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Abstract

Response times in large distributed systems can be reduced by exchanging jobs between

idle servers and servers with pending jobs. When a pull strategy is deployed the initiative

to exchange jobs is taken by the idle servers, while servers with pending jobs initiate the

exchange when a push strategy is implemented. In this paper the performance of a class of

rate-based pull and push strategies for large heterogeneous networks is studied using a mean

field model. These strategies have the advantage that the rate at which servers probe other

servers to initiate a job exchange can be controlled, allowing a fair comparison between pull

and push strategies.

Based on two natural conjectures we derive a simple condition for the required probe rate

to establish system stability when the system size becomes large and consists of two types of

servers. In some specific cases we show that this condition coincides with the existence of a

unique positive fixed point for which we also present an explicit expression. This fixed point is

used to express the queue length distribution and mean response time in the system in explicit

form. The accuracy of both the stability condition and mean queue lengths as predicted by

the mean field model is validated using time-consuming simulation experiments. We end the

paper with some numerical results that compare the performance of the rate-based pull and

push strategies in a heterogeneous setting.

1 Introduction

Systems consisting of a large number of servers benefit from the ability to exchange jobs between

idle servers and servers with pending jobs. Roughly speaking the strategies used to exchange jobs

between servers can be classified in two categories: pull and push strategies depending on which

servers take the initiative to exchange jobs. When a traditional pull strategy is used, servers

that become idle trigger the transmission of a probe message to a number of randomly selected
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servers, while with a traditional push strategy the transmission of probe messages is triggered by

job arrivals that find the queue (sufficiently) occupied. These probe messages are used to locate a

server that is willing to exchange a job. The more probe messages one transmits the more likely

such an exchange can occur and more pronounced the reduction in the response times become.

The performance of both the traditional push and pull strategies (as well as generalizations

thereof) has been studied by a number of authors [4, 13, 11, 6]. A homogeneous system with

Poisson arrivals and exponential job lengths was analyzed in [4, 3] using a decoupling assumption

that relied on the numerical solution of some nonlinear equation. This approach was subsequently

extended to heterogeneous systems in [11] again by relying on a decoupling assumption. While

the insights provided by these models are very valuable, the comparison is somewhat biased as

the rate R at which the pull and push strategies transmit probe messages may differ significantly

for a given job arrival and job service rate (see Section VI in [10]).

To allow for a more fair comparison the rate-based pull and push strategies were introduced in

[8, 10]. The main difference between the rate-based and traditional pull strategy is that probes are

no longer transmitted whenever a server becomes idle, but instead are transmitted at some rate r

as long as the server remains idle. Similarly, job arrivals do not trigger the transmission of probe

messages under the rate-based push strategy, but instead probe messages are transmitted at some

rate r̂ whenever there are pending jobs. For a given set of system parameters (e.g. arrival and

service rates), we can set the parameters r and r̂ such that the mean number of probe messages

R that is transmitted per time unit coincides for both strategies. Apart from allowing a more fair

comparison, these rate-based strategies have the additional benefit that closed-form expressions

can be derived for the mean response time in case of a large homogeneous system, avoiding the

need to solve any nonlinear equations.

In this paper we extend the analysis of [10] to a heterogeneous network. We restrict ourselves

to a system that consists of two types of servers (each type with its own arrival rate), though the

model can be easily extended to more types. The main contributions of the paper are as follows:

(i) We extend the mean field model of [10] to a heterogeneous network, this generalization is not

hard (Section 3). (ii) Based on this mean field model and two natural conjectures we provide

a simple necessary and sufficient stability condition when the system becomes large (Section 4).

(iii) In some specific cases we show that this stability condition coincides with the existence of a

unique positive fixed point for the set of ODEs that captures the evolution of the mean field model

(Section 5). (iv) We derive an explicit expression for the unique fixed point in these special cases
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(Sections 5 and 6). (v) Finally, we validate the mean field model using simulation experiments

(Section 7) and provide insights on the comparison of the rate-based pull and push strategies using

our model (Section 8).

2 Pull and push strategies

We consider a system consisting of N servers, each server can process one job at a time and can

store infinitely many waiting jobs. To transfer jobs between the servers we consider the following

two rate-based strategies introduced in [10]:

1. Pull: Whenever a server has i = 0 jobs in its queue, meaning the server is idle, the server

will generate probe messages at rate r. Thus, as long as the server remains idle, probes are

sent according to a Poisson process with rate r. This process is interrupted whenever the

server becomes busy. A probe is successful and results in the exchange of a job whenever

there are jobs waiting to be served in the probed server.

2. Push: Whenever a server has i ≥ 2 jobs in its queue, meaning i − 1 jobs are waiting to

be served, the server will generate probe messages at rate r̂. Thus, as long as the number

of jobs in the server remains above 1, probes are sent according to a Poisson process with

rate r̂. Whenever the queue length i drops to 1, this process is interrupted and remains

interrupted as long as the queue length remains below 2. A probe is successful and results

in the exchange of a job whenever the probed server is idle.

We do not consider hybrid strategies in which servers both pull and push jobs as these were argued

to be inferior in a homogeneous setting in [10]. It should also be possible to extend the results in

this paper to a more general class of rate-based pull and push strategies as was done in [9] for the

homogeneous network.

The main objectives of this paper are to study the performance of these strategies in a hetero-

geneous network, that is, in a network where the number of jobs arriving per time unit and the

processing speed is not the same in each server. To this end we assume that the servers can be

partitioned in K types of servers, where servers of the same type are assumed to have the same

processing speed and arrival rate. To determine the server that is being probed the servers make

use of a stochastic K × K matrix P . Entry Pk,k′ of P determines the probability that a type

k server probes a random type k′ server, for k, k′ ∈ {1, . . . ,K}. In other words, if we have Nk′

type k′ servers, a specific type k′ server is probed by a type k server with probability Pk,k′/Nk′ .
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Throughout the paper we limit ourselves to K = 2 types of servers, but note that the system

dynamics of the mean field model in Section 3 is trivial to extend to K > 2 server types.

3 The mean field model

In this section we introduce a mean field model that is used to study the performance of the pull

and push strategy in a heterogeneous setting. We assume that we have K = 2 types of servers and

denote γ1 as the fraction of type 1 servers and γ2 = 1− γ1. Each server can store infinitely many

jobs. Let λk be the Poisson arrival rate of jobs in a type k server, for k = 1, 2, and µk the rate

of a type k server (we assume exponential job durations). Define ρk = λk/µk, λ = γ1λ1 + γ2λ2,

µ = γ1µ1 + γ2µ2 and ρ = λ/µ. As in [4, 13, 11, 6, 10] we assume that the time required to

transfer probe messages and jobs between different servers can be neglected in comparison with

the processing time (i.e., the transfer times are assumed to be zero).

Given the above assumptions, it is clear that we obtain an N -dimensional Markov chain by

simply keeping track of the number of jobs present in each of the N servers. Further, it is not hard

to see that this Markov chain belongs to the family of density dependent Markov chains in the sense

of Kurtz [7, 5] (as the rate of change of the number of jobs in a specific server is affected only by

the content of the other servers through the fraction of idle servers and servers with pending jobs).

As this Markov chain does not appear to have a product form we approximate it using a mean

field model. One can show, using [12, Theorem 3.13]), that this mean field model corresponds to

the limit process of the family of N -dimensional Markov chains as N tends to infinity over any

finite time scale. Proving that the convergence extends to the stationary regime, as was done in

[10] for the homogeneous case, is in general far more challenging. This is especially true in this

case as each server can store infinitely many jobs, which implies that it is not sufficient to prove

that the set of ODEs has a global attractor [1].

3.1 System dynamics

The models introduced in this section are a generalization of the model introduced in [10] which

was restricted to a homogeneous network (that is, K = 1). In contrast to [10] we can no longer

make use of a single set of ODEs to capture the behavior of both the pull and push strategy. The

model makes use of the variables xk,i(t), with i ≥ 0 and k = 1, 2, that represent the fraction of

servers of type k that contain i or more jobs at time t and its evolution is described by means of

a set of ODEs. To distinguish between the variables of the pull and push strategy we add a hat

on all the variables that relate to the push strategy.
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Pull: We start with the drift equations of the variables xk,i(t) when using the pull strategy:

dxk,1(t)

dt
= λk(xk,0(t)− xk,1(t))− µk(xk,1(t)− xk,2(t))

+ r

(
2∑

k′=1

xk′,2(t)

xk′,0(t)
Pk,k′

)
(xk,0(t)− xk,1(t)), (1)

dxk,i(t)

dt
= λk(xk,i−1(t)− xk,i(t))− µk(xk,i(t)− xk,i+1(t))

− r

(
2∑

k′=1

(xk′,0(t)− xk′,1(t))Pk′,k

)
xk,i(t)− xk,i+1(t)

xk,0(t)
, (2)

for i ≥ 2 and xk,0(t) = γk. The drift of these variables is composed of three terms: one due

to job arrivals, one due to job completions and one due to job transfers. The number of type k

servers with i or more jobs, for i ≥ 1, increases by one whenever a job arrives in a server holding

exactly i− 1 jobs, that is, at rate λk(xk,i−1(t)− xk,i(t)). Similarly, it decreases by one if a service

completion occurs in a server with exactly i jobs, i.e., at rate µk(xk,i(t)− xk,i+1(t)). The changes

due to job transfers are somewhat more involved.

Jobs are always transferred between a server with at least 2 jobs and an empty server. Hence,

they cause an increase in the number of servers with 1 or more jobs and a decrease in the number

of servers with i or more jobs, for some i ≥ 2. The rate of increase of xk,1(t) is equal to the fraction

of type k servers that is empty (xk,0(t) − xk,1(t)) times the rate r at which these servers probe

times the probability that such a probe is successful. This latter probability can be expressed

as
∑2
k′=1 Pk,k′xk′,2(t)/xk′,0(t) as a type k server probes a type k′ server with probability Pk,k′

and a type k′ server contains at least 2 jobs with probability xk′,2(t)/γk. The rate at which

xk,i(t) decreases, for i ≥ 2, is given by the probability that a type k server contains exactly i jobs

(xk,i(t)− xk,i+1(t))/γk times the rate at which type k servers are probed. This latter rate equals

r
∑2
k′=1(xk′,0(t)− xk′,1(t))Pk′,k as (xk′,0(t)− xk′,1(t)) is the fraction of empty type k′ servers and

these probe a type k server at rate rPk′,k.

Push: For the push strategy we have the following drift equations. They only differ from the

drift equations of the pull strategy in the terms corresponding to the job transfers.

dx̂k,1(t)

dt
= λk(x̂k,0(t)− x̂k,1(t))− µk(x̂k,1(t)− x̂k,2(t))

+ r̂

(
2∑

k′=1

x̂k′,2(t)Pk′,k

)
x̂k,0(t)− x̂k,1(t)

x̂k,0(t)
, (3)

dx̂k,i(t)

dt
= λk(x̂k,i−1(t)− x̂k,i(t))− µk(x̂k,i(t)− x̂k,i+1(t))

− r̂

(
2∑

k′=1

x̂k′,0(t)− x̂k′,1(t)

x̂k′,0(t)
Pk,k′

)
(x̂k,i(t)− x̂k,i+1(t)), (4)
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With the push strategy the servers with pending jobs initiate the job transfers. As such the rate at

which these cause an increase in x̂k,1(t) is equal to the rate r̂
(∑2

k′=1 x̂k′,2(t)Pk′,k

)
at which type

k servers receive probes times the probability (x̂k,0(t)− x̂k,1(t))/γk that a type k server is empty.

The decrease in x̂k,i(t), for i ≥ 2, on the other hand is given by the rate r̂(x̂k,i(t) − x̂k,i+1(t)) at

which the type k servers with exactly i jobs probe times the probability Pk,k′ that they probe a

type k′ server (for any k′) times the probability (x̂k′,0(t)− x̂k′,1(t))/γk′ that this type k′ server is

empty.

3.2 Fixed points

It is useful to note that the drift equation of the pull strategy can be written as

dxk,1(t)

dt
= (λk + ηk(t))(xk,0(t)− xk,1(t))− µk(xk,1(t)− xk,2(t)), (5)

dxk,i(t)

dt
= λk(xk,i−1(t)− xk,i(t))− (µk + σk(t))(xk,i(t)− xk,i+1(t)), (6)

for i ≥ 2, by defining σk(t) and ηk(t) as

ηk(t) = r

2∑
k′=1

xk′,2(t)

γk′
Pk,k′ , (7)

σk(t) =
r

γk

2∑
k′=1

(xk′,0(t)− xk′,1(t))Pk′,k. (8)

The same holds for the push strategy if we replace x by x̂, η by η̂ and σ by σ̂ with

η̂k(t) =
r̂

γk

2∑
k′=1

x̂k′,2(t)Pk′,k, (9)

σ̂k(t) = r̂

2∑
k′=1

x̂k′,0(t)− x̂k′,1(t)

γk′
Pk,k′ . (10)

Property 1. Assume x = {xk,i|i ≥ 0, k = 1, 2} with x > 0 and
∑
i≥0(xk,i − xk,i+1) = γk is a

positive fixed point of the set of ODEs given by (1) and (2). Let ηk and σk be given by (7) and

(8), respectively, when replacing xk′,i(t) by xk′,i. Let πk,i = (xk,i − xk,i+1), then

πk,i = πk,0
λk + ηk
µk

(
λk

σk + µk

)i−1
, (11)

for i ≥ 1 and πk,0 such that
∑
i≥0 πk,i = γk. Further,

µ− λ = µ1π1,0 + µ2π2,0. (12)

Proof. From (5) and (6) we observe that πk,i is an invariant vector of the rate matrix Qk

Qk =


−λk − ηk λk + ηk 0 · · ·

µk −λk − µk λk 0 . . .
0 σk + µk −λk − σk − µk λk · · ·
...

. . .
. . .

. . .
. . .

 .
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Equation (11) therefore follows from the birth death structure of Qk. The equality µ − λ =

µ1π1,0 + µ2π2,0 is obtained by demanding that
∑
k,i

dxk,i(t)
dt = 0 and verifying that

∑
k ηkπk,0 =∑

k σkxk,2.

The next property is proven in exactly the same manner for the push strategy.

Property 2. Assume x̂ = {x̂k,i|i ≥ 0, k = 1, 2} with x̂ > 0 and
∑
i≥0(x̂k,i − x̂k,i+1) = γk is a

positive fixed point of the set of ODEs given by (3) and (4). Let η̂k and σ̂k be given by (9) and

(10), respectively, when replacing x̂k′,i(t) by x̂k′,i. Let π̂k,i = (x̂k,i − x̂k,i+1), then

π̂k,i = π̂k,0
λk + η̂k
µk

(
λk

σ̂k + µk

)i−1
, (13)

for i ≥ 1 and π̂k,0 such that
∑
i≥0 π̂k,i = γk. Further,

µ− λ = µ1π̂1,0 + µ2π̂2,0. (14)

4 Stability

Let Ω
(N)
(λ1,λ2,µ1,µ2,γ1,P ) be the set of r values for the pull strategy for which the corresponding

density dependent N dimensional Markov chain (in the sense of Kurtz) is stable and define

Ω̂
(N)
(λ1,λ2,µ1,µ2,γ1,P ) similarly for the push strategy. Clearly, if ρ1, ρ2 < 1 we have stability for

all r ≥ 0. Existing results on the stability of multidimensional queueing systems [14] suggest that

in order to determine this set of r values, one needs to study the service rates in the dominating

systems, that is, the systems where either all the type 1 or all the type 2 queues have an infinite

queue length. For finite N these service rates are hard to determine, as such we consider the case

where N tends to infinity.

Conjecture 1. Let Ω(λ1,λ2,µ1,µ2,γ1,P ) be the set of r values for which (1)-(2) has a unique positive

fixed point, then limN→∞ Ω
(N)
(λ1,λ2,µ1,µ2,γ1,P ) = Ω(λ1,λ2,µ1,µ2,γ1,P ) and the same holds for the push

strategy.

We numerically validate this approximation in Section 7 and note that an approximation for

the stability region of a multidimensional system using a mean field model was also introduced in

[2].

As for the necessary and sufficient condition for the existence of a (unique) positive fixed point,

we believe the following natural conjecture holds, which we prove in the next section for the pull

strategy when P2,2 = 1 and for the push strategy when P1,1 = 1. Note that (12) and (14) imply

that a positive fixed point cannot exist if ρ ≥ 1.
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Conjecture 2. Let ρ < 1 and assume without loss of generality that ρ1 ≤ ρ2. The set of ODEs

for both the pull and push strategy has a positive fixed point if and only if the arrival rate λ2 is

less than the rate at which type 2 jobs are served in the dominating system where type 2 queues

have an infinite number of waiting jobs at all times. Further, this fixed point is unique.

We first note that due to (11) we have

γk = πk,0

[
1 +

(
λk + ηk
µk

)
1

1− λk

µk+σk

]
, (15)

γk = πk,0

(
1 +

λk + ηk
µk

)
+ xk,2, (16)

xk,2 =
λk

µk + σk
(γk − πk,0). (17)

We now establish the following theorem for the pull strategy. It indicates that when ρ < 1,

r has to be large enough such that sufficient type 2 jobs can be served by type 1 servers. When

ρ2 < 1, rc is negative and setting r = 0 suffices. This is expected as we assumed that ρ1 ≤ ρ2 and

therefore both type 1 and 2 queues have a load below one, so no transfer of jobs is required to get

a stable system.

Theorem 1. Conjecture 2 for the pull strategy is equivalent to the following statement: the set

Ω(λ1,λ2,µ1,µ2,γ1,P ) is given by

Ω(λ1,λ2,µ1,µ2,γ1,P ) =

{
r

∣∣∣∣r > rc =
µ1µ2(ρ2 − 1)

µ− λ
γ2

1− P1,1

}
. (18)

Proof. Consider the dominating system in which all the type 2 queues have infinite length. In

such a system we have π2,0 = 0 and x2,2 = γ2. Equations (7) and (8) therefore yield

η1 = r (x1,2P1,1/γ1 + P1,2) (19)

σ1 = rπ1,0P1,1/γ1. (20)

We first determine π1,0 and x1,2 in this dominating system. To obtain an equation for x1,2 we use

(16) with k = 1 to express π1,0 in terms of x1,2 (as η1 depends on x1,2 only). This allows us to

express σ1 in terms of x1,2 via (20). Next, we plug this expression for π1,0 and σ1 into (15) with

k = 1 where we also use (19) to obtain an equation where x1,2 is the only unknown. This equation

turns out to have a unique solution given by

x1,2 =
γ1λ1 (λ1 + r(1− P1,1))

µ2
1 + r(µ1 − λ1P1,1)

. (21)

Hence, using (16) we have

π1,0 =
γ1(µ1 − λ1)

µ1 + r(1− P1,1)
. (22)
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We have a unique positive fixed point x if and only if the arrival rate of the type 2 jobs is less than

the service rate of the type 2 jobs in the dominating system provided that Conjecture 2 holds,

that is,

λ2 < µ2 +
γ1
γ2

π1,0
γ1

r(1− P1,1), (23)

as
π1,0

γ1
r(1− P1,1) is the rate at which the type 1 servers pull jobs from the type 2 servers and for

each type 2 server we have γ1/γ2 type 1 servers.

Since ρ < 1, (23) can be rewritten as

r >
µ1µ2(ρ2 − 1)

µ− λ
γ2

1− P1,1
, (24)

by relying on (22).

Let us now establish a similar result for the push approach, where the proof is similar to

Theorem 1 and is given in Appendix A.

Theorem 2. Conjecture 2 for the push strategy is equivalent to the following statement: the set

Ω̂(λ1,λ2,µ1,µ2,γ1,P ) is given by

Ω̂(λ1,λ2,µ1,µ2,γ1,P ) =

{
r̂

∣∣∣∣r̂ > r̂c =
µ1µ2(ρ2 − 1)

µ− λ
γ1

1− P2,2

}
.

5 Explicit results

5.1 Pull

In this section we present some explicit results for the pull strategy with P2,2 = 1, that is,

P =

[
P1,1 P1,2

0 1

]
.

It is worth noting at this stage that due to (11) we have an explicit expression for the fixed point

x as soon as we have explicit expressions for π1,0, π2,0, x1,2 and x2,2.

When P2,2 = 1 the fixed point equations for ηk and σk under the pull strategy become:

η1 = r (x1,2P1,1/γ1 + x2,2P1,2/γ2) , (25)

η2 = rx2,2/γ2, (26)

σ1 = rπ1,0P1,1/γ1, (27)

σ2 = r(π1,0P1,2 + π2,0)/γ2. (28)
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Combining (16) with k = 2 with (26) gives the following expression for π2,0 in terms x2,2:

π2,0 =
γ2µ2(γ2 − x2,2)

γ2(λ2 + µ2) + rx2,2
. (29)

Equations (15) with k = 2, (26), (28) and (29) now enable us to express π1,0 in terms of x2,2

π1,0 =
γ22(γ2λ

2
2 + rx2,2(λ2 − µ2)− x2,2µ2

2)

rx2,2(γ2(λ2 + µ2) + rx2,2)P1,2
. (30)

Combining (29) and (30) yields

π1,0 =
γ2(µ2π2,0 + γ2(λ2 − µ2))

rx2,2P1,2
, (31)

which can be combined with (12) to obtain the following simple expression for π1,0 in terms of

x2,2:

π1,0 =
γ1(µ1 − λ1)γ2
γ2µ1 + rx2,2P1,2

. (32)

An expression for x1,2 in terms of π1,0 is readily obtained from (17) with k = 1:

x1,2 =
λ1(γ1 − π1,0)γ1
γ1µ1 + rπ1,0P1,1

. (33)

Given equations (29) and (32) for π2,0 and π1,0, we can use (17) with k = 2 to obtain a quadratic

equation for x2,2. This quadratic equation has the form f2x
2 + f1x+ f0 = 0 with

f2 = r(r(µ− λ) + γ2µ
2
2)P1,2,

f1 = γ22µ1µ
2
2 + γ2r

(
γ1(µ2 + λ2)(µ1 − λ1)P1,2 + γ2µ1(µ2 − λ2)− γ2λ22P1,2

)
,

f0 = −γ32λ22µ1.

As f2 > 0 and f0 < 0, for r > 0, this quadratic equation has a unique positive root denoted as

ξpos =

√
f21 − 4f2f0 − f1

2f2
. (34)

Note that this implies that we can therefore have at most one positive fixed point.

Lemma 1. Let ρ < 1, f(x) = f2x
2 + f1x + f0 and rc as defined in (18). If rc > 0, we have

f(γ2) = 0 for r = rc, f(γ2) > 0 for r > rc, and f(γ2) < 0 for r ∈ (0, rc). If rc ≤ 0, then f(γ2) > 0

for r > 0.

Proof. The result follows from verifying that f(γ2) can be written as

f(γ2) = γ22(λ2 + µ2 + r)(γ2µ1(µ2 − λ2) + r(µ− λ)P1,2).
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Lemma 2. Let ρ < 1. If ρ2 > 1, then ξpos = γ2 for r = rc, ξpos ∈ (0, γ2) for r > rc, and ξpos > γ2

for r < rc. If ρ2 < 1, then ξpos ∈ (0, γ2) for r > 0.

Proof. The fact that ξpos = γ2 for r = rc is immediate from the previous lemma. To prove the

remaining two cases, for ρ2 > 1, we define the Sturm chain p0(x) = f(x), p1(x) = f ′(x) = 2f2x+f1

and p2(x) = p1(x)q0(x)−p0(x) = f21 /(4f2)−f0 where q0(x) is the quotient of the polynomial long

division of p0(x) by p1(x). Let σ(x) be the number of sign changes in the sequence p0(x), p1(x),

p2(x). Then, by Sturm’s theorem the number of distinct zeros in (a, b] for a < b real is given by

σ(a)− σ(b).

Clearly, σ(0) = 1 as p0(0) = f0 < 0 and p2(0) = f21 /(2f2) − f0 > 0. Further, σ(+∞) = 0

as limx→+∞ p0(x), p1(x) and p2(x) is positive. Note, this confirms that we have exactly one

positive real root. By the previous lemma we find that when r ∈ (0, rc), p0(γ2) < 0 and p2(0) =

f21 /(2f2) − f0 > 0, meaning σ(γ2) = 1. Therefore the unique positive real root ξpos is larger

than γ2 by Sturm’s theorem. When r > rc the previous lemma shows that p0(γ2) > 0 and

p2(0) = f21 /(2f2) − f0 > 0, meaning σ(γ2) = 0 (as it cannot be equal to 2) and the unique root

lies in (0, γ2). The argument for ρ2 < 1 is similar.

Theorem 3. When P2,2 = 1 and ρ1 ≤ ρ2 the set of r values for which (1)-(2) has a unique

positive fixed point is given by

Ω(λ1,λ2,µ1,µ2,γ1,P ) =

{
r

∣∣∣∣r > rc =
µ1µ2(ρ2 − 1)

µ− λ
γ2

1− P1,1

}
.

Proof. Assume r ≤ rc > 0, then by Lemma 2 we have x2,2 > γ2 and by (29) we find that π2,0 ≤ 0.

Hence, a positive fixed point does not exist when r ≤ rc. For r > rc > 0, Lemma 2 and (29) imply

that both x2,2 and π2,0 are positive. Further, (32) shows that 0 < π1,0 < γ1(1− ρ1) when ρ1 < 1.

The fact that x1,2 is positive therefore follows from (33). The argument for rc ≤ 0 is similar.

5.2 Push

In this section we present explicit results for the push strategy with P1,1 = 1. In this particular

case the fixed point equations for η̂k and σ̂k become:

η̂1 = r̂(x̂1,2 + x̂2,2P2,1)/γ1,

η̂2 = r̂x̂2,2P2,2/γ2,

σ̂1 = r̂π̂1,0/γ1,

σ̂2 = r̂(π̂1,0P2,1/γ1 + π̂2,0P2,2/γ2).

11



As these equations resemble (25-28) we can use a similar approach as for the pull strategy to

establish:

π̂2,0 =
γ2µ2(γ2 − x̂2,2)

γ2(λ2 + µ2) + P2,2r̂x̂2,2
,

π̂1,0 =
γ21(µ1 − λ1)

γ1µ1 + r̂x̂2,2P2,1
,

x̂1,2 =
λ1(γ1 − π̂1,0)γ1
γ1µ1 + r̂π̂1,0

.

While x̂2,2 is now the solution of the quadratic equation f̂(x) = f̂2x
2 + f̂1x+ f̂0 = 0 with

f̂2 = r̂(r̂(µ− λ)P2,2 + γ2µ
2
2)P2,1,

f̂1 = γ1γ2µ1µ
2
2 + γ2r̂(γ1(µ2 + λ2)(µ1 − λ1)P2,1 + γ1µ1(µ2 − λ2)P2,2 − γ2λ22P2,1),

f̂0 = −γ1γ22λ22µ1.

that has a unique positive root denoted as

ξ̂pos =

√
f̂21 − 4f̂2f̂0 − f̂1

2f̂2
. (35)

In this case one can verify that

f̂(γ2) = γ22(λ2 + µ2 + r̂P2,2)(γ1µ1(µ2 − λ2) + r̂(µ− λ)P2,1),

which allows us to prove the following result in a manner similar to Theorem 3

Theorem 4. When P1,1 = 1 and ρ1 ≤ ρ2 the set of r values for which (3)-(4) has a unique

positive fixed point is given by

Ω̂(λ1,λ2,µ1,µ2,γ1,P ) =

{
r̂

∣∣∣∣r̂ > r̂c =
µ1µ2(ρ2 − 1)

µ− λ
γ1

1− P2,2

}
.

6 Performance measures

In order to compute the main performance measures using the mean field model we first compute

a fixed point of the set of ODEs. For some specific cases (see Section 5) we have an explicit

expression for the unique fixed point. However, in general we rely on an iterative procedure,

which is presented in Algorithm 1 for the pull strategy. Numerical experiments on thousands of

randomly generated input parameters suggest that this iterative method converges to a positive

fixed point if the condition on r in Theorem 1 (or 2) is met and the convergence is monotone.
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Input: r, γ1, γ2, µ1, µ2, λ1 and λ2
Output: πk,0 and xk,2, for k = 1, 2

1 for k = 1 to 2 do

2 πk,0 = γk; π
(old)
k,0 = 1; xk,2 = 0;

3 end

4 while
∑
k |πk,0 − π

(old)
k,0 | > 10−14 do

5 for k = 1 to 2 do

6 π
(old)
k,0 = πk,0;

7 ηk = r
∑2
k′=1

xk′,2
γk′

Pk,k′ ;

8 σk = r
γk

∑2
k′=1 πk,0Pk′,k;

9 end
10 for k = 1 to 2 do

11 πk,0 = γk/(1 + λk+νk
µk(1−λk/(µk+σk))

);

12 xk,2 = πk,0λk(λk + νk)/(µk(µk + σk − λk));

13 end

14 end
Algorithm 1: Computes πk,0 and xk,2, for k = 1, 2, for pull strategy

The iterative procedure determines πk,0 and xk,2, for k = 1, 2, from which all the remaining

entries of x follow due to (11) and the mean type k queue length is given by

E[Qk] =
(λk + ηk)(µk + σk)2

(µk + σk − λk)((µk + ηk)(µk + σk) + λkσk)
, (36)

while the mean response time is found via Little’s formula. For the special cases discussed in

Section 5 we can obtain explicit expressions for the mean type 1 and type 2 queue length. We

only present the expressions for the type 1 queue length as the expressions for the type 2 queue

length we obtained appear to be far less elegant.

Theorem 5. For the pull strategy with P2,2 = 1 and ρ1 < 1 we have

E[Q1] =
1

(1− ρ1)

(γ2λ1 + s)

(γ2µ1 + s)

(γ2µ1 + γ2(1− ρ1)rP1,1 + s)

(γ2µ1 + γ2rP1,1 + s)
≤ 1

1− ρ1
,

where s = rξposP1,2 and ξpos is given by (34). For the push strategy with P1,1 = 1 and ρ1 < 1 we

have

E[Q̂1] =
1

(1− ρ1)

(γ1λ1 + ŝ)

(γ1µ1 + ŝ)

(γ1µ1 + γ1(1− ρ1)r̂ + ŝ)

(γ1µ1 + γ1r̂ + ŝ)
≤ 1

1− ρ1
,

where ŝ = r̂ξ̂posP2,1 and ξ̂pos is given by (35).

Proof. The result can be obtained from (36) after plugging in the explicit expressions obtained in

the previous Section.

There are a few things we can remark with respect to the expression for E[Q̂1] (or E[Q1]) in

the above theorem. First, if P2,1 = 0 (or P1,2 = 0 for the pull strategy), the mean queue length
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becomes ρ1/(1−ρ1)·(µ1+(1−ρ1)r̂)/(µ1+r̂) which coincides with the expression of the mean queue

length in a homogeneous system [10], which was identical for both strategies. Second, even if the

type 2 queues are heavily overloaded and probe at a high rate, E[Q̂1] is bounded by 1/(1 − ρ1).

This can be understood by noting that (i) 1/(1 − ρ1) is equal to the mean queue length of an

M/M/1 queue with load ρ1 plus 1, (ii) at any point in time there is at most one type 2 job in any

type 1 queue and (iii) due to the exponential service times the type 1 queue length distribution is

the same as in a system where the type 1 jobs always get preemptive priority over the type 2 jobs.

At this point we should emphasize that the iterative procedure takes r or r̂ as an input pa-

rameter, meaning we can compute the mean response time for a given r or r̂. Sometimes we are

however interested in the mean response time given R, which is the mean number of probes that

a server is allowed to transmit per time unit. To determine the r or r̂ that matches a predefined

R we can make use of the following equations:

Rpull = r(π1,0 + π2,0), (37)

Rpush = r̂(x̂1,2 + x̂2,2), (38)

as under the pull strategy empty servers probe, while under the push strategy servers with at least

2 jobs probe. To determine the proper r or r̂ value we use a bisection algorithm until the computed

R matches the predefined R. We note that, as in the homogeneous case [10], arbitrarily large r̂

values can be selected for the push strategies without exceeding R for low loads. We examine such

cases in more detail in Appendix B.

Theorem 1 (or 2) provided a condition on r (or r̂) for the existence of a unique fixed point

(under Conjecture 2) and we may wonder how this condition can be expressed in terms of R using

(37) and (38). For the pull strategy we have π2,0 = 0 in the dominating system, so (22) can be

used to find

Rpull >
γ2(λ2 − µ2)

(1− P1,1)
. (39)

This expression is intuitively clear: if λ2 > µ2 then γ2(λ2 − µ2) represents the mean amount of

work that needs to transferred per time unit, while Rpull(1−P1,1) is the mean number of successful

probes per time unit under the pull strategy (in the dominating system).

For the push strategy we have due to (16) (with hats added in the appropriate places)

Rpush = r̂

(
1− π̂1,0

(
1 +

λ1 + η̂1
µ1

))
,
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Case N1 N2 P1,1 P2,2 λ1 λ2 µ1 µ2 rc r̂c
1 30 15 1/2 2/3 1.5 1.25 2 1 4/3 4
2 50 50 7/8 1/4 0.8 1.1 1 1 8 4/3
3 5 15 1/10 0 0.2 3.2 1 3 10/3 1

Table 1: Parameter settings of the three random cases to validate the accurary of the model for
predicting stability.

in the dominating system as x̂2,2 = γ2. Using (42), we obtain the following condition on Rpush:

Rpush >
γ1γ2µ1P1,1(λ2 − µ2)2 + P2,1γ1(λ2 − µ2)

[
γ1λ

2
1 + γ2(µ2

1 + λ1(λ2 − µ2))
]

P2,1(P2,1µ1 + P1,1(λ2 − µ2))(µ− λ)
.

This condition does not appear to have a simple intuitive explanation, which might be due to the

fact that both the overloaded type 2 and the underloaded type 1 queues probe under the push

strategy.

If we adapt the push strategy such that only the overloaded type 2 queues are allowed to probe

(at rate r̂), one still finds the same condition r̂ > r̂c, but now Rpush becomes r̂γ2 in the dominating

system. Hence, the condition for Rpush becomes

Rpush > γ2(λ2 − µ2)
γ1µ1

(µ− λ)P2,1
,

which can be understood intuitively as RpushP2,1 is the rate at which probes are sent to the type

1 queues and

1− λ1
µ1
− γ2
γ1

(λ2 − µ2)

µ1
=
µ− λ
γ1µ1

,

is the probability that such a probe finds an empty type 1 queue.

7 Mean field model validation

We validate the mean field model with two types of experiments. First, we look at the accuracy

of the model to predict the stability of the system. For this purpose, we consider three randomly

chosen cases such that the critical r value, that is, rc for the push and r̂c for the pull strategy, is a

simple fraction. Table 1 lists the parameter settings of these three cases, where Ni is the number

of type i queues used in the simulation experiment, for i = 1, 2. Note, in each of these cases the

total number of queues N1 + N2 is at most 100, the overall load ρ is below one, but the type 2

queues are overloaded.

For each of these three cases we simulated its corresponding (uniformized) Markov chain for

4 · 109 events for both the pull and push strategy for two choices of r̂ (and r): 1.01r̂c and 0.99r̂c.

We subsequently plotted the evolution of the average type 2 queue length as a function of time.
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Figure 1: Evolution of the average type 2 queue length for the three randomly selected cases
presented in Table 1.

Case γ1 P1,1 P2,2 λ1 λ2 µ1 µ2 r r̂
1 0.5 0.2 0.5 0.5 0.7 1 0.5 1 1.5
2 0.74 0.8 0.7 0.5 0.6 0.8 0.4 2.4 3
3 0.8 0.3 0.3 0.2 0.4 0.8 0.3 0.1 0.25
4 0.2 0.4 0.6 0.3 0.8 0.6 0.75 2.5 1
5 0.5 0.5 0.1 0.3 1.1 1.2 0.7 2 1.5
6 0.74 0.6 0.7 1.1 0.6 1.4 0.7 0.5 0.5
7 0.4 0.5 0.5 0.7 1.1 0.9 1.2 0.3 0.3
8 0.9 0.1 0.5 1 1 1.5 1.3 1 1
9 0.6 0.3 0.4 0.1 0.3 0.11 0.31 0.5 0.5
10 0.26 0.6 0.7 0.4 0.5 1.1 0.8 0.4 0.4

Table 2: Parameter settings of the 10 random cases to validate the accuracy of the mean field
model to predict mean queue lengths.

Figure 1 depicts the evolution of the average type 2 queue length for the push strategy. If the

predicted stability region of the model is accurate the type 2 queue length should stabilize when

r̂ exceeds r̂c and should grow without bound otherwise. Figure 1 confirms that this is the case for

the three randomly selected cases. We also included the mean type 2 queue length as predicted by

the mean field model in case r̂ > r̂c and the simulation results appear to be in agreement with the

mean field model (though it is hard to make any trustworthy statements regarding its accuracy

as the system is almost unstable and therefore extremely long simulation experiments would be

required). Similar findings were obtained in case of the pull strategy.

In order to check the accuracy of the mean field model to predict the mean type 1 and 2 queue

length, we selected 10 arbitrary cases, the parameters of which are listed in Table 2. It is worth
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Pull Push
Case Type N = 50 N = 250 ODE N = 50 N = 250 ODE

1 1 1.3388 1.3361 1.3355 1.2963 1.2928 1.2919
2 17.9042 17.4006 17.2621 25.8720 24.9622 24.7607

2 1 1.1711 1.1561 1.1524 1.0947 1.0805 1.0770
2 3.1136 2.9405 2.8976 7.7400 7.2223 7.0916

3 1 0.3871 0.3870 0.3870 0.3712 0.3710 0.3710
2 4.3457 4.3216 4.3161 14.8403 14.7941 14.7581

4 1 1.4318 1.4104 1.4057 1.5950 1.5840 1.5816
2 77.3862 72.9694 73.1875 93.3942 91.7496 91.2499

5 1 0.7220 0.7202 0.7198 0.7658 0.7644 0.7640
2 80.0848 77.2885 77.1264 9.2329 9.0745 9.0333

6 1 3.1671 3.1562 3.1535 3.0035 2.9923 2.9895
2 2.5015 2.4620 2.4521 3.9858 3.9265 3.9119

7 1 3.0152 3.0012 2.9983 3.1413 3.1262 3.1238
2 8.3764 8.3573 8.3539 8.0452 7.8179 7.8102

8 1 1.9239 1.9216 1.9212 1.7209 1.7169 1.7160
2 0.7637 0.7560 0.7543 2.7056 2.6784 2.6727

9 1 4.4713 4.3696 4.3430 3.6753 3.5627 3.5337
2 7.5042 7.2358 7.1715 8.4652 8.1942 8.1250

10 1 0.5375 0.5357 0.5353 0.5969 0.5949 0.5944
2 1.3209 1.3161 1.3150 1.2306 1.2264 1.2254

Table 3: Average type 1 and 2 queue lengths: simulation vs. mean field model.

noting that the type 2 queues are overloaded in the 5 first cases, but r and r̂ are set such that

the system is stable. We compare the mean queue lengths as predicted by the mean field model

with simulation results for a system consisting of N = 50 and N = 250 queues in Table 3. The

simulation results were obtained based on 5 runs each with a length of 5 ·106 ·(
∑
kNk(r+λk+µk))

events and a warm-up period of 20%.

Looking at Table 3 it is fair to state that the mean field model is quite accurate, that is, the

relative error is always well below 10% for N = 50 queues and below 2% for N = 250 queues. Thus,

the results become more accurate as the number of queues increases from N = 50 to N = 250 and

the mean field model typically provides an underestimation of the mean queue lengths for finite

N . These simulation experiments required several hours to complete, while the mean field model

generated results within seconds.

8 Numerical Examples

In this section we present some numerical results for a system consisting of a set of fast (type

1) and a set of slow (type 2) servers, that is, µ1 ≥ µ2. Without loss of generality we set µ =

γ1µ1 + γ2µ2 = 1, meaning the load ρ = λ and µ2 ≤ 1 ≤ µ1.

We consider 3 pull and push strategies that differ in the manner in which they select the server
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that is probed, that is, they rely on a different P matrix:

1. P1,1 = P2,1 = γ1 (Pull Uniform): Any server can be probed by any other server, with equal

probability.

2. P1,1 = γ1, P2,2 = 1 (Pull Slower): A server is not allowed to probe a faster server: type 1

servers can probe any server (with equal probability), type 2 servers can only probe type 2

servers.

3. P1,2 = P2,2 = 1 (Pull Slow): A server is only allowed to probe a type 2 server (i.e., a slow

server).

4. P1,1 = P2,1 = γ1 (Push Uniform): Same as pull Uniform, but for the push strategy.

5. P1,1 = 1, P2,2 = γ2 (Push Faster): A server is not allowed to probe a slower server.

6. P1,1 = P2,1 = 1 (Push Fast): A server is only allowed to probe type 1 servers (i.e., a fast

server).

It is worth remarking that we can make use of the explicit expressions derived in Section 5 for 4

of the above 6 strategies, the two exceptions being the Pull and Push Uniform strategies.

In a first set of experiments we set λ1 = λ2 = λ. When comparing these six strategies we set r

and r̂ such that the average probe rate matches the predefined Rpull and Rpush. We let ρ ∈ (0, 1)

(as ρ > 1 implies instability for all strategies) and let µ1/µ2 vary between 1 and 3 (where µ1 = µ2

corresponds to the homogeneous case). Note the ratio µ1/µ2 is a measure for the heterogeneity

of the servers in the network. We further note that according to the mean field model all the pull

strategies are stable in this entire range of ρ and µ1/µ2 values when Rpull = 1. For instance, for

the pull slow strategy demands that Rpull exceeds γ2(λ − µ2) which is less than one (see (39)).

The push strategies on the other hand are not stable in this entire range of ρ values.

Figure 2 depicts the (ρ, µ1/µ2) combinations for which each of the 6 strategies outperforms

the other 5. As expected, the pull strategies are superior for large loads. The uniform pull and

push strategies are best when the server speeds are close to each other, while the pull slow and

push fast are best when the server speeds differ a lot (the region where the pull slow is best when

γ1 = 0.5 starts when µ1/µ2 is approximately 3). This can be understood by noting that both

these strategies attempt to move jobs to the faster, less heavily loaded servers only. This figure

also indicates that the load required for the pull strategies to outperform the push strategies is

not very sensitive to the server heterogeneity when λ1 = λ2 (especially for γ1 = 0.5). When
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Figure 3: Mean response time as a function of the load ρ for µ1/µ2 = 2 (left) and as a function of
µ1/µ2 for ρ = 0.7 (right) with R = 1 and γ1 = 0.5. In this case λ1 = λ2 and µ = γ1µ1 + γ2µ2 = 1.

comparing the results for γ1 = 0.5 and γ1 = 0.1, we see that in the latter case both the Pull Slow

and Push Faster strategies outperform the others for a much larger range of (ρ, µ1/µ2). Indeed

when γ1 = 0.1 only 10% of the servers is fast and 90% is slow, as such pushing all the jobs to the

fast servers only is less effective (unless the load is low), while pulling jobs from the slow servers

only does become more attractive if more servers are slow.

Figure 3 gives an impression of the behavior of the mean response times for the 6 strategies

considered when we fix either the ratio µ1/µ2 or the load ρ. The left figure indicates that the

mean response times of the push strategies are initially close to 1 and decrease as a function of

the load. This is the region where the jobs under the push strategies do not require any queueing

(see Appendix B). The decrease in the mean response time is caused by the fact that more jobs
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are executed on the fast servers and is therefore also the most pronounced for the Push Fast

strategy. As for the pull strategies we remark that even though the system is unstable for ρ = 1,

the mean response time remains bounded as the load ρ approaches one (as in the homogeneous

case, see [10]). The figure on the right indicates that whether increasing the server heterogeneity

µ1/µ2 increases the mean response times very much depends on µ1/µ2 and the strategy under

consideration.

In a second set of experiments we used the same setup as in the first, but this time we set

the arrival rates such that all the servers have the same load, that is, λ1/µ1 = ρ = λ2/µ2. This

implies that all of the 6 strategies are stable for ρ < 1. Figure 4 depicts the areas in which each of

the 6 strategies outperforms the other 5 for Rpull = Rpush = 1 for γ1 = 0.5 and 0.1. The regions

for the push strategies are similar in shape as in the first set of experiments (see Figure 2) and

the load at which the pull strategies outperform the push strategies is still not very sensitive with

respect to µ1/µ2.

However, the regions for the pull strategies are now quite different in shape. When γ1 = 0.5

the pull uniform is best for all loads above 0.8 in the range of µ1/µ2 values considered. This is

probably due to the fact that having equal loads makes it less attractive to pull jobs from a subset

of the servers only. Nevertheless, Figure 4 shows that if only a limited fraction of the servers is

fast, i.e., 10%, it is better to pull jobs from the slow servers only, unless the load is close to one.
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9 Conclusion

In this paper we studied a class of rate-based pull and push strategies in a large heterogeneous

setting and proposed a simple formula for the required probe rate to achieve system stability

in case of two types of servers. For some specific cases we also derived explicit expressions for

the unique positive fixed point which can be used to express the mean queue lengths. For the

general case a simple iterative algorithm was introduced to compute a fixed point. We compared

the performance of 6 specific pull and push strategies in the presence of a set of fast and slow

servers and identified the regions where each of these strategies outperforms the others in terms of

the mean response time. Possible subjects for future work include considering more general rate-

based strategies, proving the conjectures used to derive the proposed stability condition, proposing

stability conditions and explicit results in the presence of more than two classes of servers, etc.
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A Proof of Theorem 2

For the push strategy the equation for η̂1 in the dominating system becomes

η̂1 = r̂ (x̂1,2P1,1/γ1 + γ2P2,1/γ1) . (40)

The main thing to note is that η̂1 is still a function of x̂1,2 only, so the same argument used to

prove Theorem 1 can be used to find

x̂1,2 =
γ1λ1 (γ1λ1 + r̂γ2(1− P2,2))

γ1µ2
1 + r̂(γ2µ1(1− P2,2) + γ1(µ1 − λ1)P1,1)

, (41)

and

π̂1,0 =
γ21(µ1 − λ1)

γ1µ1 + r̂γ2(1− P2,2)
. (42)

For the push strategy Conjecture 2 implies that we have a unique positive fixed point if and only

if

λ2 < µ2 + r̂P2,1
π̂1,0
γ1

, (43)

as a type 2 queue probes a type 1 queue at rate r̂P2,1 and this queue is empty with probability

π̂1,0/γ1. Plugging in the expression for π̂1,0 completes the proof.

B Push strategies: no queueing

In this section we look at how large Rpush should be such that the push strategy can make use

of any r value without exceeding Rpush. Note if r̂ can be selected arbitrarily large, jobs no longer

experience any queueing delay and their response time is equal to the processing time (which

depends on the server that executes the job).

Let x̂1,k be the probability that a server of type k is busy at any given moment and assume r̂

is infinitely large. The probability that a server of type k starts probing when a new arrival occurs

is thus x̂k,1. A probe sent from a type k server is successful with probability Pk,1(1 − x̂1,1) +

Pk,2(1 − x̂2,1), meaning on average 1
1−Pk,1x̂1,1−Pk,2x̂2,1

probes are needed until one is successful.

This implies that

Rpush ≥
γ1λ1x̂1,1

1− P1,1x̂1,1 − P1,2x̂2,1
+

γ2λ2x̂2,1
1− P2,1x̂1,1 − P2,2x̂2,1

, (44)

is required to avoid queueing. Next we set up a system of equations to determine the unknowns

x̂1,1 and x̂2,1.
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The rate of type k jobs that are served locally is clearly given by λk(1− x̂k,1), while the rate

of type k′ jobs that are pushed to a type k server, with k, k′ ∈ {1, 2}, can be written as

λk′ x̂k′,1
Pk′,k(1− x̂k,1)

1− Pk′,1x̂1,1 − Pk′,2x̂2,1
.

The equations used to determine the unknowns x̂1,1 and x̂1,2 can now be obtained by noting that

the rate at which the fraction of type k servers are working should match the sum of the rate of

type k jobs that are served locally plus the rate of type k′ jobs served by a type k server that

originated in another server (possibly of the same type):

γkµkx̂k,1 = (1− x̂k,1)

(
γkλk +

2∑
k′=1

γk′λk′ x̂k′,1Pk′,k
1− Pk′,1x̂1,1 − Pk′,2x̂2,1

)
, (45)

for k = 1, 2. Further, as any incoming job needs to be processed somewhere we have

γ1µ1x̂1,1 + γ2µ2x̂2,1 = λ.

We now present some explicit results for x̂1,1 and x̂2,1 in some special case.

Case 1: When P1,1 = P2,1 = 1 the system of equations given by (45) can be solved to find

x̂1,1 = ρ1 +
γ2µ2

γ1µ1
(ρ2 − x̂2,1),

x̂2,1 =
ρ2

1 + ρ2
,

where ρ2 = λ2/µ2. Hence, due to (44) we find

Rpush ≥ γ2λ2ρ2 +
γ1λ1

1− ρ1

(
ρ1 +

γ2λ2ρ2
γ1(µ1 − λ1)(1 + ρ2)− γ2λ2ρ2

)
.

This result implies that as long as γ2λ2ρ2 < γ1(1 + ρ2)(µ1 − λ1) one can set Rpush such that jobs

are never queued. This condition is equivalent to demanding that x̂1,1 is less than 1.

Case 2: When P1,1 = 1 and P2,2 = γ2 the system of equations given by (45) has two solutions

and the solution with x̂2,1 ∈ (0, 1) is given by

x̂1,1 = ρ1 +
γ2µ2

γ1µ1
(ρ2 − x̂2,1),

x̂2,1 =
1 + ρ2 −

√
(1 + ρ2)2 − 4γ2ρ2

2γ2
,

where the expression for x̂1,1 in terms of x̂2,1 is identical to case 1.
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