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ABSTRACT
A new algorithm to assess transient performance measures
for every possible initial configuration of a Quasi-Birth-and-
Death (QBD) Markov chain is introduced. We make use of
the framework termed QBDs with marked time epochs that
transforms the transient problem into a stationary one by
applying a discrete Erlangization and constructing a reset
Markov chain. To avoid the need to repeat all computa-
tions for each initial configuration, we propose a level based
recursive algorithm that uses intermediate results obtained
for initial states belonging to levels 0, . . . , r − 1 to compute
the transient measure when the initial state is part of level r.
Also, the computations for all states belonging to level r are
performed simultaneously. A key property of our approach
lies in the exploitation of the internal structure of the block
matrices involved, avoiding any need to store large matrices.
A flexible Matlab implementation of the proposed algorithm
is available online.

1. INTRODUCTION
The study of Quasi-Birth-and-Death (QBD) Markov chains
has a long tradition dating back to the early work by Neuts
in the 1960s. Today this topic is still very actively pursued
by many researchers. Early contributions to the transient
analysis of QBDs were made by Ramaswami [11] and, Zhang
and Coyle [17], mostly relying on Laplace transforms. More
recent works include those by Le Ny and Sericola [10] and
Remke et al. [13], which both combine uniformization tech-
niques with a recursive approach to tackle the resulting dis-
crete time problem. Their strength lies mostly in solving
transient problems over short time scales, as the computa-
tion times increase as a function of the time epoch of the
event of interest. The approach taken in this paper is very
different and more general in nature and builds on earlier
work [14], [15].

A new approach that reduces a variety of transient QBD
problems to stationary ones, was introduced in [14] for the
special case of a D-BMAP/PH/1 queue. The two main steps
introduced were the use of a discrete Erlangization and the
construction of a reset Markov chain. Although the reset
Markov chain contained considerably more states, compared
to the original QBD, computation times were limited by
exploiting the internal structure of the block matrices that
characterize its transition matrix.

∗B. Van Houdt is a post-doctoral fellow of the FWO-
Flanders.

The underlying ideas presented in [14] gave rise to the de-
velopment of a new framework, termed QBDs with marked
time epochs [15], to assess transient measures in a plug-and-
play manner for any QBD, where a significant improvement
over [14] was also achieved in terms of the required com-
putational resources. An extension to the class of tree-like
processes [2], a generalization of the QBD paradigm, was
discussed in [16] and applied to analyze a set of random
access algorithms.

Both [15] and [16] were limited to the case where the initial
state of the Markov chain was part of the boundary level.
That is, the i-th component of some vector αini gave the
initial probability of being in the i-th boundary state at time
0. An approach to deal with more general initial conditions
was included in [14]. This approach can even be extended to
include general (bounded) initial distributions, meaning, the
set of all possible initial states does not need to be a subset of
a specific level. Although useful, this approach is restrictive
in the sense that all computations need to be redone when
considering a different initial state (distribution). This is
especially problematic when we wish to compute transient
results for each possible initial state as is often a measure
of interest in the area of model checking [12]. Although the
material presented in this paper is for discrete-time systems
only, it should be fairly easy to adapt it for continuous time
systems.

In this paper we provide a novel approach to deal with more
general initial conditions. Actually, a level based recursive
algorithm is proposed that computes the transient perfor-
mance measure for all possible initial states. That is, having
performed the necessary computations when the initial state
is part of the first r−1 levels, we demonstrate how to obtain
the transient measure when the initial state is part of level
r (for each of the states belonging to level r). During this
step we heavily rely upon previously computed intermediate
results, avoiding the need to redo all computations for each
new initial state considered. Notice, the recursion is not on
the time epoch, as in many other studies, but on the level
of the initial state. Furthermore, if we know the transient
measure for any single initial state (up to some level N),
the results are readily available for any initial distribution
(bounded to the first N levels). A flexible Matlab implemen-
tation of the algorithm, taking among others the 6 matrices
that characterize the QBD with marked time epochs as its
input, is available online.
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To some extent, the contribution of this paper is related to
the following. Many researchers that need to compute the
system state at time n for some discrete time Markov chain,
will often take the initial probability vector and repeatedly
multiply this with the transition matrix. Such an approach
is fruitful, but the computation needs to be repeated each
time we consider a different initial distribution. This can,
in principle, be avoided by computing the n-th power of
the transition matrix, but in practice this is often too time
consuming. Our approach, although completely different in
methodology, can intuitively be understood as intermediate
to these two approaches. We compute the state for some
initial vectors and use some of the intermediate results, to
drastically speed-up further computations.

The paper is structured as follows. We start by giving some
background information on QBDs with marked time epochs
and we introduce the reset Markov chain of interest (Section
2). In Section 3 we convert this reset process into a level de-
pendent QBD with a generalized boundary condition. A
key role for the computation of the steady state probabil-
ities of this QBD is played by a set of R-matrices [6] that
can be computed recursively as demonstrated in Section 3.1.
Next, the steady state probabilities are obtained from these
R-matrices (Section 3.2) and to summarize, an algorithmic
overview is given in Section 3.3. In Section 4 we illustrate
our algorithm with some numerical examples.

2. QBDS WITH MARKED TIME EPOCHS:
A REVIEW

We are interested in the transient behavior of a QBD Markov
chain (MC) characterized by the transition matrix

P̄ =

2
6666664

B̄1 B̄0 0 0 · · ·

B̄2 Ā1 Ā0 0
. . .

0 Ā2 Ā1 Ā0

. . .
...

. . .
. . .

. . .
. . .

3
7777775

, (1)

where B̄i and Āi are square matrices of dimension h, for
i = 0, 1 and 2. The state space of this infinite Markov chain
is partitioned into an infinite number of sets, which we call
levels. Transitions among the levels are described by the
B̄i and Āi matrices. To avoid the notations from becoming
unnecessarily complex, we assume that level zero of the QBD
has the same number of states as all other levels. However,
the method described in this paper does not rely on this
assumption and therefore may be relaxed if needed. Our
Matlab tool does not have this restriction, as illustrated in
Section 4. Furthermore, we denote the states of this MC as
〈i, j〉, where i ≥ 0 denotes the level and 1 ≤ j ≤ h identifies
the state within the level.

To obtain various transient performance measures in a uni-
fied manner, QBDs with marked time epochs (QBDm) were
introduced in [15]. Such a QBDm is fully characterized by
two sets of nonnegative matrices: a set with superscript m

and one where all matrices have superscript u. These matri-
ces have the additional property that the matrices defined
as

B̄i = B̄u
i + B̄m

i , Āi = Āu
i + Ām

i ,

for i = 0, 1 and 2, characterize a QBD Markov chain. The
probabilistic interpretation is as follows. The (j, j′)th entry
of the matrix Ām

i contains the probability that at time t a
transition occurs from state j of level s to state j′ of level
s − i + 1 and time epoch t is marked. The probabilities of
the corresponding events without marking time t are given
by the matrix Āu

i .

Based on the transient performance measure we want to
study, we mark part of the time epochs. For example, to
obtain the system state at time n, we simply mark all time
epochs. To compute the waiting time of the nth customer in
some queueing system that can be modeled as a QBD, we
mark each time epoch in which an arrival occurs, etc. For
more examples, see [14] and [15]. Any transient problem
that can be formulated in terms of the n-th marking of a
QBDm, can be solved in a plug-and-play manner. The tech-
nique used to obtain the system state at the n-th marking
consists of two steps.

Step 1: Discrete Erlangization. Denote πm(n) as the
probability vector associated with the nth marked time epoch,
i.e., πm(n) = (πm

0 (n), πm
1 (n), . . .), where πm

i (n) is of size h
for i ≥ 0. To speed-up the computations, the system state at
the nth marking tm(n) is approximated by considering the
system state at the Zk,n-th marked time epoch tm(Zk,n),
where Zk,n is a negative binomially distributed (NBD) ran-
dom variable with k phases and mean n, for k (≤ n) suffi-
ciently large. The larger k, the lower the variation of Zk,n

and the better the approximation becomes. Setting k = n
provides us with exact results, however, k cannot always be
set equal to n as the reset MC might become periodic.

To compute the system state at time tm(Zk,n), an expanded
Markov chain, called a reset Markov chain, was introduced.
The key feature of such a Markov chain is that it reformu-
lates the transient problem of computing the state at time
tm(Zk,n) into a steady state analysis. Using the NBD as a
reset time implies, among others, that the transition blocks
of this reset MC have a special structure that can be ex-
ploited when computing its steady state probabilities.

Step 2: Reset Markov chains. Consider the stochas-
tic process that evolves according to the transition matrix
P̄ , but that is repeatedly reset when leaving the Zk,n-th
marked time epoch. A reset event corresponds to a transi-
tion from the current state to the initial state of the Markov
chain. Denote the initial level as r and the initial state
within this level as l. A reset event therefore corresponds
to a transition from the current state to state 〈r, l〉. If we
perform a Bernoulli trial with parameter p = k/n each time
we have a transition out of a marked time epoch, the system
is reset whenever k successes have occurred. We define the
reset counter as being the number of pending successes be-
fore the next reset event. It is clear that this reset counter
takes values in the range {1, 2, . . . , k}. We will add the reset
counter as an auxiliary variable to the Markov chain char-
acterized by P̄ and label its states as (c, j) with 1 ≤ c ≤ k
and 1 ≤ j ≤ h. As explained further on, if we succeed in
computing the stationary behavior of the expanded MC, we
can readily compute the system state just prior to a reset
event, which is exactly the system state at time tm(Zk,n).
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The work presented in [15] was restricted to QBDs whose
initial state was part of level zero. Although the algorithm
in [14], for more general initial conditions, is easily extended
to the QBDm framework, it requires that all computations
need to be redone when considering a different initial state.
In this paper we therefore present an efficient algorithm to
obtain transient performance measures for every possible ini-
tial configuration, without the need to repeat all computa-
tions for each configuration. We assume that at time zero
the QBD resides in state l (1 ≤ l ≤ h) of level r. The reset
process is characterized by the transition matrix Pk,n:

Pk,n = Qk,n + Ck,n, (2)

with

Qk,n =

2
6666664

Bk,n
1 Bk,n

0 0 0 · · ·

Bk,n
2 Ak,n

1 Ak,n
0 0

. . .

0 Ak,n
2 Ak,n

1 Ak,n
0

. . .
...

. . .
. . .

. . .
. . .

3
7777775

, (3)

Ck,n =

2
6664

0 · · · 0 Ck,n
0 0 · · ·

0 · · · 0 Ck,n
1 0 · · ·

0 · · · 0 Ck,n
1 0 · · ·

...
...

...
...

...
. . .

3
7775 , (4)

where the matrices Ck,n
0 and Ck,n

1 appear on the (r + 1)th

block column and where

Ak,n
i = (Ik ⊗ (Āu

i + (1− p)Ām
i )) + (Mk

0 ⊗ pĀm
i ) (5)

Bk,n
i = (Ik ⊗ (B̄u

i + (1− p)B̄m
i )) + (Mk

0 ⊗ pB̄m
i ) (6)

Ck,n
0 = Mk

1 ⊗ (p(B̄m
0 e + B̄m

1 e)αl) (7)

Ck,n
1 = Mk

1 ⊗ (pĀmeαl), (8)

for i = 0, 1 or 2 and Ām = Ām
0 +Ām

1 +Ām
2 . The k×k matrix

Mk
0 has ones on the first diagonal below its main diagonal

and all other entries equal to zero, while Mk
1 has only one

entry differing from zero being its last entry on the first row,
which equals one. Further, e is a column vector with all its
entries equal to one and αl is a 1 × h row vector with all
entries equal to zero, except for the lth entry which equals
one.

Let πk,n = (πk,n
0 , πk,n

1 , πk,n
2 , . . .) be the steady state vector

of Pk,n. Moreover, let πk,n
i = (πk,n

i,1 , . . . , πk,n
i,k ), partitioned

in the obvious manner. Provided that the vector πk,n ex-
ists, the system state πm(Zk,n) at time tm(Zk,n), used as
an approximation to πm(n), is the stochastic vector pro-

portional to (πk,n
0,1 .φ0, π

k,n
1,1 .φ1, π

k,n
2,1 .φ1, . . .)p. Here, φ0 and

φ1 are the transposed vectors of
�
B̄m

0 e + B̄m
1 e
�

and Āme,
respectively and ‘.’ denotes the point-wise vector product.
That is, a reset will occur if the value of the reset counter
equals one and the Bernoulli trial with parameter p results
in a success. To compute the steady state vector of Pk,n we
shall construct a level dependent QBD Markov chain with a
generalized initial condition of which the transition matrix
is denoted by PQBD. It is in this respect that the current
paper differs from the approach taken in [14], where a differ-
ent QBD reduction method was used to compute πk,n. The
novel construction allows us to simplify the calculation of

the steady state vectors significantly when computing πk,n

for every initial setting 〈r, l〉 with r ≥ 0 and 1 ≤ l ≤ h.

3. QBD REDUCTION
In this section, we show how to convert the reset MC, intro-
duced Step 2 of Section 2, into a level dependent QBD with
a generalized boundary condition. For this purpose, we in-
troduce h additional states to each of the levels 0, . . . , r and
we refer to these states as artificial states. Meaning, we in-
crease the number of states for each of the first r + 1 levels
by a factor (k + 1)/k. When a reset event occurs, the reset
Markov chain characterized by Pk,n makes a transition to
state 〈r, (k, l)〉. In the reduced QBD approach, we split such
a transition into r + 2 steps:

• Step 1: A transition to artificial state l of level zero
takes place.

• Step 2 to r+1: Next, transitions between artificial
state l of level i and artificial state l of level i + 1 will
follow, for i = 0, . . . , r − 1.

• Step r+2: Finally, when the state equals artificial
state l of level r, a transition to the non-artificial state
(k, l) of level r is made.

Before we discuss the transition matrix, let us reflect a bit
on the reduction choices made. The key property of this
reduction is that every reset event causes the MC to jump
to level zero. Thus, as opposed to the technique used in
[14], even if the reset event occurs at some level s, with
0 < s < r, the path to state 〈r, (k, l)〉 goes through level
zero. Therefore, the MC becomes level independent starting
from level r +1 and requires no artificial states on the levels
s > r.

The steady state vector of a QBD that becomes level inde-
pendent at some level can be determined by a finite set of
R-matrices [6]. By immediately selecting state l while visit-
ing level zero, a single set of R-matrices suffices to compute
the transient performance measures for all h initial states
of the form 〈r, l〉, with 1 ≤ l ≤ h. Furthermore, these R-
matrices can be reused when we look at initial states of the
form 〈r′, l〉, for r′ > r. More specifically, when we increase
r by one, the proposed reduction method only requires us
to compute one additional R-matrix. This is a significant
improvement over [14], where the entire set of R-matrices
had to be recomputed for each new level. Finally, we shall
see that these R-matrices have a useful block-structure and
are identical to one another, except for the last block row.

It is possible to shorten the reduction procedure to r + 1
steps by removing the h artificial states from level r (and
by returning to a non-artificial state when going from level
r−1 to level r). This causes no true performance gain (even
though we need one R-matrix less), however, for uniformity
reasons we decided to include step r + 2.

The state space of the constructed QBD MC is organized
such that whenever we visit an artificial state, we temporar-
ily set the reset counter equal to k + 1. This gives rise to
the transition matrix PQBD presented in Equation 9. In this

equation A>r
i = Ak,n

i , for i = 0, 1, 2,
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PQBD =

2
6666666666666666666664

Br
1 + Cr

0 Br
0 0 · · · 0 0 0 · · ·

Br
2 + C≤r

1 A<r
1 A<r

0 · · · 0 0 0 · · ·

C≤r
1 A≤r

2 A<r
1

. . . 0 0 0 · · ·
...

...
. . .

. . .
. . .

...
...

. . .

C≤r
1 0 0

. . . A<r
1 A<r

0 0 · · ·

C≤r
1 0 0

. . . A≤r
2 Ar

1 Ar
0 · · ·

C>r
1 0 0

. . . 0 Ar+1
2 A>r

1 · · ·

C>r
1 0 0

. . . 0 0 A>r
2 · · ·

...
...

...
. . .

. . .
...

...
. . .

3
7777777777777777777775

, (9)

Br
0 =

�
Bk,n

0 0
0 Ih

�
, A<r

0 =

�
Ak,n

0 0
0 Ih

�
,

Ar
0 =

�
Ak,n

0

0

�
, Br

1 =

�
Bk,n

1 0
0 0

�
,

A<r
1 =

�
Ak,n

1 0
0 0

�
, Ar

1 =

�
Ak,n

1 0
J 0

�
,

Br
2 =

�
Bk,n

2 0
0 0

�
, A≤r

2 =

�
Ak,n

2 0
0 0

�
,

and

Ar+1
2 =

�
Ak,n

2 0
�
,

Cr
0 = Mk+1

1 ⊗ (p(B̄m
0 e + B̄m

1 e)αl),

C≤r
1 = Mk+1

1 ⊗ (pĀmeαl),

C>r
1 = Mk+1

2 ⊗ (pĀmeαl).

In these equations J is an h× hk matrix given by

J =
�

0 · · · 0 Ih

�
. (10)

The matrix Mk+1
2 is a k × (k + 1) matrix with all entries

equal to zero, except for the last entry on the first row which
equals one.

A key role in the computation of the invariant vector π̂ of
PQBD is played by a set of R-matrices [6], which we denote
as R0{r}, R1{r}, . . . , Rr{r} and R>r{r} (see Section 3.2 for
details). We briefly outline the case in which the Markov
chain starts in state l of level zero, as this case was already
discussed in detail in [15].

3.1 Computing theR-matrices
3.1.1 Reset to level zero
Recall that there is no need to add step r+2 in the reduction
process, which explains why there are no artificial states
in [15], where the reset level equals zero. We first use the
algorithm described in [15, Section 5] to solve the equation

R = A>r
0 + RA>r

1 + R2A>r
2 . (11)

This algorithm reduces the above quadratic matrix equa-
tion involving large matrices (size kh) to a single quadratic
matrix equation and a set of Sylvester matrix equations of

a much smaller dimension (size h). The Cyclic Reduction
(CR) algorithm [9, 1] can be used to solve the quadratic ma-
trix equation, whereas a solution to the Sylvester equations
can be found using a Hessenberg algorithm [4]. This reduc-
tion can be applied because the matrices A>r

i , for i = 0, 1
and 2, have a block triangular block Toeplitz (btbT) struc-
ture. A btbT matrix X is fully characterized by its first
block column as follows:

X =

2
666666664

X1 0 · · · 0 0

X2 X1

. . . 0 0
...

. . .
. . .

. . .
...

Xk−1 Xk−2

. . . X1 0
Xk Xk−1 · · · X2 X1

3
777777775

. (12)

Actually, only X1 and X2 differ from zero in case of the
A>r

i matrices. Since the btbT structure is preserved by the
matrix multiplication, R also has a btbT structure, which
allows us to compute the matrix R in a time and memory
complexity of O(h3k2) and O(h2k), respectively. Next, the
matrix R0{0} defined as

R0{0} = Bk,n
0 (I −A>r

1 −RA>r
2 )−1, (13)

can be computed efficiently by exploiting the btbT struc-
ture.

3.1.2 Reset to an arbitrary levelr > 0
The fundamental idea of our algorithm is to compute the
steady state probabilities for the other initial configurations
recursively. To achieve this, we establish a simple recursion
on r among the R-matrices R0{r}, R1{r}, . . . , Rr{r} and
R>r{r} needed to obtain the steady state vector of inter-
est. Thus, after obtaining the two R-matrices R and R0{0}
for level zero, we continue with the R-matrices needed when
the initial level equals one, two, etc. The recursion can be
understood by looking at the probabilistic interpretation of
the R-matrices involved. More specifically, the (u, v)th entry
of the matrix Ri{r} denotes the expected number of visits
to state v of level i+1, starting from state u of level i under
taboo of the levels 0, . . . , i and under the assumption that
the reset level of the Markov chain equals r.
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As explained below the following equalities hold:

Ri{r} =

�
R 0
JGr−i−1(Ikh − U)−1 Ih

�
, (14)

Rr{r} =

�
R
0

�
, (15)

R>r{r} = R. (16)

for r ≥ 1 and 0 < i < r. The btbT matrices U and G are
given by

U = Ak,n
1 + RAk,n

2 , (17)

G = (Ikh − U)−1Ak,n
2 . (18)

The expression for R>r{r} is immediate, as the expected
number of visits to a state of level i + 1 under taboo of the
levels 0, . . . , i does not depend on the actual value of i > r
since the transition matrix PQBD is level independent from
level r + 1 onwards.

The equality for Ri{r}, for i = 1, . . . , r, can be justified in
two steps. First, consider the situation in which the starting
state u is a non-artificial state of level i. All sample paths
that avoid levels 0 to i do not contain a reset event, as all
reset events result in a visit to level zero. Hence, all these
paths evolve according to the matrices Ak,n

0 , Ak,n
1 and Ak,n

2 .
Therefore, there are no visits to any of the artificial states
of level i + 1, while the expected number of visits to level
i + 1 is determined by R.

Second, if the starting state u is one of the h artificial states
of level i, the next r − i + 1 transitions are fixed. The first
r − i transitions are between the two corresponding artifi-
cial states of level j and j + 1, for i ≤ j < r, and the last
transition between an artificial state l and its corresponding
non-artificial state (k, l) both of level r. The expected num-
ber of visits to level i+1 will therefore solely depend on the
number of levels between i and r. The (u, v)-th entry of G
gives us the probability that the first visit to level i is a visit
to state v, provided that we started in state u of level i + 1,
without the occurrence of a reset event. Therefore, the first
visit to level i + 1 under taboo of the levels 0 to i, starting
from a state of level r is determined by the matrix Gr−i−1.
The (w, w′)-th entry of the matrix (Ikh − U)−1 holds the
expected number of visits to state w′ of level i + 1, start-
ing from state w of level i + 1, under taboo of level 0 to i.
Furthermore, starting from an artificial state of level i < r
implies that we visit exactly one artificial state of level i+1
before returning to level zero (hence, the Ih matrix in the
lower right corner).

The matrix that remains to be determined is R0{r}. In the
case where the starting state u of level zero is not an ar-
tificial state, all sample paths that avoid level zero evolve
according to the matrices Ak,n

0 , Ak,n
1 and Ak,n

2 , except for
the first transition which is characterized by the matrix Br

0 .
As a result, the expected number of visits to level 1 are de-
termined by R0{0}. If, on the other hand, the starting state
is an artificial start, we may rely on the same arguments as
for i > 0. Hence,

R0{r} =

�
R0{0} 0
JGr−1(Ikh − U)−1 Ih

�
. (19)

Equations (14) and (19) naturally lead to a simple recursion

as

JG(r+1)−i−1(Ikh − U)−1 =

JGr−i−1(Ikh − U)−1
�
Ak,n

2 (Ikh − U)−1
�

. (20)

In conclusion, to compute all the R-matrices needed to as-
sess the transient performance for all initial states 〈r′, l〉 with
r′ ≤ r, it suffices to compute

1. The first block column of the btbT matrices R and
R0{0}.

2. The last block row of the r matrices R0{r}, . . . , Rr−1{r},
which can be found recursively using a single btbT
product (see (20)). Notice, Ri{r′} equals Ri+r−r′{r}
for r′ ≤ r.

3.2 Computing the steady state probabilities
3.2.1 Reset to level zero
This section briefly describes how to obtain the steady state
probability vector π̂{0, l} of PQBD when the initial state
〈r, l〉 = 〈0, l〉, for 1 ≤ l ≤ h, using the matrices R and
R0{0}:

π̂0{0, l} = π̂0{0, l}(Bk,n
1 + Ck,n

0 +

R0{0}(Bk,n
2 + (I −R)−1Ck,n

1 )), (21)

π̂1{0, l} = π̂0{0, l}R0{0}, (22)

π̂i{0, l} = π̂i−1{0, l}R, (23)

for i > 1, while π̂0{0, l} and π̂1{0, l} are normalized as
π̂0{0, l}e+ π̂1{0, l}(I−R)−1e = 1. The matrix in Eq. (21) of
which π̂0{0, l} is an eigenvector with eigenvalue one, is the
sum of a btbT matrix and a matrix with all entries equal to
zero, except for the last block column. In order to compute
π̂0{0, l} efficiently, we can therefore rely on the algorithm
presented in [15, Section 5.2], the time and space complex-
ity of which equal O(h3k2) and O(h2k), respectively. This
algorithm solves a linear system of hk equations of the fol-
lowing form:

π̂0{0, l} = π̂0{0, l}

2
6666664

Y1 0 . . . 0 Z1

Y2 Y1

. . . 0 Z2

...
. . .

. . .
...

...
Yk−1 Yk−2 . . . Y1 Zk−1

Yk Yk−1 . . . Y2 Y1 + Zk

3
7777775

.

Instead of plugging in the h different αl vectors in the al-
gorithm presented in [15, Section 5.2] (where the vector αl

has a one on the l-th position and zeros elsewhere), we can
actually compute the h vectors π̂0{0, l} simultaneously as
follows.

The algorithm in [15] first computes a set of matrices G1, . . .,
Gk, which is by far the most expensive part of the algorithm.
However, changing the initial state 〈0, l〉 does not alter the
matrices G2, . . . , Gk, but only affects G1. Moreover, keeping
in mind that G1 has to be stochastic, one can show that

G1 = Y1 + αl ⊗ (e− Y1e) , (24)

where Y1 does not depend on l. The remaining steps of
the algorithm to obtain the π̂0{0, l} vector from G1, . . . , Gk

5



remain identical. Notice that the matrices R and R0{0} do
not depend on the initial state l and need to be computed
only once.

3.2.2 Reset to an arbitrary levelr > 0
Having obtained the matrices R0{r}, . . . , Rr{r} and R, we
immediately have the following expression for the steady
state probability vector π̂ of PQBD (for the system where
the reset level equals r > 0), due to [6]:

π̂i{r, l} =

�
π̂i−1{r, l}Ri−1{r} for i = 1, . . . , r + 1,
π̂i−1{r, l}R, for i > r + 1.

(25)
Thus, it suffices to determine π̂0{r, l}, which obeys the fol-
lowing equation:

π̂0{r, l} = π̂0{r, l}N, (26)

with

N = Br
1 +Cr

0 +R0{r}Br
2 +Rr

SC≤r
1 +Rr

P (I−R)−1C>r
1 , (27)

and

Rr
S =

r−1X
k=0

 
kY

i=0

Ri{r}

!
, Rr

P =

 
rY

i=0

Ri{r}

!
. (28)

To speed-up the computation of π̂0{r, l}, for 1 ≤ l ≤ h, we
exploit the structure of the square N matrix, the dimension
of which equals h(k + 1). It might seem odd that we are
considering a system of h(k + 1) linear equations, instead
of just hk + 1 as only one of the last h entries of π̂0{r, l}
will differ from zero (being the l-th). However, considering
this somewhat larger N matrix, enables us to compute the
h different π̂0{r, l} vectors simultaneously.

Write the matrix N as

N =
�

NB NC
�
, with NB =

�
NT

NR
r

�
,

where NT is an hk×hk matrix corresponding to transitions
between non-artificial states, NR

r an h× hk matrix and NC

an h(k + 1)× h matrix.

Only the last block column of Cr
0 , C≤r

1 and C>r
1 differs from

zero; therefore, NT is a btbT matrix given by

NT = Bk,n
1 + R0{0}Bk,n

2 , (29)

meaning NT does not depend on the initial level r (and state
l) of the QBD and needs to be computed only once. The
block row NR

r does depend on the initial level r and can be
computed as

NR
r = JGr−1(Ikh − U)−1Bk,n

2 . (30)

As we increase the initial level r, this matrix changes. How-
ever, we can easily compute it recursively by relying on
Equation (20) with i = 0. The matrix NC will only contain
one non-zero column, which does not need to be computed
to determine π̂0{r, l}.

Let us now discuss how the vectors π̂0{r, l}, for 1 ≤ l ≤ h,
can be obtained simultaneously from the matrices NT and
NR

r . Denote NT
j as the j-th h × h block appearing on the

first block column of the btbT matrix NT and denote NR
r,j

as the j-th block of the block vector NR
r . The algorithm

discussed below is a variant of the one in [15, Section 5]
used to compute the invariant vector of a matrix of the form
seen in Section 3.2.1. N has a slightly different structure,
causing some minor modifications to the algorithm, however
as in [15, 5] it stems from a repeated censoring argument.
First, we compute the k matrices G2 until Gk+1:

1. Set Gi = NR
r,k−i+2, for i = 2, . . . , k + 1,

2. for i = 3 to k + 2 do
Gi−1 = Gi−1(Ih −NT

1 )−1

for j = i to k + 1 do
Gj = Gj + Gi−1N

T
j−(i−1)+1

end
end

The time and memory complexity of this step equals O(h3k2)
and O(h2k) respectively. The vectors

π̂0{r, l} = (π̂0,1{r, l}, . . . , π̂0,k+1{r, l})

can be retrieved from these matrices as follows:

1. π̂0,k+1{r, l} = αl,

2. for i = 2 to k + 1
π̂0,k−i+2{r, l} = αlGi

end

Recall, αl is a 1×h vector with a one in position l and zeros
elsewhere. Thus, αlGi corresponds to the l-th row of the
matrix Gi.

Finally, due to Equation (25), the vector π̂0{r, l} is normal-
ized as

π̂0{r, l}e + π̂0{r, l}
�
Rr

Se + Rr
P (I −R)−1e

�
= 1. (31)

Remark that for the btbT part of the matrices appearing in
this equation, we only store the first block column.

Having obtained the steady state vector π̂{r, l} of PQBD,
we can derive πk,n{r, l}, the invariant vector of Pk,n as fol-

lows. Write π̂j{r, l}, for j = 0, . . . , r, as (π̂f
j {r, l}, π̂

art
j {r, l}),

where π̂art
j {r, l} is a 1×h vector. Notice, there are no artifi-

cial states from level r + 1 onwards, therefore we may write
π̂j{r, l} = π̂f

j {r, l}, for j > r. When censored on the non-
artificial states, PQBD coincides with Pk,n, consequently,

πk,n
j {r, l} = π̂f

j {r, l}/(1− c), (32)

where j ≥ 0 and c =
Pr

j=0 π̂art
j {r, l}. An approximation

for πm(n), the system state at the nth marking can now be
computed as described in Step 2 of Section 2.

The algorithm discussed in this section allows us to com-
pute the steady state vectors πk,n{r′, l}, for r′ ≤ r and
1 ≤ l ≤ h, from the matrices R0{r}, . . . , Rr{r} and R. As
we are looking at a transient event, choosing r sufficiently
large, guarantees that πk,n

0,1 {r, l} decreases to zero, because
the probability of reaching level zero before a reset occurs
decreases to zero. Thus, for r sufficiently large, πk,n{r+1, l}
can be obtained from πk,n{r, l} by shifting its subvectors by
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one position. To determine the transient behavior for all
initial states, we dynamically increase r until πk,n

0,1 {r, l} is
negligible or until a predefined upper bound on r is reached.
It should be noted that this idea is somewhat similar to the
technique used in [13].

3.3 Algorithmic overview
To conclude this section, we will present a short algorithmic
overview of the discussed results. To obtain the transient
performance measures of interest for every initial setting
〈r, l〉, implement the following steps:

1. Mark time epochs in correspondence with the desired
performance measure and determine the matrices in-
troduced in (9), using the equations (5) – (8).1

2. Compute the matrices R from (11) and R0{0} = Bk,n
0 (I−

A>r
1 −RA>r

2 )−1.

3. Use (21) – (23) to compute the steady state vector
π̂{0, l}. This can be done simultaneously for l = 1, . . . , h
as described in Section 3.2.1.

4. Compute NT = Bk,n
1 + R0{0}Bk,n

2 and U = Ak,n
1 +

RAk,n
2 .

5. Set R∗
0{1} = J(Ikh − U)−1.

6. For each initial level r > 0 do

- If r > 1 calculate

R∗
0{r} = R∗

0{r − 1}
�
Ak,n

2 (Ikh − U)−1
�

.

- Set NR
r = R∗

0{r}Bk,n
2 .

- Use the algorithm described in Section 3.2.2 to
obtain π̂0{r, l} from NT and NR

r simultaneously
for 1 ≤ l ≤ h.

- Normalize the vector π̂0{r, l} using Eq. (31), where
Rr

S and Rr
P can be computed recursively from

Rr−1
S and Rr−1

P as indicated by Eq. (28).

- Compute π̂i{r, l} = π̂i−1{r, l}Ri−1{r} for 0 < i ≤
r+1 and π̂i{r, l} = π̂i−1{r, l}R for i > r+1, where
the R-matrices are described in Section 3.1.2.2

- Finally, πk,n{r} can be found from Eq. (32).

until πk,n
0,1 {r, l} is negligible or until a predefined upper

bound on r is reached.

4. NUMERICAL EXAMPLES
In this section we will demonstrate our approach with some
numerical examples and compare the efficiency with the al-
gorithm presented in [14]. Therefore, we will compute the
queue length distribution of a D-MAP/PH/1 queue at some

1Note that for every matrix with a btbT structure only the
first block column has to be stored.
2The rows of Ri{r} corresponding to the artificial states are
given by [R∗

0{r− i} Ih]. Also, the product between a vector
and a btbT matrix can be implemented using fast Fourier
transforms, see [15, Section 5.3], as the remaining rows of
Ri−1{r} are identical to R, this results in a significant gain
in time.
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Figure 1: Queue length distributions of the
D-MAP/PH/1 queue with t = 50, α = 1

time t as well as the waiting time distribution of the n-th
customer in this queue.

The D-MAP arrival process, introduced in [3], is the discrete
time version of the Markovian arrival process, MAP [7, 8].
It is characterized by two h × h matrices D0 and D1, with
h a positive integer. These matrices contain the transition
probabilities of the underlying Markov chain when either a
customer arrives (covered by D1) or not (D0). In this exam-
ple we consider a 2-state D-MAP that generates an arrival
with probability 0.1 while in state 1 and with probability
0.25 when the state of the underlying Markov chain equals
2. The average sojourn time is 500 slots in state 1 and 1000
slots in state 2, resulting in an arrival rate λ = 0.2. Hence,

D0 =

�
0.89820 0.00180
0.00075 0.74925

�
, D1 =

�
0.09980 0.00020
0.00025 0.24975

�
.

Denote the initial state of the D-MAP process by α. The
service time of a customer follows a discrete-time phase-type
(PH) distribution with a matrix representation (m,β,T ),
where m is a positive integer. The vector β contains the
probabilities that the service of a customer starts in a given
phase. The probability that a customer continues his ser-
vice in phase j at time t + 1, given the phase at time t
equals i, is represented by the (i, j)th entry of the m × m
substochastic matrix T . For this example we take m = 3,
β = (3/4, 1/8, 1/8) and the matrix T is given by

T =

2
4 4/5 0 0

0 1/2 0
0 0 1/4

3
5 .

Furthermore, define T ∗ = e−Te. Remark, the mean service
time equals E[S] = β(I − T )−1e = 4.1666 slots, resulting in
a total system load ρ = 0.8333. This gives rise to a QBD
Markov chain, characterized by the transition matrix P̄ (as
in Equation (1)), with B̄0 = D1⊗β, B̄1 = D0, B̄2 = D0⊗T ∗,
Ā0 = D1 ⊗ T , Ā1 = (D0 ⊗ T ) + (D1 ⊗ T ∗β), and Ā2 =
D0⊗T ∗β. Since we are interested in the system state at some
time t, we mark every time instant, meaning Ām

i = Āi and
B̄m

i = B̄i, for i = 0, 1, 2. For a detailed description about
how the queue length distribution of a D-MAP/PH/1 queue
at some time t can be obtained using a QBD with marked
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Figure 2: Queue length distributions of the
D-MAP/PH/1 queue with t = 500, α = 1
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Figure 3: Queue length distributions of the
D-MAP/PH/1 queue with t = 5000, α = 1

time epochs, we refer to [14]. Notice, in this example, level
0 has fewer states than level r > 0, demonstrating that the
algorithm in the paper is easily generalized to such cases.

Take α = 1, then Figure 1 shows the queue length distribu-
tion for respectively 0, 5, 10, 20, 30 and 40 customers in the
system at time 0. If the system is initially not empty, it is
assumed that the first customer starts his service at time
0. Thus, for r > 0, all curves plotted for α = 1 or 2 are
actually the weighted sum of three distributions, where the
initial service phase equals 1, 2 and 3 and where the weights
are given by β.

We observe a large influence of the number of customers
originally present on the queue length distribution. As could
be expected this influence becomes smaller for larger values
of t as can be observed from Figures 2 and 3, for t = 500,
resp. t = 5000, and k = 100. Remark that after choosing
the values for t and k, we need to execute our recursive
algorithm only once to obtain the results for every possible
combination of r and α.

Figure 4 shows, for t = 50, the queue length distributions for
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Figure 4: Queue length distributions of the
D-MAP/PH/1 queue with t = 50, α = 2
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Figure 5: Average queue length of the
D-MAP/PH/1 queue

the same number of customers in the system at time 0, but
with α = 2. Since the arrival rate in state 2 of the D-MAP
is larger than the arrival rate in state 1, we observe higher
probabilities for the larger queue lengths in this example.
From Figure 5 it can be observed that for a small value of t
the average queue length increases almost linearly with the
number of customers present in the queueing system at time
0. In addition, the influence of the number of customers ini-
tially present decreases when the time t at which we evaluate
the queue length increases.

A different behavior can be observed with relation to the ini-
tial state of D-MAP arrival process. Denote by qr,t

1 , resp. qr,t
2 ,

the average queue length at time t, given that r customers
were present at time 0 and the initial state of the D-MAP
process equals state 1, resp. state 2. Next, let us define
Diff r,t = qr,t

2 − qr,t
1 . From Figure 5 we notice for exam-

ple that Diff r,50 <Diff r,500, while Diff r,500 >Diff r,5000, for
1 ≤ r ≤ 50. A better insight in the behavior of Diff r,t for
different values of r and t can be obtained by observing Fig-
ure 6. For 1 ≤ r ≤ 50 we can see that the difference between
qr,t
2 and qr,t

1 increases for small values of t and decreases later
on. This effect can be explained by looking at the arrival
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2 and qr,t
1

rates in both states of the D-MAP process. Recall, while in
state 1, resp. state 2, there is an arrival in an arbitrary time
slot with probability 0.1, resp. 0.25. For values of t close to
zero, the difference Diff r,t will be relatively small since the
average number of customers present at time t, is mainly in-
fluenced by r, the number of customers initially present. As
long as there is no transition of the D-MAP arrival process,
the difference between the average queue lengths qr,t

2 and
qr,t
1 increases with t, due to the different arrival rates in

the corresponding states. After a state transition of the D-
MAP process, Diff r,t will start to decrease and eventually,
this difference will diminish to zero when t approaches ∞ as
the system has a steady state for ρ = 0.8333.

time new algorithm original algorithm
t R’s total all states level 50 〈50, l〉
50 0.46 9 2310 121 20
500 1.94 53 31595 1052 175
5000 1.95 133 33499 1080 180

Table 1: Execution times (s) for r ≤ 50

In Table 1 the time needed to compute the queue length
distribution for every initial configuration is compared with
the execution time of the original algorithm [14]. The mea-
surements were made using the Matlab Profiler on an Intel
Pentium M 1.70GHz processor with 1GB of memory. We
computed the queue length distribution at time t = 50, 500
and 5000, with a predefined upper bound of r = 50 on the
initial level. For the new algorithm, the time needed to
compute the R-matrices is presented as well as the total ex-
ecution time. For the original algorithm we show the time
needed to compute the queue length distributions for all ini-
tial configurations, for every state 1 ≤ l ≤ 6 of level 50 and
for a single initial configuration 〈50, l〉.

As before, we set k = t− 1 for t = 50, for both t = 500 and
t = 5000, k is set to 100. In the first scenario where t = 50,
the algorithm stops after the initial level reached r = 39 be-
cause πk,n

0,1 {r, l} becomes negligible for larger values of r. For
t > 50 the predefined maximum of r = 50 was reached. The
same stopping criterion was used by the original algorithm.
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Figure 7: Waiting time distribution of the 10-th cus-
tomer in a D-MAP/PH/1 queue

These results show that the computation time is reduced
considerably by the new algorithm. The computation time
of the level based recursion to compute the queue length dis-
tribution for every possible initial setting is even below the
time the original algorithm needs for a single initial state.
With the new algorithm, the dominant part of the computa-
tion lies in obtaining the π̂{r, l} vectors. This also explains
the smaller difference between the total computation time
of the new and the single state computation time of the old
algorithm in the t = 5000 result, since a larger value of u
is required such that 1 −

Pu
i=0 π̂i{r, l} < ε. Of course, if

we were interested in just one single initial state 〈50, l〉, the
time consuming iteration for the π̂{r, l} vectors is performed
only once (as opposed to the 302 times for all states up to
level r = 50).

In the next example, we consider the same D-MAP/PH/1
queue, however we are now interested in the waiting time
distribution of the n-th customer, which can also be ob-
tained using the presented algorithm. To compute this wait-
ing time it suffices to know the system state at the n-th ar-
rival epoch. Therefore, we mark only those time epochs at
which an arrival occurs (instead of marking all time epochs
as needed to obtain the queue length distribution at some
time t). We have Ām

0 = Ā0, Ām
1 = D1 ⊗ T ∗β, Ām

2 = 0,
B̄m

0 = B̄0, B̄m
1 = 0, and, B̄m

2 = 0.

Executing our algorithm with these matrices gives us an
approximation of the system state at the n-th arrival. From
this system state we can obtain the waiting time distribution
of the n-th customer by considering the number of customers
present at this n-th arrival, together with the sum of their
expected (residual) service times. More details about the
calculation of this waiting time distribution can be found in
[14, Section 4].

Figure 7 shows the waiting time distribution of the 10-th
customer with α = 1 for different values of r. If we com-
pare these results with the waiting time distributions of the
50-th customer, presented in Figure 8, we observe that r
has a larger influence in the first case, as one could expect.
Also, for the average waiting times, presented in Figure 9,
we can draw similar conclusions as for the average queue
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Figure 8: Waiting time distribution of the 50-th cus-
tomer in a D-MAP/PH/1 queue
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Figure 9: Average waiting time of the n-th customer
in a D-MAP/PH/1 queue

length. That is, as n increases, the influence of the number
of customers initially present on the average waiting time of
the n-th customer decreases. Moreover, for small n, the dif-
ference that is caused by the initial D-MAP state increases
together with n and it decreases hereafter.

5. CONCLUSIONS
In this paper, we discussed a new method to obtain transient
performance measures of a discrete time QBD Markov chain
for every possible initial configuration. First, we discussed
the approach for an initial level equal to zero. For the other
initial levels, we developed a recursive algorithm that makes
use of the computations done for the previous levels and that
exploits the btbT structure of the matrices occurring in the
calculations. Some numerical examples were presented to
illustrate the novel algorithm.
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