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On the Power-of-d-choices with Least Loaded Server
Selection

TIM HELLEMANS∗ and BENNY VAN HOUDT, University of Antwerp, Belgium

Motivated by distributed schedulers that combine the power-of-d-choices with late binding and systems that

use replication with cancellation-on-start, we study the performance of the LL(d) policy which assigns a job to

a server that currently has the least workload among d randomly selected servers in large-scale homogeneous

clusters.

We consider general job size distributions and propose a partial integro-differential equation to describe

the evolution of the system. This equation relies on the earlier proven ansatz for LL(d) which asserts that

the workload distribution of any finite set of queues becomes independent of one another as the number of

servers tends to infinity. Based on this equation we propose a fixed point iteration for the limiting workload

distribution and study its convergence.

For exponential job sizes we present a simple closed form expression for the limiting workload distribution

that is valid for any work-conserving service discipline as well as for the limiting response time distribution

in case of first-come-first-served scheduling. We further show that for phase-type distributed job sizes the

limiting workload and response time distribution can be expressed via the unique solution of a simple set of

ordinary differential equations.

Numerical and analytical results that compare response time of the classic power-of-d-choices algorithm

and the LL(d) policy are also presented and the accuracy of the limiting response time distribution for finite

systems is illustrated using simulations.
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1 INTRODUCTION
Load balancing plays a crucial role in achieving low latency in large-scale clusters. A simple

randomized approach, denoted as SQ(d), exists in assigning incoming jobs to a server that currently

holds the fewest number of jobs among a set of d randomly selected servers, the so-called power-of-
d-choices algorithm [2, 17, 18, 22]. While this approach yields short queues with high probability in

case of first-come-first-served (FCFS) scheduling even for general job size distributions provided

that d is chosen sufficiently large [6, 8], short queues do not guarantee low latency as the queue

length is only a coarse indicator of the waiting time in the presence of high job size variability.
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The main issue is that under the FCFS discipline short jobs can get stuck behind a single long job

which significantly increases the short job latency. In addition when multiple dispatchers are used

to distribute the jobs, race conditions may occur where multiple schedulers concurrently place jobs

on a server that appears lightly loaded [16].

To avoid these issues the notion of late bindingwas recently introduced in [19]. With late binding

the dispatcher still probes d servers at random, but the servers do not immediately reply by sending

their queue length information. Instead they place a reservation at the end of a local work queue

and when the reservation reaches the front of the queue, the server requests the job associated to

the reservation from the dispatcher. In this manner the job is assigned to the server that is able to

launch the job the soonest among the d randomly selected servers. The downside of late binding is

that the server always experiences some idle time in between the execution of two jobs, which

implies some efficiency loss. However, whenever the network latencies are much smaller than the

shortest job runtimes (and the system load is not extremely high), experiments on a 110-machine

cluster show that a scheduler that relies on late binding performs close to an ideal scheduler [19].

Note that late binding as described above is equivalent to assigning the job to the server that

has the least workload among d randomly selected servers, which is known as the LL(d) policy [7],

provided that the network latencies are negligible
1
.

The main objective of this paper is to study the large-scale limit of the server workload and

response time distribution of the LL(d) policy when employed on a homogeneous cluster sub-

ject to Poisson job arrivals with general service times. For this purpose we introduce a partial

integro-differential equation that captures the evolution of the so-called cavity process and study its

equilibrium. The key observation, established in [7], is that under the LL(d) policy with general

service time distributions, the workload distribution of any finite set of servers becomes asymptoti-

cally independent as the number of servers tends to infinity (provided that all the servers employ

the same local non-idling service discipline, e.g., FCFS, PS, etc.). Moreover, the limit of the marginal

workload distribution of a server corresponds to the unique equilibrium environment.

It is worth noting that the LL(d) policy is equivalent to the following system that uses replication

with cancellation-on-start to reduce waiting times. Arriving jobs are replicated d times and are

randomly assigned to d servers (that all operate in FCFS order). As soon as a single replica starts

execution on a server, the remaining d − 1 replicas are killed (with the additional assumption that

if multiple replicas start at exactly the same time, only one is executed). Prior work on replication

was mainly done in the context of systems that experience server slowdown and therefore focused

on replication with cancellation-on-job-completion [11, 12], which is considerably different from

LL(d) as jobs are often (partially) executed on multiple servers in such case.

Another reason for studying the large-scale limit of the LL(d) policy exists in understanding

how much benefit precise workload information gives in comparison to the coarser queue length

information used by SQ(d).

The main contributions of the paper are as follows:

(1) A partial integro-differential equation to describe the transient evolution of the queue at the

cavity under the LL(d) policy is derived.

(2) An integral equation for the limiting stationary workload distribution is presented together

with a fixed-point iteration to compute its solution. Convergence of the fixed-point iteration

is proven for system loads below e−1/e ≈ 0.6922.

(3) A simple explicit solution for the limitingworkload and response time distribution is presented

in case of exponential job sizes. For phase-type distributed job sizes we prove that the limiting

1
When the network latencies are not negligible compared to the job runtimes, we can regard them as part of the workload

of a job such that the job execution consists of two parts: fetching the job and executing it, see Section 7.3.
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workload distribution can be computed easily by solving a simple set of ordinary differential

equations.

(4) We present both analytical and numerical results that compare the response time of the

LL(d) policy with the classic SQ(d) policy. These results illustrate that late binding offers a

significant reduction in the response time under a very wide range of loads even when taking

the idleness caused by late binding into account.

The paper is structured as follows. The model considered in this paper is described in Section 2.

The partial integro-differential equation that captures the transient evolution of the workload is

introduced in Section 3, while the integral equation for the limiting stationary workload and its

associated fixed point equation are presented in Section 4. Sections 5 and 6 discuss the special

cases of exponential and phase-type distributed job sizes, respectively. Section 7 compares the

performance of the LL(d) and SQ(d) policies, while Section 8 briefly studies the accuracy of the

limiting distributions for systems of finite size. Conclusions are drawn and future work is suggested

in Section 9.

2 MODEL DESCRIPTION
We consider a system consisting of N single server queues each having an infinite waiting room.

Arrivals occur into the system as a Poisson process with rate λN . For each incoming job d queues

are selected uniformly at random (with replacement) and the job joins the queue that currently

holds the least workload with ties being broken uniformly at random. The service discipline is

such that the workload at any queue reduces at rate 1 when positive, that is, we do not put any

restriction on the service discipline apart from the fact that it is non-idling and identical in each

server (unless stated otherwise). The workload offered by a job has a general distribution with cdf

G(·), pdf д(·), mean E[G] and is such that G(0) = 0. We define ρ = λE[G] and assume that ρ < 1.

The above model corresponds to the so-called least-loaded supermarket model, denoted as LL(d)

in [6, 7]. Note that the corresponding Markov process that keeps track of the workloads of the N
queues is positive Harris recurrent and has a unique stationary probability measure E(N )

whenever

the queueing system is subcritical, that is, when ρ < 1, as noted at the end of Section 5 in [5]. In

fact, this result is a special case of [10, Theorem 2.5].

3 CAVITY PROCESS
We start by introducing the cavity process from [6, 7] for the LL(d) supermarket model. The process

is intended to capture the evolution of the workload of a single queue for the limiting system where

the number of servers N tends to infinity.

Definition 3.1 (LL(d) cavity process). Let H(t), t ≥ 0, be a set of probability measures on R called

the environment process. The cavity processXH(·)(t), t ≥ 0, takes values inR and is defined as follows.
Potential arrivals occur according to a Poisson process with rate λd . When a potential arrival occurs

at time t , we compare the state XH(·)(t−) just prior to time t with the states of d − 1 independent

random variables with lawH(t). The potential incoming job is assigned to the state among these d
states that has the lowest value, where ties are broken uniformly at random. If the job is assigned

to state XH(·)(t−), we immediately add the job to the queue, that is, XH(·)(t) = XH(·)(t−) + x
where x is the size of the incoming job. Otherwise, the job immediately leaves the system, i.e.,

XH(·)(t) = XH(·)(t−). Clearly, if XH(·)(t−) has lawH(t) a potential arrival at time t joins the queue
with probability 1/d . Finally, the cavity process decreases at rate one during periods without arrivals
and is lower bounded by zero.

Definition 3.2 (Equilibrium Environment Process). When a cavity process XH(·)(·) has distribution
H(t) for all t ≥ 0, we say thatH(·) is an equilibrium environment process.
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Definition 3.3 (Equilibrium Environment). A probability measure H is called an equilibrium
environment if H(t) = H for all t and XH(·)(t) has distribution H for all t .

Theorem 3.4 (due to Theorem 2.2 of [7]). Consider the LL(d) supermarket model with N queues,
general service times (with mean E[G]), Poisson arrivals with rate λN < N /E[G] and an identical
non-idling service discipline at each queue. Let E(N ,N ′) be the projection of the stationary measure
E(N ) of the N workloads into the workloads of the first N ′ queues, then E(N ,N ′) converges in total
variation to the N ′-fold convolution of E(∞,1) (in an appropriate metric space) as N tends to infinity.
Moreover, E(∞,1) is the unique equilibrium environment of the LL(d) supermarket model.

In other words the above theorem indicates that the workload distributions of any finite set of

N ′
queues becomes asymptotically independent as N tends to infinity and the marginal workload

distribution of any queue is given by the unique equilibrium environmentH of the LL(d) super-

market model. Thus, there is no need to interchange the limits when relying on Theorem 3.4 when

studying the limit of the stationary distributions. We do note that the order of these limits can in

fact be reversed (when starting from an empty system) as shown in [7, Section 8].

In this section we characterize the evolution of the cavity process associated with the equilibrium

environment process H(·) of the LL(d) supermarket model. This derivation is based on definitions

3.1 and 3.2 only and does not make use of Theorem 3.4, which is leveraged in the next section when

studying the limiting stationary workload distribution.

Let f (t , s) for s ∈ (0,∞) describe the density of servers which, at time t , have workload s . Note
that f (t , ·) is not a real probability density function (pdf) as some of the servers may be idle,

denote F (t , 0) = 1 −
∫ ∞

0
f (t , s)ds (where f (t , 0) may be defined arbitrarily). In the following we

will refer to f (t , ·) as a density, and we define its cumulative distribution function (cdf) F (t , ·) as
F (t , s) = F (t , 0) +

∫ s
0
f (t ,u)du.

For any d ∈ {2, 3, . . . }, we define the function cd (t ,u) as the density at which a potential arrival

at time t joins the cavity queue with workload u > 0. By definition of the cavity process associated

to the equilibrium environment, this density is given by:

cd (t ,u) = f (t ,u)(1 − F (t ,u))d−1 = f (t ,u)F̄ (t ,u)d−1, (1)

where we use the notation F̄ (t ,u) = 1− F (t ,u) for the complementary cdf (ccdf). We further denote

the probability that a potential arrival at time t joins the cavity queue with workload at most u by

Cd (t ,u). In this case we have, as ties are broken uniformly at random:

Cd (t ,u) = F (t , 0)
d−1∑
k=0

(
d − 1

k

)
F (t , 0)k F̄ (t , 0)d−1−k

k + 1

+

∫ u

v=0

cd (t ,v)dv

=
1 − F̄ (t , 0)d

d
+

∫ u

v=0

cd (t ,v)dv =
1 − F̄ (t ,u)d

d
. (2)

In particular, Cd (t , 0) is the probability that a potential arrival joins an empty cavity queue.

Theorem 3.5. The evolution of the cavity process associated to the equilibrium environment process
of the LL(d) supermarket model is captured by the following set of equations:

∂ f (t , s)
∂t

− ∂ f (t , s)
∂s

= λd

∫ s

0

cd (t ,u)д(s − u)du + λdCd (t , 0)д(s) − λdcd (t , s) (3)

∂F (t , 0)
∂t

= f (t , 0+) − λdCd (t , 0), (4)

for s > 0, where f (x , z+) = limy↓z f (x ,y).
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Proof. Assume s > 0 and let s > ∆ > 0 be arbitrary. In order to have a workload of s at time

t +∆ we need to consider three possible cases: no arrivals in [t , t +∆], an arrival occurs in [t , t +∆]
when the workload is non-zero and an arrival occurs in an idle server in [t , t + ∆]. Hence, we can
write

f (t + ∆, s) = Q1 +Q2 +Q3. (5)

The terms Qi , for i = 1, 2 and 3 are discussed next.

1) No arrivals in the interval [t , t +∆]: if the cavity queue at time t has a workload exactly equal
to s + ∆ and has no arrivals in [t , t + ∆], it will have a workload equal to s at time t + ∆. The
density of having a workload s + ∆ at time t is given by f (t , s + ∆) and the density at which

an arrival occurs at the cavity queue at time t +v,v ∈ [0,∆], when it has workload s + ∆ −v ,
is equal to λdcd (t +v, s + ∆ −v). Therefore we find:

Q1 = f (t , s + ∆) − λd
∫ ∆

v=0

cd (t +v, s + ∆ −v)dv + o(∆).

2) A single arrival occurs when the cavity queue is not idle: in this case at some time t +v,v ∈
[0,∆] an arrival of size s + ∆ − u at the cavity queue which has workload u − v for some

u ∈ [v, s + ∆] occurs. We find:

Q2 = λd

∫ ∆

v=0

∫ s+∆

u=v
cd (t +v,u −v)д(s + ∆ − u)dudv + o(∆).

3) A single arrival occurs when the cavity queue is empty: in this case a job of size s + ∆ −v
arrives at time t +v for some v ∈ [0,∆]. Hence,

Q3 = λd

∫ ∆

v=0

Cd (t +v, 0)д(s + ∆ −v)dv + o(∆).

By subtracting f (t , s + ∆), dividing by ∆ and letting ∆ decrease to zero, we find (3) from (5).

We still require a differential equation for F (t , 0), a server may be idle at time t + ∆ by remaining

idle in [t , t + ∆] or having a workload equal to ∆ −v,v < ∆ at time t +v . We therefore find:

F (t + ∆,0) = F (t , 0) − λd
∫ ∆

v=0

Cd (t +v, 0)dv +
∫ ∆

v=0

f (t +v,∆ −v)du + o(∆),

subtracting F (t , 0), dividing by ∆ and letting ∆ tend to zero yields (4). �

Remark. The set of equations given by (3-4) can be solved numerically using the following scheme:

f (t + δ , 0+) = λdCd (t , 0),

f (t + δ , s) = f (t , s + δ ) + λdδ
∫ s

0

cd (t ,u)д(s − u)du + λdδCd (t , 0)д(s) − λdδcd (t , s),

for s ≥ δ . As a boundary condition, we may impose that we start with all servers being idle, i.e., for
s > 0 we set f (0, s) = 0 and F (0, 0) = 1. The main objective of Theorem 3.5 is however to use it to
characterize the unique equilibrium environment H of the LL(d) policy.

Remark. A propagation of chaos result was established in [7, Section 7] that states that the workload
distributions of any set of N ′ ≤ N queues at time t become asymptotically independent, provided
that the workload distribution at time 0 in the N queues is i.i.d. and does not depend on N , e.g., if the
system is empty at time zero. As such Theorem 3.5 characterizes the limiting transient behavior.
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4 LIMITINGWORKLOAD DISTRIBUTION
As indicated in the previous section, the limiting stationary workload distribution is given by the

unique equilibrium environment. Let F (s) be the cdf of the limiting workload distribution, that is,

F (s) represents the probability that the workload is at most s and let f (s) be its density for s > 0.

Furthermore, similar to (1) and (2), define

cd (u) = f (u)F̄ (u)d−1, (6)

and

Cd (u) =
1 − (1 − F (u))d

d
. (7)

Theorem 4.1. The stationary workload distribution is the unique distribution that obeys the follo-
wing integral equation:

F (s) = (1 − ρ) + λ ·
(∫ s

0

(1 − F̄ (u)d )(1 −G(s − u))du
)

(8)

Proof. By demanding that the derivatives with respect to t are zero in (3-4), we find

∂ f (s)
∂s
= λd

(
cd (s) −

∫ s

0

cd (u)д(s − u)du −Cd (0)д(s)
)
, (9)

and

f (0+) = λdCd (0). (10)

Integrating (9) once (and relying on the assumption that G(0) = 0) we find:

f (s) = K − λd ·
(

1

d
−Cd (s) +Cd (0)G(s) +

∫ s

0

cd (u)G(s − u)du
)
, (11)

for an appropriate constant K . As we know from (10) that f (0+) = λdCd (0), we see that we should
set K equal to λ. We may therefore conclude that

f (s) = λd ·
(
Cd (s) −Cd (0)G(s) −

∫ s

0

cd (u)G(s − u)du
)

(12)

Integrating equation (12) once more and using the fact that F (0) = 1 − ρ, yields

F (s) = (1 − ρ) + λd ·
(∫ s

0

Cd (u)(1 −G(s − u))du
)

The uniqueness follows from the fact that there exists a unique equilibrium environment for the

LL(d) supermarket model as stated earlier. �

Remark. For d large, we have F̄ (u)d ≈ 1 and therefore (8) yields

F (s) ≈ (1 − ρ) + λ
∫ s

0

Ḡ(u)du,

meaning f (s) ≈ λḠ(s). Note that λ
∫ s

0
Ḡ(u)du can be recognized as the equilibrium distribution of the

forward recurrence time of a renewal process with inter-arrival time distribution G.

Remark. The cavity process evolves as the workload of an M/G/1 queue with a workload dependent
arrival rate, we can therefore also apply Theorem 2.1 in [4] to the LL(d) cavity process. In this manner
we obtain that

f (s) = λd
(
Cd (0)(1 −G(s)) +

∫ s

0

cd (u)(1 −G(s − u))du
)
,
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which can easily be shown to be equivalent to (12) by using the fact that cd (u) = d
duCd (u). The

interpretation of this equation is as follows. The left-hand side of the equation corresponds to the
downcrossing rate through level s , while the right-hand side denotes the upcrossing rate through s .

4.1 Fixed point iteration
We propose to use the following simple fixed point iteration to solve the integral equation (8):

Fn+1(s) = (1 − ρ) + λ ·
(∫ s

0

(1 − F̄n(u)d )(1 −G(s − u))du
)
,

which we prove converges to the unique fixed point provided that ρ < d−1/d
. In Section 6 we

further show that if the job sizes follow a phase-type distribution, we can directly compute the

limiting workload distribution F (s) by solving a simple set of differential equations (for any ρ < 1),

meaning there is no need to make use of the above fixed point iteration.

Define the space CDF1−ρ ⊆ [1 − ρ, 1][0,∞)
to be the space of cumulative distribution functions

starting in 1 − ρ, i.e., the space of functions which satisfy:

• F (0) = 1 − ρ,
• lims→∞ F (s) = 1,

• for s,h > 0 : F (s + h) ≥ F (s),
• limh→0

+ F (s + h) = F (s).
On this space we can define an operator Td : CDF1−ρ −→ R[0,∞)

defined by:

TdF : [0,∞) → R : s 7→ (1 − ρ) + λd ·
(∫ s

0

Cd (u)(1 −G(s − u))du
)
.

Lemma 4.2. For F ∈ CDF1−ρ , we have TdF ∈ CDF1−ρ .

Proof. The only non-trivial part is to show that lims→∞TdF (s) = 1. We find:

lim

s→∞

����∫ s

0

dCd (u) · (1 −G(s − u))du
���� ≤ lim

s→∞

∫ s

0

(1 −G(s − u))du = E[G],

which shows that lims→∞TdF (s) ≤ 1. To obtain the other inequality observe that for any ε > 0, we

can find aU > 0 for which:

lim

s→∞

∫ s

U
(1 −G(s − u))du >

√
1 − εE[G], Cd (u) ≥

√
1 − ε,

for u > U . We thus find:

lim

s→∞

∫ s

0

dCd (u)(1 −G(s − u))du ≥ lim

s→∞

∫ s

U
dCd (u)(1 −G(s − u))du =≥ (1 − ε)E[G]

this shows that lims→∞TdF (s) ≥ 1 �

Remark. Due to the above lemma we may write Td : CDF1−ρ → CDF1−ρ .

Remark. We can define an order on CDF1−ρ by stating that F1 ≼ F2 ⇔ ∀s ∈ [0,∞) : F1(s) ≤ F2(s),
then a simple application of the Knaster-Tarski theorem [21] also guarantees the existence of a fixed
point of Td . Indeed note that we have F1 ≼ F2 ⇒ TdF1 ≼ TdF2.

Theorem 4.3. For any F1, F2 ∈ CDF1−ρ we have:

dK (TdF1,TdF2) ≤ dρd · dK (F1, F2),
where dK denotes the uniform (or Kolmogorov) metric, i.e., dK (F1, F2) = sups |F1(s) − F2(s)|.
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Proof. Let ε > 0 be arbitrary and let s∗ be such that:

sup

s

∫ s

0

|(1 − F1(u))d − (1 − F2(u))d |(1 −G(s − u))du

<

∫ s∗

0

|(1 − F1(u))d − (1 − F2(u))d |(1 −G(s∗ − u))du + ε .

We therefore have that dK (TdF1,TdF2) is bounded above by:

λ

∫ s∗

0

|(1 − F2(u))d − (1 − F1(u))d |(1 −G(s∗ − u))du + ε .

We now use the fact (which can be shown by applying the mean value theorem) that for any

x ,y ∈ [0, ρ) we have |xd − yd | ≤ dρd−1 · |x − y |. This shows by applying the above that we have:

dK (TdF1,TdF2) < λ
∫ s∗

0

dρd−1 |F1(u) − F2(u)|(1 −G(s∗ − u))du + ε

≤ λdρd−1dK (F1, F2)
∫ s∗

0

(1 −G(s∗ − u))du + ε

≤ dρddK (F1, F2) + ε,

which completes the proof. �

Remark. In particular for ρ < e−1/e ≈ 0.6922 the above theorem shows by the Banach fixed-point
theorem that Td admits a unique fixed point which can be found by our proposed fixed point iteration
with speed of convergence dK (F ∗, Fn) ≤ dnρnd

1−dρd dK (F1, F0). This follows from the fact that d−1/d attains

a minimum in e . For higher values of ρ, d must be such that dρd < 1 to guarantee convergence via
Theorem 4.3. Numerical experiments using both light-tailed and heavy-tailed distributions suggest
that the fixed point iteration converges quickly for any ρ < 1.

5 EXPONENTIAL JOB SIZES
In the previous section we established an integral equation for the limiting stationary workload

distribution (for any non-idling service discipline). In this section we derive an explicit expression

for this distribution in case of exponential job sizes with mean 1, that is, when G(s) = 1 − e−s and
ρ = λ. In addition we also derive an explicit expression for the limiting response time distribution

in case the service discipline is first-come-first-served.

5.1 Limiting workload distribution
Theorem 5.1. The ccdf of the limiting stationary workload distribution for the LL(d) policy for any

non-idling service discipline with exponential job sizes with mean 1 is given by:

F̄ (s) = (λ + (λ1−d − λ)e(d−1)s ) 1

1−d . (13)

Proof. Using (8) with G(s) = 1 − e−s and ρ = λ, we have

F (s) = (1 − λ) + λd
∫ s

0

Cd (u)eu−sdu, (14)
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Taking the derivative on both sides and using Leibniz integral rule, we find the following simple

ODE for F (s):

F ′(s) = λ(1 − F̄ (s)d ) − λ
∫ s

0

(1 − F̄ (u)d )eu−sdu

= λ(1 − F̄ (s)d ) − (F (s) − (1 − λ))
= F̄ (s) − λF̄ (s)d , (15)

with boundary condition F (0) = 1 − λ, equivalently:

F̄ ′(s) = λF̄ (s)d − F̄ (s),

with F̄ (0) = λ. This ODE can be solved explicitly and one easily verifies that the solution F̄ (s) is
given by:

F̄ (s) = (λ + (λ1−d − λ)e(d−1)s ) 1

1−d .

�

Remark. There is a striking and unexpected similarity between the limiting workload distribution
of the LL(d) policy and the response time distribution of the replication with cancellation-on-completion
[11, Section 5] in case of exponential job sizes in the sense that the response time distribution of the
latter system solves exactly the same ODE as in (15), except that it is subject to the boundary condition
F̄ (0) = 1.

Remark. For d large, F̄ (s) can be approximated by λe−s as (λ1−d − λ)1/(1−d ) is close to λ for large d .
This result is expected as for large d we expect that a fraction λ of the servers contains exactly one job
and the remaining workload of any such job is exponentially distributed due to the memoryless nature
of the exponential distribution.

In order to obtain an expression for the expected workload of a server, we first recall the following

integral representation for the analytic continuation of the hypergeometric function
2
F 1(a,b; c; z)

[1, Chapter 15]

2
F 1(a,b; c; z) = 1

B(b, c − b)

∫
1

0

xb−1(1 − x)c−b−1(1 − zx)−adx , (16)

where B(x ,y) =
∫

1

0
tx−1(1 − t)y−1dt is the Beta function. This integral expression is valid for any

c > b > 0 and z < 1. When |z | < 1 this function can be represented as an infinite sum using the

Pochhammer symbol (or falling factorial) (q)n =
∏n−1

k=0
(q + k) when n > 0 and (q)0 = 1:

2
F 1(a,b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!

. (17)

Theorem 5.2. The meanWd (λ) of the limiting workload distribution of a server under the LL(d)
policy with exponential job sizes with mean 1 is given by:

Wd (λ) =
∞∑
n=0

λdn+1

1 + n(d − 1) , (18)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 27. Publication date: June 2018.



27:10 Tim Hellemans and Benny Van Houdt

in particular we find:

W2(λ) = −
log

(
1 − λ2

)
λ

,

W3(λ) = − 1

√
λ
· log

(√
1 − λ3

λ3/2 + 1

)
.

Proof. We employ the notation b = λ1−d − λ. We begin by computing (using y = e−s and

x = yd−1
):

Wd (λ) =
∫ ∞

0

F̄ (s)ds

=

∫
1

0

1

(λyd−1 + b)1/(d−1)dy

=
1

b1/(d−1)
1

(d − 1)

∫
1

0

x−(d−2)/(d−1)

(1 + λ
b x)1/(d−1)

dx

Hence, by (16) this last integral can be expressed via the hypergeometric function
2
F 1 as

Wd (λ) =
1

b1/(d−1) · 2
F 1

(
1

d − 1

,
1

d − 1

; 1 +
1

d − 1

;−λ
b

)
.

Note that we cannot directly use the sum representation of 2F1 as λ/b may become greater than

1 (which happens when λ gets close to one). Therefore we now employ the well-known linear

transformation formulas:

2
F 1(a,b; c; z) = (1 − z)c−a−b ·

2
F 1(c − a, c − b; c; z)

2
F 1(a,b; c; z) = (1 − z)−a ·

2
F 1

(
a, c − b; c;

z

z − 1

)
. (19)

Using these indicates that

Wd (λ) =
1

b1/(d−1)

(
1 +

λ

b

)− 1

d−1

·
2
F 1

(
1,

1

d − 1

; 1 +
1

d − 1

; λd
)
= λ ·

2
F 1

(
1,

1

d − 1

; 1 +
1

d − 1

; λd
)

As λd ∈ (0, 1), we can use the sum representation given by (17) to find that

Wd (λ) =
∞∑
n=0

λnd+1

1 + n(d − 1) ,

as (1)n = n! and (1/(d − 1))n/(1/(d − 1)+ 1)n = 1/(1+n(d − 1)). The expressions for d = 2, 3 can be

either found directly by looking at the Taylor expansion of the logarithm or by solving the integral

representation ofWd (λ). �

5.2 Limiting response time distribution
We now focus on the limiting response time distribution R in case the service discipline is first-

come-first-served and denote its cdf as FR (s).

Theorem 5.3. The ccdf of the limiting response time distribution of the LL(d) policy with FCFS
service and exponential job sizes with mean 1 is given by:

F̄R (s) =
(
λd + (1 − λd )e(d−1)s

) 1

1−d
. (20)
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Proof. Let E be an exponential random variable with mean 1 and let Ti , i = 1, . . . ,d denote the

d independent workloads of the d randomly selected servers. We find:

F̄R (s) = P
{
E +

d
min

i=1

Ti > s

}
= e−s +

∫ s

0

F̄ (s − t)de−tdt .

Due to (13) and using standard integration techniques, this integral can be simplified to:

F̄R (s) = e−s · ©«1 +
1

λb1/(d−1) ·
∫ es ( bλ )

1/(d−1)

( bλ )
1/(d−1)

(1 + xd−1)d/(1−d )dxª®¬ ,
whereb = λ1−d−λ as before. This is an integral that can be solved exactly to prove the statement. �

Remark. It is easy to verify that the workload and response time distributions F (s) and FR (s) have
the same increasing failure rate r (s) = f (s)/F̄ (s) = fR (s)/F̄R (s).

Remark. For d large, FR (s) ≈ e−s , as expected.

Theorem 5.4. The mean of the limiting response time distribution for the LL(d) policy with FCFS
service and exponential job sizes with mean 1 is given by:

Td (λ) =
∞∑
n=0

λdn

1 + n · (d − 1) . (21)

Proof. Let E ∼ Exp(1), we find:

Td (λ) = E[E +min{T1, . . . ,Td }] = 1 +

∫ ∞

0

F̄ (s)dds .

Using (13) and standard integration techniques (mainly substitution), we can reduce this expression

to:

Td (λ) = 1 +
1

λd/(d−1) · (d − 1)
·
∫ λ/b

0

v1/(d−1)

(1 +v)d/(d−1)dv .

Using the substitution y = v
1+v , one can show that the above integral reduces to

1 +
λd

d
·

2
F 1

(
d

d − 1

, 1; 1 +
d

d − 1

; λd
)
.

As λd ∈ (0, 1), one can use (17) and the claimed equality follows as (1)n = n! and (d/(d − 1))n/(1 +
d/(d − 1))n = d/((n + 1)(d − 1) + 1). �

Remark. In the proof of Theorem 5.4 it is also possible to directly use (20) instead of relying on (13).

Remark. Note thatWd (λ) = λTd (λ), which is expected due to Little’s law and the fact that the
mean workload of a server under the LL(d) policy for exponential job sizes with mean 1 is equal to the
mean number of jobs in such a server. The relationWd (λ) = λTd (λ) also yields simple formulas for
T2(λ) and T3(λ) due to Theorem 5.2. It is possible do derive similar expressions for larger d values, but
these become more and more complex as d increases.

Remark. In [11] the mean of the limiting response time distribution in case of exponential job sizes
of the replication with cancellation-on-completion policy (under the assumption of the independence
ansatz) was argued to be equal to

E[T RR(d )] = 2
F 1(1, 1; 1 + d

d−1
;
−ρ
1−ρ )

µd(1 − ρ) .
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This expression can be reduced to a simple sum formula as follows (using (19) and (17) as ρ ∈ (0, 1))

2
F 1(1, 1; 1 +

d

d − 1

;

−ρ
1 − ρ

) = (1 − ρ)
2
F 1(1,

d

d − 1

; 1 +
d

d − 1

; ρ) = (1 − ρ)
∞∑
n=0

(1)n
(

d
d−1

)
n(

1 + d
d−1

)
n

ρn

n!

,

which allows us to conclude that

E[T RR(d )] = 1

µ

∞∑
n=0

ρn

n(d − 1) + d .

Note that E[T RR(d )] converges to 1/(dµ) as ρ tends to zero due to the independent execution times of
the replicas in [11].

6 PHASE-TYPE AND DETERMINISTIC JOB SIZES
In Section 4.1 we proposed a fixed point iteration to compute the limiting workload distribution

F (s) under LL(d) for any job size distribution G, that was proven to converge if dρd < 1. We now

show that F (s) can also be directly obtained as the solution of a set of coupled ordinary differential

equations (ODEs) for any ρ < 1, provided that the job lengths follow a phase-type (PH) distribution.

PH distributions are distributions with a modulating finite state background Markov chain [15]

and any general positive-valued distribution can be approximated arbitrary closely with a PH

distributions. Further, various fitting tools are available online for phase-type distributions (e.g.,

[14, 20]). A PH distribution with G(0) = 0 is fully characterized by a stochastic vector α = (αi )ni=1

and a subgenerator matrix A = (ai, j )ni, j=1
such that Ḡ(s) = αeAs1, where 1 is a column vector of

ones.

Theorem 6.1. Suppose the job lengths have a PH distribution characterized by (α ,A), then the ccdf
of the limiting workload distribution under the LL(d) policy satisfies:

F̄ ′(s) = −λ((1 − F̄ (s)d ) + αAh(s)),
h′(s) = (1 − F̄ (s)d )1 +Ah(s),

with F̄ (0) = ρ, h(0) = 0 and h(s) : R→ Rn×1.

Proof. For i ∈ {1, . . . ,n} we define:

hi (s) =
∫ s

0

(1 − F̄ (u)d )eTi e(s−u)A1du,

where eTi is the i-th row of the identity matrix In . First note that hi (0) = 0. We now derive a

differential equation for hi (s). Using the equality In =
∑n

k=1
eke

T
k we find :

h′
i (s) = (1 − F̄ (s)d ) +

∫ s

0

(1 − F̄ (u)d )eTi AIne(s−u)A1du

= (1 − F̄ (s)d ) +
n∑

k=1

∫ s

0

(1 − F̄ (u)d )eTi AekeTk e
(s−u)A1du

= (1 − F̄ (s)d ) +
n∑

k=1

ai,khk (s).

In matrix notation this yields:

h′(s) = (1 − F̄ (s)d )1 +Ah(s).
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Due to (8) and Ḡ(s − u) = αe(s−u)A1, we have F̄ ′(s) = −λαh′(s), which yields the equation for

F̄ ′(s). �

We now generalize this result to the case where the service times are the sum of a deterministic

random variable and a PH distribution.

Theorem 6.2. Assume the service times are the sum of a deterministic random variable with mean
τ and a phase-type distribution characterized by (α ,A), i.e., Ḡ(s) = I {s≤τ } + I {s>τ }αe

(s−τ )A1, then the
ccdf of the limiting workload distribution under the LL(d) policy satisfies:

F̄ ′(s) = λ(F̄ (s)d − 1), s ≤ τ ,

F̄ ′(s) = −λ((1 − F̄ (s)d ) + αAh(s − τ )), s > τ ,

h′(s) = (1 − F̄ (s)d )1 +Ah(s),

with h(0) = 0 and F̄ (0) = ρ = λ(τ + α(−A)−11).

Proof. We distinguish two cases: first let s ∈ [0,τ ], we find that F̄ (s) = ρ − λ
∫ s

0
1 − F̄ (u)ddu,

deriving this equation once yields the first equation.

For the second note that we have (using the notation from the proof of Theorem 6.1):

F̄ (s) = ρ − λαh(s − τ ) − λ
∫ s

s−τ
(1 − F̄ (u)d )du .

Taking the derivative and using the expression for h′(s) found in Theorem 6.1 completes the

proof. �

Theorem 6.3. If the job sizes are deterministic and equal to one, the ccdf F̄ (s) is determined by
F̄ (0) = λ, and

F̄ ′(s) = λ(F̄ (s)d − 1) s ∈ [0, 1),
F̄ ′(s) = λ(F̄ (s)d − F̄ (s − 1)d ) s ≥ 1.

Proof. The proof is similar to the proof of Theorem 6.2. �

Remark. We note that the ODEs and DDEs presented in this section have a unique solution: the
existence follows from the fact that (8) solves the ODE/DDE, while the uniqueness follows from [9,
Section 23, theorem A].

Remark. It is easy to compute the ccdf of the response time distribution F̄R (s) given F̄ (s) as the
probability that a new arrival joins a queue with a workload exceeding s is given by F̄ (s)d under the
LL(d) policy.

7 LL(D) VERSUS SQ(D)
The aim of this section is to study the margin of improvement that can be achieved by using exact

workload information as opposed to the coarser queue length information used by SQ(d). This

margin of improvement is of interest to understand the possible response time improvements

offered by schedulers that implement late binding (as discussed in the introduction). Furthermore,

we also compare the SQ(d) policy with the LL(d) policy where the job sizes of the latter take the

late binding overhead into account. We start by focusing on exponential job sizes, for which we

can also establish some closed form results.
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7.1 Exponential job sizes
In this subsection we compare the limiting response time of the LL(d) and SQ(d) policies for

exponential job sizes with mean 1 and FCFS service. This comparison provides an answer on the

reduction in the response times that can be obtained if the workloads at the different servers are

known instead of the coarser queue length information. To distinguish between the response times

of both policies we make use of the superscripts
(LL)

and
(SQ )

. For the SQ(d) policy the mean of the

limiting response time distribution is given by [17]

T
(SQ )
d (λ) = 1

λ

∞∑
k=1

λ
dk −1

d−1 .

Theorem 7.1. The mean of the limiting response time distribution for the LL(d) policy is smaller
than the mean for the SQ(d) policy for exponential job sizes with mean 1, moreover

T
(SQ )
d (λ) −T (LL)

d (λ) = 1

λ

∞∑
k=1

Ak ,

where for λ ∈ (0, 1):

Ak = λ
dk+1−1

d−1 −
dk∑
n=1

λnd+1+ d
k+1−d2

d−1

1 + n(d − 1) + (dk − d)
> 0.

Proof. Due to (21), we need to show:

∞∑
n=1

λdn+1

1 + n(d − 1) ≤
∞∑
k=2

λ
dk −1

d−1 .

To see this, we group the terms on the left hand side with n ∈ {∑k−1

s=0
ds−1, . . . ,

∑k
s=1

ds } together
and compare their sum with the term λ

dk+1−1

d−1 on the right hand side for k ≥ 1. We have

d+· · ·+dk∑
n=1+· · ·+dk−1

λnd+1

1 + n(d − 1) <
d+· · ·+dk∑

n=1+· · ·+dk−1

λd (1+d+· · ·+d
k−1)+1

(1 + · · · + dk−1)(d − 1)
= λ1+d+· · ·+dk = λ

dk+1−1

d−1 .

Hence, the result follows.

�

Remark. For any fixed λ the above theorem shows that for any ϵ > 0, there exists a d(λ, ϵ) such
that for d > d(λ, ϵ) we have T (SQ )

d (λ) −T (LL)
d (λ) < ϵ .

Theorem 7.2. For the ratio of the mean of the limiting response time distribution of SQ(d) and
LL(d) for exponential job sizes with mean 1 we have

lim

λ→1

T
(SQ )
d (λ)/T (LL)

d (λ) = d − 1

log(d) .

Proof. Let K ∈ N be arbitrary and define:

UK (λ) =
1 +

∑K
k=1

∑d+· · ·+dk
n=1+· · ·+dk−1

λnd+1

1+n(d−1)

1 +
∑K

k=1
λ
dk+1−1

d−1

.

We note that we have:

lim

λ→1

lim

K→∞
UK (λ) = lim

λ→1

T (LL)
d (λ)

T
(SQ )
d (λ)

.
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On the other hand (withψ the Digamma function [1, Chapter 6]) we have:

lim

K→∞
lim

λ→1

UK (λ) = lim

K→∞

∑K
k=0

∑d dk −1

d−1

n= d
k −1

d−1

1

1+n(d−1)∑K
k=0

1

=
1

d − 1

lim

K→∞

∑K
k=0

ψ
(
dk+1

d−1

)
−ψ

(
dk
d−1

)
∑K

k=0
1

.

Since limk→∞ψ
(
dk+1

d−1

)
−ψ

(
dk
d−1

)
= log(d), we may apply the Stolz-Cesaro theorem to assert that

lim

K→∞
lim

λ→1

UK (λ) =
log(d)
d − 1

.

If we may interchange the limits this would incur:

lim

λ→1

T (LL)
d (λ)

T
(SQ )
d (λ)

=
log(d)
d − 1

.

An application of the Moore-Osgood theorem [13, p100] implies that we may indeed interchange

limits: asUK andU = limK→∞UK are continuous functions defined on the compact set [0, 1] andUK
converges pointwise toU , it follows that this convergence is also uniform. Moreover, we trivially

have pointwise convergence of limλ→1UK (λ). �

Remark. As (d − 1)/log(d) tends to infinity as d becomes large, we note that for any c > 0 there
exists a λ and d such that the ratio T (SQ )

d (λ)/T (LL)
d (λ) > c . In other words, for arbitrary λ and d , there

is no bound on how much worse the SQ(d) policy performs than the LL(d) policy.

In Figure 1 we plot the ratioT
(SQ )
d (λ)/T (LL)

d (λ) as a function of λ. We note that this ratio increases

with λ and approaches a constant as λ approaches one. Looking at this figure, the limit values for

the ratioT
(SQ )
d (λ)/T (LL)

d (λ) as λ tends to one may appear to be less than (d − 1)/log(d) (as shown in

Theorem 7.2), but this is simply due to the fact that this ratio still increases significantly between

0.999 and 1. From this figure we may conclude that the increase in the mean of the limiting response

time distribution by using the coarser queue length information instead of the exact workload is

below 50% when d = 2 for exponential job sizes. For larger d we see a more significant increase

under high load.

We further note that the curves for different d values cross one another. Intuitively this can be

understood by noting that for λ small many jobs select an idle server and when an idle server is

selected knowing the queue length is equally good as knowing the workload. When d increases it

becomes more likely that an idle server is selected and thus we expect the mean response time

ratio to decrease with increasing d when λ is small. For large λ it becomes unlikely that one of the

selected queues is idle and SQ(d) has to rely on the coarser queue length information. When λ is
large, we therefore see a larger loss of more information as d increases and thus the mean response

time ratio now increases with increasing d .
Apart from comparing the mean response times, we can also easily compare the response time

distribution of the LL(d) and SQ(d) policy. For the SQ(d) policy it is not hard to establish that the

ccdf of the limiting response time distribution can be written as

F̄
(SQ )
R (s) =

∞∑
k=1

(
λ(d

k−1−1)d/(d−1) − λ(dk−1)d/(d−1)
) k−1∑
n=0

sn

n!

e−s =
∞∑
n=0

sn

n!

e−sλ(d
n−1)d/(d−1), (22)

by noting that a job that joins a queue of length k − 1 has an Erlang-k distributed response time for

exponential job sizes. Figure 2 depicts the response time distributions for λ = 0.95 and d = 2, 3 and
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Fig. 1. Ratio of the mean of the limiting
response time distribution of SQ(d) and LL(d) for
exponential job sizes with mean 1, FCFS service
as a function of λ.
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Fig. 2. Limiting response time distribution of
SQ(d) and LL(d) for exponential job sizes with
mean 1, FCFS service and λ = 0.95.

4. We note that F̄R (s) decreases as a function of d and F̄
(SQ )
R (s) dominates F̄ (LL)R (s) for all s > 0. The

next theorem proves an even stronger result.

Theorem 7.3. The function f (s) = F̄
(SQ )
R (s)/F̄ (LL)R (s) is non-decreasing on [0,∞), thus F̄ (SQ )

R (s) ≥
F̄ (LL)R (s) for all s .

Proof. It suffices to show that f ′(s) ≥ 0 for s > 0 (as F̄
(SQ )
R (0) = F̄ (LL)R (0) = 1). Denote µ = λd .

Using (22) and (20), the condition f ′(s) ≥ 0 can be restated as∑∞
k=0

µ
dk −1

d−1 (µdk − 1) skk !∑∞
k=0

µ
dk −1

d−1
sk
k !

+
(1 − µ)e(d−1)s

µ + (1 − µ)e(d−1)s ≥ 0.

By rearranging terms this is equivalent to showing:

e(d−1)s
( ∞∑
k=0

µd
k
µ
dk −1

d−1

sk

k!

)
≥ µ

1 − µ

∞∑
k=0

µ
dk −1

d−1 (1 − µd
k )s

k

k!

.

For the left hand side we find, by using the Taylor expansion of e(d−1)s
and applying Merten’s

theorem (which states that if

∑
n an converges to A and

∑
n bn converges to B, then the Cauchy

product converges to AB if at least one of the two sequences converges absolutely):

e(d−1)s
( ∞∑
k=0

µd
k
µ
dk −1

d−1

sk

k!

)
=

∞∑
n=0

sn

n!

n∑
k=0

(
n

k

)
(d − 1)n−k µdk µ dk −1

d−1 .

It therefore suffices to show that the inequality holds for all coefficients of
sn
n!
, i.e. it remains to

show that:

µ

1 − µ
µ
dn−1

d−1 (1 − µd
n ) ≤

n∑
k=0

(
n

k

)
(d − 1)n−k µdk µ dk −1

d−1 .

By noting that
1−µdn

1−µ ≤ dn , the result follows if the following holds

dn ≤
n∑

k=0

(
n

k

)
(d − 1)n−k µ dk+1−1

d−1
− dn−1

d−1
−1,
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Fig. 3. Ratio of the mean of the limiting response
time distribution of SQ(2) and LL(2) for hyperex-
ponential job sizes with mean 1, shape parameter
f = 1/2 and FCFS service as a function of λ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ

1

1.05

1.1

1.15

1.2

1.25

1.3

T
2(S

Q
) (λ

)/
T

2(L
L

) (λ
)

SCV = 0
SCV = 1/16
SCV = 1/8
SCV = 1/4
SCV = 1/2
SCV = 1

Fig. 4. Ratio of the mean of the limiting response
time distribution of SQ(2) and LL(2) for Erlang job
sizes with mean 1 and FCFS service as a function
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We clearly have an equality in µ = 1 (and for n = 0). It therefore suffices to show that the right

hand side decreases for µ ∈ [0, 1] for n > 0. The first n terms are all convex decreasing, while

the last term is convex increasing. The derivative of the sum of the first and last term in µ = 1 is

(dn − 1)(1 − (d − 1)n−1) ≤ 0. Since the derivative of a convex function on [0, 1] is maximized in 1,

the sum of the first and last term is decreasing and we may conclude that f ′(s) ≥ 0. �

7.2 Impact of job variability
In this subsection we study the impact of the job size variability on the ratio of the mean of the

limiting response time distribution of SQ(d) and LL(d). In real systems a significant part of the total

workload is often offered by a small fraction of long jobs, while the remaining workload consists

mostly of (very) short jobs [19]. For simplicity we represent these workloads as a hyperexponential

(HEXP) distribution (with 2 phases) such that we can vary the job size variability in a systematic

manner. More precisely, with probability p a job is a type-1 job and has an exponential length with

parameter µ1 > 1 and with the remaining probability 1−p a job is a type-2 job and has exponential

length with parameter µ2 < 1. Hence, the type-2 jobs are longer on average and we therefore

sometimes refer to the type-2 jobs as the long jobs. The parameters p, µ1 and µ2 are set such that

the following three values are matched: (i) mean job length (set to one), (ii) the squared coefficient

of variation (SCV) and (iii) a shape parameter f , using the following equations:

µ1 =
SCV + (4f − 1) +

√
(SCV − 1)(SCV − 1 + 8f ¯f )

2f (SCV + 1) ,

µ2 =
SCV + (4 ¯f − 1) −

√
(SCV − 1)(SCV − 1 + 8f ¯f )

2
¯f (SCV + 1)

,

with
¯f = 1− f and p = µ1 f . The shape parameter f ∈ (0, 1) represents the fraction of the workload

that is offered by the type-1 jobs.

The mean of the limiting response time distribution for the LL(d) policy can be computed in a

fraction of a second for any ρ < 1 by making use of Theorem 6.1. For the SQ(d) policy we use a

fixed point iteration to determine the stationary queue length distribution of the cavity process

associated to the equilibrium environment [6]. More specifically, we determine the queue length
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distribution of a sequence of M/G/1 FCFS queues with a queue length dependent arrival rate λ,
where the queue length distribution determined during the n-th iteration determines the arrival

rates of the n + 1-th iteration, until the queue length distribution converges (starting from the

empty distribution). While the queue length distribution of such a queue can be computed in a

very fast manner when the job sizes follow a phase-type distribution (or are deterministic), the

number of iterations needed increases sharply as ρ approaches 1. This prevents us from studying

what happens in the limit as ρ tends to one.

Figure 3 depicts the ratio of the mean of the limiting response time distribution of the SQ(d) and

LL(d) policies when d = 2 and f = 1/2 (meaning half of the workload is offered by the long jobs).
This ratio increases when the jobs sizes become more variable, which is expected as having precise

workload information should be more valuable when jobs vary significantly in size. The results

indicate that a mechanism like late binding can offer substantial gains even at fairly low loads if the

job sizes vary significantly (and the round-trip time to fetch the job can be neglected). The results

for f = 1/10, which implies that 90% of the workload is offered by the long jobs, are very similar

(and therefore not depicted). For d > 2 these ratios tend to increase under sufficiently high loads as

in the exponential case.

For completeness we also present some results for job sizes with an SCV below 1 in Figure 4. In

this case we cannot make use of a hyperexponential distribution and therefore consider Erlang-k
distributed and deterministic job sizes instead. This figure shows that as λ approaches 1 the ratio of

the means of the limiting response time distribution starts to decrease for sufficiently small SCVs.

In fact, studying this ratio for λ values closer to 1 as depicted in Figure 4 suggests that this ratio

decreases to 1 for deterministic job sizes. This seems to make sense intuitively as for λ approaching

one, the queue lengths become long and knowing the coarser queue length information is almost

as good as knowing the exact workload.

7.3 Late binding overhead
In the previous subsection we shed light on the margin of improvement that late binding can provide

compared to the classic SQ(d) policy assuming that the jobs can be fetched from the dispatchers

in negligible time. In this section we take the idleness caused by late binding into account. We do

this by comparing the mean of the limiting response time distribution of the SQ(d) policy with the

mean of the LL(d) policy, where the size of each job under the LL(d) policy is incremented by a

deterministic quantity τ that represents the overhead, that is, the time that the server remains idle

under late binding while fetching the job. We denote the mean of the limiting response time in

the latter case as T (LL)
d,τ and rely on Theorem 6.2 for its computation. We consider the same job size

distributions (with average job size equal to one) as in the previous section.

In Figure 5 the ratioT
(SQ )
d /T (LL)

d,τ is shown as a function of λ for the case where τ = 0.05, meaning

each job induces an idle server period with a length equal to 5% of the mean job size. It indicates

that for a very wide range of arrival rates λ, late binding offers substantial gains over the SQ(d)

policy even with an overhead of 5%. For systems with high job size variability, this range even

includes arrival rates above 0.9. Note that the overhead of the scheduler implementation in [19]

was estimated to be below 2%. We further note that late binding requires storing the jobs at the

dispatcher(s) until a notification from one of the servers arrives, which may be regarded as a

drawback compared to SQ(d) which allows immediate dispatching as soon as the queue length

information is obtained.

In fact for medium loads much higher amounts of overhead can be tolerated by the LL(d) policy

before it becomes inferior to SQ(d). This is illustrated in Figure 6, where we plot the largest τ value
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= 20 and f = 1/2, i.e., the largest τ such that T (LL)

d,τ ≤

T
(SQ )
d .

for which T (LL)
d,τ ≤ T

(SQ )
d when the SCV was set to 20. We observe that overheads of 25% and more

can be tolerated for system workloads around 50%.

8 FINITE SYSTEM ACCURACY
In this section we briefly compare the limiting response time distribution with simulation experi-

ments where the number of servers N is finite. All simulation runs simulate the system up to time

t = 10
7/N and use a warm-up period of 30%.

Figure 7a compares the expression for the limiting response time distribution given by (20) for

exponential job sizes with simulation experiments. In the simulation the number of servers equals

N = 100 servers, the 95% confidence intervals are computed based on 10 runs that each start from

an empty system. The agreement with simulation is very good (except for high loads combined

with a small d) considering that we are simulating a system with only 100 servers.

In Figure 7b we look at the impact of the number of simulated servers N under high loads when

d = 2. We note that the limiting distribution is not necessarily a good match for the tail probabilities

of the response time when N is small, e.g., N = 20, but the accuracy quickly improves as the

number of servers increases.

In Figure 7c and 7d we look at a similar setting as in Figure 7a and 7b, but the job sizes now

follow a hyperexponential distribution with f = 1/2 (see Section 7.2 for details). In this case the

95% confidence intervals are computed based on 25 runs. We note that even though the job sizes

are now substantially more variable, the accuracy seems quite similar to the exponential case. Thus,

more variable job size distributions do not necessarily imply worse accuracy for a fixed N .

Figure 8 illustrates the accuracy of the limiting response time distribution in case of power law

and deterministic job sizes (computed via the fixed point iteration in Section 4.1). More specifically,

for the power law distribution we used Ḡ(s) = s−β with β = 2. This implies that the mean job size

is finite and equal to 2, while the variance of the job size distribution is infinite. In the deterministic

case the job size equals 1. The figure indicates that somewhat larger N values are needed to closely

match the limiting response time distribution compared to the (hyper)exponential case.
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Fig. 7. Limiting response time distribution vs. simulation for N servers with (hyper)exponential job sizes with
mean 1. The full line represents the limiting response time distribution.

9 CONCLUSIONS AND FUTUREWORK
In this paper we studied the limiting workload and response time distribution of the LL(d) policy

which assigns an incoming job to a server with the least work left among d randomly selected

servers. We introduced a fixed point iteration to determine the limiting workload distribution for

general job size distributions and any non-idling service discipline and studied its convergence. We

derived a closed form expression for both the workload and response time distribution (for FCFS

service) in case of exponential job sizes and indicated that these distributions can be computed

easily by solving a set of ordinary differential equations for phase-type distributed job sizes.

We provided insight into the gains that can be expected when exact workload information is used

instead of the coarser queue length information by comparing the performance of the LL(d) policy

with the classic SQ(d) policy. Such a comparison is relevant to understanding the performance

gains offered by schedulers implementing late binding. In this regard we demonstrated that late

binding offers significant gains over SQ(d) for a wide range of arrival rates, even when taking the

late binding overhead into account.

We intend to generalize the results presented in this paper to a setting where each incoming

job consists of k tasks and these k tasks can be executed simultaneously on different servers. For

each incoming job d servers are still selected at random, but now the k tasks are assigned to the k
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Fig. 8. Limiting response time distribution vs. simulation for N servers with power law and deterministic job
sizes with mean 1. The full line represents the limiting response time distribution.

servers (among the d selected servers) with the least workload left. Some of the challenges in this

setting concern proving the stability condition and asymptotic independence of the workloads.

Furthermore, some of the results presented in this paper should be extendable to systems where

the incoming jobs belong to different job classes and not all servers can necessarily serve all job

classes. Another possible, but challenging, direction for future work on the LL(d) policy is to perform

a worst-case analysis as was done for the SQ(d) policy in [3].
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