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Abstract

Traditionally, lot sizing decisions in inventory management trade-off the cost of placing orders

against the cost of holding inventory. However, when these lot sizes are to be produced in

a finite capacity production/inventory system, the lot size has an important impact on the

lead times, which in turn determine inventory levels (and costs). In this paper we study the

lot sizing decision in a production/inventory setting, where lead times are determined by a

queueing model that is linked endogenously to the orders placed by the inventory model.

Assuming a continuous review (s, S) inventory policy, we develop a procedure to obtain

the distribution of lead times and the distribution of inventory levels, when lead times are

endogenously determined by the inventory model. We numerically show that ignoring the

endogeneity of lead times may lead to inappropriate lot sizing decisions and significantly

higher costs. This cost discrepancy is very outspoken if the lot size based on the economic

order quantity deviates significantly from desirable production lot sizes. In these cases, the

endogenous treatment of lead times is of particular importance.

Keywords: Production/inventory system, Lot sizing, Markov chain analysis

1. Introduction

A century ago, Ford Whitman Harris presented the Economic Order Quantity (EOQ)

model as a simple, yet powerful model to determine how many parts to make (or order)

at once, so as to balance the fixed costs per lot against the carrying costs (Harris 1913).

Although various assumptions are underlying the model, the EOQ model proves to be a

robust solution to many lot sizing decisions in practice. To apply the EOQ model, it is

common practice to additionally define a reorder point based on the distribution of demand
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during lead time, so that a fixed order quantity Q (equal to the EOQ) is ordered as soon as

the inventory position reaches the order point r.

Arrow et al. (1951) introduced a slightly modified version of this model, i.e. the (s, S)

inventory policy, in which an order point s and an order-up-to level S are established: no

order is placed until inventories fall to s or below, whereupon an order is placed to restore the

inventory position to the level S. In other words, orders are placed with a lot size which is

always larger than or equal to the value of S−s (in many heuristics, the batching parameter

S − s is set equal to the EOQ), but in this case the order size is stochastic: the more the

inventory level falls below s (which happens, for instance, in case of a large demand size),

the more the order quantity will exceed S − s; we call this the random overshoot. Several

authors showed, in different settings, that an (s, S) policy is optimal when a fixed order

cost is present (Scarf 1960, Iglehart 1963, Veinott 1966, Porteus 1971). Today, the (s, S)

inventory policy is still of main importance to inventory theory and ordering policies and is

incorporated in business software of many companies all over the world (Caplin and Leahy

2010).

The traditional (s, S) inventory literature treats lead times exogenously with respect to

the inventory policy. This means that the lot sizing decision is made in a local inventory

environment, where production lead times are assumed to be exogenous and independent

with respect to the lot size. Treating lead times as exogenous to the inventory model is

justified when both production and inventory are decoupled through a large inventory at

the production; if the owner of the production system guarantees a fixed delivery date; or

if transportation lead times are much longer than production lead times (Benjaafar et al.

2005). In these environments, the inventory policy does not have a (significant) impact on

lead times. For some recent examples of inventory systems with exogenous lead times, we

refer to Glock (2012a) and Hoque (2013).

However, these assumptions do not hold in integrated production/inventory systems.

In a production environment, there is a relationship between lot sizes and the lead times.

Karmarkar (1987) shows that very small lot sizes may cause an increase in traffic intensity at

the production if there is a setup time per batch, resulting in lengthy queues and long waiting

times. At the other extreme, if lot sizes are very large, lead times approach an increasing

function of the lot size. Therefore, in such a system, we need to take the dependency

between lot sizes and lead times into account to determine the optimal lot size and reorder

point parameters.

In this paper, we examine the lot sizing decision in a production/inventory environment,

in which the order quantities generated by the inventory model determine the production lot

sizes, and thus the (production) lead times. These lead times in turn effect the parameters
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of the inventory model. We show that the inclusion of endogenous lead times (as opposed

to assuming that lead times are exogenous) leads to different lot sizing decisions. Ignoring

the endogeneity in lead times may lead to incorrect lot sizing decisions and, as a result, to

higher costs.

2. Model assumptions and notations

We consider a continuous time, single item production/inventory system. We assume

customer demand arrives according to a compound Poisson process with a general and finite

distribution of discrete demand sizes per customer. Inventory is managed using a continuous

review (s, S) policy to exploit the economies of scale when ordering. A finite-capacity pro-

duction system produces these orders on a make-to-order basis. Under a continuous review

(s, S) policy, the order arrival process at the production queue consists of a combination of

batch order quantities, which are stochastic (due to the stochastic overshoot) and also the

time between orders is stochastic, where the order quantities and time between orders can

be correlated.

One processor sequentially produces individual units on a first-come-first-served basis.

We assume that each order requires a phase-type distributed setup time and the time to

produce each single unit of the order is also random and phase-type distributed. We make

use of the phase-type distribution, since its Markovian nature allows for an exact queueing

analysis and the class of phase-type distributions is dense in the set of all positive-valued

distributions, meaning any positive-valued distribution can be approximated arbitrarily close

by a phase-type distribution (Latouche and Ramaswami 1987).

When the entire order is produced, it replenishes the inventory (there is no delivery until

the ordered batch is completed). The time between the moment an order is placed (by the

(s, S) policy), and the moment it is received in inventory (after setup and production time),

is the replenishment lead time. This replenishment lead time thus consists of a waiting time

in queue (if the system is busy), a setup time and a production time. In other words, this

lead time is stochastic and depends on the way orders are placed and its production process.

The goal is to derive the parameters of the (s, S) inventory policy which minimize the

expected total cost. We assume a fixed cost per order placed and a holding (resp. shortage)

cost per unit in inventory (resp. short) per unit of time.

To determine the (s, S) parameters that minimize the total cost in this production/inventory

setting, we take into account the impact of the lot size (S − s) on the lead times, as this

will influence the inventory levels and thus the corresponding inventory costs. To do so, we

derive the lead time distribution which results from a given set of (s, S) parameters. This is

the topic of Section 4. The analysis of the steady state distribution of inventory levels (at a
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random point in time), given a set of (s, S) parameters and assuming endogenous lead times

is discussed in Section 5. This analysis allows us to evaluate the expected total (inventory

and ordering) cost of our (s, S) controlled production/inventory model and to determine the

optimal (s, S) parameters that minimize this total cost function. In Section 6, we numerically

illustrate the performance of our integrated approach, and compare it with the traditional

local inventory approach, where lead times are assumed to be exogenous.

Throughout this paper we will adopt the following notations:

• The compound Poisson demand has arrival rate λ, and demand sizes are independent

and identically distributed and follow a general discrete distribution with maximum

demand size m. We use di to denote the probability of a demand of size i, with di = 0

for i > m.

• Inventory is controlled by a continuous review (s, S) inventory policy (consequently

orders can be placed at any time); in case of a stockout, unmet demand is backlogged.

Order quantities vary between S − s and S − s + m − 1, depending on the observed

customer demand prior to the moment the order was placed (which determines the

overshoot).

• The probability distribution of inventory levels is defined by the probability of having

S − i units on hand, which we denote as φi with i ∈ {0, 1, . . .}.

• The time needed to produce a single unit has an order np phase-type representation

with parameters (γp, Up), and the setup time has an order ns phase-type representa-

tion (γs, Us). Hence, the density function of the production and setup time is given

by γp exp(Upx)(−Upenp) and γs exp(Usx)(−Usens), respectively, where en is a column

vector of size n with all its entries equal to one.

• The workload of production (without setup times) equals

ρwork = λ
(
γp(−Up)−1enp

) m∑
i=1

idi, (1)

with λ the arrival rate of customers,
∑m

i=1 idi the expected demand size per customer,

and
(
γp(−Up)−1enp

)
the expected time to produce one unit. Based on ρwork, we define

the overall load/utilization as

ρ = ρwork + (γs(−Us)−1ens)/µot, (2)
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with (γs(−Us)−1ens) the average setup time and µot the average time between two

orders.

• We define qk,n as the joint probability that the current order in production is of size

k and n demand arrivals (with random demand size) have occurred since the order

in production (of size k) was placed. This joint probability is needed to calculate the

inventory levels.

• A fixed ordering cost K, a penalty cost p per unit backlog per time unit and a hold-

ing cost h per unit in inventory per time unit are taken into account. The variable

procurement cost will not be included in the cost function, as it will not influence the

policy parameters (eventually all demand is met). The cost function for a given set of

(s, S) parameters is then defined as:

C(s, S) =
K

µot
+ h [Φ]+ + p [Φ]− . (3)

The first term (K/µot) refers to the expected total ordering cost in a time unit, which is

expressed by means of the renewal reward theorem, with µot the average time between

orders (which we will define in Section 4.2). The expected holding and penalty cost

per time unit are based on [Φ]+, which refers to the expected number of units on hand

per time unit, and [Φ]−, which denotes the expected number of units backlogged per

time unit (see Section 5). It is worth noting that the above definition of the cost

function C(s, S) coincides with the cost function obtained by directly applying the

renewal reward theorem on all three components that contribute to the cost:

C(s, S) =
K + E[inventory cost per cycle] + E[penalty cost per cycle]

µot
. (4)

3. Literature review

There are generally two streams of literature on production/inventory systems, where the

interaction between the inventory policy and the production system is taken explicitly into

account. On the one hand, production/inventory models exist where inventory is managed

using a base-stock policy and lead times are determined by a queueing model. On the other

hand, production/inventory models exist where the lead time varies with the lot size without

making use of a queueing analysis.

Jemäı and Karaesmen (2005) study a single-item make-to-stock production/inventory

system, where inventory is managed by a continuous review base-stock policy. The produc-

tion system produces as soon as the inventory level gets under the base-stock level and stops
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whenever the inventory level reaches the base-stock level. The arrival process of demand is

assumed to be a general renewal process with single units demands, and production times

are exponentially distributed. This results in a GI/M/1 make-to-stock queue.

Benjaafar et al. (2004) extend to a multi-item make-to-stock production/inventory sys-

tem, controlled by a continuous review base-stock policy. Demand arrives in single units

according to a renewal process and unit production times and setup times are i.i.d. generally

distributed random variables. In this paper, the effect of product variety on inventory costs

is examined, given that the production facility undergoes a setup time when it switches

between different product types. Because of this setup time, replenishment orders are pro-

cessed in batches. Therefore they are accumulated until the number of orders reaches the

batch size. The system forms a GI/G/1 queue.

Benjaafar et al. (2005) study inventory pooling in a make-to-stock production/inventory

system. Inventory is managed using a continuous review base-stock policy, and the produc-

tion system is an M/M/1 queue. Extensions to a GI/M/1 queue and an M/G/1 queue are

analyzed to study the impact of demand and process variability on the value of pooling.

Boute et al. (2007b) study a production/inventory model with a general demand size

distribution, and lead times endogenously determined by a periodic review base-stock policy.

In this setting, highly variable demand sizes increase the variability of the order process at

the production queue, resulting in long lead times. They show that ignoring the impact of

endogenous lead times results in a significant underestimation of the required safety stock

and therefore leads to lower fill rates. In Boute et al. (2007a), the impact of order smoothing

on lead times is studied; they show that safety stocks can be reduced when orders were

smoothed.

Another group of literature focuses on continuous review (r,Q) inventory policies and

their impact on lead times. One of the first models to study the impact of order quantities

on lead times and, subsequently, on safety stock requirements is due to Kim and Benton

(1995). Assuming a normally distributed demand, they study a continuous review (r,Q)

inventory policy, with fixed order quantities Q and a production lead time which varies

linearly with the fixed order quantity. Waiting times in queue are assumed to account for

a fixed portion of the lead time. Kim and Benton (1995) develop an iterative algorithm

based on an adjusted economic order quantity to find the near-optimal order quantity Q and

safety stock. The authors indicate that significant savings can be realized if one takes the

interrelationship between the order quantity Q and the lead time into account. Some years

later, a correction to the adjusted economic order quantity was made by Hariga (1999). Glock

(2012b) also studies a continuous review (r,Q) inventory policy with lot size-dependent lead

times. He extends the work of Kim and Benton (1995) and Hariga (1999) by considering the
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impact of different lead time reduction strategies on total expected costs.

Whereas Kim and Benton (1995) assume the production time per unit to be constant,

Cakanyildirim et al. (2000) assume a random production time per unit (T ). Just like Kim

and Benton (1995), they study the impact of lead times in a continuous review (r,Q) policy,

when lead times are contingent on the fixed order quantity Q. The possibility of economies

of scale and/or learning effects is taken into account through a parameter θ, by setting the

processing time of Q units equal to QθT . Again, waiting times are assumed to be part of

the portion of the lead time which is independent of the order quantity.

Ben-Daya and Hariga (2004) consider a continuous review (r, nQ) policy, where order

quantities can be a multiple of Q, but shipments are of size Q. Lead times per shipment are

proportional to the lot size Q in addition to a fixed delay which is due to waiting times and

transportation. They assume that a new order can be placed only after receiving the nth

shipment of the previous order and that the inventory level did not cross the reorder point at

the time of receiving every shipment. Demand during lead time is assumed to be normally

distributed. An iterative solution procedure is suggested to find approximate solutions.

In contrast to Kim and Benton (1995) and Hariga (1999) (who assume a normally dis-

tributed demand), Al-Harkan and Hariga (2007) assume that demand has a general distri-

bution. In this paper, the same relationship between lead time and lot sizes is adopted as in

Kim and Benton (1995). Therefore, also in this paper, the waiting time is a fixed part of the

total lead time and lead times are fixed for a given order quantity Q. The authors provide

a solution method based on a combination of simulation and a search procedure.

Our paper contributes to the existing literature, since we analyze the relationship between

lot sizes and lead times, but we relax the assumption that waiting times are a fixed part of the

total lead time. Instead we determine waiting times endogenously by means of a queueing

analysis. This explicitly takes the characteristics of the production system into account. We

consider a continuous review (s, S) policy and we develop a methodology to determine the

parameters in an (s, S) inventory policy that minimize expected total costs per time unit,

taking the impact of endogenous production lead times into account. Another distinction to

the existing literature is that in an (s, S) policy, the order quantities are random due to the

random overshoot, which contrasts the (r,Q) policy, where the order quantity is constant.

4. Queueing analysis to determine the lead time distribution

We start by characterizing the distribution of lead times that correspond to a given set

of (s, S) inventory parameters. To do so, we develop a queueing model. The arrival process

of orders at the queue is characterized by stochastic batch sizes and stochastic inter-arrival
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times, and a correlation between order quantities and the time between orders might exist1

(depending on the chosen demand size distribution).

Because of this arrival process, the distribution of lead times is not straightforward and

standard queueing formulas are not available. We therefore develop a four dimensional

Markov process that characterizes this production/inventory system and can be used to

derive the distribution of the time an order spends in the production system (recall that this

time corresponds to a queueing time, a setup time and an effective production time).

4.1. Markov process to characterize the production/inventory system

Define the four dimensional continuous-time Markov process (Yt,Wt, Rt, Zt)t≥0 with:

• Yt the time spent in the system (in queue, setup, and production) of the order currently

in production at time t (Yt ≥ 0),

• Wt the overshoot of the order in production at time t (0 ≤ Wt ≤ m− 1),

• Rt the number of units of the current order that still need to start/complete production

at time t (0 ≤ Rt ≤ S − s+m− 1),

• Zt the current phase of the unit in production (or setup) at time t.

Note, we allow the random variable Rt to attain the value of zero to incorporate the setup

times. More specifically, the Markov process is defined such that the setup is performed after

producing all units of an order. Whether the setup is performed first or last has no impact

on the lead time and inventory level distributions, while it simplifies the description of the

Markov process a little. Thus, when Rt = 0 the range of Zt is {1, . . . , ns}, while for Rt > 0

the range of Zt is {1, . . . , np}. Further, the value of Rt is clearly limited by S − s + Wt for

all t. Nevertheless, we set the range of Rt equal to {0, . . . , S− s+m− 1}. This implies that

some of the states of the process are in fact transient, but this has no impact on the results

as the corresponding steady state probabilities of these transient states will be equal to zero.

It is possible to exclude these transient states at the expense of complicating the description

of the Markov process.

The three dimensional Markov process (Yt, Rt, Zt) is in fact sufficient to derive the distri-

bution of the lead times, but in Section 5, we will use the same Markov process to compute

1To illustrate this possible correlation, assume for instance that S− s = 3 and demands arrive every time
unit with a discrete demand size distribution with d2 = 0.5 and d3 = 0.5. In that case there is a positive
correlation between order quantities and time between orders: if the order quantity equals 3, then the time
between orders equals one time unit. If the order quantity is 4 or 5, the time between orders equals two time
units.
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the probability distribution of the inventory levels, for which it is helpful to keep track of

the order size (which is determined by Wt) in combination with its time spent in the system

(Yt).

If there is no order in production, Yt, Wt, Rt and Zt are all set equal to zero. As long

as an order is being produced, Yt increases linearly over time. At some point in time, a

transition in Zt or Rt can occur, i.e., when resp. the phase of the unit in production changes

(recall that we assume a phase-type distribution for the production time per unit and for the

setup time of the order) or when one unit of the order completes production (and the next

unit of the same order starts production). When production of the entire order is completed,

the next order starts production, and the value of Yt decreases to the time that this new

order has spent so far in the system. Indeed, as the orders are produced in sequence of

arrival (FIFO), no crossovers exist and the time spent in queue of the new order will be less

than the lead time of the previous order (and thus a decrease in Yt occurs). The amount of

the decrease is actually equal to the inter-arrival time between this order and the previous

one. If production is completed and the facility is empty (there is no queue of orders), Yt

decreases to zero.

From the Markov process (Yt,Wt, Rt, Zt)t≥0, which observes the production system at

any point in time, we define another Markov process (Xt = Yt, Lt = (Wt, Rt, Zt))t≥0 which

observes the production facility only when there is a unit in production (or in setup). This

new Markov process skips all the time intervals during which Yt, Wt, Rt and Zt are zero

in the original Markov process (Yt,Wt, Rt, Zt). The resulting Markov process is a bivariate

process (Xt, Lt)t≥0, with Xt ≥ 0 and Lt ∈ L = {(w, 0, z)|w = 0, . . . ,m− 1, z = 1, . . . , ns} ∪
{(w, r, z)|w = 0, . . . ,m − 1, r = 1, . . . , S − s + m − 1, z = 1, . . . , np}. Denote l = |L| =

m [(S − s+m− 1)np + ns]. The process (Xt, Lt)t≥0 belongs to the class of Markov processes

with a matrix exponential distribution of order l (Sengupta 1989, 1990), where the class of

matrix exponential distributions extends the class of phase-type distributions.

In this Markov process (Xt, Lt), the time spent in the system Xt increases linearly over

time unless one of the following three events occurs (starting from (x, i), with i ∈ L):

1. The current order remains in service, but the production or setup phase changes or a

unit of the order completes production and, when this is not the last unit of the order

that needs to be produced, the production of the next unit of the same order (or setup)

starts. In that case, a transition to (x, j) occurs; we denote its rate matrix as (A0)i,j

(for i 6= j ∈ L).

2. The entire order is produced and completes its setup (meaning the order will be re-

plenished in inventory). When the inter-arrival time of the subsequent order is at most

u time units, a downward jump in Xt (the time spent in the system) occurs to some
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value in the interval ([x − u, x), j), for 0 < u < x. We denote its rate as Ai,j(u) and

let dAi,j(u) reflect its density function. The matrix A(u), containing the rates Ai,j(u)

of a transition from i to j, takes the correlation between j (which contains the order

size of the new order) and u (the inter-arrival time between this new order and the

previous one) into account. Given that u < x, the next order has spent at least some

time x− u in queue and a jump in the interval [x− u, x) occurs.

3. The entire order is produced and completes its setup and after production of the order,

the queue is empty. In that case a downward jump in Xt to (0, j) occurs and we denote

its rate as
∫∞
u=x

dAi,j(u).
∫∞
u=x

dAi,j(u) defines the rate to jump from state (x, i) to (0, j),

which occurs if the inter-arrival time between the current and the next order is larger

than or equal to the lead time of the current order (which implies that the queue is

empty at the time of production completion of the current order).

We define the (negative) diagonal entries of A0 such that (A0 +
∫∞
u=0

dA(u))el = 0. The

production rate matrix A0 is the transition matrix when the current order remains in service,

and is defined by the sequence of production times of every single unit in the order, and a

setup time once the entire order is completed. Therefore, per unit in the order, we have tran-

sitions in the production phase, characterized by Up when the same unit continues its service,

and upγp, when a unit ends production and the next unit of the batch starts production (with

up = −Upenp denoting the unit completion rate), and for the last unit in production we start

the setup time (characterized by γs and Us). As we additionally want to keep track of the

original order size in A0 (which is required to determine the inventory levels in a later phase),

we use the Kronecker product to multiply these transitions with the (m×m) identity matrix

Im, as we have m possible order sizes (ranging from S − s to S − s + m − 1). This way

we obtain a matrix filled with zeros, except for the m sub-matrices on the diagonal; each

of those m sub-matrices defines the transitions in production and setup of an order with a

specific order quantity. Hence the matrix A0 is defined as an l× l rate matrix, with every of

the m sub-matrices an [(S − s+m− 1)np + ns]× [(S − s+m− 1)np + ns] matrix:

A0 = Im ⊗



Us 0

upγs Up

upγp
. . .
. . . . . .

0 upγp Up


. (5)
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We define η as the rate of production completion of an order:

η = em ⊗ ufin, with ufin =


us

0
...

0

 , (6)

and us = −Usens the completion rate of the setup time. Similar to the production matrix

A0, consisting of m sub-matrices each referring to the production of a specific order quantity,

the l × 1 production completion vector η can also be seen as a superposition of m different

vectors, ufin, which defines the production completion rate for a given order quantity. This

explains the Kronecker product in (6).

The matrix dA(u) is the density function of the matrix A(u), which characterizes an

order completion: it holds the rates to go from one state, just before production completion

of the order, to another state observing the start of production of the subsequent order, with

an inter-arrival time up to u between both orders. The matrix dA(u) is defined as

dA(u) = ηα exp(C0u)C1, (7)

with η the rate of production completion of an order (Eq. (6)); the term α exp(C0u) denotes

the density of the inter-arrival time u (which corresponds to the time between two subsequent

orders); and the matrix C1 defines the transitions to the next order that starts production.

We now describe the time between orders (defined by the vector α and the matrix C0) and

the matrix C1 in the following subsection.

4.2. Characterization of the time between orders

To determine the time between subsequent orders, we characterize an (s, S) inventory

policy by a continuous time Markov chain with the states j ∈ {1, . . . , S − s − 1} referring

to the inventory positions ranging from S to s + 1. We define state j as the modified

inventory position which corresponds to the inventory position S + 1− j. The time between

subsequent orders is equivalent to the time it takes for the Markov chain to decrease from

inventory position S until absorption in the order point s or below. As at the start of a cycle

(when an order is placed), the inventory position is raised to S, the initial vector α of this

Markov chain is defined as [1, 0, . . . , 0].

Define C0 as the (S − s) × (S − s) rate matrix of this Markov chain, which contains

the rates of inventory position changes when no order is placed. A transition from state j
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to state j′ > j occurs when demand depletes inventory (which implies that the inventory

position decreases from S + 1 − j to S + 1 − j′); its rate (C0)j,j′ is defined by the demand

rate λ and the probability dj′−j of observing a demand of size j′− j. As inventory positions

cannot increase, unless an order is placed, the rates below the diagonal of matrix C0 are

zero. Hence,

C0 = λ



−1 d1 . . . . . . dS−s−1

0
. . . . . .

...
...

. . . . . .
...

. . . d1

0 . . . 0 −1


. (8)

With an (s, S) policy, an order is placed after a number of demands have arrived (i.e.,

when the aggregated sum of demand sizes exceeds the value of S − s). Given that demand

follows a compound Poisson distribution, the time between (batch) demand arrivals is expo-

nentially distributed. As the number of batch arrivals prior to order placement is variable,

the time between subsequent orders is characterized by a phase-type distribution. For more

information on phase-type distributions, we refer to the work of Latouche and Ramaswami

(1987). The density of time between subsequent orders is defined by the density function

f(u) = α exp (C0u) (−C0eS−s). The average time between two orders, µot, can then be found

using the average of this phase-type distribution: µot = −α (C0)
−1 eS−s.

The (S − s)× l matrix C1 describes the transition rates of going from inventory position

i ∈ {S, ..., s+ 1} just before an order is placed (with i the S − i+ 1th row of matrix C1), to

state j ∈ L when production of an order starts (the jth column of matrix C1). It is defined

as

C1 =
m∑
k=1

λ



0
...

0

dm
...

dk


vk−1, (9)

where λ refers to the arrival rate of demand (triggering the order), the demand size distri-

bution di determines the different order quantity probabilities (and the overshoot Wt), and

the vector vk−1 of length l defines the phase in which the first unit in production starts and

corresponds to the first unit which is going to be produced of an order with size S−s+k−1

12



with 1 ≤ k ≤ m. As vk−1 refers to one unit of a specific order quantity (i.e., the first unit

of an order of size S − s + k − 1), all its entries are equal to zero, except for the np entries

{(k − 1) l/m+ ns + (S − s+ k − 2)np + 1, . . . , (k − 1) l/m+ ns + (S − s+ k − 1)np}, which

equal the initial vector γp, as those entries correspond to the states of the first unit of the

order quantity S − s+ k − 1. (Observe that the zero-entries correspond to the states of the

remaining (S−s+k−2) units of this order that need to be produced (and its np phases), the

ns phases of the setup time, and the states of the order sizes, different from S − s+ k − 1.)

The vector vk−1 ensures that a transition occurs to the right sub-matrix of the production

matrix A0, i.e., the sub-matrix that corresponds to the size of the order placed. For example,

the transition probabilities in production of an order with size S − s + 1 is found in the

second sub-matrix of the production matrix A0 (the first sub-matrix refers to orders of size

S − s, whereas the last sub-matrix refers to orders of size S − s + m − 1). Thus, the first

(S − s+m− 1)np + ns entries of the vector v1 (referring to orders of size S − s) are zero;

the subsequent ns entries of v1 are also zero, as they refer to the setup time of the order; the

following (S − s)np entries are as well zero, as they refer to the S − s remaining units that

need to be produced; the subsequent np entries are non-zero and contain the probability

in which phase the first unit in production starts (which is given by γp). The remaining

(m− 2) ((S − s+m− 1)np + ns) entries of vector v1 are zero, as they refer to larger order

quantities ranging from S − s+ 2 to S − s+m− 1.

4.3. Distribution of the time in the system

Due to Sengupta (1989), the length l vector δ(x) (for x ≥ 0) holding the steady-state

density of the states {(x, i)|i ∈ L} for any time spent in the production system x ≥ 0 exists

if and only if ρ < 1 and can be written as

δ(x) = δ(0)exp(Tx), (10)

where the l × l matrix T is the smallest non-negative solution to

T = A0 +

∫ ∞
x=0

exp(Tx)dA(x), (11)

and the initial vector δ(0) = τ(−T ), with τ the unique invariant vector of A = A0 +∫∞
u=0

dA(u), i.e., τA = 0 and τel = 1. From (10), the steady state densities for the lead time

π(x) can then be derived as

π(x) =
δ(x)η∫∞

y=0
δ(y)ηdy

=
τ(−T )exp(Tx)η

τη
, (12)
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and the cumulative distribution function Π(x) of the lead time is given by

Π(x) =

∫ x
y=0

δ(y)ηdy∫∞
y=0

δ(y)ηdy
= 1− τeTxη

τη
. (13)

We could, in principle, compute T iteratively using Eq. (11) by setting T0 = 0 and

Tn+1 = A0 +

∫ ∞
x=0

exp(Tnx)dA(x), (14)

in order to obtain the distribution of the time in the system δ(x) and the lead time distribu-

tion π(x). However this method to compute T results in linear convergence only, making it

impractical for high loads. To obtain an algorithm with quadratic convergence, we construct

a fluid queue (Latouche 2006) as follows. As long as an order is in production, the time spent

in the system (Xt) increases linearly; as soon as production completion of this order has oc-

curred, the time spent in the system decreases either to zero (if the queue is empty at the

time of production completion of the current order) or to the time spent waiting in queue of

the subsequent order (if the queue is non-empty at the time of production completion of the

current order, the decrease in the time spent in the system is then equal to the inter-arrival

time between the current and the next order). In order to obtain a fluid queue, we define

Xt as the fluid and replace these (instant) decreases by intervals of the appropriate length

during which the fluid decreases linearly (i.e., to zero for empty queues or to the waiting time

for non-empty queues). This way, we obtain a fluid queue with l phases in which the fluid

increases (our original l states, as units of the same order are produced) and (S − s) phases

in which the fluid decreases (the time between orders placed corresponds to the decrease in

inventory positions from S to s+ 1).

Let F++ hold the transition rates at which the phase changes while the fluid increases

(i.e., production of the order continues, therefore time spent in the system increases linearly),

F+− the rates when the fluid changes from an increase to a decrease (i.e., upon production

completion of the order), F−+ the rates when the fluid changes from a decrease to an increase

(a new order starts production) and F−− the rates when the fluid continues to decrease (i.e.,

when demands deplete inventory, but the order point s is not yet reached, so the time

between orders increases). Then, F++ = A0, F−− = C0, F−+ = C1 and

F+− = ηα. (15)

14



The matrix F defined as

F =

[
F++ F+−

F−+ F−−

]
, (16)

is the (S − s+ l)× (S − s+ l) rate matrix of the underlying continuous-time Markov chain

of the fluid queue.

If we take the expression for the steady state of a fluid queue (Latouche 2006) and

observe the queue only when the level increases, one finds that its steady state δ(x) has

a matrix exponential form δ(x) = δ(0) exp(Tx), with T = F++ + ΨF−+ where Ψ is the

minimal nonnegative solution to an algebraic Riccati equation (Latouche 2006). Thus, to

compute T , it suffices to determine Ψ and this can be done in a very efficient way as we

employ the Structure-preserving Doubling Algorithm (SDA), which is discussed in Appendix

A. Finally, to compute τ , the invariant vector of A, we note that A can be expressed as

A = A0 + F+−(−C0)
−1C1.

5. The probability distribution of inventory levels at a random point in time

The Markov process defined in Section 4 enables us to compute the distribution of the

inventory levels at an arbitrary point in time, which is needed to determine the expected

inventory holding and shortage costs. We denote φi as the probability of having S − i units

on hand, where i ≥ 0. We make a distinction between two different situations: either the

production is busy, or it is idle.

In case the production is busy and the current order in production is of size k (with

k ∈ {S − s, ..., S − s + m− 1}), we know that the current inventory level is at most S − k.

More specifically, the inventory level equals exactly S − k in case no demand has occurred

since this order of size k was placed; if one customer would have arrived with a demand

size of k1 units, then the current inventory level would be depleted to S − k − k1. In other

words, to determine the current inventory level when production is busy, we need to know

the size of the order in production and the total number of units demanded since the order

in production was placed (i.e., the demand during the time that the order has so far spent

in the production system).

We start by computing the joint probabilities qk,n that the current order in production

is of size k (with k ranging from S − s to S − s + m − 1) and n Poisson demand arrivals

have occurred since this order was placed, given that production is busy. The time spent

in the production system is calculated based on the matrix exponential form of the steady

state of (Xt, Lt)t≥0, established in (10), and the probability of n demands arriving during

this period x is given by (λx)n

n!
exp(−λx). Then, the vector qn = (qS−s,n, . . . , qS−s+m−1,n) can
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be expressed as:

qn = δ(0)

∫ ∞
x=0

exp(Tx)
(λx)n

n!
exp(−λx)dx(Im ⊗ el/m)

= δ(0)λn(λIl − T )−(n+1)(Im ⊗ el/m). (17)

The Kronecker product Im ⊗ el/m ensures that all entries which relate to the same order

quantity are summed. For example, the first (S − s+m− 1)np + ns entries of the 1 × l

vector are summed: the sum of them refers to the probability of having n demands during

the time that the order currently in production has so far spent in the system and the current

order quantity equals S − s. The Kronecker product also sums the second up to the mth

group of (S − s+m− 1)np + ns entries, such that qn is a 1 ×m vector with an entry for

the joint probabilities of n demands and all m possible order quantities.

Given the joint probability qk,n we can compute the probability φi that the number of

units on hand equals S − i, for i ≥ 0, at an arbitrary point in time as follows. When the

server is busy (with probability ρ), we determine φi using qk,n, and additionally take the

demand size into account for each of the n Poisson demand arrivals (which is the n-fold

convolution of the i.i.d. demand size distribution).

When the server is idle (with probability 1 − ρ), we can compute the probabilities of

having S− i units on hand (for i ∈ {0, ..., S− s−1}) as the steady-state vector g of the fluid

queue, given that the amount of fluid is zero. By definition, if the server is empty, the next

order arriving at the production queue does not have to wait in queue and the fluid is zero.

This stochastic vector g can be computed as g(F−− + F−+Ψ) = 0 (Latouche 2006) .

This leads to the probability distribution of the inventory levels: for i ≥ 0,

φi = (1− ρ)gi+1 + ρ
∑

k≤i,n≤i−k

qk,n
∑

k1,...,kn>0
k1+...+kn=i−k

(
n∏
s=1

dks

)
. (18)

From (18), we can derive the expected number of units in stock and the expected number

of units backordered at a random point in time:

[Φ]+ =
S∑
i=0

φi (S − i) , (19)

[Φ]− =
∞∑

i=S+1

φi (i− S) , (20)

which enables us to determine the expected total cost per time unit for a given (s, S) inven-
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tory policy (Eq. 3).

6. Numerical illustration

In this section we show how our methodology can be applied to find the optimal inventory

parameters within the class of continuous review (s, S) policies that minimize the expected

ordering and inventory related costs per time unit. We numerically illustrate the impact of

the inventory parameters on the lead times in a production/inventory setting, which will in

turn affect total inventory costs. More specifically, the lot sizing decision (i.e., the value of

S − s) determines the arrival process of orders at the queue and thus the lead times. The

order point s by itself does not impact this arrival process (and thus lead times), but it does

affect the safety stock and the inventory costs. As we will show, ignoring this endogenous

lead time effect may lead to inappropriate lot sizing decisions and excessive costs.

In our numerical experiment, we assume demand arrives according to a compound Poisson

process with on average 0.2 customer arrivals per hour. Each customer has a random demand

size which is distributed according to a zero-truncated binomial distribution (B ∼ (20, 0.5))

with on average 10 units per customer and a maximum demand size m = 20. The probability

distribution of demand sizes is plotted in Figure 1. We assume that the setup times per order

are exponentially distributed with an average of two hours per order, and production times

per unit are also exponentially distributed with on average 15 minutes per unit. The average

production load ρ depends on the number of orders placed (and thus on the number of

setups), and equals 90% for S − s = 1, and it decreases for larger values of S − s (e.g. for

S − s = 50, ρ = 57%).

In Figures 2 and 3 we show how the average lead time and the lead time variance are

impacted by the value of S − s (note that our procedure computes the entire lead time

distribution, but we only illustrate its first two moments). In Figure 2, we observe two

effects: on the one hand, as lot sizes increase, expected production times increase linearly

as a function of the lot size; on the other hand, reducing S − s causes an increase in the

ordering frequency, which causes an increase in the utilization rate and waiting times at the

production queue, as every order needs to undergo a setup time. Figure 3 shows that the

variance in lead times decreases as S − s increases. (Observe that, for S − s < 4, reducing

S−s only has a marginal impact on lead times, since the probability of demand sizes smaller

than four units is almost zero, and the (s, S) policy acts very similar to an order-up-to policy

for S − s < 4.)

Traditionally, the batching parameter S − s is often set equal to the economic order

quantity. We provide a small example which is based on the following cost assumptions: the

holding cost per unit per hour h = 1, the penalty cost per unit per hour p = 9 and the fixed

17
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Figure 1: Probability distribution of demand sizes
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Figure 2: Expected lead time in function of the batching parameter S − s
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Figure 3: Variance of lead times in function of the batching parameter S − s
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ordering cost K = 10 (this cost example refers to case 1 in Table 1). In this example, the

EOQ equals 6.32. Therefore, we set S − s equal to 6 or 7. The lead time distribution that

corresponds to S − s = 7 is plotted in Figure 4.

lt_eoq.jpg

Figure 4: Probability density function of the lead time distribution

The order point s is set to minimize the expected total inventory cost per hour. When

we treat the lead time distribution of Figure 4 as exogenous (and assuming no crossover in

orders), the distribution of inventory levels (Φ) can be computed from the distribution of

inventory positions (IP ) and demand during lead time (DDLT ) (Zipkin 2000):

Φ = IP −DDLT. (21)

21



For S − s = 7, we find that (s, S) equal to (108, 115) minimizes expected total cost per

hour. From Figures 2 and 3, we can see that for S − s = 6 or 7, the average lead time and

its variance are quite high, which results in high safety stocks and a high order point s.

The economic order quantity makes a trade-off between the fixed ordering cost and the

inventory costs, but does not explicitly take its impact on lead times into account. As one

can see from Figures 2 and 3, increasing the value of S − s could, in this example, decrease

the expected lead time and the variance of lead times, and therefore result in lower inventory

costs. When we use the procedure developed in this paper to include the impact of the lot

sizing decision on lead times and inventory levels, we find that the inventory related costs

can indeed be reduced by increasing the batching parameter S − s (in our example to a

value around 25 to 30). Figure 5 shows the contour plot of the expected inventory related

cost (holding and penalty cost) per hour. It contains the contour lines, which connect the

combinations of inventory parameters where the expected inventory cost has the same value.

When the lines are close together, the magnitude of the gradient is large: a small deviation in

the inventory parameters then causes a steep change in the expected inventory cost. Figure 5

shows that the gradient is particularly large for S − s < 10, which indicates that high costs

are observed for values of S− s < 10, due to the high utilization rate in production for these

small lot sizes, resulting in long and variable lead times and thus high inventory related

costs.

The ordering costs are decreasing in the lot size S − s. Adding the inventory related

costs and the ordering costs, we can then determine the expected total cost per hour for a

given (s, S) policy (Eq. (3)). Based on a search procedure, we find that setting the (s, S)

parameters equal to (36, 62) minimizes the expected total cost per hour. This policy has an

expected total cost of 42.94. Observe that in this case, S− s = 26, which results in a shorter

average lead time and a smaller lead time variance (see Figures 2 and 3), compared to the

lot size based on the EOQ. As lead times are shorter and less variable, the order point s

is considerably lower (36 compared to 108), leading to a major reduction in safety stocks

and inventory costs. The cost difference with the traditional approach based on the EOQ

is significant: if we evaluate the policy (108, 115) in our production/inventory setting, the

resulting expected total cost per hour is 116.88.

We extend our numerical example to different cost scenarios (see Table 1). Table 2

shows the results. The first two columns provide the optimal (s, S) parameters, and their

corresponding total costs, when the endogeneity in lead times is taken into account in finding

the (s, S) parameters that lead to the lowest costs. The third and fourth column provide the

(s, S) parameters, and their corresponding total costs, when S − s is set equal to the EOQ

(rounded to the integer which results in the lowest total costs), and s is set to minimize
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Figure 5: Expected holding cost and penalty cost per hour in function of the order point s and the batching
parameter S − s
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h p K
Case 1 1 9 10
Case 2 1 19 10
Case 3 1 9 50
Case 4 1 19 50

Table 1: Different cost scenarios.

(s, S) Costs (s, S) Costs
Endogenous Endogenous EOQ EOQ

Case 1 (36,62) 42.9430 (108,115) 116.8844
Case 2 (46,74) 53.1630 (143,150) 151.3624
Case 3 (35,63) 45.4753 (41,56) 51.4359
Case 4 (46,76) 55.5563 (54,69) 64.2507

Table 2: (s, S) parameters and corresponding costs when lead times are considered endogenous, versus the
traditional EOQ approach.

expected inventory costs, assuming the lead time distribution that corresponds to the EOQ.

Clearly, setting the inventory parameters based on the EOQ, and ignoring its impact on

lead times, may result in significantly higher expected total costs per hour when the EOQ

is not desirable for the production environment. However, the more the EOQ approaches

the optimal production lot size (see Figures 2 and 3), the smaller its cost difference will be.

For instance, in case 3 and 4, EOQ=15, which results in relatively short and smooth lead

times, and thus the discrepancy between the EOQ approach and the endogenous lead time

approach is smaller than in case 1 and 2.

7. Conclusion

In this paper, we study the lot sizing decision in a production/inventory system with

endogenous lead times. Lot sizes are often set equal to the economic order quantity, in order

to make a trade-off between fixed ordering costs and inventory costs. However, the batching

parameter S − s determines the lead time distribution in production, which in turn impacts

inventory costs. Therefore, when minimizing total (inventory and ordering) costs, setting

S − s equal to the economic order quantity can be far from optimal.

We provide a method based on a Markov chain approach, which allows to compute the

distribution of the time an order spends in the production system (i.e., in queue, in setup

and in production) and the distribution of inventory levels. In a numerical analysis, we show

that ignoring the endogeneity of lead times in a production/inventory system may lead to

inappropriate lot sizing decisions and higher expected total costs. This cost discrepancy is

very outspoken if EOQ values deviate significantly from desirable production lot sizes. In
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these cases, the endogenous treatment of lead times is of particular importance.

Appendix

In order to obtain the minimal non-negative solution Ψ of an algebraic Riccati equation,

we employ the Structure-preserving Doubling Algorithm (SDA) of Guo et al. (2007) outlined

below. First define A = −F++, B = F+−, C = F−+ and D = −F−−. Next, set γ =

max{maxi aii,maxi dii} and let Aγ = A + γI and Dγ = D + γI. Further, let Wγ = Aγ −
BD−1γ C and Vγ = Dγ − CA−1γ B.

Next, the SDA algorithm initializes E0, F0, G0 and H0 as E0 = I − 2γV −1γ , F0 =

I − 2γW−1
γ , G0 = 2γD−1γ CW−1

γ and H0 = 2γW−1
γ BD−1γ . Finally, the iteration

Ek+1 = Ek(I −GkHk)
−1Ek,

Fk+1 = Fk(I −HkGk)
−1Fk,

Gk+1 = Gk + Ek(I −GkHk)
−1GkFk,

Hk+1 = Hk + Fk(I −HkGk)
−1HkEk,

guarantees thatGk converges quadratically2 to Ψ. The iteration is repeated until min(‖Ek‖1, ‖Fk‖1) <
10−15. The computation time of SDA can be further reduced by means of the ADDA algo-

rithm Wang et al. (2011), which uses the same iteration as SDA, but initializes E0, F0, G0

and H0 using two parameters α = maxi aii and β = maxi dii.
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