ 1

F̄ ′(s) = λ · (F̄ (s)d − F̄ (s − 1)d ) s > 1.

Note that Theorems 4.2 and 4.3 do not specify the boundary

condition for F̄ (0). This is not surprising as F̄ (0) corresponds to
the unknown actual system load (and exceeds λE[G] as multiple

replicas can be executed simultaneously). We can however simply

look for the value F̄0 such that if we take F̄ (0) = F̄0, the solution of

the associated IDE/DDE satisfies lims→∞ F̄ (s) = 0. Our numerical

experiments suggest that a simple bisection algorithm can be used

in order to find the value of F̄0 which has the desired property.

5 NUMERICAL EXPERIMENTS
In this section we use Theorem 4.2 and Theorem 4.3 to find the

limiting workload distribution. We repeatedly solve the IDE/DDE

with different initial conditions F̄ (0) until we find an F̄ (0) that satis-
fies lims→∞ F̄ (s) = 0 (up to an accuracy of 10

−6
) using a bisection

algorithm on (λE[G], 1).
Throughout this section we will consider 4 job size distributi-

ons: exponential job sizes with mean one, deterministic job sizes

equal to one, bounded Pareto job sizes with lower bound 0.2, upper

bound 72 and α = 1.1 (meaning, E[G] = 1 and E[G2] = 10) and

hyperexponential job sizes with two phases and balanced means,

chosen such that E[G] = 1 and E[G2] = 10.

5.1 Finite System Accuracy
We compare the equilibrium workload distribution with the simula-

ted workload distribution for finite N . All simulation runs simulate

the system up to time t = 10
7/N and use a warm-up period of 30%.

We simulate a system of N = 10, 50, 250 servers. In Figure 1 we see

that as N increases the approximation provided by the IDE/DDE

becomes more accurate (which supports Conjecture 3.3). Note that

a similar figure can easily be made for the response time distribu-

tion by noting that the response time is given by X + min
d
i=1

Ui ,
where the cdf of X is G andUi are i.i.d. with cdf F .

5.2 Performance of Redundancy(d)
This section is intended to illustrate the usefulness of our IDE/DDE,

it is not intended as a detailed study of the performance of the

Redundancy(d) policy. We show the actual workload F̄ (0) and the

mean response time 1+
∫ ∞
0

F̄ (s)d ds of the Red(d) policy in Figures

2 and 3 as a function of the arrival rate λ (recall E[G] = 1). From

Figure 2a, it is clear that the stability region not only depends on

the mean and the variance of the job size distribution, but also on

higher moments (as E[G2] = 10 for both the Bounded Pareto and

hyperexponential). This makes the question of stability for Red(d)

for general job size distributions a hard problem (which in turn

makes proving Conjecture 3.3 hard). We can infer from the plot that

the more variable the job size distribution, the lower the associated

workload. From Figure 2b, it is obvious that λmax (defined as the

supremum of the arrival rates λ for which F̄ (0) < 1) decreases and

the workload increases as a function of d (we have numerically
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(a) λ = 0.7, exponential job sizes.
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(b) λ = 0.6, deterministic job sizes.
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(c) λ = 0.7, bounded Pareto job sizes (max=72).
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(d) λ = 0.7, hyperexponential job sizes.

Figure 1: Limiting workload distribution vs. simulation for N servers with exponential, deterministic, bounded Pareto and
hyperexponential job sizes. The full line represents the solution of the IDE/DDE, which is compared with the simulated 95%

confidence intervals.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) d = 2 and different job size distributions.
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(b) d = 2, 3, 4, 5 and bounded Pareto job sizes.

Figure 2: Workload F̄ (0) in function of the arrival rate λ.
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(a) d = 2 and different job size distributions.
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(b) d = 2, 3, 4, 5 and Bounded Pareto job sizes.

Figure 3: Mean response time
(
1 +

∫ ∞
0

F̄ (s)dds
)
as a function of the arrival rate λ.

verified that this also holds for the other job size distributions

considered).

We show in Figure 3a that, despite the fact that the workload for

the less variable jobs is consistently higher than that of the more

variable ones, the same does not hold for the response times. We

see that adding variability to the job size distribution also increases

the mean response time (for λ sufficiently bounded away from

instability). From Figure 3b it is clear that only for small values of λ
there is a reduction in response time by increasing d : this reduction
is due to the fact that for small arrival rates a job is more likely

to find an idle server by increasing d , but as λ increases higher

values of d cause too much extra load on the servers which causes

an increased response time.

6 FUTUREWORK
An important generalization is to look at the S&X model of [5].

Our model corresponds to the S&X model with no slowdown (i.e.,

S = 1), which implies that the replica that starts execution first

also finishes first. As such it is always better to cancel the other

replicas as soon as one starts execution. However, with the S&X
model different replicas may experience different slowdowns and

cancellation-on-start may no longer be superior. It is not hard to

obtain general expressions for cd (t , s, r ) and Cd (t , r ) for the S&X
model, which should lead to a similar differential equation with

unknown boundary condition.

Proving Conjecture 3.3 would give a theoretical basis for the ana-

lysis provided here (as was done for other load balancing schemes

in [4]). We note that this is also an open problem for the Redun-

dancy(d) with i.d.d. replicas considered in [6].

It might be possible to explicitly solve the IDE (9) for certain job

size distributions.
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