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Abstract—Large distributed systems benefit from the ability
to exchange jobs between nodes to share the overall workload.
To exchange jobs, nodes rely on probe messages that are
either generated by lightly-loaded or highly-loaded nodes, which
corresponds to a so-called pull or push strategy. A key quantity
of any pull or push strategy, that has often been neglected in
prior studies, is the resulting overall probe rate. If one strategy
outperforms another strategy in terms of the mean delay, but at
the same time requires a higher overall probe rate, it is unclear
whether it is truly more powerful.

In this paper we introduce a new class of rate-based pull and
push strategies that can match any predefined maximum allowed
probe rate, which allows one to compare the pull and push
strategy in a fair manner. We derive a closed form expression for
the mean delay of this new class of strategies in a homogeneous
network with Poisson arrivals and exponential job durations
under the infinite system model. We further show that the infinite
system model is the proper limit process over any finite time scale
as the number of nodes in the system tends to infinity and that
the convergence extends to the stationary regime.

Simulation experiments confirm that the infinite system model
becomes more accurate as the number of nodes tends to infinity,
while the observed error is already around 1% for systems with
as few as 100 nodes.

I. INTRODUCTION

One of the key features of a contemporary distributed
network is its ability to (re)distribute the workload among a
large number of processing nodes. Jobs in such a network
can either enter the network via one (or multiple) centralized
job dispatchers [1], [2] or may enter via the processing nodes
themselves [3]–[6]. In the latter case, the workload is redis-
tributed by the exchange of jobs between the processing nodes.
Two important families of strategies have been identified for
redistributing jobs: the pull and push strategy. Under the pull
strategy lightly-loaded nodes try to attract work from highly-
loaded nodes, a strategy that is also known as work stealing.
Under the push strategy the highly-loaded nodes take the
initiative to transfer jobs to lightly-loaded nodes.

Many performance studies of pull and push strategies have
been presented over the years. The performance of two tradi-
tional pull and push strategies in homogeneous networks with
Poisson arrivals and exponential job durations was analyzed
in [3] and extended to heterogeneous networks in [7]. Both
studies showed that the pull strategy is superior under high
load conditions, while the push strategy results in a lower
mean delay under low to medium loads. More recent analytic

studies of the performance of pull and push strategies include
[5], [6].

All of these studies provided valuable insights with respect
to the performance of pull and push strategies. However,
they also paid hardly any attention to the probe rate, that
is, the number of probe messages that the strategies under
consideration generate per time unit. These probe messages
are used to enable the exchange of jobs and thus to balance
the load. Typically, when a node wants to pull or push a job
it probes another node at random to see whether a job can be
transferred. Some of the probes result in a job transfer, while
others do not. Clearly, sending more probe messages tends
to result in more job transfers and therefore in lower mean
delays.

As different strategies tend to have different probe rates that
depend to a large extent on the arrival rate λ, it is typically
not possible to adapt the parameters of the strategies under
consideration such that they generate the same overall probe
rate (for arbitrary λ), making any comparison biased. Further,
some so-called optimal parameter settings also result in the
highest probe rate, which makes the optimality questionable
(e.g., the hybrid pull/push strategy in [4]).

To mitigate this, we introduced a class of rate-based pull
and push strategies in [8] that make use of a single parameter
r. Under the pull strategy idle nodes generate probe messages
at rate r, while under the push strategy probe messages at
rate r are generated by the nodes with at least 2 queued jobs
(including the one in service). As shown in [8], these rate-
based strategies can match any predefined maximum allowed
probe rate R by setting r in the appropriate manner and this
for any arrival rate λ, allowing a fair comparison between the
pull and push strategy. The main results in [8] showed that the
rate-based push strategy results in a lower mean delay if and
only if

λ <

√
(R+ 1)2 + 4(R+ 1)− (R+ 1)

2
,

under the so-called infinite system model and that a hybrid
pull/push strategy is always inferior to the pure pull or push
strategy.

To evaluate and compare the different strategies considered
in this paper we introduce an infinite system model, the
evolution of which is described by a set of ordinary differential
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equations (ODEs) as in [5], [8]. To assess the mean delay and
overall probe rate of a strategy, we define a set of ODEs, give
an explicit expression for its unique fixed point and express the
mean delay and probe rate using this fixed point. To guarantee
all trajectories converge to the fixed point, we prove that the
fixed point is a global attractor. We also show that the set
of ODEs captures the evolution of the limit process of a
family of density dependent Markov chains as introduced by
Kurtz in [9], [10]. Simulation experiments confirm that the
infinite system model becomes exact as the number of nodes
in the system tends to infinity, while the error is about 1% for
systems with as few as 100 nodes.

This paper makes the following contributions:
1) We introduce a more general class of rate-based pull

and push strategies that rely on two parameters T and
r and that coincide with the strategies introduced in [8]
when T = 1. Closed form results for the mean delay of
this new class of pull and push strategies are presented
(under the infinite system model).

2) We show that setting T > 1 reduces the mean delay of
the rate-based push strategy (for larger λ and smaller
R values). This is in contrast to earlier findings for the
traditional strategy [4], [7], for which smaller T values
result in higher probe rates, making the comparison
biased. For the rate-based pull strategy we show that
setting T = 1 is optimal.

3) We introduce the so-called max-push strategy and derive
a closed form expression for its mean delay (under
the infinite system model). We show that the max-push
strategies further reduce the mean delay of the best rate-
based pull and push strategies with T ≥ 1 for certain
combinations of (λ,R).

4) Finally, we prove that the infinite system models intro-
duced in this paper are the proper limit processes of the
finite stochastic systems with N nodes as N tends to
infinity over any finite time scale. In addition, we prove
that the convergence extends to the stationary regime
(i.e., the ODEs have a global attractor).

The paper is structured as follows. Section II introduces
the rate-based pull and push strategies. For the rate-based
strategies with T ≥ 1 we present the infinite system model
in Section III. In Section IV we validate this model using
simulation results and present some numerical examples that
compare the performance of the rate-based pull and push
strategy. Section V introduces the max-push strategy and its
infinite system model, while numerical results for the the max-
push strategy are presented in Section VI.

II. PULL AND PUSH STRATEGIES

We consider a continuous-time system consisting of N
queues, where each queue consists of a single server with
an infinite buffer. As in [3], [5]–[7], jobs arrive locally
according to a Poisson process with rate λ < 1, and have
an exponentially distributed duration with mean 1. Servers
process jobs in a first-come first-served order. Servers can
send probe messages to each other to query for queue length

information, and to transfer jobs. We assume that the time
required to transfer probe messages and jobs is sufficiently
small in comparison with the processing time of a job, i.e.,
transfer times are considered zero.

We consider the following load balancing strategies that all
make use of two parameters: an integer T ≥ 1 and a real
number r > 0. We note that the rate-based strategies with
T = 1 were initially introduced in [8].

1) Rate-based Push: As soon as the queue length exceeds
T , a server starts to generate probe messages according
to a Poisson process with rate r. Whenever the queue
length drops below T , this process is interrupted until the
queue length exceeds T again. The node that is probed
is selected at random and is only allowed to accept a
job if it is idle.

2) Rate-based Pull: Whenever a server is idle it generates
probe messages according to a Poisson process with rate
r. This process is interrupted whenever the server is
busy. The node that is probed is selected at random and
is only allowed to transfer one of its jobs if its queue
length exceeds T .

For each of the above strategies transferred jobs are imme-
diately served by the accepting node, hence any job transfer
results in a reduction of the mean delay. To make the compar-
ison fair the mean overall probe rate R should be identical.
The rate R is defined as the mean number of probes that is
sent by a server per time unit irrespective of its queue length,
where R is clearly less than r. Further on we will show that r
can be set in such a manner that it can match any predefined
R ≥ 0.

III. PERFORMANCE OF RATE-BASED STRATEGIES WITH
T ≥ 1

In this section we introduce the infinite system model to
assess the performance of the rate-based strategies with T ≥
1. This model, the evolution of which is captured by a set
of ODEs, is validated by simulation in Section IV, while in
Section VII it is argued to be the proper limit process of the
stochastic finite system model with N nodes as N tends to
infinity.

The evolution of both the rate-based pull and push strategy
model is given by a set of ODEs denoted as d

dtx(t) = F (x(t)),
where x(t) = (x1(t), x2(t), . . .) and xi(t) represents the
fraction of the number of nodes with at least i jobs at time t.
As explained below, this set of ODEs can be written as

dx1(t)

dt
= (λ+ rxT+1(t))(1− x1(t))− (x1(t)− x2(t)),

(1)
dxi(t)

dt
= λ(xi−1(t)− xi(t))− (xi(t)− xi+1(t)), (2)

for 2 ≤ i ≤ T and

dxi(t)

dt
= λ(xi−1(t)− xi(t))− (xi(t)− xi+1(t)),

− r(1− x1(t))(xi(t)− xi+1(t)), (3)
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for i > T . The terms λ(xi−1(t)−xi(t)) and xi(t)−xi+1(t), for
i ≥ 1, correspond to arrival and service completions, respec-
tively. Under the pull strategy probes are sent at rate r(1 −
x1(t)) and a probe is successful with probability xT+1(t),
while under the push strategy the probe rate equals rxT+1(t)
and a probe is successful with probability (1−x1(t)). Hence,
for both strategies queues of length 1 are created by job
transfers at rate rxT+1(t)(1− x1(t)). Similarly, job transfers
reduce the number of queues with exactly i jobs, for i > T ,
at rate r(1− x1(t))(xi(t)− xi+1(t)) under both strategies.

Let E = {(x1, x2, . . .)|xi ∈ [0, 1], xi ≥ xi+1, i ≥
1,
∑
j≥1 xj < ∞}. The next two theorems show that this set

of ODEs is Lipschitz on E and it has a unique fixed point in
E.

Theorem 1. The function F is Lipschitz on E.

Proof: F is Lipschitz provided that for all x, y ∈ E there
exists an L > 0 such that |F (x)− F (y)| ≤ L |x− y|. By
definition of F (x) one finds

|F (x)− F (y)| ≤ 2(λ+ 1 + 2r) |x− y|+

2r
∑
i>T

|x1(xi − xi+1)− y1(yi − yi+1)| .

The above sum can be bounded by∑
i>T

|(x1 − y1)(xi − xi+1) + y1(xi − xi+1 − yi + yi+1)| ,

which is bounded by 2 |x− y| on E. Hence, F is Lipschitz
by letting L = 2λ+ 2 + 8r.

As E is a Banach space the Lipschitz condition of F suffices
to guarantee that the set of ODEs d

dtx(t) = F (x(t)), with
x(0) ∈ E, has a unique solution1 φt(x(0)) [11, Section 1.1].

Theorem 2. The set of ODEs given by (1) to (3) has a unique
fixed point π̄ = (π̄1, π̄2, . . .) with

∑
i≥1 π̄i < ∞. Let ηi =

π̄i−π̄i+1 and η0 = 1−λ, then the fixed point can be expressed
as

η1 =
λ(1 + (1− λ)r − λ)

1 + (1− λT )r
,

ηi = η1λ
i−1, 2 ≤ i ≤ T,

ηi = ηT

(
λ

1 + (1− λ)r

)i−T
, i > T.

Proof: Assume π̄ is a fixed point with
∑
i≥1 π̄i <

∞, meaning Fi(π̄) = 0 for i ≥ 1, where F (x) =
(F1(x), F2(x), . . .). When

∑
i≥1 πi < ∞, we can simplify∑

i≥1 Fi(π) = 0 to λ − π̄1 = 0. Hence, π̄1 must equal λ.
The expressions for ηi then readily follow from the conditions
Fi(π̄) = 0, for i ≥ 1.

This fixed point is also the unique solution of the Kol-
mogorov differential equation for a state dependent M/M/1
queue with λ0 = λ + rπ̄T+1, λi = λ, for i ≥ 1, µi = 1, for
i = 1, . . . , T , and µi = 1 + (1 − λ)r, for i ≥ T + 1. The

1The solution φt(x) belongs to the class of continuously differentiable
functions as in the finite dimensional case.

arrival process of such an M/M/1 queue is Poisson with rate
λi and the service is exponential with rate µi whenever the
queue length equals i.

The set of ODEs in (1) to (3) describes the transient
evolution of the infinite system, while we are in fact interested
in its behavior as t goes to infinity. Thus, we are interested in
the limit of all the trajectories of this set of ODEs. In Appendix
A we prove the following theorem:

Theorem 3. All the trajectories of the set of ODEs given by
(1) to (3), starting from x ∈ E converge towards the unique
fixed point π.

Due to the above theorem, we can now express the main
performance measures of the push and pull strategies with
T ≥ 1 via Theorem 2:

Corollary 1. The mean delay D of a job under the push or
pull strategy equals

Dboth =
1

1− λ
−
rλT

(
λ

(1−λ)(1+r) + T
)

1 + r(1− λT )
.

Proof: Using Theorem 2, one can apply Little’s law to
express the mean response time D as

∑
i≥1 πi/λ.

Corollary 2. Given a predefined maximum allowed probe rate
R, the rate r must be set as

rpull =
R

1− λ
, (4)

rpush =
R

λT+1 − (1− λT )R
, (5)

with rpush = ∞ for R > λT+1/(1 − λT ). Hence, if the
predefined value of R exceeds λT+1/(1−λT ), the rate rpush
can be set arbitrarily high.

Proof: From the relationships R = (1 − π̄1)rpull and
R = rpushπ̄T+1, we find

R = (1− λ)rpull,

and

R =
λT+1

(1− λT ) + 1/rpush
.

Theorem 4. The mean response time D of a job under the
push stategy equals

Dpush =
1−R
1− λ

− RT

λ
+

R2

λT (1− λ)(λ+R)
,

if R ≤ λT+1/(1 − λT ), while for R > λT+1/(1 − λT ) the
rate rpush =∞, and the mean delay Dpush is given by:

Dpush|r=∞ =
1

1− λ
− TλT

1− λT
.

Remark, Dpush|r=∞ = 1 for T = 1.
Under the pull strategy the mean response time equals

Dpull =
1

1− λ
−
RλT ( λ

1−λ+R + T )

1− λ+R(1− λT )
.
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Fig. 1. Simulated mean delay for a finite system of varying size, using a rate-
based push strategy with T = 2, matching an overall request rate of R = 1.
The relative error, shown above a simulated point, becomes smaller when
simulating larger systems. In addition, the infinite system model approximates
systems of moderate size well.

Proof: The expressions for Dpush and Dpull are found
using Corollary 1, by plugging in the appropriate value for r,
given by Corollary 2, in the expression for Dboth.

Theorem 5. The optimal choice for the rate-based pull
strategy is T = 1.

Proof: It can be verified that increasing T by one will
increase Dpull if and only if

λ/(1− λ+R) + T

1− λ+R(1− λT )
≥ λλ/(1− λ+R) + T + 1

1− λ+R(1− λT+1)
,

which is equivalent to stating

T (1− λ+R)(1− λ) ≥ λR(1− λT ).

This condition can be rewritten as

T (1− λ+R) ≥ R
T∑
i=1

λi,

which holds as λi < 1, for i = 1, . . . , T . Hence, increasing T
by one always increases the mean delay of the rate-based pull
strategy.

Although it may at first seem sensible to steal jobs from
long queues only if the maximum allowed probe rate R is
low, the pull strategy is in some sense blind as it also needs
to send probes to locate these long queues. This is contrary to
the push strategy, where nodes will only probe if their queue
is long, as a result setting T = 1 is not always optimal for the
rate-based push strategy (see numerical results in Section IV).

IV. NUMERICAL RESULTS FOR RATE-BASED STRATEGIES
WITH T ≥ 1

A. Validation

In this section we present validation results for the rate-
based push strategy with T ≥ 2 as the model for both rate-
based strategies with T = 1 was already validated in [8] and
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Fig. 2. Simulated mean delay for a finite system of varying size, using a
rate-based push strategy with T = 4, matching an overall request rate of
R = 0.5. The relative error, shown above a simulated point, becomes smaller
when simulating larger systems.

25 50 100 200 400 800 1600 Infinity
1

1.05

1.1

1.15
λ = 0.8

λ = 0.85

λ = 0.9

λ = 0.95

Number of Nodes (N)

P
ro

b
e
 R

a
te

 (
R

)

Fig. 3. Request rate for the finite system using a rate-based push strategy
with T = 2.

the mean delay of the pull strategy is minimized for T = 1.
The infinite system model and simulation setup only differ in
the system size. The rate rpush in the simulation experiments
is independent of N and was determined by λ and R using the
expression for R in (5). Each simulated point in the figures
represents the average value of 25 simulation runs. Each run
has a length of 106 (where the service time is exponentially
distributed with mean 1) and a warm-up period of length
106/3.

Figure 1 depicts the mean delay as a function of N for
T = 2, R = 1 and λ = 0.8, 0.85, 0.9 and 0.95, while Figure
2 depicts the same for T = 4, R = 0.5. In both cases the
relative error shown above the simulation results decreases as
N tends to infinity. The error for a system with as few as
100 nodes is only slightly above 1% when T = 2. We should
note that the actual overall probe rate observed in the finite
system exceeds R for smaller N values as shown in Figure
3 and 4. In other words, the relation between R and rpush
given by (5) is not very accurate for small N values as the
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Fig. 4. Request rate for the finite system using a rate-based push strategy
with T = 4.
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Fig. 5. The mean delay for the rate-based pull (T = 1) and push strategy
(T = 1, . . . , 6) with R = 1. For the push strategy the part of the curve with
r =∞ is dashed.

infinite model is optimistic with respect to the queue length
distribution. However, as soon as the system consists of several
hundred nodes, there is a fairly good agreement. Similar results
were observed for other parameter settings.

B. Comparison of push and pull strategy

The mean delay of the rate-based push (for T = 1, . . . , 6)
and pull (for T = 1) strategy is shown in Figure 5 as a function
of λ for a mean overall probe rate R = 1. The curves for the
push strategy consist of two parts and rpush = ∞ for the
dashed part of the curve. For these loads λ the rate rpush can
be set arbitrarily high without violating the maximum allowed
probe rate R = 1. The results indicate that the optimal T
value for the push strategy increases as λ increases (while R
remains fixed). This is as expected as small T values allow
queues with a length below average to probe for idle servers,
using part of the available probe rate. For the same reason
smaller R values also give rise to larger optimal T values (for
fixed λ). Figure 5 also indicates that setting T > 1 implies that
the rate-based push strategy can outperform the pull strategy
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Fig. 6. The optimal rate-based strategy with variable T as a function of the
load λ and the overall probe rate R. The pull strategy is optimal for high
loads. The optimal T for the push strategy increases as R decreases.

for a larger range of loads λ.
The rate-based strategy (with variable T ) that minimizes

the mean delay for λ ∈ [0.5, 0.9] and R ∈ [0, 2] is depicted
in Figure 6. The pull strategy is superior for loads above 75
to 80%. For lower loads the push strategy prevails and lower
maximum allowed probe rates R give rise to larger optimal T
values.

V. THE MAX-PUSH STRATEGY

The mean delay under the rate-based push strategy given in
Theorem 4 can be further reduced as follows. Recall, whenever
R > λT+1/(1− λT ), the rate rpush can be chosen arbitrarily
large (i.e., rpush = ∞). In other words, even if requests are
sent at infinite rate when the queue length exceeds T , the
overall probe rate remains below R. Hence, in order to use this
remaining request rate, we introduce the max-push strategy
when T > 1 and

λT+1/(1− λT ) < R < λT /(1− λT−1). (6)

Note, for any R > 0 and 0 < λ < 1, there exists a single
T > 0 such that the above relationship holds. Under the max-
push strategy we send probes at an infinite rate whenever the
queue length exceeds T and at rate r <∞ if the queue length
equals T . Note, under this strategy jobs are instantaneously
transferred to another queue if the queue length equals T upon
arrival (at the expense of a number of probe messages). The
evolution of the infinite system model for this strategy is also
readily formulated as a set of ODEs d

dtx(t) = G(x(t)), where
x(t) = (x1(t), . . . , xT (t)) and xi(t) represents the fraction of
the number of nodes with at least i jobs at time t:

dx1(t)

dt
= λ(1− x1(t) + xT (t))− (x1(t)− x2(t))

+ rxT (t)(1− x1(t)) (7)
dxi(t)

dt
= λ(xi−1(t)− xi(t))− (xi(t)− xi+1(t)), (8)
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for 2 ≤ i ≤ T − 1 and
dxT (t)

dt
= λ(xT−1(t)− xT (t))− xT (t)(1 + r(1− x1(t))).

(9)

The terms of the form λ(xi−1(t)−xi(t)) and (xi(t)−xi+1(t)),
for 1 ≤ i ≤ T , are again due to arrival and service completion
events, respectively. Additionally, queues of length 1 are
created at rate λxT (t) due to the instantaneous job transfers
and rate rxT (t)(1 − x1(t)) due to successful probes sent by
a queue of length T , while the latter event also reduces the
number of queues of length T by one.

Let ET = {(x1, . . . , xT )|1 ≥ x1 ≥ x2 ≥ . . . xT ≥ 0}. The
next two theorems show that this set of ODEs is Lipschitz on
ET and it has a unique fixed point in ET .

Theorem 6. The function G is Lipschitz on ET .

Proof: G is Lipschitz provided that for all x, y ∈ ET
there exists an L > 0 such that |G(x)−G(y)| ≤ L |x− y|.
By definition of G(x) one finds

|G(x)−G(y)| ≤ 2(2λ+ 1 + 2r) |x− y| .

Hence, G is Lipschitz by letting L = 4λ+ 2 + 4r.
As ET is a finite dimensional space the Lipschitz condition

of G suffices to guarantee that the set of ODEs d
dtx(t) =

G(x(t)), with x(0) ∈ ET , has a unique solution (due to the
Picard Lindelöf theorem).

Theorem 7. The set of ODEs given by (7)-(9) has a unique
fixed point π̇ = (π̇1, . . . , π̇T ) in ET that can be expressed as

π̇i = λi
1 + ( λ

1−λ + r)(1− λT−i)
1 + ( λ

1−λ + r)(1− λT−1)
,

for 1 ≤ i ≤ T .

Proof: Assume π̇ is a fixed point with
∑
i≥1 π̇i ≤

T , meaning Gi(π̇) = 0 for i ≥ 1, where G(x) =
(G1(x), G2(x), . . . , GT (x)). When

∑
i≥1 π̇i ≤ T , we can

simplify
∑
i≥1Gi(π̇) = 0 to λ − π̇1 = 0. Hence, π̇1 must

equal λ. The expressions for π̇i then follow from the condition
Gi(π̇) = 0.

In Appendix B we prove the following theorem:

Theorem 8. All the trajectories of the set of ODEs given by
(7)-(9), starting from x ∈ ET converge towards the unique
fixed point π̇.

Due to the above theorem, we can now express the main
performance measures of the max-push strategy via Theorem
7:

Corollary 3. The mean delay Dmp of a job under the max-
push strategy equals

Dmp =
1− λT + ( λ

1−λ + r)(1− TλT−1 + (T − 1)λT )

1 + r(1− λ)(1− λT−1)− λT
.

A predefined overall probe rate R can be matched by setting

rmp =
R

λT−1(R+ λ)−R
− λ

1− λ
, (10)
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Fig. 7. Simulated mean delay for a finite system of varying size, using a
max-push strategy with T = 2 and R = 1. The relative error, shown above a
simulated point, becomes smaller when simulating larger systems. In addition,
the infinite system model approximates systems of moderate size well.
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Fig. 8. Observed probe rate for the finite system using a max-push strategy
with T = 2.

where 0 ≤ rmp < ∞ for λT+1/(1 − λT ) ≤ R < λT /(1 −
λT−1).

Proof: The mean response time D can be expressed as∑T
i≥1 πi/λ by Little’s law. For the max-push strategy the

overall probe rate R equals

R = π̇T

(
λ

1− λ
+ rmp

)
,

as the instantaneous transfer of an arrival to a queue with T
jobs requires 1/(1− λ) probe messages on average.

VI. NUMERICAL RESULTS FOR THE MAX-PUSH STRATEGY

A. Validation

In this section we validate the infinite system model for the
max-push strategy using the same approach as in Section IV-A
for the rate-based push strategy with T > 1. The rate rmp in
the simulation was determined using the relationship in (10).

The mean delay as a function of the number of nodes N
and the relative error are shown in Figure 7 for T = 2,
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Fig. 9. The mean delay for the rate-based push strategy (full lines) for
T = 1, . . . , 6 with R = 1. For each strategy, the probe rate r =∞ when λ
is below the load marked by a dot. The max-push strategy interconnects the
dots, as shown by dash-dotted curves.
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Fig. 10. The different areas identify the (λ,R) combinations for which the
rate-based pull strategy (with T = 1) is outperformed by the rate-based push
strategy with T = 1, by the rate-based push strategy with T ≥ 1 and by the
max-push strategy.

R = 1 and λ = 0.65, 0.7 and 0.75. Notice, the max-push
strategy with T = 2 and R = 1 is only properly defined
for λ ∈ [0.6180, 0.7549] due to (6), larger λ values would
result in the choice of a larger T value. The relative errors
are small (below 1% for N = 100 nodes) and decrease as N
increases. We should note that the probe rates observed during
the simulation are well above 1 for small N as illustrated
in Figure 8. Hence, the relationship in (10) for the max-
push strategy is less accurate than (5) for the rate-based push
strategy for small N . Nonetheless, the observed probe rate still
seems to decrease to 1 as N tends to infinity.

B. Comparison of pull and max-push strategy

The mean delay of the max-push strategy is depicted in
Figure 9. The dots represent the points where r =∞ for the
rate-based push strategy, i.e., the positive real roots of λT+1 +
(λT − 1)R = 0. The max-push strategy nicely interconnects
these points as it utilizes the remaining probe rate.

The combination of (λ,R) values for which the pull strategy
is outperformed by the rate-based push strategy with T = 1,
by the rate-based push strategy with T ≥ 1 and by the max-
push strategy, respectively, is shown in Figure 10. The pull
strategy is still the most effective for larger loads λ, however,
for a large range of (λ,R) values the delay of the pull strategy
can be reduced using a rate-based push strategy with T > 1
or a max-push strategy.

VII. FINITE VERSUS INFINITE SYSTEM MODEL

Similar to [8] for the rate-based strategies with T = 1,
we can define a family of density dependent Markov chains
[9] to describe the behavior of the stochastic finite systems
with N nodes for both the rate-based pull/push and max-push
strategy. In case of the max-push strategy convergence towards
the infinite system model over finite time scales follows from
Kurtz’s well-known theorem [9] and the convergence extends
to the stationary regime as we showed that the set of ODEs
given by (7)-(9) has a unique global attractor in ET , due to a
result by Benaı̈m [12].

For the rate-based pull/push strategy with T ≥ 1 we can
rely on the following generalization of Kurtz’s theorem [13,
Theorem 3.13]:

Theorem 9 (Kurtz). Consider a family of density dependent
CTMCs, with F Lipschitz. Let limN→∞X(N)(0) = x̃ a.s. and
let φt(x̃) be the unique solution to the initial value prob-
lem d

dtx(t) = F (x(t)) with x(0) = x̃. Consider the path
{φt(x̃), t ≤ T} for some fixed T ≥ 0 and assume that there
exists a neighborhood K around this path satisfying∑

`∈L

|`| sup
x∈K

β`(x) <∞, (11)

then
lim
N→∞

sup
t≤T

∣∣∣X(N)(t)− φt(x̃)
∣∣∣ = 0 a.s.

For the rate-based pull/push strategy, the above condition
(11) corresponds to showing that there exists an environment
K such that

∑
i≥2 supx∈K(xi − xi+1) < ∞. Such an envi-

ronment can be shown to exist by repeating the argument for
T = 1 from [14, Theorem 7]. To show that the convergence
extends to the stationary regime, we can make use of a theorem
by Benaı̈m and Le Boudec [15] as in the T = 1 case, where
the required proof for the tightness of the measures can be
proven as in [14].

VIII. CONCLUSION AND FUTURE WORK

In this paper we introduced a new class of rate-based pull
and push strategies that can match any predefined maximum
allowed probe rate R. This class relied on a threshold parame-
ter T such that jobs can only be exchanged between idle nodes
and nodes with a queue length exceeding T , where the class
of strategies introduced in [8] corresponds to setting T = 1.
We derived a closed form expression for the mean delay of
this new class of strategies in a homogeneous network with
Poisson arrivals and exponential job durations under the so-
called infinite system model.
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We showed that setting T = 1 is optimal for the pull
strategies considered, while for the push strategy setting T > 1
may reduce the mean delay for some values of (λ,R), i.e.,
for larger λ and smaller R values. We further introduced the
max-push strategy, which utilizes the remaining probe rate
capacity in case R > λT+1/(1 − λT ), derived a close form
expression for its mean delay and (numerically) identified the
(λ,R) region where it outperforms the pull strategy.

We proved that the infinite system models of both the rate-
based strategies with T > 1 and the max-push strategy, are
the proper limit processes of the finite stochastic systems with
N nodes as N tends to infinity over any finite timescale.
Moreover, the convergence was shown to extend to the station-
ary regime by proving that the ODEs have a global attractor.
We validated these theoretical results by simulation, and have
shown that the infinite model is an accurate approximation for
finite systems of moderate size.

The current results can be extended in a number of ways:
networks with finite queues can be considered (this actually
makes some of the technical issues less involved), the as-
sumptions on the arrival and service time distribution could be
relaxed (which makes the analysis more challenging) or het-
erogeneous networks could be studied. The class of strategies
considered in the paper can also be generalized. For instance,
it should be possible to incorporate another parameter B, such
that any node with a queue length below B is allowed to accept
push requests instead of only the idle nodes.
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APPENDIX A
PROOF OF THEOREM 3

We start by proving the following Lemma:

Lemma 1. Let x(t) be the unique solution of the set of ODEs
given by (1) to (3) with x(0) ∈ E. The L1-distance to the
unique fixed point

∑
i≥1 |xi(t) − π̄i| does not increase as a

function of t.

Proof: Define εi(t) = xi(t) − π̄i, for i ≥ 1, such that
Φ(t) =

∑
i≥1 |εi(t)| represents the L1-distance. As d

dtxi(t) =
d
dtεi(t) and π̄ is a fixed point of (1) to (3), we find

d

dt
ε1(t) = −ε1(t)(1 + λ)− rε1(t)(π̄T+1 + εT+1(t))

+ rεT+1(t)(1− π̄1) + ε2(t), (12)
d

dt
εi(t) = λεi−1(t)− (1 + λ)εi(t) + εi+1(t), (13)

for 2 ≤ i ≤ T , and

d

dt
εi(t) = λ(εi−1(t)− εi(t)) + rε1(t)(π̄i − π̄i+1)

− (εi(t)− εi+1(t))(1− rε1(t) + r(1− π̄1)), (14)

for i > T . Assume for now that εi(t) 6= 0 for all i such that
d
dtΦ(t) is properly defined as

d

dt
Φ(t) =

∑
i:εi(t)>0

d

dt
εi(t)−

∑
i:εi(t)<0

d

dt
εi(t).

If εi(t) has the same sign for all i, one finds that d
dtΦ(t) =

−|ε1(t)| by summing (12) to (14), we will show that this
inequality also holds in general. Let I = {i1, i2, . . .}, with
i1 < i2 < . . ., be the set of indices where εi(t) changes sign,
that is, εi−1(t) and εi(t) have a different sign if and only if
i ∈ I . Assume ε1(t) < 0 and let Ik = {i ∈ I : i ≤ T + 1},
Im = {i ∈ I : i > T + 1},

By means of (12) to (14), we find that if εi−1(t) and εi(t)
differ in sign, d

dtΦ(t) contains an extra term given by

sign(εi(t))2(λεi−1(t)− εi(t)),

for i = 2, . . . , T + 1,

sign(εi(t))2[λεi−1(t)+rε1(t)π̄i−εi(t)(1−rε1(t)+r(1−π̄1))],

for i > T + 1. Further, if ε1(t) and εT+1(t) differ in sign,
d
dtΦ(t) contains an extra term given by

sign(εT+1(t))2r[ε1(t)(π̄T+1 + εT+1(t))− εT+1(t)(1− π̄1)].
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This implies that for ε1(t) ≤ 0

d

dt
Φ(t) = ε1(t)︸︷︷︸

≤0

+α

+ 2
∑
i∈Im

sign(εi(t)){λεi−1(t)− εi(t)(1 + r(1− π̄1))}︸ ︷︷ ︸
≤0

+ 2
∑
i∈Im

sign(εi(t)){rε1(t)(εi(t) + π̄i)}

+ 2
∑
i∈Ik

sign(εi(t)){λεi−1(t)− εi(t)}︸ ︷︷ ︸
≤0

where α is equal to

2rε1(t)(εT+1(t) + π̄T+1)− 2εT+1(t)r(1− π̄1)︸ ︷︷ ︸
≤0

.

if εT+1(t) > 0 and zero otherwise.
Hence, d

dtΦ(t) ≤ ε1(t) provided that∑
i∈Im

sign(εi(t))(εi(t) + π̄i) =
∑
i∈Im

sign(εi(t))xi(t) ≥ 0,

if εT+1(t) ≤ 0 and

xT+1(t) +
∑
i∈Im

sign(εi(t))xi(t) ≥ 0,

if εT+1(t) > 0.
Let Im = {i0, i1, . . .}. In case εT+1(t) ≤ 0, the

sign(εin(t)) is equal to 1 for n even and −1 for n odd. Hence,
the condition reduces to∑

k≥0

(xi2k(t)− xi2k+1
(t)) ≥ 0,

which holds as xi(t) ≥ xj(t) for i < j. Similarly, if εT+1(t) >
0, the sign(εin(t)) is equal to −1 for n even and 1 for n odd.
Hence, the condition reduces to

(xT+1(t)− xi0(t)) +
∑
k≥0

(xi2k+1
− xi2k+2

) ≥ 0,

which again holds as xi(t) ≥ xj(t) for i < j.
Hence, d

dtΦ(t) ≤ −|ε1(t)| if ε1(t) ≤ 0. A similar argument
can be used for ε1(t) ≥ 0.

Finally, the technical issue of defining d
dtΦ(t) in case

εi(t) = 0 for some i and t = t0, can be resolved as in [14].

The above lemma shows that the L1-distance to the fixed
point does not increase along any trajectory x(t) in E, and
can only remain the same whenever x1(t) = π̄1 and there are
no sign changes in the εi(t)’s.

Lemma 2. The only trajectory x(t) of the ODEs given by
(1) to (3) with x(0) ∈ E for which the L1-distance does not
decrease is given by x(t) = π̄ for all t.

Proof: From the proof of Lemma 1, we know that x1(t) =
π̄1 = λ for all t, whenever the L1-distance does not decrease.

Equation (1) therefore implies that xT+1(t) = λ2−x2(t)
r(1−λ) on

such a trajectory. Hence, if x2(t) = π̄2 + c, then

xT+1(t) =
λ2 − π̄2(t)

r(1− λ)
− c

r(1− λ)
= π̄T+1 −

c

r(1− λ)
.

Hence, ε2(t) = x2(t) − π̄2 and εT+1(t) = xT+1(t) − π̄T+1

differ in sign unless x2(t) = π̄2 and xT+1(t) = π̄T+1. The
fact that x(t) = π̄ on such a trajectory now follows from (1)
to (3).

We now recall La Salle’s invariance principle for Banach
spaces, where a (positively) invariant subset of K ⊂ E of an
ODE defined on E is such that x(t) ∈ K for all t provided
that x(t) is the unique solution of the ODE with x(0) ∈ K.

Theorem 10 ( [16]). Let V (x) be a continuous
real valued function from E to R with d

dtV (x) =
lim supt→0+

1
t (V (x(t)) − V (x)) ≤ 0, where x(t) is

the unique solution of an ODE with x(0) = x. Let
K = {x ∈ E| ddtV (x) = 0} and let M be the largest
(positively) invariant subset of K. If x(t) is precompact (i.e.,
remains in a compact set) for x(0) ∈ E, then

lim
t→∞

dist(x(t),M) = 0,

where dist(x,M) represents the Banach distance between the
point x ∈ E and the set M ⊂ E.

Using La Salle’s invariance principle, Theorem 3 can be
proven analogously to [14, Theorem 3] with V (x) equal to
the L1-distance.

APPENDIX B
PROOF OF THEOREM 8

We start by proving the following Lemma:

Lemma 3. Let x(t) be the unique solution of the ODEs given
by (7) to (9) with x(0) ∈ ET . The L1-distance to the unique
fixed point

∑
i≥1 |xi(t)− π̇i| does not increase as a function

of t.

Proof: Using the same definitions as in Appendix A, we
find

d

dt
ε1(t) = λ(εT (t)− ε1(t))− (ε1(t)− ε2(t))

+ rεT (t)(1− (ε1(t) + π̇1))− rπ̇T ε1(t), (15)
d

dt
εi(t) = λεi−1(t)− (1 + λ)εi(t) + εi+1(t), (16)

for 1 < i < T , and

d

dt
εT (t) = λ(εT−1(t)− εT (t)) + rε1(t)π̇T

− εT (t)(1 + r(1− (ε1(t) + π̇1))). (17)

Assume for now that εi(t) 6= 0 for all i such that d
dtΦ(t) is

properly defined. If εi(t) has the same sign for all i, one finds
that d

dtΦ(t) = −|ε1(t)| by summing (15) to (17), we will show
that this inequality also holds in general. If εi(t) and εi−1(t)
differ in sign, d

dtΦ(t) changes by

sign(εi(t))2(λεi−1(t)− εi(t)),



10

for i = 2, . . . , T , while a difference in sign between the terms
ε1(t) and εT (t) creates a term of the form

sign(εT (t))2{λεT (t) + rε1(t)π̇T − εT (t)r(1− (ε1(t) + π̇1))}.

Assume ε1(t) ≤ 0, then we find

d

dt
Φ(t) = ε1(t)︸︷︷︸

≤0

+α+ 2
∑
i∈I
{sign(εi(t))(λεi−1(t)− εi(t))︸ ︷︷ ︸

≤0

}

(18)

where α is equal to

α = −2λεT (t)︸ ︷︷ ︸
≤0

−2rεT (t)(1− (ε1(t) + π̇1))︸ ︷︷ ︸
≤0

+ 2rπ̇T ε1(t)︸ ︷︷ ︸
≤0

.

(19)

if εT (t) > 0 and α = 0 otherwise. Hence, d
dtΦ(t) ≤ ε1(t). A

similar argument can be used for ε1(t) > 0 by reversing all
the signs.

As in Appendix A, the technical issue of defining d
dtΦ(t)

in case εi(t) = 0 for some i and t = t0 is resolved by relying
on the upper right-hand derivative (as in [1, Theorem 3]).

The above lemma shows that the L1-distance to the fixed
point does not increase along any trajectory x(t) in ET , and
only remains the same whenever x1(t) = π1 (as ε1(t) = 0 in
such a case).

Lemma 4. The only trajectory x(t) of the ODE given by (7)
to (9) with x(0) ∈ ET for which the L1-distance does not
decrease is given by x(t) = π̇ for all t.

Proof: If x1(t) = π̇1 = λ for all t, then (7) implies that
xT (t) = λ2−x2(t)

λ+r(1−λ) and the proof proceeds as in Lemma 2.
Using La Salle’s invariance principle for Banach spaces as

given by Theorem 10, we can now prove theorem 8:
Proof of Theorem 8: We rely on La Salle’s invariance

principle for Banach spaces by setting V (x) equal to the L1-
distance to the fixed point, i.e., V (x) =

∑T
i=1 |xi−π̇i|. Lemma

3 implies that d
dtV (x) ≤ 0, while Lemma 4 shows that M =

{π̇} is a singleton. Hence, π̇ is a global attractor since ET
itself is a compact set and all trajectory are contained within
ET by definition.


