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Abstract

In this paper we provide a novel approach to characterize the order process of an (s, S)

and an (r, nQ) inventory policy. These inventory policies are commonly used when a fixed

order cost is present. We provide two distinct perspectives. First, we analyze the time

between subsequent replenishments, as well as the size of the replenishment orders, and

characterize the distribution of both. Second, we look at the number of units ordered over an

interval t, and compare it with the demand observed over the same period. Both perspectives

are complementary and provide useful information for the upstream supplier observing this

order process. We are in particular interested in the impact of the batching parameter (Q

or S − s) on the order variance amplification ratio. It is commonly accepted in the supply

chain literature that batching of orders creates a bullwhip effect. Our analysis shows that the

answer is more subtle. For instance, the squared coefficient of variation (scv) of time between

subsequent orders is smaller than or equal to the scv of time between subsequent demand

arrivals for both policies. The order quantities can exhibit either variance amplification

or dampening, compared to the demand quantities, depending on the distribution of the

demand sizes and the value of the batching parameter. The bullwhip ratio, defined as the

variance of the number of units ordered compared to the variance of the number of units

demanded, strongly depends on the time window in which these numbers are observed. Our

methodology is based on the properties of the batch-Markovian arrival process.

Keywords: Inventory policy, Batching, Bullwhip effect, Stochastic processes

1. Introduction

More than sixty years ago, Arrow et al. (1951) introduced the (s, S) inventory policy as

a way to balance the cost of inventory with the cost of placing orders, hence exploiting the
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economies of scale when ordering. In an (s, S) inventory policy, a lower stock point s and an

upper stock point S are established: no order is placed until inventories fall to s or below,

whereupon an order is placed to restore the inventory position to the level S. In other words,

orders are placed with a batch size, always larger than or equal to S − s. The larger the

discrepancy between S and s, the larger the average batch size. In an (s, S) policy, order

sizes are stochastic: the more the inventory level falls below s (which happens, for instance,

in case of a large demand size), the higher the order quantity will exceed S − s; we call this

the overshoot.

In the next decades, several authors showed, in different settings, that an (s, S) policy is

optimal when a fixed order cost is present (Scarf 1960, Iglehart 1963, Veinott 1966, Porteus

1971). Today, the (s, S) inventory policy is still of main importance to inventory theory and

ordering policies and is incorporated in business software of many companies all over the

world (Caplin and Leahy 2010).

When materials flow in fixed batch sizes, such as full truckloads or containers, an (r, nQ)

inventory policy can be adopted, which is comparable, but slightly different to the (s, S)

policy (Federgruen and Zheng 1992, Li and Sridharan 2008). In an (r, nQ) inventory policy,

if the inventory position reaches the order point r, an order is placed equal to the smallest

multiple of Q that raises the inventory position above r.

It is commonly accepted in the supply chain literature that batching of orders creates a

bullwhip effect, indicating that the variability in the order process is larger than the vari-

ability in demand (Burbidge 1961, Lee et al. 1997, Potter and Disney 2006). This distorted

information can lead to serious inefficiencies upstream in the supply chain (Lee et al. 1997).

It is argued that larger batch sizes create more bullwhip (e.g., Burbidge 1961), and hence

batching is to be avoided. However, Potter and Disney (2006) state: “While it is often

advocated that batch sizes should be reduced as much as possible, there has been limited in-

vestigation into the impact of batching on bullwhip. Placing an order of a single item is not

always possible, due to technical, economical or social reasons.” Therefore, it is worthwhile

to gain insight how batch sizes have an impact on the variability of the order process.

In this paper, we characterize the order process that is generated by an (s, S) or by an

(r, nQ) inventory policy. This order process is the demand process observed by the upstream

supplier. We provide two approaches to characterize this order process. In the first approach,

we look at the time between orders and the size of the orders placed and we characterize

the distribution of both. In some settings, this information is of major importance. For

instance, a production facility producing on order, wants to know the mean and variance of

the inter-arrival times between orders and of the size of the orders to be produced. These

parameters determine the arrival rate of orders at the queue and thus the production lead
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times. This separate characterization of time between orders and order quantities is also

found to be useful when, for instance, the upstream supplier decides on the parameters of

his own inventory policy as they are both needed to characterize the intermittent demand

process, that is created by the (s, S) or (r, nQ) policy of his customer.

In the second approach, we look at the total number of units ordered in a time interval t.

This can be useful, for instance, when the upstream supplier reviews its orders on a periodic

basis of interval t and as such aggregates the number of units that are ordered during this

time interval. We characterize the variance of this order process and compare it with the

variance of demand observed in the same period.

We briefly illustrate both approaches for an (s, S) policy. Figure 1 (solid line) illustrates

a simulated compound Poisson demand pattern during 100 periods with on average 0.5

customer arrivals per period and Poisson demand sizes with an average of 8 units. Assume

a continuous review (s, S) policy with S − s = 15 (because of a supposed set-up cost).

Every time a demand occurs, the inventory position is evaluated: if the inventory position

is smaller than or equal to s, an order quantity equal to the difference between S and the

inventory position is placed; if it is larger than the order point s, we do not order. “Not

ordering” at the moment of a demand arrival can be interpreted as “placing an order with

an order quantity equal to zero”, as is illustrated in Figure 1(a). However, this is not how

the upstream supplier observes his orders. From his perspective, “not ordering” merely

increases the time between orders; he does not receive an order with order quantity equal

to zero. Therefore, Figure 1(b), rather than Figure 1(a) reflects how the upstream supplier

looks at the order pattern, which exhibits a lot less fluctuations. As such, the conjecture

of variance amplification (bullwhip), as is always predicted in the literature, does not seem

that straightforward anymore and a closer analysis is needed. In this paper, we characterize

both the distribution of order quantities and of the time between orders.

Insert Figure 1 about here.

In the second approach, we look at the total number of units that is demanded and

ordered during a time interval t (see Figure 2 with the same demand pattern and (s, S)

policy as in Figure 1). In case t = 1, this implies the number of units demanded (resp.

ordered) every period (Figure 2(a)). Clearly, if S − s grows, the variability of the number of

units ordered is likely to increase as the number of zero-orders goes up and the discrepancy

between an order of size zero and an order size of at least S− s units has grown. Depending

on the context, larger values for t might be appropriate. For instance, when the supplier

reviews his inventory every time interval t and thus wants to know how many units were

ordered in this time window. Figure 2(b) illustrates the number of units ordered every time
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interval t = 10. Clearly this has an impact on the observed order process: the longer the

interval t, the lower the probability of observing an interval with zero-orders and the more

aggregation on the number of units ordered. This leads to less fluctuations in the observed

order process. In other words, the choice for t has a great impact on the bullwhip measure.

Insert Figure 2 about here.

The remainder of this paper is organized as follows. In section 2 we review the related

literature. In section 3 we introduce our model and notations. Section 4 is devoted to the

analysis of the order process of an (s, S) and an (r, nQ) inventory policy. In section 5 we

provide some numerical illustrations for uniform, Poisson and bimodal distributed demand

sizes. Section 6 concludes.

2. Literature review

This paper focuses on the order batching effect, which can be induced by an (s, S) or an

(r, nQ) inventory policy. Lee et al. (1997) describe order batching as one of the key causes

of the bullwhip effect. The bullwhip effect, which refers to the increased volatility of orders

compared to the observed demand, has been observed in many supply chains and has a

number of highly undesirable cost implications (Lee et al. 2004). Already in 1961, Burbidge

(1961) recognized order batching as a main cause of the bullwhip effect. Blinder (1981)

showed empirically the existence of the bullwhip effect between wholesalers and retailers and

suggested that the use of (s, S) inventory models by retailers could be a possible explanation

for the increased variability of the order process, compared to the demand process.

The majority of the literature studying the impact of order batching on the bullwhip

effect considers a periodic review (s, S) or (r, nQ) policy. When a periodic review (r, nQ)

policy is in use, Cachon (1999) finds that the coefficient of variation of order quantities in

the review period can be reduced by increasing the review period and by decreasing the

fixed batch size Q. Cachon (1999) assumes that Q is a multiple of the average demand.

Also Li and Sridharan (2008) observe a bullwhip effect in a periodic review (r, nQ) policy:

they show that the variance of order quantities in the review period is larger than or equal

to the variance of demand sizes in the review period. They also show that the variance of

order quantities is non-decreasing when the batch size is increased from Q1 to mQ1 (with m

an integer > 1). Chen and Lee (2012) find that the bullwhip ratio depends on the amount

of batch-ordering, the characteristics of the demand process and the presence of capacity

constraints. When demand is i.i.d. and no capacity constraints exist, batch-ordering results

in a bullwhip effect.
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Potter and Disney (2006) analyze a variation of the periodic review (r, nQ) inventory

policy, where the order is either rounded up or down to the multiple of the fixed batch

size which is closest to the order point r (and thus must not necessarily raise the inventory

position above r). The authors derive a closed form expression for bullwhip when demand

is deterministic.

Schultz (1983) shows that in a periodic review (s, S) inventory policy, the variance of

order quantities placed at the end of a review period is larger than the variance of demand

sizes per review period, and this order variance is increasing in S − s. Based on the result

of Schultz (1983), Schneider et al. (1995) derive an approximation for the variance of order

quantities in a review period for large S − s using renewal theory. Also Kelle and Milne

(1999) use the approximation obtained by Schneider et al. (1995) in order to analyze the

effect of an (s, S) ordering policy using gamma and normal distributed demand.

The literature concerning the order variability in a continuous review (s, S) policy is

scarce. Only Caplin (1985) analyzes the variability of aggregate demand with continuous

review (s, S) inventory policies. Assuming single unit demand, he finds that the variance of

the number of units ordered in an interval t compared to the number of units demanded in

that interval, linearly increases in the batching parameter Q, when the interval t is chosen

such that either Q units are ordered or no order is placed in that time interval. For an

arbitrary interval t, he finds that the variance of the number ordered exceeds the variance of

the number demanded in the same time interval, indicating to a bullwhip effect. In our paper

we confirm and extend Caplin’s results for random batch sizes and general time intervals.

In this paper we use a batch-Markovian arrival process to characterize the order process

of continuous review (s, S) and (r, nQ) policies, assuming a compound Poisson demand

process. We provide two distinct, yet complementary approaches. First, we describe the

orders placed based on the distribution of time between orders, and the distribution of order

quantities separately. Note that this approach is commonly used for slow moving items with

intermittent demand (e.g., Teunter and Duncan 2008). Secondly, we define the total number

of units ordered in a time interval t and characterize the variance of this number in function

of the interval length t.

3. Model description and notations

We assume a single product model with customer demand characterized by a compound

(batch) Poisson process. This means that the time between subsequent demand arrivals is

exponentially distributed with parameter λ and demand sizes are discrete identically dis-

tributed random variables. Our analysis holds for any arbitrary finite demand size distri-

bution with maximum demand size m (in section 5 we provide numerical illustrations for
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a discrete uniform, Poisson and bimodal demand size distribution). We use D to denote

the random demand size variable, di the probability of a demand of size i, µdk the average

demand size and σ2
dk its variance.

Inventory is controlled by an (s, S) or by an (r, nQ) inventory policy. It is assumed that

inventory positions are continuously monitored, and consequently orders can be placed at

any time. In case of a stockout, unmet demand is backlogged. Let O denote the random

order size variable. Then, orders in an (s, S) inventory policy are of size O ∈ {S − s, S −
s + 1, . . . S − s + m − 1}, depending on the observed customer demand prior to the order

was placed (and its overshoot). We denote π(i) as the probability to order size i in an (s, S)

policy, µok the average order size and σ2
ok its variance.

In an (r, nQ) policy, the orders have random size O ∈ {Q, 2Q, . . . dm
Q
eQ}. Denote π̂(i)

as the probability to order size i in an (r, nQ) policy, µ̂ok the average order size and σ̂2
ok its

variance. Note that in case the batching parameter Q exceeds the maximum demand size

m, O = Q. When S − s = 1 or Q = 1, the (s, S) and the (r, nQ) inventory policy reduce to

an order-up-to or base-stock policy. This policy, which is optimal in absence of a fixed order

cost, is also referred to as an (S − 1, S) policy (Nahmias 1997, Zipkin 2000).

For both an (s, S) and (r, nQ) policy, the time between orders placed is stochastic. We

use µot and σ2
ot to denote the average time and variance of the time between orders placed

in an (s, S) policy. Similarly, µ̂ot and σ̂2
ot denote the average time and variance of the time

between orders placed in an (r, nQ) policy.

Finally, define M(t) as the number of demand arrivals received during an interval t, and

MB(t) the number of units that are demanded in interval t. Similarly, define N(t) as the

number of orders placed during an interval t, and NB(t) the number of units that are ordered

in interval t. pk denotes the probability that an order consists of k demands.

We use c2 = µ2

σ2 to denote the squared coefficient of variation in any of the above defined

variables.

4. Order process of a continuous review (s, S) and (r, nQ) policy

We make use of a batch Markovian arrival process (BMAP) to characterize the order

process of (s, S) and (r, nQ) inventory policies. We first describe how the order process can

be characterized by a BMAP process in section 4.1. This approach allows us to look at the

order process from two distinct perspectives. In section 4.2 we look at the replenishment

orders when they are placed, and we analyze the distribution of the time between orders

placed and the distribution of the order sizes. In section 4.3 we look at the number of units

that are placed during a certain time window and compare it with the observed demand

during the same period.
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4.1. The order process as a batch Markovian arrival process

The batch Markovian arrival process (BMAP) is a stochastic point process which allows

for arrivals of batch order quantities, correlated batch sizes, dependent inter-arrival times and

non-exponential inter-arrival time distributions (Lucantoni 1993, Cordeiro and Kharoufeh

2011). The order process of both an (s, S) and an (r, nQ) inventory policy can be modeled

as a BMAP as follows.

An (s, S) inventory policy can be characterized by a continuous time Markov chain with

the states equal to the inventory positions {S, S−1, . . . , s+1}. Define C as its (S−s)×(S−s)
transition probability matrix. A transition from state j to state j

′
< j occurs when demand

depletes inventory, its rate (C)j,j′ is defined by the demand rate λ and the probability dj−j′

of observing a demand of size j − j ′ . As soon as the inventory position reaches the order

point s (or less), an order is placed to raise the inventory position to S. (As replenishments

occur instantly, the time spent in inventory positions equal to or smaller than s is negligible.)

A transition from state j to state S occurs at rate (C)j,S. Define (Ci)j,S as the transition

rate from inventory position j to S while an order of size i is placed, for i ∈ {S − s, S − s+

1, . . . , S − s + m − 1}. Then, Ci contains the rates of inventory position changes that are

accompanied by an order of size i. If an order is placed, the inventory position immediately

raises to the order-up-to level S. Hence, the transition matrix CS−s+k for k ∈ {0, . . . ,m−1},
is given by

CS−s+k = λ


dS−s+k 0 . . . 0

dS−s+k−1 0 . . . 0
...

...
...

d1+k 0 . . . 0

 . (1)

For i ∈ {1, . . . , S − s − 1}, Ci = 0, since the order size is always greater than or equal to

S − s. Let C0 contain the rates of inventory position changes that are not accompanied by

an order,

C0 = λ


d0 − 1 d1 . . . dS−s−1

0
. . . . . .

...
...

. . . d1

0 . . . d0 − 1

 . (2)

The order process of an (s, S) policy is then characterized by its (S − s) × (S − s) in-

finitesimal generator matrix C:

C =
S−s+m−1∑

i=0

Ci. (3)

Remark that the greatest common divisor of the set {S−s}∪{i|di 6= 0} must be non-zero,
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otherwise C is not irreducible. Let θ = [θS, θS−1, . . . , θs+1] be the steady state vector of C,

defining the probability to be in a specific inventory position at a random point in time: θ

is the unique positive solution of θC = 0 and θe = 1, with 0 a 1× (S − s) zero vector and e

a (S − s)× 1 vector of ones.

In a similar way, an (r, nQ) inventory policy can be characterized by a continuous time

Markov chain with the states equal to the inventory positions {r+Q, r+Q−1, . . . , r+1}. In

an (r, nQ) inventory policy, an order is placed as soon as state r or a lower state is reached;

a quantity equal to the smallest multiple of Q is ordered such that the inventory position

raises above the order point r. We denote its Q × Q transition matrix as Ĉ. A transition

from state j to state j
′
< j occurs when a demand depletes inventory; its rate (Ĉ)j,j′ is

equivalent to (C)j,j′ in an (s, S) policy. However, when state r or a lower state is reached,

a replenishment is made up to inventory position j
′

with j
′ ∈ {r + Q, . . . , r + 1}, and not

up to S like in an (s, S) policy. Define the Q × Q matrices Ĉi as the matrices containing

the rates at which orders of size i are placed with i ∈ {Q, 2Q . . . , dm
Q
eQ}. When inventory

position r − k is reached with k ∈ {(n− 1)Q, . . . , nQ− 1} and n ∈ {1, 2, . . .}, one places an

order equal to nQ, such that the inventory position raises to r − k + nQ. Therefore,

ĈnQ = λ


dnQ . . . d(n+1)Q−1

dnQ−1 . . . d(n+1)Q−2
...

. . .
...

d(n−1)Q+1 . . . dnQ

 . (4)

For i ∈ {(n− 1)Q+ 1, . . . , nQ− 1} with n ∈ {1, 2, . . .}, Ĉi = 0, since the order size is always

a multiple of Q. Ĉ0 provides the transition rates at which the inventory position changes

without placing an order, and is similar to (2), where S − s = Q.

The order process of the (r, nQ) inventory policy is characterized by its Q×Q infinitesimal

generator matrix Ĉ:

Ĉ =

dm
Q
eQ∑

i=0

Ĉi. (5)

Note, Ĉ is a circulant matrix with its first row identical to
∑

n≥0(dnQ, dnQ+1, . . . , dnQ+Q−1)−
(1, 0, . . . , 0), which sums to zero. Remark that the greatest common divisor of the set

{Q} ∪ {i|di 6= 0} must be non-zero, otherwise Ĉ is not irreducible.

Let θ̂ be the steady state probabilities of the BMAP at a random point in time. Vector

θ̂ is the unique positive solution of θ̂Ĉ = 0 and θ̂e = 1, with 0 a 1×Q zero vector and e a

Q×1 vector of ones. As Ĉ is circulant with its row and column sums equal to zero, one finds
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that θ̂ =
[
θ̂r+Q, θ̂r+Q−1, . . . , θ̂r+1

]
= 1

Q
[1, . . . , 1], which was also found by Li and Sridharan

(2008).

Based on the characterization as a BMAP, we are now in a position to derive properties

of this order process.

4.2. First approach: Distribution of time between orders and order quantities

In our first approach we characterize the order process of (s, S) and (r, nQ) policies based

on the distribution of time between orders placed and the size of the order quantities placed.

This separate characterization is often used for slow moving items. Also in a production

setting, this detailed information might prove to be useful.

4.2.1. Distribution of the time between orders

Proposition 1. The time between orders placed in an (s, S) policy is phase-type distributed,

characterized by the triple (S − s, C0, α), with C0 an (S − s)× (S − s) substochastic matrix,

defined by (2); and α = [1, 0, . . . , 0].

The average and the variance of time between subsequent orders equal:

µot =
1

λ

S−s−1∑
j=0

bS−j, (6)

σ2
ot =

1

λ2

(2
S−s−1∑
j=0

bS−j

S−s−1−j∑
i=0

bS−i

)
−

(
S−s−1∑
j=0

bS−j

)2
 , (7)

with bS−j =

bS
j∑
i=1

di · bS−j+i for j ≥ 1,

1
1−d0 for j = 0.

(8)

Proof of Proposition 1. In an (s, S) policy the time between two orders placed is equiv-
alent to the time it takes for the Markov chain to move from the order-up-to level S until
absorption in the order point s or below. Since the time between successive transitions in a
continuous time Markov chain is exponentially distributed, the distribution of the time until
absorption to s is the sum of a random number of exponentially distributed time intervals,
and thus follows a phase-type (PH) distribution. The number of phases is equivalent to the
number of inventory positions before placing an order, S − s. As we always order up to S,
the initial vector α = [1, 0, . . . , 0]. C0 contains the transition rates between the transient
states ranging from S to s+ 1 (see (2)).

The expected time spent in each inventory position before placing an order is given by
α (−C0)

−1 (Latouche and Ramaswami 1999), where the matrix (−C0) is an (S − s)×(S − s)
upper triangular Toeplitz matrix. The inverse of (−C0) is again an upper triangular Toeplitz
matrix, defined as
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(−C0)
−1 = 1

λ


bS bS−1 bS−2 · · · bs+1

0 bS bS−1 · · · bs+2

0 0 bS
. . .

...

0 0 0
. . . bS−1

0 0 0
. . . bS

,

with 1
λ
bj the expected time spent in inventory position j for j ∈ {s + 1, . . . , S}. Using

backward substitution, the entries bj of (−C0)
−1 are defined by (8).

Using the definition of the mean and the variance of a phase-type distribution (i.e.,

µ = α
[
(−C0)

−1 e
]

and σ2 = 2αC−20 e −
(
α
[
C−10 e

])2
, with e an (S − s) × 1 unit vector

(Latouche and Ramaswami 1999), we find (6) and (7).

For some simple demand size distributions, we can obtain a closed-form expression for

bS−j. In appendix we provide results when demand sizes are Poisson or uniform distributed.

In case of single unit demands, the time between orders follows an Erlang distribution ∼
Erlang(Q, λ) with µot = Q/λ and σ2

ot = Q/λ2.

From Proposition 1, we see that the average time between two subsequent orders is equal

to the sum of the average time spent in all inventory positions j prior to the order point s,

which are given by 1
λ
bj, with S ≥ j ≥ s+ 1. As all bj are positive and bS ≥ 1 (as bS = 1

1−d0 ),

we find that µot ≥ 1
λ
. Or, in other words, the average time between two orders is larger than

or equal to the average time between two demand arrivals, i.e. µot ≥ µdt.

As we are particularly interested in the order variance amplification, created by an (s, S)

policy, we derive the following corollaries from Proposition 1:

Corollary 1. In an (s, S) policy, the variance of the time between subsequent orders is larger

than or equal to the variance of time between subsequent demand arrivals, i.e., σ2
ot ≥ σ2

dt.

Proof of Corollary 1. As σ2
dt = 1/λ2, it suffices to show that σ2

ot ≥ 1/λ2. In fact we
will prove that σ2

ot ≥ µot/λ, which is a somewhat stronger result as µot ≥ 1/λ. Let pk be the
probability that an order consists of k demands (where some demands may be of size zero
if d0 > 0). Provided that an order consists of k demands, the inter-arrival time follows an
Erlang-k distribution. As the second moment of an Erlang-k distribution equals (k+k2)/λ2,
we can write σ2

ot as

σ2
ot =

∑
k≥1

pk
k + k2

λ2
−

(∑
k≥1

pk
k

λ

)2

=
µot
λ

+
∑
k≥1

pk
k2

λ2
−
∑
k≥1

pk
∑
i≥1

pi
ki

λ2
,
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since µot =
∑

k≥1 pk
k
λ
. Further, ki ≤ (k2 + i2)/2 as (k − i)2 ≥ 0, which yields

σ2
ot ≥

µot
λ

+
∑
k≥1

pk
k2

λ2
−
∑
k≥1

pk
∑
i≥1

pi
k2 + i2

2λ2

=
µot
λ
,

as
∑

i≥1 pi = 1.

Corollary 2. In an (s, S) policy, the squared coefficient of variation (scv) of time between

subsequent orders is smaller than or equal to the scv of time between subsequent demand

arrivals, i.e., c2ot ≤ c2dt.

Proof of Corollary 2. As demand arrives according to a compound Poisson process,
it follows that c2dt = 1. Hence, to prove corollary 2, we need to show that σ2

ot ≤ (µot)
2.

Substituting Eqs. (6-7), we need to show that

1

λ2

(2
S−s−1∑
j=0

bS−j

S−s−1−j∑
i=0

bS−i

)
−

(
S−s−1∑
j=0

bS−j

)2
 ≤ [1

λ

S−s−1∑
j=0

bS−j

]2
,

or by rewriting,
S−s−1∑
j=0

bS−j

(
S−s−1−j∑

i=0

bS−i −
S−s−1∑
i=0

bS−i

)
≤ 0.

As all bi are positive, we know that
S−s−1−j∑

i=0

bS−i ≤
S−s−1∑
j=0

bS−j, which proves Corollary 2.

In a similar way, we can characterize the time between orders for an (r, nQ) policy.

Proposition 2. The time between orders placed in an (r, nQ) policy is phase-type distributed,

characterized by the triple (Q, Ĉ0, α̂), with Ĉ0 a Q×Q substochastic matrix, defined by (2);

and

α̂ =
1

X

[
1− d0, 1− d0 − d1, . . . , 1−

Q−1∑
k=0

dk

]
, (9)

with X = Q −
∑Q−1

i=0 (Q− i) di. The average and the variance of time between subsequent
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orders equal:

µ̂ot =
1

λX

Q−1∑
i=0

[(
1−

i∑
j=0

dj

)
Q−1−i∑
k=0

bS−k

]
(10)

σ̂2
ot =

1

λ2X

2

Q−1∑
i=0

(
1−

i∑
j=0

dj

)
Q−1−i∑
k=0

bS−k

Q−1−i−k∑
l=0

bS−l −
1

X

[
Q−1∑
i=0

(
1−

i∑
j=0

dj

)
Q−1−i∑
k=0

bS−k

]2 ,
(11)

with bS−j as defined in (8).

Proof of Proposition 2. The proof is analogous to Proposition 1, with s = r and Q =
S − r. In an (r, nQ) policy the time between two orders placed is equivalent to the time

it takes for the Markov chain until absorption in the order point r or below. Ĉ0 describes
how the inventory position decreases prior to reaching one of the absorbing states. However,
when state r (or lower) is reached, a replenishment is made up to inventory position j

′
with

j
′ ∈ {r +Q, . . . , r + 1}, and not up to S like in an (s, S) policy. Therefore, the steady state

probabilities α̂ of the inventory positions immediately after a replenishment are

α̂ = θ̂
∑
i≥1

Ĉi/(θ̂
∑
i≥1

Ĉie)

= θ̂(Ĉ − Ĉ0)/θ̂(Ĉ − Ĉ0)e

= θ̂Ĉ0/θ̂Ĉ0e

= eĈ0/eĈ0e,

as θ̂Ĉ = 0; This leads to (9). Using the definition of the mean and the variance of a
phase-type distribution, we find (10) and (11).

As can be intuitively expected, also in an (r, nQ) policy, it can be shown that the average

time between two subsequent orders is larger than or equal to the average time between two

demand arrivals, i.e. µ̂ot ≥ µdt. Indeed, using (10), the expression

1

λX

Q−1∑
i=0

[(
1−

i∑
j=0

dj

)
Q−1−i∑
k=0

bS−k

]
≥ 1

λ
(12)

holds if

Q−1∑
i=0

[(
1−

i∑
j=0

dj

)
Q−1−i∑
k=0

bS−k

]
≥ Q−

Q−1∑
i=0

(Q− i) di. (13)

12



Eq. (13) can be proven by induction on Q: For Q = 1, Eq. (13) is true as bS ≥ 1. (13) also

holds for Q = x+ 1 if (13) is true for Q = x, as

x−1∑
i=0

[(
1−

i∑
j=0

dj

)
bS−(x−i)

]
+

(
1−

x∑
j=0

dj

)
bS ≥ 1−

x∑
j=0

dj.

We also find that the variance of the time between subsequent orders is larger than or

equal to the variance of time between subsequent arrivals of demand, i.e. σ̂2
ot ≥ σ2

dt. The

proof is identical to the proof of Corollary 1.

4.2.2. Distribution of order quantities

In this section, we derive the distribution of order quantities in an (s, S) inventory policy

and an (r, nQ) policy. We first focus on the (s, S) policy.

Proposition 3. In an (s, S) policy, the probability to order quantity i is defined as

π (i) =


0 for i ∈ {1, . . . , S − s− 1},

S−s−1∑
j=0

di−jbS−j

S−s+m−1∑
i=S−s

S−s−1∑
j=0

di−jbS−j

for i ∈ {S − s, . . . , S − s+m− 1},
(14)

with bS−j as defined in (8).

Proof of Proposition 3. The probability to place an order with size S−s is equal to the
probability that the inventory position exactly reaches the order point s. This probability
is given by the sum for all j (ranging from 0 to S − s − 1) of the probabilities of being in
inventory position S− j and a demand of size S− s− j realizes, in which case the inventory
position drops to s and a replenishment of size S− s is placed. Therefore, the probability to
order a quantity S−s equals θ (CS−se) /(θ

∑
i≥S−sCie), with θ the steady state probabilities

of inventory positions S to s+ 1 at a random point in time.
In general, the probability to order a quantity i, for all i ∈ {S − s, . . . , S − s + m − 1},

is equal to

π (i) = θCie/(θ
∑
i≥S−s

Cie)

= θCie/(θ(−C0)e).

Due to the probabilistic interpretation (or by means of θ = α(−C0)
−1/(α(−C0)

−1e)), we have
θ = (bS, bS−1, . . . , bs+1)/(

∑S
i=s+1 bi). Substituting (2) and (1) leads to Proposition 3.

The expected order quantity is larger than or equal to the expected demand size, i.e.

µok ≥ µdk. Indeed, as the average order rate must equal the average demand rate in order to
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have a stable system, µok
1
µot

= µdk
1
µdt

, we know that µok ≥ µdk, since in the previous section

we showed that µot ≥ µdt.

If we want to analyze the variance in order quantities, we can do so using its definition:

σ2
ok =

[
S−s+m−1∑
i≥S−s

(i)2 · π (i)

]
−

[
S−s+m−1∑
i≥S−s

(i) · π (i)

]2
(15)

The above confirms that in case of only single-unit demands, there is no overshoot, and

Eqs. (14) and (15) reduce to π(S − s) = 1 and σ2
ok = 0. We always order a fixed order

quantity equal to S − s.

In a similar way, the distribution of order quantities of an (r, nQ) inventory policy can

be derived.

Proposition 4. In an (r, nQ) policy, the probability to order quantity i is defined as:

π̂ (i) =


0 for i /∈ {Q, 2Q, . . .}

1
X

Q−1∑
j=−(Q−1)

(Q− |j|)di+j for i ∈ {Q, 2Q, . . .} (16)

with X = Q−
Q−1∑
i=0

(Q− i)di.

Proof of Proposition 4. As soon as the inventory position reaches the order point r an
order is placed. The order quantity is the smallest multiple of Q such that the inventory
position is at least r + 1. Therefore, we know that π̂ (Q) = θ̂ĈQe/θ̂

∑
i≥Q Ĉie.

In general, for k ≥ Q,

π̂ (k) = θ̂Ĉke/θ̂
∑
i≥Q

Ĉie

= eĈke/e
∑
i≥Q

Ĉie

= eĈke/e(−Ĉ0)e,

as θ̂ = 1
Q

[1, . . . , 1]. Substituting (2) and (4) in the above leads to Proposition 4.

Observe that, if m ∈ {1, . . . , Q}, then π̂ (Q) = 1 and σ̂2
ok = 0, as the inventory position

is always larger than or equal to r −m+ 1 in a continuous review setting.

Also here, we have µ̂ok ≥ µdk, analogous to the (s, S) policy. Looking at the variance

amplification in the order sizes, generated by the (s, S) and (r, nQ) policy, we numerically

find that we can have both order variance dampening, as well as amplification with respect
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to the demand sizes. We find that this strongly depends on the demand size distribution

and the value of S − s or Q. We refer to Section 5 for some numerical illustrations.

The same holds for the squared coefficient of variation in orders: our numerical illustra-

tions show that we can have variance amplification in the order sizes for small batch sizes,

but we primarily find variance dampening in the order sizes compared to the demand sizes.

Again, this is dependent on the demand size distribution and the batch size.

4.3. Second approach: total number of units ordered in a time interval t

Next to characterizing the order process from the perspective of the time between orders

and the size of the orders placed, we can also look at the total number of units ordered in

an arbitrary interval of length t. This can be useful when the upstream supplier reviews

its orders on a periodic basis of interval t and as such aggregates the number of units that

are ordered during this time interval. We compare the variance of the total number of units

ordered in a time interval t with the variance of the number of units demanded in the same

interval. This ratio can be used as a measure for the bullwhip effect. Note that this ratio

will differ depending on the length of the interval t. Indeed, the longer the interval t, the

more these variances will concur.

Let M(t) and N(t) be the number of demand arrivals and the number of orders placed in

an arbitrary interval of length t, and let MB(t) and NB(t) be the number of units demanded

and the number of units ordered in an arbitrary interval of length t, respectively. Then, we

can define the order variance amplification in function of the time interval t as

Bullwhip(t) =
V ar[NB(t)]

V ar[MB(t)]
= V ar

N(t)∑
i=1

Oi

/V ar

M(t)∑
i=1

Di

 , (17)

with Di the size of the i-th demand in such an interval and Oi the size of the i-th order. As

the demand sizes are independent of the time between demand arrivals, we have

V ar[MB(t)] = E[M(t)]σ2
dk + µ2

dkV ar[M(t)] = λt[σ2
dk + µ2

dk], (18)

as E[M(t)] = V ar[M(t)] = λt for a compound Poisson demand process. The order sizes

Oi are, however, not independent of the time between orders placed, meaning N(t) is not

independent of Oi. To compute V ar[NB(t)] we will therefore rely on the fact that the order

process is a BMAP characterized by a set of matrices Ci, for i ≥ 0. As shown in Neuts

and Li (1996) the variance of the counting process NB(t) of a stationary1 BMAP can be

1A stationary BMAP is a BMAP with the additional assumption that the state at time zero is distributed
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expressed as

V ar[NB(t)] = [λ2 − 2(λ∗)2 + 2cC∗1e]t− 2c[I − eCt]d, (19)

with λ2 = θC∗2e, λ
∗ = θC∗1e, c = θC∗1(eθ − C)−1, d = (eθ − C)−1C∗1e and C∗i =

∑
n≥1 n

iCn,

for i = 1, 2. Note, this expression is valid for the (s, S) policy, but also for the (r, nQ) policy

provided that we replace Cn by Ĉn for all n, C by Ĉ and θ by θ̂.

For the (r, nQ)-policy we can also derive a different expression for V ar[NB(t)].

Proposition 5. In an (r, nQ) policy, we have

V ar[NB(t)] = V ar[MB(t)] + E[NB,Q(t)(Q−NB,Q(t))],

with V ar[MB(t)] = λt[σ2
dk + µ2

dk], as defined in (18), and NB,Q(t) = (NB(t) mod Q), i.e.,

NB,Q(t) is the number of units demanded modulo Q in an arbitrary interval of length t.

Proof of Proposition 5. This property is proven in a manner similar to Proposition 4.3
in Caplin (1985). As E[NB(t)] = E[MB(t)] = λtµdk, we have

V ar[NB(t)] − V ar[MB(t)] =
∞∑
a=0

Q−1∑
b=0

(
E[N2

B(t)|MB(t) = aQ+ b]− (aQ+ b)2
)

Pr[MB(t) = aQ+ b].

Denote I(t) the inventory position at the start of the interval of length t, i.e., Pr[I(t) =

p] = θ̂i = 1/Q. Then, for MB(t) = aQ + b and I(t) = p, we have NB(t) = (a + 1)Q if
p = s+ 1, . . . , s+ b and NB(t) = aQ for p > s+ b under the (r, nQ)-policy. As a result,

E[N2
B(t)|MB(t) = aQ+ b] =

S∑
p=s+1

E[N2
B(t)|MB(t) = aQ+ b, I(t) = p] Pr[I(t) = p],

=
b

Q
((a+ 1)Q)2 +

Q− b
Q

(aQ)2 = (aQ+ b)2 − b2 +Qb.

This implies

V ar[NB(t)]− V ar[MB(t)] =
∞∑
a=0

Q−1∑
b=0

b(Q− b) Pr[MB(t) = aQ+ b],

which completes the proof.

Although it may be more effective to compute V ar[NB(t)] via (19), the above property is

particularly useful as it allows us to prove the following corollary:

as θ with θC = 0. Since, we are interested in the number of orders placed in an arbitrary interval of length
t, the BMAP of interest is in fact the stationary BMAP.

16



Corollary 3. In an (r, nQ) policy, we have Bullwhip(t) ≥ 1, and limt→∞Bullwhip(t) = 1.

Further,

Bullwhip(t) = λ(σ2
dk + µ2

dk)t− 2c[I − eĈt]d,

and

lim
t→∞

(V ar[NB(t)]− V ar[MB(t)]) = 2cd− 2(λ∗)2.

Proof of Corollary 3. Proposition 5 and (18) imply

Bullwhip(t) = 1 +
E[NB,Q(t)(Q−NB,Q(t))]

λt(σ2
dk + µ2

dk)
.

As 0 ≤ NB,Q(t) ≤ Q− 1, we find Bullwhip(t) ≥ 1 and

Bullwhip(t) ≤ 1 +
Q2

λt(σ2
dk + µ2

dk)
→ 1,

as t→∞. Note, Bullwhip(t) = 1 if and only if all the demand sizes are multiples of Q. By

noting that eĈt converges to eθ̂ and that ce = λ∗ = θ̂d, we get

lim
t→∞

2ceĈtd = 2(λ∗)2.

When combined with (19) and the fact that limt→∞Bullwhip(t) = 1, this proves that

λ2 − 2(λ∗)2 + 2cĈ∗1e = λ[σ2
dk + µ2

dk],

and this suffices to conclude that

lim
t→∞

V ar[NB(t)]− V ar[MB(t)] = lim
t→∞

2c(I − eĈt)d.

Remark that, in case of single unit demand sizes, i.e., d1 = 1, the (r, nQ) and (s, S) policy

behave identical and the above results therefore also apply for the (s, S) policy if d1 = 1.

Unfortunately, the above proof does not allow us to demonstrate the same for the (s, S)

policy with random demand sizes.

5. Numerical illustration

In this section we numerically illustrate the impact of the batching effect, induced by an

(s, S) or an (r, nQ) inventory policy, on its order process. We use a setting where demand

is characterized by a compound Poisson process, with arrival rate λ = 1 and demand sizes
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according to resp. a discrete uniform (D ∼ U{1, . . . , 19}), Poisson (D ∼ Pois{10}) and bi-

modal distribution, each with µdk = 10. For the bimodal demand size distribution, we assume

50% of demand arrivals has a discrete uniform demand size distribution D ∼ U{1, . . . , 5},
and 50% has a discrete uniform demand size distribution D ∼ U{15, . . . , 19}. We also

benchmark the results for a Poisson distributed demand process, parameterized by a de-

mand arrival rate λ = 1 and single unit demand sizes (in this setting, no difference exists

between the order process of an (s, S) or an (r, nQ) policy, i.e., we always order Q units).

We first illustrate the order process, making a distinction between the order quantities

and the time between orders (our first approach). Recall that when demand is characterized

by a (single unit) Poisson process, the average order quantity equals S − s or Q and the

variance of order quantities is zero. The time between orders follows an Erlang distribution

with average Q/λ and variance Q/λ2, indicating that they both increase linearly in Q. If

demand is characterized by a compound Poisson process, the distribution of time between

orders and order quantities is less straightforward.

Figure 3 plots the ratio of the average order size compared to the average demand size in

function of the batching parameter S − s or Q, for both the (s, S) and (r, nQ) policy. Note

that this ratio coincides with the ratio of the average time between orders to the average

time between demand arrivals, as in order to have a stable system, the average rate of

items ordered must equal the average rate of items demanded, or µok/µot = µdk/µdt, which

leads to µot/µdt = µok/µdk. From Figure 3 we see that these ratios increase with the batching

parameter, but not always in a linear way. For an (r, nQ) policy, we do have a linear increase

in Q for Q ≥ m, as for in that case one always orders Q units. Observe as well that the

average order size µok and its corresponding time between orders µot are larger for an (s, S)

policy compared to µ̂ok and µ̂ot for an (r, nQ) policy. This is intuitive as one always orders

up to S in an (s, S) policy, whereas in an (r, nQ) policy one orders at most up to r +Q.

Insert Figure 3 about here.

Figure 4 illustrates the variance amplification ratio of the time between orders placed

compared to the time between demand arrivals. Here, we observe that we always have vari-

ance amplification, which increases in Q, albeit not always linearly (recall that for a single

unit demand process, the increase is linear in Q). We also see that we have more variance

amplification in the time between orders placed created by an (s, S) policy, compared to

the (r, nQ) policy. Figure 5 provides the scv of the time between orders placed to the time

between demand arrivals (which equals 1 for a compound Poisson demand). Interestingly,

it shows that the relative variance of the time between orders is actually less that the rel-

ative variance of the time between demands, indicating that we have variance dampening
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(smoothing) in the time between orders.

Insert Figures 4 and 5 about here.

Figure 6 shows the ratio of the variance of order sizes compared to the variance of demand

sizes in function of S−s or Q. Here we do not always see variance amplification. Instead we

observe a wavy pattern: for some values of Q, we may observe variance amplification, but we

find as well order variance smoothing. Observe that the variance of the order sizes converges

to a limiting value in an (s, S) policy, which can either indicate bullwhip or smoothing. For

an (r, nQ) policy, the variance of the order sizes is zero when Q ≥ m.

If we look at the ratio of the scv of order sizes compared to the scv of demand sizes

(Figure 7), we can make the same observation, but we see that we primarily have smoothing

in the order sizes. This indicates that the relative variance of the order sizes is smaller that

than the relative variance of the demand sizes. Although this ratio generally goes down when

Q increases, this decrease is not strict in Q; we observe some wavy behavior in function of

Q (albeit less outspoken).

Insert Figures 6 and 7 about here.

We finally illustrate the order variance amplification ratio, looking at the number of units

ordered in a time interval t, compared to the number of units demanded in that same time

window (our second approach). Figure 8 assumes time interval t = 1, whereas in Figure 9, the

time interval t = 60. We find variance amplification in orders, which is generally increasing

in Q, albeit not always linearly and not always strict increasing in Q (for some values of Q,

we even observe a slight decrease of the bullwhip effect in Q).

Figure 10 illustrates how the time interval t impacts the bullwhip ratio for single unit

demand sizes. For small intervals t, we see an increase in function of Q, but this is not

necessarily the case for large time intervals t and small values of Q. Recall that Caplin

(1985), assuming single unit demands, finds a linear increase when the time interval is chosen

such that either Q or 0 units are ordered; indeed, this assumption is more likely to hold if

the batch size Q is larger than the time interval t. This linear increase is also observed in

Figure 10 when Q exceeds t. However, if Q is smaller than t, the bullwhip ratio does not

increase linearly in Q.

Insert Figures 8, 9 and 10 about here.

6. Conclusion

In this paper, we presented a novel approach to characterize the order process of continu-

ous review (s, S) and (r, nQ) inventory policies, using the properties of the batch Markovian
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arrival process. We characterized the order process from two distinct, yet complementary

perspectives, which can be useful for the upstream supplier to characterize its demand. In

our first approach, we derived the distribution of order quantities and time between orders

separately. Splitting a stochastic process into information concerning timing and quantities

is common practice for slow moving items with intermittent demand. This separate charac-

terization can also be of particular interest if the orders are sent to production (e.g., if the

upstream supplier produces on order), in which case the production facility can have a better

insight in the arrival rate of orders at the queue, which is defined by the time between arrivals

of orders and the order sizes. These are prime determinants of the production lead time.

We find that the relative variance of the time between orders, as measured by its squared

coefficient of variation, is less that the relative variance of the time between demands. Also

the order quantities do not always display a larger variance compared to the demand sizes;

we observe a wavy pattern in function of Q, and find variance dampening in many instances.

We also characterized the order process by observing the number of units ordered over a

time interval t, and compared it with the number of units demanded over the same period.

This can be useful if the supplier reviews its orders on a periodic basis and as such aggregates

the number of units that are ordered during this time interval. From this perspective, we

always have order variance amplification, which is generally increasing in Q, albeit not

always linearly and not always strict increasing in Q. We also find that the degree of order

variance amplification is significantly less as the time interval t is longer (and it converges to

1 if t → ∞). Our numerical analysis revealed that these measures strongly depend on the

distribution of demand sizes.

Appendix

The calculation of the order process characteristics are to a large extent based on the

values for bS−j, where 1
λ
bS−j refers to the expected time spent in inventory position S−j, for

S− j ∈ {s+1, . . . , S}. The values for bS−j can be found using the recursive equations in (8).

When the demand size follows a simple distribution, we can find closed-form expressions for

these values. In this appendix we illustrate this for a Poisson distributed (D ∼ Pois{µdk})
or uniform distributed (D ∼ U{1, . . . ,m}) demand size.

Proposition 6. If D ∼ Pois{µdk}, then

bS−j =
µjdk
j!

(
∞∑
k=0

kje−kµdk

)
.

Proof of Proposition 6. The proof of Proposition 6 is based on induction. For j = 0,
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Proposition 6 holds as

bS =
1

1− d0
=

1

1− e−µdk
=
∞∑
k=0

e−kµdk .

Given that Proposition 6 holds for bS−(j−i), we prove that it also holds for bS−j. From (8)
we find that

bS−j =
1

1− eµdk

j∑
i=1

(
µidk
i!
e−µdk

)
bS−(j−i)

=
1

1− eµdk

j∑
i=1

(
µidk
i!
e−µdk

)
µj−idk

(j − i)!

(
∞∑
k=0

kj−ie−kµdk

)

=
µjdk
j!

1

1− e−µdk

j∑
i=1

(
j
i

) ∞∑
k=0

kj−ie−(k+1)µdk

=
µjdk
j!

1

1− e−µdk

∞∑
k=0

e−(k+1)µdk
(
(k + 1)j − kj

)
=

µjdk
j!

(
∞∑
k=0

kje−kµdk

)

For uniform distributed demand sizes, we provide the closed-form formulae for bS−j when

j ∈ {0, . . . , 2m + 1}). Note that one can derive the formulae for larger values of j as well,

but they soon become increasingly complex.

Proposition 7. If D ∼ U{1, . . . ,m}, then

bS−j =


1 if j = 0,

1
m

(
1 + 1

m

)j−1
if j ∈ {1, . . . ,m},

1
m

[(
1 + 1

m

)j−1 − (1 + 1
m

)j−m−1 − j−m−1
m

(
1 + 1

m

)j−m−2]
if j ∈ {m+ 1, . . . , 2m+ 1}.

(20)

Proof of proposition 7. As d0 = 0, we immediately find bS = 1 from (8).
For j ∈ {1, . . . ,m}, we find bS−j through induction. From (8), we know that bS−1 =

1
m
bS = 1

m

(
1 + 1

m

)0
. Assume that bS−j with j ∈ {1, . . . ,m} holds for j = x, then from (8) it
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follows that

bS−x−1 =
1

m

(
bS−x +

x∑
i=1

bS−x+i

)
=

1 +m

m
bS−x

=

(
1

m
+ 1

)(
1

m

(
1 +

1

m

)x−1)
,

which proves (20) for j = x+ 1.
We find bS−j for j ∈ {m+ 1, . . . , 2m+ 1} also based on induction. If j = m+ 1, we have

dj = 0. Then, Eq. (8) gives

bS−m−1 =
m∑
i=1

1

m
bS−(m+1)+i =

1

m

(
m+1∑
i=1

bS−(m+1)+i − bS

)
=

1

m

[(
1 +

1

m

)m
− 1

]
,

as
m+1∑
i=1

bS−(m+1)+i =

(
bS−m +

m∑
i=1

bS−m+i

)
= (1 +m)bS−m,

with bS−m derived above. Next, we show that bS−j with j ∈ {m + 1, . . . , 2m + 1} holds for
j = x+ 1, if it holds for j = x:

bS−x−1 =
1

m

m∑
i=1

bS−x−1+i

=
1

m

(
bS−x − bS−x+m +

m∑
i=1

bS−x+i

)
=

1

m
(bS−x − bS−x+m +mbS−x)

=

(
1 +

1

m

)
bS−x −

1

m2

(
1 +

1

m

)x−m−1
=

1

m

[(
1 +
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(a)

(b)

Figure 1: Simulation of a compound Poisson demand and its corresponding orders, placed by an (s, S) policy
with S − s = 15, looking at demand arrivals and orders placed (first approach).
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(a) t = 1

(b) t = 10

Figure 2: Simulation of a compound Poisson demand and its corresponding orders, placed by an (s, S) policy
with S − s = 15, looking at the number of units demanded and ordered during interval t (second approach).
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Figure 3: Ratio of the average order size over the average demand size (equivalent to time between orders
over time between demand arrivals) in function of the batching parameter Q = S − s

Figure 4: Variance amplification ratio of the time between orders placed versus the time between demand
arrivals
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Figure 5: Squared coefficient of variation of the time between orders placed

Figure 6: Variance amplification ratio of the order sizes versus the demand sizes
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Figure 7: Ratio of the squared coefficient of variation of order sizes versus the scv of demand sizes

Figure 8: Variance amplification ratio of the number of items ordered versus the number of items demanded
in interval t = 1
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Figure 9: Variance amplification ratio of the number of items ordered versus the number of items demanded
in interval t = 60

Figure 10: Variance amplification ratio of the number of items ordered versus the number of items demanded
for single unit demand

30



 

 

 

FACULTY OF ECONOMICS AND BUSINESS 
Naamsestraat 69 bus 3500 

3000 LEUVEN, BELGIË 
tel. + 32 16 32 66 12 
fax + 32 16 32 67 91 

info@econ.kuleuven.be 
www.econ.kuleuven.be 


	VBOKOK
	OrderProcess_sSPolicy

