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ABSTRACT

We consider a two echelon supply chain where desirggailer holds an inventory of finished
goods to satisfy an i.i.d. customer demand, andglesmanufacturer produces the retailer’s
replenishment orders on a make-to-order basis.obfective of this paper is to analyse the
impact of the retailer’'s replenishment policy otatsupply chain performance. We consider
two strategies with regard to the production cagadh a flexible capacity strategy, the
manufacturer invests in excess capacity to guagaotmstant lead times in order to keep
inventories low. The amount of investment dependsthe retailer's order pattern. In an
inflexible capacity strategy, the capacity is liedt and independent of the retailer's
replenishment decision. This results in stochdstid times, thereby inflating the retailer’s
inventory requirements. We treat the variabilityttoé order rate of the retailer as the primary
decision variable to minimise total supply chaistso The objective is to find the value of the
replenishment parametgr (parameter to tune the order variability) that imises total
supply chain costs in a flexible and inflexible aajy scenario.

Keywords: production and inventory control, supply chain peniance, bullwhip, queueing,
capacity-inventory trade-off

1. INTRODUCTION

We consider a two echelon supply chain with a singitailer and a single manufacturer.

Every period, the retailer observes customer demHrttiere is enough on-hand inventory

available, the demand is immediately satisfiedholf, the shortage is backlogged. To maintain
an appropriate amount of on-hand inventory, thailetplaces a replenishment order with the
manufacturer at the end of every period.

The manufacturer does not hold a finished goodsritory but produces the retailer's orders
on a make-to-order basis. The manufacturer's ptadusystem is characterized by a single
server queueing model that sequentially processetdered units one by one on a first-
come-first-served basis. When the production ig/ptie orders join a queue of unprocessed
orders. Once the complete replenishment order eglymed, it replenishes the retailer's

inventory. The time from the moment an order ixpthto the moment that it replenishes the
retailer's inventory, is the replenishment leadetini,. The production process at the



manufacturer implies that the retailer's replenishiMiead times are stochastic and correlated
with the order quantity.

We examine two important problems in the two echedgstem described above. First, we
examine the order variability at the retailer (d@mipg or amplification). Second we examine
the capacity strategy of the manufacturer (flexilole inflexible). It is clear that both
subsystems interact through the stochastic nafutiegedead times and consequently impacts
the customer service of the retailer. The majortrdmution of this paper is the simultaneous
treatment of both subsystems so that total sugpynccosts are minimised.

Let’s briefly introduce the two problems mentioradzbve.

First we have the order variability at the retalkerel. Lee et al. (1997) describe a problem
frequently encountered in supply chains, called Ibvdwhip effect: demand variability
increases as one moves up the supply chain. darhified order variability can have large
upstream cost repercussions. Balakrishnan et@04j2emphasize the opportunities to reduce
supply chain costs bylampeningorder variability. However, despite the fact thhe
manufacturer benefits from smooth production, tetsj driven by the goal of reducing
inventory costs, prefer to use replenishment pedichat chase demand rather than dampen
customer demand variability. Dampening variabilityorders may have a negative impact on
the retailer's customer service due to inventornjanae increases (Disney and Towill 2003).
In this paper we analyse the impact of order vditglamplification vs. dampening on the
performance of a two-echelon supply chain.

Second we have the capacity structure of the matwrkxr. The retailer's replenishment
orders load the manufacturer's production systera.ddhsider two strategies with regard to
the production capacity. The first is feexible capacitystrategy. This means that the
manufacturer invests in excess capacity in ord@reduce each order within the period after
it was placed. It is clear that when the orderstilate wildly, the capacity investments will be
larger compared to the situation where the orddepais flat. At the same time the inventory
costs for the retailer are in this scenario lovesiavery order is replenished in the period after
it was placed (zero lead times).

The second strategy is anflexible capacitystrategy, i.e., the manufacturer's capacity
remains at a fixed level, irrespective of the tet& order pattern. The manufacturer’s
capacity level may be lower than the maximum pdssabder quantity. As a result, when the
available capacity in a period is insufficient wnplete production of an order, then the next
period’s capacity is used to continue productionhi$ order. The manufacturer delivers the
retailer’'s orders as soon as the total order islyggged, implying that lead times are variable
and can be strictly positive. Moreover, when thriter sends a volatile order pattern to the
production queue, production (and delivery) leates will be longer and more variable than
when the retailer sends a constant order patterpraduction. This in turn affects the
retailer’s inventory requirements.

In this paper we treat the variability of the ordate of the retailer as the primary decision
variable to minimise total supply chain costs. Tgeper is organized as follows. In the
remainder of this section we introduce an exampkgive a legend of variables/parameters
used in the text and we provide a summary of teeraptions of the model. In section 2, we
discuss in greater detail the flexible/inflexiblapacity scenarios. Section 3 is devoted to the
downstream inventory policy and its impact on ordariance. In section 4 we examine the
lead time distribution and the net stock distribnti Section 5 describes the trade off by
means of a total cost function, which we illustratith a numerical example in section 6.
Section 7 concludes.



1.1. An example

The primary purpose of this paper is to offer mamed insight into a supply chain
coordination problem. The situation we have in migdh the fast moving consumer goods
industry. We focus on products requiring short léates from the manufacturer because of
the short life time of the product. Boute et aD@8) describe the case of a bakery company
focusing on authentic specialties in the biscud aake market. We have retailers on the one
hand and an industrial bakery on the other hangeriSihe specific packaging requirements of
retailers, the bakery employs a make-to-order polkor new product introductions (e.g.
biscuit pasta) the bakery has to install new maalyiand has to decide on the capacity level.
We are interested in the interaction between cépdeiad-time distribution, replenishment
rules and customer service. This situation doesonbt arise in the fast moving consumer
goods industry but is quite common in many othdusirial settings especially when capacity
expansion decisions have to be made because opraglMct introductions. There are many
examples of incorrect estimation of the capacitipdanstalled for new product introductions.

1.2.Legend of frequently used variables and parameters

D : random variable describing the customer demanth y(-) the corresponding
discrete probability functiork(D) the long term average demand, &g, andDnax
the resp. minimum and maximum demand size

* GC;:inventory holding cost per unit, per perjdg}, : per unit shortage cost

* C(K) : the linear capital expenditure functidfthe size of the capacity investment

* Gy : the fixed capacity investment co§l; : marginal capacity investment co§lp :
cost per unit overtime production

e M : the production time per unit

* p:average utilisation rate of the manufacturertsdpction system

* Ty: the replenishment lead time

* [ :smoothing parameter in the replenishment rule

* O : order quantity placed at the end of period

* NS: on hand inventory at the end of period

* |IP;: inventory position at the end of peribd

» SS :safety stock

* DIP : desired inventory position

S: base-stock level

1.3. Assumptions

The sequence of events in a period is as followst Feceive goods from the upstream
partner, then observe and satisfy demand andyipdce a replenishment order.
Customer demand is independently and identically distributed d@i.).over time with an
arbitrary, finite, discrete probability distributidunctionfp(:).

If the inventory on hand at the end of the permgasitive(NS > 0), a holding cost;,
per unit is incurred to carry inventory to the ngsriod. If the inventory on hand is
negative(N§ < 0), a backlog cost;, per unit shortage is incurred.

The production (“service”) tim# of a single unit is deterministic. To ensure digb{of
the queue), we assume that the utilization of thedyction facility (average batch
production time divided by average batch interairiime) is strictly smaller than one.
Define the capacitK as the number of units that can be produced irersogh The
capacity investment cost function is given®K) = Gy + Ck ‘K, whereCy, represents the
fixed capacity investment cost a@ is a constant, marginal capacity investment cost.



When the installed capacity is insufficient, a w@h be produced in overtime capacity at
extra cosiCp. We assume thdix < Cp, otherwise it would never be optimal to invest in
capacity. The capital expenditure function willdiscussed in detail in section 2.

» The manufacturer operates a make-to-order polidydames not incur a setup time or cost.
We assume highly automated equipment where setupstiare non-existing. This
assumption eliminates the batching decision atthapufacturing level.

In Fig. 1 we graphically represent the cost fundio
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Figure 1: Cost structure of our model

2. FLEXIBLE / INFLEXIBLE CAPACITY

In this section, we will discuss the capacity sceEsain greater detail. In our model a key
role is played by the capital expenditure funci@(K) = Co + Cx ‘K. A good summary of the
consequences of this function can be found in Vaeghkem (2008). This cost function
allows us to model economies of scale; this mehatsdosts grow sub-linearly, either due to
the presence of a fixed cost component or due dcedsing marginal costs. We use the fixed
cost model in this paper. An extension to the desirgg marginal cost model (by using power
functions) is straightforward. As is indicated byavMieghem (2008)C, refers to all costs
independent of the size of the capacity (costslarippng a capacity expansion, the selection
process, real estate, administrative overheadCy.Jyefers to the marginal cost or the cost to
add one unit of capacity. In our bakery examplerttaginal cost depends on the size of the
oven and/or packaging machines. The capacity uajt be expressed in tons per time unit in
our example.

2.1.Flexible Capacity — impact on capacity investment
Suppose the retailer wants the manufacturer torelethe replenishment orders within the
period after the order was placed (i:B = 0), then the production capacity has to be large
enough to complete the production of each replemsit order within one time period. A key
trade-off in capacity strategy is balancing the gival cost of installed capacix with the
cost of capacity shortage (Van Mieghem 2008). Inaaise a capacity shortage implies a unit
production in overtime capacity at c@t

The installed capaciti( is the number of units that can be produced ieréod, andM is
the production time of a single unit, expressed dgaction of a period, ok = M™Y. The
capacity shortfallin a given period measures how much of the pesiaafder quantity
exceeds available capacity, or equivalently, thaler of units that are produced in overtime
in that period.

When the installed capacity is equal to the averagier quantity,K = E(O), the
manufacturer experiences capacity shortfalls Hatlfie time, resulting in frequent production



in overtime if the order pattern is volatile. THere, it may be worth to invest in extra
capacity above the average order quantity, in otdecounter the negative impact of
volatility. The purpose of the “excess” capacitytds provide asafety capacityo capture
higher-than-expected orders. When the order vilatihcreases, the expected capacity
shortfall will increase, but an investment in spfeapacity can strongly reduce this capacity
shortfall (Van Mieghem 2008).

An alternative strategy is to set the capacity equahe maximum order quantit =
Omax SO that the capacity shortfall is zero and themo production in overtime. This would
be a plausible strategy when the cost of produdtiavertime is extremely large or when no
overtime capacity is available. However, if for taxsce the order quantity reaches its
maximum only occasionally, it may turn out cheaperinstall a capacityfK < Omax and
occasionally produce in overtime capacity at €ist

It is clear that the decision to determine theropticapacity siz&” depends both on the
relative cost of invested capacity versus the obsivertime production, and the distribution
of the replenishment orders placed by the retailer.

2.2.Inflexible Capacity — impact on lead times
The situation is totally different in the inflexéblcapacity scenario; when the available
capacity in a period is insufficient to complet®ghuiction of an order, then the next period’s
capacity is used to continue the production of thider. There is no production in overtime
and the production of an order may be spread oseeral periods, so that lead times are
variable and can be strictly positive.

As the retailer’'s replenishment orders load the ufesturer's production, the nature of
this loading process relative to the available capand the variability it creates determine
the (production/replenishment) lead times. We distiextend a pure inventory system with
exogenoudead times to a production-inventory system wethdogenoudead times. The
retailer's inventory replenishment lead times armendogenously” determined by the
manufacturer’s production with limited capacity.

T

Order quantity

Manufacturer’'s
gueueing system

Retailer’s
Inventory
control

»

Sojourn time in queueing system
Safety stock = replenishment lead time

\/

Figure 2: Interaction between retailer's inventoryand manufacturer's production

In Fig. 2 the interaction between the retailerigleaishment policy and the manufacturer's
production system is illustrated: the replenishmgolicy generates orders that define the
arrival process at the manufacturer’s queue. The tintil the order is produced (the sojourn
time in the queueing system), is the time to replerthe order. Hence, when the retailer
amplifies the order variability, this implies a reovariable arrival pattern at the production
gueue, leading to longer and more variable leaddiatcording to the laws of factory physics
(Hopp and Spearman 2001). Dampening the variahilityhhe order pattern results in shorter
and less variable lead times. This replenishmextt tene is a prime determinant in setting the
safety stock requirements for the retailer.



3. DOWNSTREAM INVENTORY POLICY

3.1. Replenishment rule
Given the common practice in retailing to repleniskentories frequently (e.g. daily) and the
tendency of manufacturers to produce to demandpaes on periodic review, base-stock or
order-up-to replenishment policies.

The standardperiodic review base-stock replenishment policyhis(R,S)policy. At the
end of every review peridd, the retailer tracks his inventory positit#, which is the sum of
the inventory on hand (that is, items immediatefgilable to meet demand) and the inventory
on order (that is, items ordered but not yet adidee to the lead time) minus the backlog
(that is, demand that could not be fulfilled andl $tas to be delivered). A replenishment
order is then placed to raise the inventory pasitdan “order-up-to” or “base-stock” level S,
which determines the retailer’s order quantity emipd t:

O=S-IR. 1)

The base-stock lev@ is the inventory required to ensure a given custoservice level.
Orders are placed evefy periods and after an order is placed, it takeperiods for the
replenishment to arrive. Hence the risk period (ihge between placing a replenishment
order until receiving the subsequent replenishnoedér) is equal to the review period plus
the replenishment lead tinfe + T,. Since customer demand is i.i.d., the best estirofall
future demands is simply the long term average aenta(D). Consequently, the base-stock
level equals

S =[E(Tp) + R] - E(D) + SS (2)

with SSdenoting the retailer's safety stock.

In the remainder of this paper we assume thatelew periodR is one base period, i.e.,
we place an order at the end of every period, amtib the standard Beer Game setup
(Sterman 1989). Substituting (2) into (1) we obtain

O = E(D) + E(T) - E(D) + SS - IP
= E(D) + [DIP - IR], 3)

whereE(T,) - E(D) + SScan be seen as tdesiredinventory positiorDIP, which is the sum
of the desired pipeline stock and desired net stdbtle difference between the desired and
actual inventory positio[DIP — IP{] is denoted as thaventory positiordeficit

Magee (1958) and Forrester (1961) introduceopgational controlleg into the inventory
deficit, resulting in the followingeneralisedrder-up-to policy:

O, = E(D) + - [DIP - IP{, (4)

with 0 < g < 2. Forrester (1961) refers tbf as the "adjustment time". Wheh< 1 he
explicitly acknowledges that the deficit recovehpsld be spread out over time, whergas
implies an overreaction to the inventory deficithig replenishment rule is particularly
powerful (Disney and Towill 2002) as it encompaseas the way people play the Beer
Game (Sterman 1989, Naim and Towill 1995), a gdneaae of order-up-to policies and
many variants of it (Dejonckheere et al. 2003), wilth fine tuning it can reflect Materials
Requirements Planning (Disney 2001). This “propoe! order-up-to” policy is also



equivalent to the “full-state order-to-up” policgéalman and Disney, 2006), assuming, as we
do, an i.i.d. demand process.

3.2.Order variance amplification/dampening
When customer demand is i.i.d., the generalisetemeghment policy generates an auto-
correlated order pattern (see appendix A), given by

O=(1-p) Oa+pDr. ®)

From this order “path” over time we can derive gteady state distribution of the order
quantities given the finite, discrete demand disiion fp(-). Let us denote the order
distribution byfo(-) and its corresponding cumulative order distributy Fo(-).

Observe that whefi > 1, the order pattern is negatively correlated ared ganeralised
order-up-to policy may generate negative order tjtiesn Since in our model it is not
possible to send negative orders to productionhawe to preclude the possibility of negative
orders. The following restriction on beta given thsimum and maximum demand ensures
thatO; > 1 (see appendix B):

Dmin + (1 _ﬂ) : Dmaxz 2 _ﬂ- (6)

To examine the variability in orders created by dbkaeralised order-up-to policy, we look
at the ratio of the variance of the orders overwagance of demand (in the literature this
variance ratio is commonly used as a measure mthlwhip effect). This can be easily
derived from Eqgn. (5):

Var(O) _ £
Var(D) 2-8°

()

Hence, if we do not smooth, i.e.fif= 1, these expressions reduce to the standard base-
stock policy, wher&; = D;: we chase sales and thus there is no variancefeaipbn. For
1< B < 2 we create bullwhip (variance amplification) and @o< § < 1 we generate a smooth
replenishment pattern (dampening order variability)

4. DETERMINATION OF LEAD TIMES AND INVENTORY

4.1. Determination of lead time distribution
The replenishment orders loading the productioniesysare characterised by Eqn. (5). By
analysing the characteristics of these replenistneeders, we implicitly analyse the
characteristics of the production orders that aravthe manufacturer's production system. As
we can see from Eqgn. (5), the generalised orddoymlicy generates batch arrivals with a
fixed interarrival time (equal to the review peri®l= 1) and with variable (auto-correlated)
batch sizes.

Based ommatrix analytic method&\euts 1981, Latouche and Ramaswami 1999), Bdute e
al. (2006) developed a discrete time gueueing mtal@stimate the lead time distribution
given a batch arrival process with a fixed intavailrtime and positively correlated batch
sizes. In their queueing model, production timesrase type (PH) distributed. We can use
their methodology to find the lead time distribution our production model, since a PH
distribution can also be used to model determmistoduction times, as we assume here. In
addition we extend their model for negatively ctated batch sizes, which is the case when



p>1 (see Eqn. (5)). We do take restriction (6) intocamt in order to avoid negative batch
sizes.

This queueing analysis returns the lead time istion fr,(-) for each value of. In other
words, we use the methodology for determining #ael ltime distribution, described in Boute
et al. (2006), and we use this result to incorpoitain a supply chain coordination mechanism
in a flexible or inflexible capacity scenario.

4.2. Determination of inventory distribution
When demand is probabilistic, there is a definliance of not being able to satisfy some of
the demand directly out of stock. Therefore, a dwufir safety stock is required to meet
unexpected fluctuations in demand. We characteéhieaetailer’'s inventory random variable
and use it to find its safety stock requirementse b the production process, lead times are
stochastic and as a consequence we do not knowhewden a replenishment occurs.

We monitor the inventory on hand at the end of y\ymariod, after customer demand is
observed and after a replenishment order has Haead At the end of periddthere may be
k > 0 orders waiting in the production queue and theralways 1 order in service (since the
observation moment is immediately after an ordac@ment) which is placddperiods ago
(Orwk). Note thatk is a function of, but we write k as opposed k¢t) to simplify the notation.
In appendix C we show that the net stock distrdoutian then be written as

N§=SS-4 (8)
with , = 3D, ~E(T,) EE(D) + 3. - A) ™ D, - E(D)). ©

The evolution ofZ; determines the evolution of the net stdd§. Since E(Z) = 0,
E(NS)=SSBy means of the Markov process of the above rapatl queueing model, Boute
et al. (2006) develop an algorithm to find the dieatate distribution oZ;, denoted by(").
The exact analysis is not straightforward due ® ¢brrelation between the different terms
that make upz. The value oDy influences the age k of the current order in servihe
larger the demand size, the larger the order smk aGbnsequently the longer it takes to
produce the order. Moreover, since the order quyaistialso affected by previously realised
demand terms (see Eqn. (5)), the demand t&ms > k + 1 also influence the order’s ade,

Given the distribution o¥, the amount of safety sto&Sdetermines the corresponding
inventory distributionfyg-). The value ofSSis a decision variable and depends on the cost
structure and the distribution @f(see section 5). Sinégis function off, SSis also impacted
by the value of.

In the flexible capacity scenario each replenishinoeder is produced within the period
after it is placed, so that the production queualhgays empty when an order is sent to
production, ok = 0in Eqn. (9). Moreover, since the lead tife= 0, Z simplifies to

z.=5 (- 5} (D, ~E(D)). (10

i=0

and its steady state distributié) can be found from the compound demand distribution



5. SUPPLY CHAIN PERFORMANCE

In this section we measure the impact of the mmtailorder decision (order variance
amplification/dampening) on total supply chain pemiance. We consider the inventory costs
at the retailer and the capacity costs at the naetwfer, and search for the value of the
replenishment parameted that minimises total supply chain costs for thexithle and
inflexible capacity scenarios. In the next sectmom illustrate our analysis with a numerical
example.

5.1. Cost function
The capacity costs include the capacity investnoest given byC(K), and the number of
units that are produced in overtime in a periodi¢Wwhs zero in the inflexible capacity
scenario). The inventory costs per period congist folding cost to keep a unit in inventory
for a unit of time and a backlog cost for everytwfidemand that can not be immediately
fulfilled from the inventory on hand. Hence the @mory costs equdl, - NSif NS> 0, and
Cp - (-NS)if NS< 0. It is however more elegant to write the net st€as a function of the
safety stockSSand the distribution oZ: NS = SS — Z Inventory and capacity costs are
minimised by finding the optimal values for theetgifstockSS and the installed capaciky:

Civ (SS,2) = min{ Cn- E[(SS = Z)] + Co-E[SS-Z) ]} (11)
Cear (K', 0) = min{ C(K') + C,- E[(O —K)*]} when capacity is flexible
K
= min C(K') when capacity is inflexible. (12)
K
The inventory and capacity costs depend on theillision functions of respZ and O,
which are both function of the replenishment part@mg The cost-minimisation problem can

then be formulated as finding the optimal valuegoivhich minimises the sum of total
inventory and capacity costs:

mBin{ Cinv (SS, Z) + Ceap(K', O) L. (13)

5.2.Flexible Capacity Strategy

a) Optimal safety stockS that minimises inventory costs for a givén

The inventory cost function
Cinv = Cn- E[(SS - 2Z)] + Cy E[(SS - Z] (14)

is minimised by the critical fractile value, whigimovides the optimal stock out probability
(Zipkin 2000):

Pr(NS <0) =G/ (G, + Cp). (15)
The safety stock that corresponds to this stoclpmbability minimises the inventory costs:

Pr(Z<SS)=Cy/ (Cy+ Cp)
SS=Fz%Cy/ (Cy + Cp)), (16)



whereFz() denotes the cumulative distribution functionZofSubstitutingSS into Egn. (14)
provides the lowest inventory cost for a given eatdis.

Clearly, asZ becomes more volatile, the optimal safety stodke/8S increases, and the
inventory costs increase as well. From the stegalg slistribution of Z given by Egn. (10),
we find that

Var(Z) = Var(D)- 1/5(2 -p) . a7

Hence,Z has a higher variance as we dampen the orderpgite 1) or as we amplify the
orders(f > 1), compared to a pure chase sales pdjicy 1). As a result the inventory costs
increase as we dampen or amplify the order varjaarue are minimal whefi = 1.

b) Optimal capacity siz& that minimises capacity costs for a giyen

In order to produce each order within one time qukrithe manufacturer has to invest in
capacity. The objective is to determine the insthtapacity, defined as the number of units
that can be produced per period, which minimisesctipacity cost function, given by

Ceap= Co+ Ck - K + Cp- E[(O — K)']. (18)

The optimal capacity siz&” that minimises this capacity cost function, saisfa
newsvendor solution. Van Mieghem (2008) shows thatoptimalcapacity sizing condition
is given by:

Pr(0 > K') = Cx / Cp, (19)
which in turn defines the optimal capacity size as

K'=Fo'((Cp— Gq) / Cp), (20)
with Fo(*) the cumulative order distribution function.

When the order sizes fluctuate wildly, it is prefele to invest in more capacity since there is
more need for production in overtime, which is mudore expensive than a capacity
investment itself. When the order pattern is ftag optimal capacity size Kwill be lower
since there is less need to produce in overtime. dptimal capacity size therefore depends
on the retailer’'s ordering decision to amplify @nagpen the order variance. Since the order
pattern increases in variability #increases, the optimal capacity investmentakid its
corresponding capacity cosIsap increase ag increases.

c) Value ofp that minimises total supply chain costs

For a given value of the replenishment paramgige described how to find the valueskof
andSS that minimise resp. the capacity and inventoryts:ds order to find the valyg that
minimises total supply chain costs, we add up mientory and capacity costs corresponding
to the optimal values df* andSS. Note that there is no interaction between invgnamd
capacity costs. Changing the capacity investmestritaimpact on lead times in a flexible
capacity strategy, since every order needs to bdused within the order after it was placed.
Hence safety stocks are not affected by capacitysiments and can be treated independent
of capacity investment decisions.

10



If we add up capacity and inventory costs, we obthe following dynamics in the total
cost function. On the one hand, inventory costsashoU-shaped convex function of the
parameterg with a minimum inpg=1; both order variance amplification and dampening
increase inventory costs compared to the chase paley. The capacity costs, on the other
hand, increase gkincreases; compared to the chase sales policgathecity costs are lower
when order variance is dampened and higher whearttex variance is amplified.

Hence, dampening the orderg<{) may reduce total supply chain costs in case the
decrease in capacity costs outweighs the increaswentory costs. If dampening the orders
leads to an increase in inventory costs, whiclrngdr than the decrease in capacity costs, it is
preferable not to dampen any further. In other wptte extent to which we should smooth
the order pattern depends on the relative costapfacity and inventory. Note that
amplification,f>1, always leads to higher inventory and capacity s;astespective of the

cost parameters.
5.3.Inflexible Capacity Strategy
a) Optimal safety stockS that minimises inventory costs for a givén

Analogous to the flexible capacity strategy, thiesastock SS* that minimises inventory
costs, is given by

SS =FzXCy/ (Cy + Cp)). (21)

In this case howeveg, is the steady state distribution Afgiven by Eqn. (9), which
has a more complex function than Eqn. (10). Theidigion of Z is now affected by in two
ways. First, similar to the flexible capacity ségy, the order variance has an impact on the
variance ofZ. Fluctuations are minimal in a pure chase poligy= 1), and variability
increases when orders are dampe(ed& 1) or amplified (8 > 1). But in the inflexible
capacity strategy there is also a second factoiirtiizacts the distribution &. The value off
also affects the lead time distribution; lead tinmesease ag increases due to the increased
variability in the order pattern. As a consequermégr variance dampening leads to lower
and less variable lead times, exercising a compiagsaffect on the required safety stock. At
the same time, order variance amplification incesabe inventory variability &nd increases
lead times, reinforcing the increased safety stegkirements.

b) Optimal capacity siz& that minimises capacity costs for a giyen
The capacity level remains fixed in the inflexilb@pacity strategy, independent of the order
decision. Since there is no production in overtithe,capacity cost function, reduced to

Cepp=Co+ Ck - K (23)

is minimised when the installed capaditys as small as possible. However, in order toinbta

a stable system, the capacity investmierttas to be larger than the average order quantity
E(O). This ensures that the average utilisation ratth@fmanufacturer’'s production system,
p, is smaller than one.

c) Value ofp that minimises total supply chain costs

For a given value of the replenishment paramgtere described how to find the val&S
that minimises inventory costs. Capacity costsnairemised when the installed capacity is as
small as possible, provided that it exceeds theamee order quantity. However, in an
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inflexible capacity strategy there is an interattibetween the capacity investment and
inventory costs. The installed capacity determitmesproduction load, which has an impact
on lead times. A large capacity investment redubesproduction load, so that production
(queueing) lead times are shorter. These lead timesirn determine safety stocks and
corresponding inventory costs.

Hence, in order to find the value gfthat minimises total supply chain costs, we maty no
simply add up the inventory and capacity costs dmtespond tdK* and SS* due to the
interaction between both. We need to trade-off ciyand waiting, which is in this case a
capacity-inventory trade-affFor instance, as inventory costs are relativelgap, it is
preferable not to invest in too much capacity arelead hold more inventory. A high cost of
inventory on the contrary increases the need fgacidy investment in order to keep
inventory holdings low.

In order to seek the lowest total supply chain Lo8te assume a capacity siKeand
measure the impact ¢gf on the inventory costs. Order variance amplifmatincreases
inventory variability and lead times, blowing upethnventory costs. Order variance
dampening result in shorter and less variable temds compared to the chase sales policy,
which may compensate the increase in inventoryabdity. Hence, depending on the lead
time impact, inventory costs may be lowered by sfmog the replenishment orders to some
extent. If we smooth too much however, the leacetimmduction may not compensate the
increase in inventory variability anymore.

To trade-off the cost of capacity against the obstventory, we change the capacity level
K and measure its impact on inventory costs. Haarcthat lead times (and inventory costs)
decrease as the capacity investmknincreases, since this decreases the utilizatitey ra
However, due to the complexity of our queueing nha@de cannot quantify the exact relation
between the utilization rate and lead times anadllii. Hence by means of a search procedure
we determine the optimal capacity skethat minimises total supply chain costs. Obviously
the value oK™ depends on the relative costs of capacity anchiovg.

6. NUMERICAL EXAMPLE

To illustrate our analysis, we consider the follovinumerical example. A retailer daily
observes a customer demand which is randomly loliged between 21 and 40 units with an
average of 30.5 units and a standard deviation.®f The retailer replenishes his inventory
with the generalised replenishment rule, i.e., laegs orders at the end of every day etpal
O: = E(D) + g - [DIP — IP{] (see Eqn. (4)).

When the replenishment parameges 1, the retailer sends a smooth, positively correlate
order pattern to the manufacturer (dampening segnalvhenf > 1, the order pattern is
negatively correlated with a larger variance thiae observed customer demand (bullwhip
scenario). In order to exclude the possibility afgative order quantities, we limit the
replenishment parameter o< 1.525 (larger values off may theoretically generate negative
order quantities, see Eqn. (6)).

We assume the following cost components. A holdiostC;, = 1 is incurred per unit per
day and a backlog co&, = 20 is incurred per unit that cannot be immediatelys§ad from
the inventory on hand. There is a fixed capaciyestment cosSt, = 2 and an additional cost
per unit of installed capacif@x = 2. A unit can be produced in overtime capacity ataegost
Cp = 5.

12



6.1. Flexible Capacity Strategy

In Fig. 3 we plot the optimal safety sto&S that is required to maintain a 95.24%
customer service level (the optimal stock-out pholitst equalsCi/(Cp+Ch) = 0.0479). We
observe that the safety stock increases as the wadance is dampendg < 1) or amplified
(6 > 1), and the minimal safety stock is found in a punase sales policgf = 1). The
corresponding inventory cosB,, show a similar pattern. Overall, we observe thaéentory
costs are relatively low due to the zero lead times

30 T T 40

251

201
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151

101

5 . L 5 . L
0 0.5 1 15 0 0.5 1 15
B B
Figure 3 : Flexible capacity strategy: Impact off on optimal safety stock S5
and corresponding inventory costs ¢,

In Fig. 4 we present the impact of the replenishinpamametep on the capacity costs. As
intuitively expected, capacity costSdap) increase as the order pattern becomes more leolati
(i.e., asp increases). When we look at the total supply clkasts(Ciny + Ccap), We observe
that order variance amplificatiqf > 1) clearly increases total supply chain costs dutado
combined increase in inventory and capacity cdMisen we smooth the ordefs < 1), the
interplay between inventory and capacity reveads ttampening the orders to a certain extent
decreases total supply chain costs, but if we dartipe order variance too much, the decrease
in capacity costs cannot compensate for the inergamventory costs, and total supply chain
costs increase. The optimal valuepofiepends on the relative size of capacity and itorgn
costs. For our numerical example, the optimal valygequals 0,6.
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Figure 4: Flexible capacity strategy: Impact offf on capacity costs and total supply chain costs
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6.2. Inflexible Capacity Strategy

Suppose we assume a daily capacity equal to 32t$ (@ a capacity cost @cap = 67).
This implies an average production loadpof 30.5/32.5 = 0.9385The impact ofs on the
average lead tim&(Tp) and the optimal safety stoS is shown in Fig. 5. The optimal
safety stock reveals a different trend compareithedlexible strategy (Fig. 3). This is due to
the stochastic lead times, which depend on thearpattern at the production queue. We
observe in Fig. 5 that lead times increase Witlue to the increased variability in order sizes.
This lead time effect has an impact on the optisaety stock. The optimal safety stock
increases as the order variance is amplifed 1), but decreases when the order variance is
dampened to some degraethis case up t6 = 0.7. When the order variance is dampened to
a large exteni(f < 0.7), the decrease in lead times cannot compensatentinease in
inventory variability and safety stocks increasarply.

351
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Figure 5: Inflexible capacity strategy: Impact ofp on average lead time E(})
and optimal safety stock SS*

The corresponding inventory costs show a similandr (Fig. 6). Since capacity costs
remain fixed, independent @f total supply chain costs are obtained by addiegdapacity
cost of C(K)=67 to the inventory costs.
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Figure 6: Inflexible capacity strategy: Impact of the replenishment parametei on inventory costs and
total supply chain costs when K = 32.5 (6p=67)

Suppose we increase the installed capacity sligbtl = 33 (at a total capacity cost of
Ccap = 68). This extra capacity investment decreases theageeproduction load tp =
30.5/33 = 0.9242which in turn causes lead times to decreaseeSead times determine the
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optimal safety stocks, an investment in excess agpavill reduce the corresponding
inventory costs.
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Figure 7: Inflexible capacity strategy: Impact of the replenishment parameteip on inventory costs when
K = 33 (Ccap=68)

In Fig. 7 we plot the inventory costs when we iase the capacity t& = 33, and
compare it with the case wheke= 32,5 We observe that the inventory costs are indeed
lower when we increase capacity. Moreover, addivey dapacity cost of(K)=68 to these
inventory costs, we obtain lower total supply chaosts: the decrease in inventory costs
compensates the increase in capacity costs. Hamdbis case, it is beneficial to increase
capacity (at extra cost) since it improves totgipdy chain performance.

6.3. Impact of the cost parameters on the replenishipeinty

As previously mentioned, the value of the replemsht parametef that minimises total
supply chain costs depends heavily on the relatoss of inventory and capacity. Consider
in our numerical example a higher capacity cost€pf= 4 for a unit produced with the
installed capacity an@p = 10 for a unit produced in overtime capacity.

In case capacity is flexible, we obtain total cagyacosts as shown in Fig. 8. As capacity
costs are more expensive, it is preferable to danthe orders to a larger extent. In the
considered numerical example, it is optimal to sthavders with a value ¢=0,4.
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Figure 8: Flexible capacity strategy: Impact of thereplenishment parameterf on total supply chain costs
with increased capacity costs
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In case capacity is inflexible, the curve of thiate@ost function will remain unchanged as
capacity is fixed, independent of the replenishnparameter. Obviously, total costs will be
higher as capacity is more expensive (see Fig. 9).
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Figure 9: Inflexible capacity strategy: Impact of the replenishment parameteip on total supply chain
costs with increased capacity costs

6.4. Summary

This numerical example well illustrates the dynasmiesulting from the retailer's inventory

decision and the manufacturer’s strategy of a lflexor an inflexible capacity. Both in the

flexible and inflexible capacity scenarios, ordarignce amplification increases total supply
chain costs, and order variance dampening may keadower supply chain costs.

Consequently, order smoothing is preferable. Thgrade to which we should smooth,
depends on the observed customer demand patterthantbst components in the supply
chain.

7. CONCLUSIONS

In this paper we analyse the impact of the replenent rule at the retailer on the
performance of two-echelon retailer-manufactur@pychain. We treat the variability of the
order rate of the retailer as a primary decisionaide to minimise total supply chain costs.
The manufacturer prefers a dampened or smooth qrdiern from his retailer, as this
enables him to minimise his own capacity costs. rE@iler, however, is not inclined to do so
since a reduction in his order variance comeseattst of an increased inventory. Both order
variance amplification and dampening increase #iailer’s inventory variability, inflating
his safety stock requirements.

We propose a coordinative supply chain approa@retly considering two strategies with
regard to the capacity strategy. Both capacity &ges reveal different dynamics with regard
to the inventory and capacity costs in the suppigirt. However, when considering a total
supply chain perspective, we find that in both sces dampening the order variability at the
retailer may lead to lower total supply chain co3tise degree to which we should smooth
depends on the observed customer demand patterthantbst components in the supply
chain. At the same time we find that order variaao®lification increases total supply chain
costs, both in the flexible and inflexible capaatenario.
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APPENDIX A: ORDER PATTERN GENERATED BY THE GENERALI SED ORDER-
UP-TO POLICY

In this appendix we show that the generalised eugeto policy given by Eqn. (4) generates
an auto-correlated order pattern given by

O=(1-p) Ot p- D

Proof. The generalised order-up-to policy generatedrsrdecording to
O: =E(D) + g [DIP — IP{.
Then,

O~ Q1 =E(D) + - [DIP - IP] — E(D) - - [DIP — IP]
= (IPe1 — IP). (A1)

The inventory positioniP; is monitored after customer demand is satisfied before a
replenishment orde®d; is placed. Hence

IR=1P¢1+ O — Dy
IPei— 1P =Di— Q.. (A2)

Substituting (A2) into (Al) results in

O-Qa1=p(Di— Q).
Q=1-p) O+ g Dr. -

APPENDIX B: BOUNDS ON THE ORDER QUANTITIES GENERATE D BY THE
GENERALISED OUT POLICY

This section provides upper and lower bounds onadtder quantities generated by the
generalised order-up-to policy in Egn. (4).
WhenO < g < 1 the minimal and maximal order quantities are gilign

Onmin = Dmin

Omax=D max,
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since the generated order quantity is a simple mampial smoothing from the observed
customer demand.

When1l < p < 2 we prove that the theoretical minimum and maxinangter quantities are
respectively given by

- Dmin +(1_[3)Dmax
min Z_B
Omax — Dmax + (1_B)Dmin
2-

Proof. Let the order quantit®; reach its maximal valu®max in an arbitrary period. Then,
the order quantity in the next period t + 1 reachesiew minimum valu€n, when the
minimum demand realises, or

Owt1 =8 Dmin+ (1 =5) - O
= Ghin -

Subsequently, a new maximuBnax is reached in the following period when the maximu
demand is realised, or

Ou2 = ﬁ Dmax+ (l _ﬁ) - O
= Ohax-

Suppose the order pattern successively reacheseits minimum and maximum order
guantity. Then,O,, and Oz,+1 are the respective minimum and maximum order giiest
given by

Omin = O2ny :,B' Drin + (1 —,B) - O2n1 (A3)
Omax= O2n+1=P * Dmax+ (1 —B) - Oon. (A4)

When 1 <B < 2, we find that the minimum and maximum ordearmjities are respectively
given by

Omin - Dmin +(1_[3)Dmax (A5)
2 —_
Omax - Dmax + (1_B)Dmin (A6)
2-
Indeed, substituting (A5 — A6) into (A3 — A4) ratsr(A5 — A6) again. [

Furthermore, using (A5), the restriction,> 1 can then be translated as

Dmin + (1 _ﬂ) : Dmaxz 2 _ﬂ .
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APPENDIX C: DISTRIBUTION OF THE NET STOCK

In this section we derive an expression for the stetk distribution in function of the
distribution of customer demand.

The inventory on hantl§ at the end of period t is equal to the initialentory on hand
plus all replenishment orders received so far minte observed customer demand. Since at
the end of period t, the ord€x is in service, the orders placed more than k psrago, i.e.
O, i > k+1, are already delivered in inventory, while customemand is satisfied up to the
current period. For our purposes the initial inventory level isantrol variable, equal to the
safety stock SS determining the retailer's customer service. 8inwe assume that
O=D=E(D) for t <0, the net stock after satisfying demand in perisdejual to

t-1 t-1
NS, =SS+ (E(T)) +1)lE(D)+ X0, - 2D... (A7)
i=k+1 i=0
Substituting the auto-correlated order patterrinf®) (A7) gives
t-1 k
NS, =SS+ (E(T,) +1) ED)+ X[(1-p)©,,, +pD, -D,]- XD,
i=k+1 i=0

= s+ (E(T,) +1)ED) + (-, -(1-p)D,,]- Ib,..

i=k+1 i=0
SinceO; = Dy = E(D) for t <0, we find after backward substitution of Eqn. (&t fort > 0,

t

O, = (:I-_B)t [E(D)+ Zﬁ(l_B)j-lDt—ﬁl’

j=1
so that we obtain

NS, =SS+ (E(T,) +1)[ED)+ 3| (1-B)"™ E(D)+t§ﬁ(1—ﬁ)j0t.i.j ~@-p D, |- S,

=ss+e(,) €0+ Ha-p* E@) -0, - o,
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