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a b s t r a c t

In this paper, we describe a link between Markovian binary trees (MBT) and tree-like quasi-birth-and-
death processes (TLQBD) by associating a specific TLQBD to each MBT. The algorithms to compute the
matrices Gk in the TLQBD then correspond to the algorithms calculating the extinction probability vector
of the MBT. This parallelism leads to a new quadratic algorithm, based on the Newton iteration method,
which converges to the extinction probability of an MBT.

We also present a one-to-one correspondence between a general Markovian tree (GMT) and a scalar
tree-structured M/G/1-type Markov chain. This allows us to prove the equivalence between the main
result on the positive recurrence, null recurrence or transience of a scalar tree-structured M/G/1-type
Markov chain and the criticality of a GMT.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

This paper links the theory of Markovian trees to a class of dis-
crete-time Markov chains with a tree-structured state space and a
matrix product form solution. Markovian binary trees (MBTs) form
a subclass of the general Markovian trees (GMTs) [12,2] and belong
to a particular class of continuous-time Markovian multi-type
branching process [1]. An MBT is initiated by a phase i branch for
some i 2 f1; . . . ;ng. After an exponential amount of time, three
events can occur: (a) the branch dies, (b) the branch changes its
phase to j 2 f1; . . . ;ng, j – i, or (c) it splits into two branches with
initial phases j and k, both in f1; . . . ;ng. Given their initial phases
j and k, both the phase j and k branches (in case the latter exists)
will evolve independently from each other (and from their parent
phase i branch) in an analogous manner. That is, each remains
within the same phase for an exponential amount of time, after
which one of the above three events will take place. For a formal
definition, we refer to Section 2.1.1. If, at some point, all of the
branches have died, we state that the MBT is extinct. An important
problem of MBTs exists in determining the extinction probability
vector q, where its ith entry holds the probability that an MBT
starting in phase i becomes extinct. Several algorithms to compute
q with linear convergence [12,2,5] and one with quadratic conver-
gence based on a Newton iteration [6] have been developed.

Various types of tree-structured discrete-time Markov chains
with a matrix product form solution have been introduced
ll rights reserved.

tphenne), benny.vanhoudt@
[25,17,24]. Our focus will go to two specific subclasses of these
Markov chains: (i) tree-like Quasi-Birth–Death processes (TLQBD)
[3,19] and (ii) scalar M/G/1-type Markov chains [8]. Formal defini-
tions are given in Sections 2.1.2 and 4, respectively. The key in
determining the steady state vector of the former exists in comput-
ing a set of matrices Gk, for which various algorithms have been
proposed [24,3].

In this paper, we will demonstrate that we can associate a
TLQBD to any MBT such that the computation of the set of Gk

matrices of the TLQBD coincides with the computation of the
extinction probability q of the MBT. We further show that the
two natural fixed-point iterations for tree-structured QBDs [24],
when applied to the associated TLQBD, give rise to the depth and
(both) order algorithms for MBTs (see Section 2.1.1). The Newton
iteration for TLQBDs however reduces to a different type of Newton
iteration for MBTs than the one discussed in Hautphenne et al. [6].
We analyze the convergence properties of this novel Newton iter-
ation, and we show that it needs less iterations than the existing
Newton algorithm for MBTs.

Furthermore, we present a one-to-one relation between scalar
tree-structured M/G/1-type Markov chains and GMTs. Using this
relation we prove the equivalence between the main theorem on
the criticality of GMTs [1, Section V.3, Theorem 2] and the main re-
sult on the ergodicity of scalar tree-structured M/G/1-type Markov
chains [8].

The paper is structured as follows. Before we proceed with the
introduction on MBTs and TLQBDs, we like to highlight some of the
application areas of both paradigms. In Section 2 we start with a
brief introduction on MBTs and TLQBDs. Then, we demonstrate
how to associate a TLQBD to any MBT, we show the equivalence
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between the various fixed-point iterations, and we generate the
new Newton iteration for MBTs. In Section 3, we show how to ob-
tain the new Newton iteration directly from the extinction equa-
tion for MBTs, and we discuss its convergence properties. Finally,
Section 4 focusses on the link between GMTs and scalar tree-struc-
tured M/G/1-type Markov chains. All the vectors are supposed to
be column vectors and all the entries of vectors and matrices are
supposed to be real finite.

1.1. Applications of MBTs and TLQBDs

Continuous-time multi-type branching processes have applica-
tions in a large number of fields such as biology and epidemiology
[4,11], but also in telecommunication systems [7,23]. For instance,
the relationship between animal species can be represented on a
tree diagram called a phylogenetic tree; Kontoleon [12] showed
that many of the current models of the macroevolutionary process
are subsumed by the MBT. Hautphenne et al. used the MBT to
model the spread of a file in a peer-to-peer network and to com-
pute the probability that the sharing process of this file eventually
ends [7].

Tree-structured Markov chains have been used to study partic-
ular classes of queueing systems [25,17,10,9,21], as well as random
access communication protocols [18,20,15]. Most of the work on
queueing systems focussed on last-come-first-served service disci-
plines [25,17,10,9], but also includes more classical priority queues
with first-come-first-served service [21,22]. The contributions on
the random access protocols [18,20,15] are mainly concerned with
the study of the maximum stable throughput of various classes of
splitting and tree algorithms.

2. Markovian binary trees and tree-like QBD processes

2.1. Basic definitions and properties

2.1.1. Markovian binary trees
An MBT is characterized by an n� n matrix D0, with entries

ðD0Þi;j P 0 for i – j, an n� n2 matrix B with entries Bi;jk P 0, for
1 6 i; j; k 6 n and an n� 1 vector �a P 0. The diagonal entries of
D0 are such that ð�D0Þi;i holds the positive parameter of the expo-
nentially distributed sojourn time of a phase i branch. After this
exponential sojourn time, the branch changes to phase j – i with
probability ðD0Þi;j=ð�D0Þi;i, splits into a left branch in phase j and
a right branch in phase k with probability Bi;jk=ð�D0Þi;i or dies with
probability �ai=ð�D0Þi;i. Hence, ð�D0Þi;i ¼

P
j–iðD0Þi;j þ

P
j;kBi;jk þ �ai.

In other words, a branch that starts in phase i dies without split-
ting, with probability ai ¼ ðð�D0Þ�1�aÞi, while it will eventually split
into a left branch in phase j and a right branch in phase k with
probability Bi;jk ¼ ðð�D0Þ�1BÞi;jk. Notice, the vector a and matrix B
Fig. 1. The evolution of a Markovian binary tree over time.
are such that 0 6 a 6 1, a – 0, B P 0, and aþ B1 ¼ 1, where 1 de-
notes a vector of 1’s. An illustrative example of an MBT is depicted
on Fig. 1.

We are interested, for instance, in determining the probability qi

that the tree originated by a branch in phase i dies completely. The
n� 1 vector q holding these probabilities is the smallest nonnega-
tive solution to the extinction equation [5]

x ¼ aþ Bðx� xÞ: ð1Þ

In Bean et al. [2], the authors analyze two linearly convergent algo-
rithms to solve (1). The first one is named the depth algorithm and is
obtained by using fixed-point iterations on (1). The second algo-
rithm is called the order algorithm, and is based on two equivalent
rewrites of (1) as

x ¼ ½I � Bðx� IÞ��1a ð2Þ
¼ ½I � BðI � xÞ��1a: ð3Þ

The order algorithm uses fixed-point iterations on (2) (order-1
algorithm), or on (3) (order-2 algorithm). A third linearly conver-
gent algorithm, called the thicknesses algorithm, is presented in
Hautphenne et al. [5]; it is obtained by using fixed-point iterations
alternatively on (2) and on (3). It offers some advantages in that it
better exploits possible dissymmetries in the structure of the ma-
trix B. Finally, a quadratic algorithm [6], called the Newton algo-
rithm, is obtained using Newton’s iteration method on (1).

An MBT is called subcritical, supercritical or critical if the spec-
tral radius of the nonnegative matrix M ¼ Bð1� I þ I � 1Þ ¼
Bð1� 1Þ is respectively strictly less than one, strictly greater than
one, or equal to one (Athreya and Ney, [1, Section V.3, Theorem
2]). In the subcritical and critical cases, q ¼ 1, while in the
supercritical case q 6 1, q – 1. A useful property is when the
MBT is positive regular [5]. This means that, for the underlying con-
tinuous-time process, the transition graph between the phases is
irreducible. Then the matrix M has a single essential class and
either q ¼ 1, or q ¼ 0, or 0 < q < 1.

2.1.2. Tree-like QBD processes
Consider a discrete-time bivariate Markov chain fðXt;NtÞ;

t P 0g in which the values of Xt are represented by nodes of a d-
ary tree, for d P 2, and where Nt takes integer values between 1
and m. We will refer to Xt as the node and to Nt as the auxiliary var-
iable of the Markov chain at time t. The root node of the d-ary tree
is denoted as ; and the remaining nodes are denoted as strings of
integers, where each integer takes a value between 1 and d. For in-
stance, the kth child of the root node is represented by k, the lth
child of the node k by kl, and so on. Throughout this paper, we
use the ‘+’ to denote the concatenation on the right and the ‘-’ to
represent the deletion from the right. For example, if J ¼ k1

k2 . . . kn, then J þ k ¼ k1k2 . . . knk. Let f ðJ; kÞ, for J – ;, denote the k
rightmost elements of the string J, then J � f ðJ;1Þ represents the
parent node of J.

The following restrictions need to apply for a Markov chain
fðXt ;NtÞ; t P 0g to be a tree-like QBD process (TLQBD). At each step
the chain can only make a transition to its parent (i.e.,
Xtþ1 ¼ Xt � f ðXt ;1Þ, for Xt – ;), to itself ðXtþ1 ¼ XtÞ, or to one of its
children (Xtþ1 ¼ Xt þ s for some 1 6 s 6 d). Moreover, the state of
the chain at time t þ 1 is determined as follows:

P½ðXtþ1;Ntþ1Þ ¼ ðJ0; jÞjðXt ;NtÞ ¼ ðJ; iÞ�

¼

f i;j J0 ¼ J ¼ ;;
ci;j J0 ¼ J – ;;
di;j

k J – ;; f ðJ;1Þ ¼ k; J0 ¼ J � f ðJ;1Þ;
ui;j

s J0 ¼ J þ s; s ¼ 1; . . . ;d;

0 otherwise:

8>>>>>><>>>>>>:
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Remark that the transition probabilities between two nodes depend
only on the spacial relationship between the two nodes and not on
their specific values.

We can now define the m�m matrices Dk, C, F and Us with
respective ði; jÞth elements given by di;j

k , ci;j, f i;j and ui;j
s , for

k; s ¼ 1; . . . ; d. This completes the description of the TLQBD; such
a process is fully characterized by the matrices Dk, C, Us and F.

Next, we introduce a number of matrices that play a crucial role
when studying the stability and stationary behavior of a TLQBD.
The fundamental period of a TLQBD starting in state ðJ þ k; iÞ is de-
fined as the first passage time from the state ðJ þ k; iÞ to one of the
states ðJ; jÞ, for j ¼ 1; . . . ;m. Let Gk, for 1 6 k 6 d, denote the matrix
whose ði;vÞth element is the probability that the Markov chain is
in state ðJ;vÞ at the end of a fundamental period which started in
state ðJ þ k; iÞ. Let V denote the matrix whose ði;vÞth element is
the taboo probability that starting from state ðJ þ k; iÞ, the process
eventually returns to node J þ k by visiting ðJ þ k;vÞ, under the ta-
boo of the node J. Note that, due to the restrictions on the transi-
tion probabilities, the matrix V does not depend on k. Yeung and
Alfa [24] showed that the following expressions hold for these
matrices:

Gk ¼ ðI � VÞ�1Dk; ð4Þ

V ¼ C þ
Xd

s¼1

UsGs:

Combining these equations, we have the following relation:

V ¼ C þ
Xd

s¼1

UsðI � VÞ�1Ds:
2.2. The link between MBTs and TLQBDs

In this section we show how to associate a TLQBD to an MBT
characterized by a birth matrix B and a death vector a, such that
the computation of the Gk-matrices of the TLQBD process coincides
with the computation of q in the MBT.

Let ðX;A;PÞ be a probability space. The MBT with characteris-
tics a and B is a random process which associates to each x 2 X a
specific MBT realization (that is, a certain binary tree picture). This
realization of the MBT may be finite or infinite. What we call the
extinction probability q of an MBT, is actually the measure P of
the subset of X containing all the x corresponding to a finite real-
ization of an MBT.

Now, we shall associate a path in the TLQBD corresponding to a
given realization of an MBT, in such a way that, if the MBT is finite
(respectively infinite), then the first passage time from the initial
state, let us say ðJ þ k; iÞ, in the associated TLQBD, to one of the
parental states ðJ; jÞ, is finite (respectively infinite).

For a given realization of an MBT, let us visit all the edges and
vertices of the binary tree in a pre-order way, that is, a depth-first
manner. With each step of this exploration, we will associate a
transition in the TLQBD. As mentioned above, if the MBT is finite,
then, starting from its root, we will cover all the nodes of the tree
in a finite time; this means that in the TLQBD, we will return to the
parent of the starting node in a finite time. We will consider two
depth-first traversals: one where we first explore the left side of
the tree and a second where the right is explored first.1
1 Other traversals are also possible, for instance, we might explore either the right
or left branch first depending on the phase i of the parent. Various numerical
experiments seem to indicate that exploring the right branch first for phase i parents
whenever the ith entry of ðI � BðI � aÞÞ�1a is larger than or equal to the ith entry of
ðI � Bða� IÞÞ�1a, results in a linear algorithm that outperforms the depth, both order
and the thicknesses algorithms.
The idea of the correspondence between the path in the MBT
and that in the TLQBD is the following: whenever a branch splits
into a left and right branch in the MBT, if we use the left (respec-
tively right) traversal, then we freeze the evolution of the right
(respectively left) branch, by storing its initial phase in the node
variable of the TLQBD, and we allow the left (respectively right)
branch to evolve. Whenever a branch dies in the MBT, we unfreeze
the last branch that was frozen during a split operation. Thus, a
right (respectively left) branch remains frozen as long as the tree
originating from its left (respectively right) sibling is still alive.
As the tree-like process is a discrete-time process, we will only ob-
serve the depth-first evolution of the tree at the split and death in-
stances. This correspondence is illustrated in Fig. 2 for the left
traversal of the MBT.

Let us now construct the TLQBD fðXt ;NtÞ; t P 0gwith d ¼ m ¼ n
to further clarify this idea. Define

ðUðlÞk Þi;j ¼ Bi;jk;

for the left traversal and

ðUðrÞj Þi;k ¼ Bi;jk;

for the right one, meaning when a phase i branch splits into a left
branch in phase j and a right branch in phase k, then we may forget
the phase i of the parent, and if we use the left traversal, then we
add the phase k of the right branch (respectively the phase j of
the left branch for the right traversal) to the node variable Xt (where
it remains stored for later use) and set the auxiliary variable Ntþ1

equal to the phase j of the left branch (respectively equal to the
phase k of the right branch), which is now the current branch. Also,
note that we can write B ¼ ½UðrÞ1 UðrÞ2 . . . UðrÞm �. Further, define

Dk ¼ DðlÞk ¼ DðrÞk ¼ aek;

where ek is a 1�m vector with all its entries equal to zero except
for its kth entry which equals 1. Thus, when a branch dies, we forget
its phase, remove the rightmost integer f ðXt;1Þ ¼ k of Xt and set it
equal to the auxiliary variable Ntþ1. It means that we simply move
to the next branch of the depth-first traversal, which is the one
we most recently stored in Xt . Finally, the C matrix of the TLQBD
is set equal to zero.

Due to the specific structure of the Dk matrices, and Eq. (4), we
immediately have the following structure for the Gk-matrices

Gk ¼ qek; k ¼ 1;2; . . . ;m

for q ¼ ðI � VÞ�1a. Hence, computing Gk for all k is reduced to com-
puting a single m� 1 vector q. By carefully looking at the stochastic
interpretation of the Gk matrices and the construction above, one
Fig. 2. The correspondence between possible transitions in an MBT and the
corresponding transitions in the TLQBD, for the left traversal of the MBT (w.p.
stands for with probability).
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can also see that the ith entry of q, is identical to the extinction
probability of an MBT originating from a phase i branch, so that q
is exactly the extinction probability vector defined in Section
2.1.1. This can also be derived algebraically as shown below.
2 The mapping F : D � Rn ! Rm is Fréchet-differentiable at x 2 intðDÞ if there exists a
linear operator A from Rn to Rm such that

lim
h!0
ð1=jjhjjÞjjFðxþ hÞ � FðxÞ � Ahjj ¼ 0:

The linear operator A is denoted by F 0x and is called the Fréchet derivative of F at x (see

Ortega and Rheinboldt [14]).
2.3. Equivalence of the algorithms

Next, we demonstrate that the standard iteration for the
Gk-matrices in TLQBDs, of both the left and right traversals, corre-
sponds to the depth algorithm for MBTs, while the V oriented algo-
rithm coincides with the two order algorithms. Finally, we look at
the sequence corresponding to the Newton iteration for TLQBDs
developed in Bini et al. [3]. This will be the starting point of the
next section.

The standard Gk-iteration starts with Gk;0 ¼ Dk for all k and com-
putes Gk;nþ1 as

Gk;nþ1 ¼ Dk þ CGk;n þ
Xm

j¼1

UjGj;n

 !
Gk;n:

By plugging in the specific structure of the Gk;n ¼ xnek matrices and
the fact that C ¼ 0, we find xðlÞ0 ek ¼ aek, and for n P 0,

xðlÞnþ1ek ¼ aþ BðxðlÞn � IÞxðlÞn

� �
ek;

as
P

jU
ðlÞ
j yej ¼ Bðy � IÞ for any y 2 Rm, and

xðrÞnþ1ek ¼ aþ BðI � xðrÞn ÞxðrÞn

� �
ek;

as
P

jU
ðrÞ
j yej ¼ BðI � yÞ. In other words, we find that the two se-

quences xðrÞn and xðlÞn of vectors are identical and computed according
to the depth algorithm for the extinction probability of MBTs.

The V-iteration starts by letting V0 ¼ C and continues as

Vnþ1 ¼ C þ
Xm

j¼1

UjðI � VnÞ�1Dj:

By denoting ðI � V ðlÞn Þ
�1a as xðlÞn , meaning xðlÞ0 ¼ a (as C ¼ 0), we find

V ðlÞnþ1 ¼
Xm

j¼1

UðlÞj xðlÞn ej ¼ BðxðlÞn � IÞ;

which means that xðlÞnþ1 ¼ ðI � V ðlÞnþ1Þ
�1a equals

xðlÞnþ1 ¼ ðI � BðxðlÞn � IÞÞ�1a:

This iteration is identical to the order-1 algorithm for MBTs devel-
oped in Kontoleon [12]. Similarly, we find xðrÞ0 ¼ a and

xðrÞnþ1 ¼ ðI � BðI � xðrÞn ÞÞ
�1a;

which is the order-2 algorithm.
The algorithms presented in Bini et al. [3] for computing the set

of Gk matrices of a TLQBD also include a Newton iteration. This iter-
ation determines the smallest nonnegative solution

G ¼
G1

..

.

Gd

2664
3775

of FðGÞ ¼ 0, by setting G0 ¼ 0 and solving

Gnþ1 ¼ Gn � F0
Gn

� ��1
F Gn

� �
; ð5Þ

where F is the following mapping from Rmd�m to Rmd�m:

F

X1

..

.

Xd

2664
3775 ¼

X1

..

.

Xd

2664
3775� I � I � C þ

Xd

j¼1

UjXj

 ! !�1
0@ 1A D1

..

.

Dd

2664
3775;
and F0
XY is the image of Y under the Fréchet derivative2of F at X. As

discussed in Bini et al. [3], each step of the Newton iteration either
requires an iterative procedure or the solution of a linear system
of m2 equations and m2 unknowns. For the TLQBDs stemming from
the MBTs, a single step can be performed more easily by exploiting
the structure of the matrices involved. Let us focus on the right tra-
versal of the branches. First note that G ¼ ðI � qÞ, D :¼
½D1;D2; . . . ;Dd�0 ¼ ðI � aÞ and let us take G0 ¼ ðI � aÞ ¼ ðI � x0Þ (in-
deed, we can show that the Newton sequence is still convergent
when G0 ¼ ðI � ðI � CÞ�1ÞD ¼ �Fð0Þ). Further, when we look at the
image of ðI � xÞ with x 2 Rm under F, using D ¼ ðI � aÞ and C ¼ 0,
we find

FðI � xÞ ¼ I � x� I �
Xd

j¼1

UðrÞj xej

 !�1

a

0@ 1A ¼ I � ðx� SxaÞ;

with Sx ¼ ðI � BðI � xÞÞ�1. The image of ðI � zÞ under F0 at ðI � xÞ
equals

F0
ðI�xÞðI � zÞ ¼ I � ðz � SxBðI � zÞSxaÞ ¼ I � ðI � SxBðSxa� IÞÞz:

Therefore, Eq. (5), with Gn ¼ ðI � xnÞ, reduces to

ðI � xnþ1Þ ¼ Gnþ1 ¼ ðI � xnÞ � ðF0
ðI�xnÞÞ

�1
FðI � xnÞ

¼ I � ðxn � ðI � Sxn BðSxn a� IÞÞ�1ðxn � Sxn aÞÞ:

Hence, the Newton iteration of Bini et al. [3] reduces to the simple
iteration

xnþ1 ¼ xn � ðI � Sxn BðSxn a� IÞÞ�1ðxn � Sxn aÞ ð6Þ

to determine the extinction probability vector q of the MBT, pro-
vided that the necessary inverse matrices exist. The convergence
of this iteration follows indirectly from the convergence result in
Bini et al. [3] and the link established above, and is discussed in
the next section. More importantly, we also show that the new iter-
ation converges at least as fast as the Newton iteration introduced
in Hautphenne et al. [6].

3. A faster Newton algorithm for MBTs

One might also have obtained Eq. (6) directly from a reformula-
tion of the extinction equation for MBTs. We first recall the way the
Newton algorithm developed in Hautphenne et al. [6] for MBTs has
been obtained, then we derive the new Newton sequence. Subse-
quently, we show that the convergence rate is better than that of
the former Newton algorithm.

3.1. A direct derivation of the Newton sequences

In what follows, we suppose that the MBT is positive regular,
which implies that either q ¼ 1, or q < 1. We may also assume that
the MBT is supercritical. Otherwise, the extinction probability is
exactly equal to the vector 1 and we do not need algorithms to
solve the extinction equation. We denote by hu;vi the set of vec-
tors x such that u 6 x 6 v , where we use the natural partial order
such that x 6 y if xi 6 yi for all i.

In Hautphenne et al. [6], the authors develop a quadratic
algorithm to compute the extinction probability of an MBT. This
algorithm is based on Newton’s iteration method for the solution
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of Eq. (1) rewritten as x� a� Bðx� xÞ ¼ 0. The quadratic algorithm
obtained goes as follows: x0 ¼ a and for k P 1,

xkþ1 ¼ xk � ½I � Bðxk � xkÞ��1½xk � a� Bðxk � xkÞ�: ð7Þ

Now, observe that Eq. (1) may be equivalently rewritten as
FðxÞ ¼ 0, with

FðxÞ ¼ x� ½I � BðI � xÞ��1a; ð8Þ

via (3).
For any matrix norm, Rm is a Banach space, and the function F

is a mapping from Rm into itself. The Fréchet derivative of F at x is
a linear map F0

x : Rm ! Rm given by

F0
x : z#½I � SxBðSxa� IÞ�z ¼ ½z � SxBðSxa� zÞ�;

with Sx ¼ ½I � BðI � xÞ��1, as in the previous section.
For a given x0, the new Newton sequence for the solution of

FðxÞ ¼ 0 is

xkþ1 ¼ xk � ðF0
xk
Þ�1

FðxkÞ

¼ xk � ½I � Sxk
BðSxk

a� IÞ��1½xk � Sxk
a� ð9Þ

for k ¼ 0;1; . . ., provided that F0
xk

is invertible for all k. Notice, this
sequence is identical to the one given in Eq. (6).

We can easily show that the inverse ½I � Sxk
BðSxk

a� IÞ��1 exists
for all xk 6 q, by using an interpretation of the equation FðxÞ ¼ 0
as an extinction equation for a new branching process embedded
in the MBT: the leftmost branch of the MBT represents the lifetime
of the first particle of this branching process, and each right branch
coming from the leftmost branch represents a new child from the
initial particle, which may itself generate new particles, and so on.
For this process, we see that the progeny generating function of a
particle is given by

GðxÞ ¼
X
nP0

½BðI � xÞ�na ¼ ½I � BðI � xÞ��1a:

Then, we repeat the proof of Theorem 5.1 in Hautphenne et al. [5]
with this new progeny generating function, and in the supercritical
case, we get sp½SqBðSqa� IÞ� < 1. This implies that for all xk in h0; qi,

sp½Sxk
BðSxk

a� IÞ� < 1

since Sxk
6 Sq, and thus Sxk

BðSxk
a� IÞ 6 SqBðSqa� IÞ.

For any x0 in h0;ai, the new Newton sequence (9) is well de-
fined, is monotone increasing, and converges (at least) quadrati-
cally to the extinction probability q of the MBT. To prove these
properties, we can follow the same idea as in Latouche [13], Bini
et al. [3], and Hautphenne et al. [6], and adapt the series of preli-
minary lemmas as well as their proof in the context of MBTs. An-
other way to be convinced is by the link established between
TLQBDs and MBTs: the new Newton sequence for MBTs inherits
all the properties of the Newton algorithm analyzed in Bini et al.
[3]. For these reasons, and the sake of brevity, the direct proof of
the quadratic convergence of the new sequence in the MBT context
will be omitted in the present paper.

3.2. Comparison between the two Newton algorithms for MBTs

Let us write ~xk for the approximations of the Newton algorithm
(7) from Hautphenne et al. [6], to distinguish from these of the new
Newton algorithm (9).

Let us denote the difference between the kth iteration in the
two Newton algorithms by Dk ¼ xk � ~xk. Let us show that at each
iteration, the new Newton algorithm is closer to the solution q than
the first algorithm, which implies that the new algorithm con-
verges faster towards the solution than the former in terms of
the number of iterations.
Proposition 3.1. The difference Dk is nonnegative for all k P 0.

Proof. The proof goes by induction. First, D0 ¼ x0 � ~x0 ¼ a� a ¼ 0.
Now, suppose that Dk P 0. Let us show that we still have Dkþ1 P 0.

The new Newton sequence may be rewritten as

xkþ1 ¼ Sxk
Bxkþ1

Sxk
a� Sxk

Bxk
Sxk

aþ Sxk
a ð10Þ

by multiplying both sides of Eq. (9) on the left by ½I � Sxk
BðSxk

a� IÞ�.
Multiplying both sides of Eq. (10) on the left by ðI � BðI � xkÞÞ yields

xkþ1 ¼ Bðxkþ1 � xkÞ þ BðSxk
a� xkþ1Þ � BðSxk

a� xkÞ þ a: ð11Þ

By doing the same for the Newton algorithm from Hautphenne
et al. [6], we have

~xkþ1 ¼ Bð~xk � ~xkþ1Þ þ Bð~xkþ1 � ~xkÞ � Bð~xk � ~xkÞ þ a: ð12Þ

So, by subtracting Eq. (12) from Eq. (11) we obtain

Dkþ1 ¼Bðxkþ1 � xkÞ þ BðSxk
a� ðxkþ1 � xkÞÞ � Bð~xkþ1 � ~xkÞ

� Bð~xk � ð~xkþ1 � ~xkÞÞ:

By adding and subtracting the terms Bðxkþ1 � ~xkÞ and
BðSxk

a� ð~xkþ1 � ~xkÞÞ, and regrouping the terms, we get

Dkþ1 ¼½BðSxk
a� ~xkÞ�Dkþ1 þ B½ðxkþ1 � Sxk

aÞ � I�Dk

þ B½ðSxk
a� ~xkÞ � ð~xkþ1 � ~xkÞ�

¼ ½I � BðSxk
a� ~xkÞ��1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðIÞ

B½ðxkþ1 � Sxk
aÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

ðIIÞ

�I� Dk|{z}
ðIIIÞ

8><>:
þB½ðSxk

a� ~xkÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ðIVÞ

� ð~xkþ1 � ~xkÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ðVÞ

�

9>=>;P 0:

Indeed, (I) is a positive matrix, since it is equal to a infinite sum of
positive terms. (II) is positive by Eq. (10) and the increase of the new
Newton sequence. (III) is positive by induction assumption. (IV) is
positive since ~xk 6 xk by induction assumption, and because
xk 6 Sxk

a for all k P 0. Indeed, in the proof of the quadratic conver-
gence of the first Newton sequence (Theorem 2.1 in Hautphenne
et al. [6]), it is notably shown that if 0 6 ~x0 6 a, then fFð~xkÞ 6 0,
for all k (where fFðxÞ ¼ x� a� Bðx� xÞ). Here, the same argument
may be used to show that the new Newton sequence also satisfies
FðxkÞ 6 0, for all k, whenever 0 6 x0 6 a. Finally, (V) is positive by
the increasing nature of the first Newton sequence. h
3.3. Other alternatives

We could as well have applied the Newton iteration method on
the equation FðxÞ ¼ 0, where

FðxÞ ¼ x� ½I � Bðx� IÞ��1a:

In that case, the Fréchet derivative of F at x is a linear map F0
x gi-

ven by

F0
x : z#½I � TxBðI � TxaÞ�z ¼ ½z � TxBðz � TxaÞ�;

where Tx ¼ ½I � Bðx� IÞ��1.
These two alternate Newton algorithms may be seen as ‘‘New-

ton-order” sequences, as the structure of FðxÞ ¼ 0 reminds us of
the structure of the two order algorithms, while the Newton
algorithm described in Hautphenne et al. [6] may be seen as a
‘‘Newton-depth” sequence. We can also construct the ‘‘Newton-
thicknesses” sequence, by applying the Newton iteration alterna-
tively on the two equations

FðxÞ ¼ x� ½I � BðI � xÞ��1a and FðxÞ ¼ x� ½I � Bðx� IÞ��1a:
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In terms of convergence rate expressed in the number of itera-
tions, the fastest Newton algorithm among the four presented
above depends on the example under consideration. Furthermore,
in general, we may not assume that if one of the linear algorithms,
let us say A, is better than another one, B, for one particular exam-
ple, then the corresponding Newton-A algorithm will converge fas-
ter than the corresponding Newton-B algorithm on the same
example. This is illustrated on Fig. 3, where, taking Example 1 with
one parameter d and n ¼ 9 from Hautphenne et al. [6], we plotted
the number of iterations needed to compute q for each linear and
each Newton algorithm, as a function of the parameter d. We see
that the thicknesses algorithm is the best linear algorithm to com-
pute q, but the Newton-thicknesses algorithm does not perform
very well, it is even worse than the Newton-depth algorithm on
some occasions.

Remark 3.2. Our algorithms were optimized by using the partic-
ular structure of the matrices involved at each iteration, in
particular the Kronecker product with the identity matrix. We
obtain a complexity of ð20=3Þn3 þ Oðn2Þ flops per iteration for the
Newton-depth algorithm, against 8n3 þ Oðn2Þ flops for the three
other Newton algorithms. We thus expect the Newton-depth
algorithm to be somewhat faster than the other algorithms, even if
it requires one or two iterations more. This is confirmed when
looking at Fig. 4 where we plotted the CPU time (with Intel
2.4 GHz) for the Newton-depth and the Newton-order 2 algorithm
(the curve for the Newton-order 1 and the Newton-thicknesses
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algorithms almost coincide with that of the Newton-order 2
algorithm).
4. The general Markovian tree and its relation with scalar tree-
structured M/G/1-type Markov chains

When observed at the split and death occasions only, a general
Markovian tree (GMT) can be characterized by a set of matrices Bj,
for j > 0, where Bj has dimension n� nj, and a single n� 1 vector a.
Entry ðBjÞi;h1h2 ...hj

gives the probability that a phase i branch splits
into j branches, with the phase of the ith branch (from the left)
equaling hi. Notice that having j ¼ 1 is also allowed (thus, a branch
can split into a single other branch, possibly having the same
phase). The ith entry of a gives the probability that a phase i branch
dies without splitting.

A scalar tree-structured M/G/1-type Markov chain is a discrete-
time Markov chain ðXtÞtP0 taking values in a d-ary tree, meaning its
state space N equals

N ¼ fJjJ ¼ j1 . . . jn; jk 2 f1; . . . ;dg; k ¼ 1; . . . ;n;n > 0g [ ;:

Moreover, the state of the chain at time t þ 1 is determined as
follows:

P½Xtþ1 ¼ J0jXt ¼ J�

¼

að;; ;Þ J0 ¼ J ¼ ;;
að;;HÞ J0 ¼ H; J ¼ ;;
a1ðk;HÞ J – ;; f ðJ;1Þ ¼ k; J0 ¼ J � f ðJ;1Þ þ H;

0 otherwise:

8>>><>>>:
Thus, transitions can only occur between a node and any descen-
dant of its parent.

We first indicate that there exists a one-to-one correspondence
between all possible a and Bj matrices ðj > 0Þ that characterize a
GMT and the a1ðk;HÞ values characterizing the behavior of a scalar
tree-structured M/G/1-type Markov chain when it is away from the
boundary ;. As in the previous section, we will associate a transi-
tion in the Markov chain to each step in the (left) depth-first tra-
versal of a given GMT realization. The correspondence between a
GMT and a scalar tree-structured M/G/1-type Markov chain is easy
to establish by setting d ¼ n,

a1ðk;HÞ ¼ ðBjHjÞk;hjHj ...h2h1
;

for H ¼ h1h2 . . . hjHj – ; and a1ðk; ;Þ ¼ ak. Fig. 5 helps to visualize the
correspondence for two types of transitions.



Fig. 5. The one-to-one correspondence between two possible transitions in a GMT
(for jHj ¼ 3 and for jHj ¼ 0), and in a scalar tree-structured M/G/1-type Markov chain.
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Analogue to the previous section, one sees that the evolution of
the tree-structured Markov chain corresponds to a depth-first evo-
lution of the multi-type branching process, where all the branches,
except for the leftmost, are immediately frozen. In this case all the
phases, including the one of the leftmost branch, are stored by add-
ing them to the variable Xt . When a branch in phase i dies, which
happens with probability a1ði;0Þ ¼ ai, we unfreeze the last branch
that we froze (where a set of branches is frozen from right to left).

The GMT realization is finite if and only if, starting from a node
in the corresponding scalar tree-structured M/G/1-type Markov
chain, we return to its parent in a finite time. However, this link be-
tween the multi-type branching processes and the scalar tree-
structured M/G/1-type Markov chains does not provide us with a
new efficient means to compute the extinction probability vector
q of the branching process. But, it does allow us to show that the
main result on the positive recurrence, null recurrence or
transience of a scalar tree-structured M/G/1-type Markov chain
as proven in He [8, Theorem 3.2], is equivalent to Athreya and
Ney [1, Section V.3, Theorem 2], because the extinction probability
qi equals the probability that the Markov chain eventually returns
to state J ¼ ; given that it started in state J ¼ i.

Indeed, the result in Athreya and Ney [1, Section V.3, Theorem
2] states that it suffices to compute the spectral radius spðQÞ of a
nonnegative matrix Q in order to determine whether the branching
process is subcritical ðspðQÞ < 1Þ, critical ðspðQÞ ¼ 1Þ or supercrit-
ical ðspðQÞ > 1Þ. The i; jth entry of Q represents the expected num-
ber of phase j branches born from a phase i branch. In our Markov
chain notation we can write this as

Q i;j ¼
X
J2N

a1ði; JÞNðJ; jÞ;

where NðJ; jÞ counts the number of occurrences of the integer j in
the string J.

On the other hand, for a scalar tree-structured M/G/1-type Mar-
kov chain, He [8] defines the matrix P ¼ M�1K, whose spectral ra-
dius spðPÞ determines whether the chain is positive recurrent
ðspðPÞ < 1Þ, null recurrent ðspðPÞ ¼ 1Þ or transient ðspðPÞ > 1Þ.
Without going into detail and by noting that a0ðk; JÞ was used to
denote a1ðk; kþ JÞ (with J – ;), and a2ðkÞ to denote a1ðk; kÞ in He
[8], it can be seen that

Ki;j ¼
X
J2N

a1ði; JÞNðJ; jÞ �
X
J2N

a1ði; iþ JÞ;
and M is a diagonal matrix with its ith entry equal to
1�

P
J2Na1ði; iþ JÞ. Hence, we have the relationship

Q ¼ ðI �MÞ þK:

The following result shows the equivalence between the main re-
sult on the criticality of a GMT and the positive recurrence, null
recurrence or transience of a scalar tree-structured M/G/1-type
Markov chain.

Theorem 4.1. For the GMT defined above and the corresponding
scalar tree-structured M/G/1-type Markov chain, one of the three
relations between spðQÞ and spðPÞ must hold

(a) 1 ¼ spðQÞ ¼ spðPÞ,
(b) 1 < spðQÞ < spðPÞ,
(c) 0 < spðPÞ < spðQÞ < 1.
Proof. We first argue that

1. spðQÞ < 1() spðPÞ < 1,
2. spðQÞ ¼ 1() spðPÞ ¼ 1.

The first statement is immediate as ðI � PÞ�1M�1 ¼
ðM �KÞ�1 ¼ ðI � QÞ�1, meaning if ðI � PÞ�1 exists then so does
ðI � QÞ�1 and vice versa. The second follows from the Subinvariance
Theorem in Seneta [16, Theorem 1.6] as the dominant eigenvector of
Q is also an eigenvector of P. This establishes statement (a).

Now, analogue to Seneta [16, Theorem 2.5], we can prove that if
spðQÞ– 1 – spðPÞ, then the first statement can be refined to
1 < spðQÞ < spðPÞ or 0 < spðPÞ < spðQÞ < 1. This completes the
proof. h

Notice, as spðPÞ lies further from 1 than spðQÞ, it might be
numerically preferable to compute spðPÞ when the chain is (very)
close to being null recurrent.
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