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RESPONSE TIME DISTRIBUTION IN A D-MAP/PH/1 QUEUE WITH
GENERAL CUSTOMER IMPATIENCE

J. Van Velthoven, B. Van Houdt, and C. Blondia � University of Antwerp,
Antwerpen, Belgium

� This paper presents two methods to calculate the response time distribution of impatient
customers in a discrete-time queue with Markovian arrivals and phase-type services, in which the
customers’ patience is generally distributed (i.e., the D-MAP/PH/1 queue). The first approach
uses a GI/M/1 type Markov chain and may be regarded as a generalization of the procedure
presented in Van Houdt [14] for the D-MAP/PH/1 queue, where every customer has the same
amount of patience. The key construction in order to obtain the response time distribution is to
set up a Markov chain based on the age of the customer being served, together with the state of
the D-MAP process immediately after the arrival of this customer. As a by-product, we can also
easily obtain the queue length distribution from the steady state of this Markov chain.

We consider three different situations: (i) customers leave the system due to impatience
regardless of whether they are being served or not, possibly wasting some service capacity, (ii) a
customer is only allowed to enter the server if he is able to complete his service before reaching
his critical age and (iii) customers become patient as soon as they are allowed to enter the server.
In the second part of the paper, we reduce the GI/M/1 type Markov chain to a Quasi-Birth-
Death (QBD) process. As a result, the time needed, in general, to calculate the response time
distribution is reduced significantly, while only a relatively small amount of additional memory
is needed in comparison with the GI/M/1 approach. We also include some numerical examples
in which we apply the procedures being discussed.
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1. INTRODUCTION

In this paper, we discuss two algorithms to calculate the response time
distribution in a D-MAP/PH/1 queue with general customer impatience
(see section 2 for definitions). Let Z be the patience distribution. We allow
Z to be generally distributed, except that we assume that there exists some
r ≥ 0 sufficiently large, such that P [Z > r ] = 0, i.e., the maximum amount
of patience that a customer can have is bounded above by some constant r .
We consider three different systems: (i) a customer is impatient during
his sojourn time (waiting + service) and may thus be partially served, (ii)
customers are aware of their service time and only enter the service facility
if their amount of patience is sufficient to complete service, (iii) a customer
can only run out of patience while waiting, i.e., he becomes patient as soon
as he enters the service facility. We shall denote each of these three D-
MAP/PH/1 queues as D-MAP/PH/1 + GI, to reflect the general nature
of the patience distribution. It should be noted that in the literature this
notation is mostly used for systems where the customers have a limited
waiting time (case (iii)).

The first approach presented in this paper uses a GI/M/1-type Markov
chain and is similar to the procedure introduced in Van Houdt[14], where
a system is being discussed in which every customer has the same amount
of patience. In order to obtain the response time distribution, we set
up a Markov chain by keeping track of the age of the customer being
served, while remembering the state of the D-MAP process immediately
after the arrival of this customer. The disadvantage of this algorithm is
that the time needed to calculate the response time distribution is a
square function of the maximum amount of patience r that a customer
can have. A partial solution to this problem is given by the introduction
of the second algorithm which is based on a QBD reduction. As a
result, the time complexity becomes a linear function of the maximum
amount of patience r . On the other hand, an implementation of the QBD
based algorithm requires somewhat more memory in comparison with the
GI/M/1 approach.

Queueing systems with impatient customers have many applications in
telecommunications, for instance in telephone systems, where people have
to wait for a dial tone (Zhao[15]) or call centers (Garnet[8]), where the
customers are only willing to wait a certain amount of time before they can
be served. Other examples include systems with real time constraints, where
packets have to arrive before a given deadline in order to be useful, data
communication networks with a time-out protocol, etc. Other applications
of queues with impatient customers can be found in manufacturing and
service industries, e.g., inventory systems with perishable goods.

The study of single-server queues with impatient customers has a long
history. It seems Palm[12] was the first to consider customer impatience.
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Barrar[2] analyzed the M/M/1 + D system. A key reference for the general
GI/GI/1 + GI is Baccelli et al.[1]. In this work a stability condition was
established for the general case, while for the M/GI/1 + GI queue the
virtual waiting time was studied. Markovian arrivals were considered
by Combé[7], who studied the MAP/G/1 + M queue and derived an
expression for the transform of the virtual waiting time and rejection
probability of a customer. Most of these studies assume that a customer
becomes patient when entering the server and set up a Markov process
using the virtual (offered) waiting time. Van Houdt et al.[14] developed an
algorithm to compute the response time distribution in a D-MAP/PH/1 +
D queue, by setting up a finite GI/M/1 type Markov chain. In this paper,
we generalize the work in Van Houdt[14] in a number of ways. First, we allow
the impatience distribution to be general, as opposed to deterministic.
Second, we also consider the system where customers only enter the server
if they are able to complete their service before becoming impatient. Third,
a QBD reduction procedure is included to improve the time complexity of
the algorithms and finally, we also show that apart from the response time
distribution and the rejection probability, the queue length distribution
can easily be obtained as a by-product.

The next section gives a description of the queueing system under
consideration, whereas in sections 3, 4, and 5 we discuss the first approach,
using a GI/M/1 type Markov chain. In section 3, customers leave the
system due to impatience regardless of whether they are being served
or not, possibly wasting some service capacity. In section 4 such capacity
losses are avoided by only allowing a customer to enter the server if his
service will be completed before he reaches his critical age. A system
where the customers are only impatient while waiting, is discussed in
section 5. Section 6 introduces an algorithm to calculate the response time
distribution using a QBD and finally, in section 7, we apply both algorithms
to some numerical examples, which provide, among others, insight on the
influence of the patience distribution Z .

2. THE DISCRETE-TIME D-MAP/PH/1 + GI QUEUE

The arrival process of the queueing system of interest is the D-MAP, a
discrete time Markovian arrival process (Blondia[3,4]). This process allows
us to work with correlated arrivals and is a special case of the D-BMAP
arrival process which allows batch arrivals. It is characterized by two m × m
matrices D0 and D1, with m a positive integer. These matrices contain
the transition probabilities of the underlying Markov chain when either a
customer arrives (covered by D1) or not (D0). For example, the entry ( j1, j2)
of D1 represents the probability that there is an arrival and the underlying
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Markov chain makes a transition from state j1 to state j2. The matrix D0

covers the case in which there is no arrival.
The matrix D represents the stochastic m × m transition matrix of the

underlying Markov chain and is defined by D = D0 + D1. In this paper,
we assume that D is irreducible. Denote � as the solution to �D = �
and �e = 1, where e is a vector with all its entries equal to one of the
appropriate dimension. That is, � is the stationary probability vector of
D. Then, the stationary arrival rate is given by � = �D1e . The arriving
customers are being served in a first-come first-served (FCFS) order, except
for those leaving the waiting room when they reach their critical age.

The service time of a customer has a common discrete-time phase-type
(PH) distribution with a matrix representation (mser , �,T ), where mser is a
positive integer. The vector � contains the probabilities that the service
of a customer starts in a given phase. The probability that a customer
continues his service in phase j at time n + 1, given the phase at time n
equals i , is represented by the (i , j)th entry of the mser × mser substochastic
matrix T . Finally, define t = e − Te , that is, t is a vector which contains
the probabilities that a customer completes his service, given the current
phase of the service process. Notice, the service time of a customer equals
k time units with probability �T k−1t and the mean service time is given by
1
�

= �(I − T )−1e . Let mtot = mserm. It is well known that PH distributions are
well suited for representing most of the types of services encountered in
communication systems (Lang[10]).

Each customer has a finite amount of patience that is i.i.d. and
arbitrarily distributed according to some random variable Z . The patience
distribution Z is characterized by the stochastic vector ã = (a1, a2, � � � , ar ),
where ai is the probability P [Z = i] that the amount of patience of a
customer equals i time units, while r is the maximum amount of patience
a customer can have. Let pi be the probability P [Z ≤ i] that the patience of
a customer is at most i time units, hence, pi = ∑i

j=1 aj . In order to simplify
the notation, we define p0 = 0, which we may regard as the probability that
an impatient customer has a critical age of zero time units. Because such
customers are never served, we do not consider them in this paper.a The
amount of patience of a customer is also referred to as his critical age.

Finally, if there is a departure and an arrival at the same time, we
assume that the departure occurs first. Also, when a customer arrives
while the server is idle, his service starts immediately. In each of the
models presented, we will consider the system just prior to possible arrivals,
departures or phase changes. Thus, if we refer to the system state at time
n, such events happening at time n are not yet taken into account. For
instance, when a customer starts his service at time n, the probability that

aSuch customers can easily be taken into account by modifying the characteristics of the
arrival process.
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the phase of the service process equals i at time n + 1 is given by the ith
component of the stochastic vector �. Also, the minimum age of a customer
in the service facility is one time unit.

3. IMPATIENT CUSTOMERS IN THE SYSTEM

In this section we consider the D-MAP/PH/1+GI queue with customers
who are impatient in the system, that is, all customers are impatient
irrespective of whether they are being served or not. A customer reaching
his critical age will leave the queue without starting or completing his
service. This system is also referred to as the “limitation on sojourn time
with unaware customers” (Baccelli[1]), as customers are impatient during
their entire sojourn time and are not aware, when entering the queue,
whether their total sojourn time will be larger than their patience.

Consider the following Markov chain (MC) with rmtot + m states.
Denote level zero of the MC as the set of states �1, � � � ,m� and level i as
the set of states �(i − 1)mtot + m + 1, � � � , imtot + m�, for 0 < i ≤ r . The states
of level i > 0 are labeled as (s, j), with 1 ≤ s ≤ mser and 1 ≤ j ≤ m. Let n
be the current time instant and let state (s, j) of level i (with 0 < i ≤ r )
correspond to the situation in which the age of the customer in service
equals i , the service process is currently in phase s and the D-MAP was in
state j at time n − i + 1. We say that the age of a customer equals i when
he arrived in the system i time units ago. Also, let state j of level zero
correspond to the situation in which the server is idle and the current state
of the arrival process is j . Then, the system can be described by a transition
matrix P with the following structure:

P =



B1 B0 0 0 � � � 0 0
B2 A1

1 A1
0 0 � � � 0 0

B3 A2
2 A2

1 A2
0 � � � 0 0

...
...

...
...

. . .
...

...

Br Ar−1
r−1 Ar−1

r−2 Ar−1
r−3 � � � Ar−1

1 Ar−1
0

E Cr Cr−1 Cr−2 � � � C2 C1


.

Here, B1 is an m × m matrix, B0 is an m × mtot matrix, Bi(i > 1) and E are
mtot × m matrices and Ai

k and Ci are mtot × mtot matrices. We will now derive
an expression for each of these matrices.

Let us start with the first level of P , level zero. If the MC is in a
state of this level, the server is idle and only two events can take place:
either a customer arrives or not. If there is no arrival, the MC remains
at level zero and makes a transition to some state of this level, according
to the transition of the underlying Markov chain of the arrival process.
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Hence, B1 = D0. If a customer does arrive at the current time instant n, a
transition from level zero to level one occurs, this new arrival immediately
enters the service facility and starts his service in a phase determined by
the vector �, so B0 = �⊗D1.

If the MC is in state (s1, j1) of level i at time n, there is a transition
to level zero if the customer in service leaves the system and there is
no customer present in the waiting room at time n + 1. There are two
possible causes for the customer in service to leave the service facility:
either he completes his service or he reaches his critical age. Therefore, the
customer in service leaves the system with a probability ts1 + ai

1−pi−1
(1 − ts1).

Let us now derive the probability that the system will be empty at
time n + 1, provided that an age i customer leaves the system at time n.
Unlike the case in which all of the customers have the same amount of
patience (Van Houdt[14]), it is possible that a customer arrival occurred
during some of the time instants n − i + 1,n − i + 2, � � � ,n − 1, who left
before or at time n due to impatience. Notice, a customer arriving at time
n is always present in the system at time n + 1 as the minimum amount
of patience is one time unit. If the critical age of a customer arriving at
time n − i + k, for k = 1, � � � , i − 1, is at most i − k, which is the case with
probability pi−k , this customer is no longer in the queue at time n + 1.
Obviously, there could be multiple customers of this kind. When we
combine these probabilities, we find

Bi+1 =
(
t + ai

1 − pi−1
(e − t)

)
⊗

i∏
k=1

(D0 + pi−kD1), (1)

for 0 < i < r (recall, p0 = 0). A transition from level i to level i + 1
occurs when the customer in service has not reached his critical age nor
completed his service. In this case the customers stays in the system and
the state of the D-MAP remains the same. Hence,

Ai
0 = 1 − pi

1 − pi−1
T ⊗ Im , (2)

where Im denotes the m × m unity matrix. The only remaining transitions
from level i are those to some lower level, i − l (0 < l < i). They occur
when the customer in service leaves the system and the first customer in
the waiting room arrived at time n − i + l + 1. Notice, this customer is
still patient, otherwise he would have left the system before time n + 1.
This yields,

Ai
l+1 =

(
t + ai

1 − pi−1
(e − t)

)
�⊗

( l∏
k=1

(D0 + pi−kD1)

)
(1 − pi−l−1)D1. (3)
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Notice that there could have been arrivals on some of the time instants
n − i + k, with 0 < k ≤ l , who reached there critical age before time n + 1.b

Finally, consider the situation where the age of the customer in service
equals r . This customer will leave the system, whether he finishes his service
or not. If there are no customers in the waiting room at time n + 1, the
MC will make a transition to level zero. In view of Eqn. (1) it follows

E = e ⊗
r∏

k=1

(D0 + pr−kD1). (4)

Otherwise the first customer in the waiting room, who has clearly not yet
reached his critical age, will enter the server. Implying, for 0 ≤ i < r ,

Ci+1 = e�⊗
( i∏

k=1

(D0 + pr−kD1)

)
(1 − pr−i−1)D1. (5)

The transition matrix P is a finite level dependent GI/M/1 type Markov
chain, the steady state vector of which can be computed efficiently by
the Latouche-Jacobs-Gaver (LJG) algorithm (Latouche[11]). Because this
algorithm is less efficient as the one we will discuss in section 6, we do not
include a detailed description of the LJG algorithm.

Having calculated the steady state vector � = (�0, �1, � � � ) of the
transition matrix P , we want to determine the probability P [X = i] that
a customer receives a complete service and that his response time equals i
time units. This probability is given by the expected number of customers
who complete their service i time units after they entered the queue, divided
by the expected number of customers who leave the system at an arbitrary
time instant. Denote the probability vector �i that the MC is at level i at an
arbitrary time as �i = ((�i)(1,1), (�i)(1,2), � � � , (�i)(1,m), (�i)(2,1), � � � , (�i)(mser ,m)).
Thus,

∑m
j=1(�i)(s,j) is the probability that at an arbitrary time instant an age i

customer is in the service facility,with thephaseof the serviceprocessequaling
s. Also, (t)s is the probability that such a customer completes his service.
Hence, we obtain P [X = i] = 1

�

∑mser
s=1(t)s

∑m
j=1(�i)(s,j), for 0 < i ≤ r .

The rejection probability Pout , being the probability that a customer
leaves the system without entering or completing his service, reads
Pout = 1 − ∑r

i=1 P [X = i]. Although we focus mainly on the response time
distribution, we can also obtain the queue length distribution as a
by-product. To do so, we define the m × 1 vector hk,d as the probability that
in an interval of length d , k customers arrive, who are still in the queue at
the end of this interval. The j th entry of this vector hk,d( j) represents the

bWhen the next customer arrival occurs at time n − i + 1, the MC remains at the same level.
In this case we define the subexpression

∏0
k=1(� � � ) equal to one.
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case in which the state of the D-MAP process equals j at the start of the
interval. The following relation can be used to calculate these probability
vectors:

hk,0 = 1�k=0�e ,

h0,d =
(

d∏
i=1

(D0 + pd−iD1)

)
e ,

hk,d = (1 − pd−1)D1hk−1,d−1 + (D0 + pd−1D1)hk,d−1.

Denote P [Q = q] as the probability that there are q customers in the
waiting room at an arbitrary time instant. This situation is only possible
when a customer with an age of at least q + 1 time units is in the service
facility. Therefore, we have

P [Q = q] =
r∑

i=q+1

m∑
j=1

hq ,i−1(j)
mser∑
s=1

(�i)(s,j), for 0 < q < r , and (6)

P [Q = 0] =
m∑
j=1

(�0)j +
r∑

i=1

m∑
j=1

h0,i−1(j)
mser∑
s=1

(�i)(s,j). (7)

A similar method can be used to obtain the queue length distribution of
the systems discussed in sections 4 and 5.

Remark. In the special case that the service time distribution is geometric
with parameter �, we have (1 − Pout) = (�/�)(1 − Pidle), where Pidle is
the probability that the server is idle. We can rewrite this as Pbusy =
�(1 − Pout)/�. This formula is an unexpected result, because one may,
incorrectly, get the impression that the server is only busy serving
customers who are successful, that is, manage to complete their service
before running out of patience. This is however not the case, as some
customers get partially served. The reason that we still get this expression
can be explained by noticing that the mean service time 1/�suc of a
customer who is successful is less than 1/�. Actually, if we denote Zrem as the
stationary distribution of the remaining patience when a customer enters
the server, one can easily prove that the mean time 1/�in that a customer
spends in the server (irrespective of whether he is successful) equals

1/�in = 1/�

1 −
∞∑
j=1

P [Zrem = j ](1 − �)j

 = 1/�Psuc |in , (8)

where Psuc |in is the probability that a customer is successful provided that he
entered the server. Clearly, Pbusy = �Pin/�in where Pin is the probability that
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a customer enters the server. Thus, we get Pbusy = �(1 − Pout)/�, as required.
This equality is not valid for all phase-type distributions, for instance if the
service is deterministic then 1/�suc = 1/� and Pbusy ≥ �(1 − Pout)/�.

4. SERVICE TIME AWARE IMPATIENT CUSTOMERS

In the system studied in the previous section a customer who does
not complete his service before reaching his critical age, is still allowed
to enter the server. In this way, such a customer wastes some service
capacity which could have been used by other customers. In this section
we consider a system where customers are only allowed to enter the server,
if they manage to compete service before reaching their critical age. As
such, we might refer to this model as the “limitation on sojourn time
with service time aware customers,” as customers are still impatient during
the entire sojourn time, but are aware of their service time. Therefore,
they can decide to leave the system, when the service facility becomes
available to them, if they notice that their remaining amount of patience
does not suffice to complete service. As long as we are concerned with
the rejection probability or the response time distribution (of successful
customers), this system is equivalent to the “limitation on sojourn time with
aware customers” (Baccelli[1]). In such a system, customers are assumed to
be aware of their required sojourn time upon arrival to the queue and
immediately leave if their amount of patience does not suffice. The queue
length distribution is, however, somewhat different as aware customers
will often not enter the waiting line at all, whereas in our case some
unsuccessful customers still spend some time waiting in the queue.

We can construct a similar MC as in the previous section and denote its
m + rmtot × m + rmtot transition matrix as

P̂ =



B̂1 B̂0 0 0 � � � 0 0

B̂2 Â1
1 Â1

0 0 � � � 0 0

B̂3 Â2
2 Â2

1 Â2
0 � � � 0 0

...
...

...
...

. . .
...

...

B̂r Âr−1
r−1 Âr−1

r−2 Âr−1
r−3 � � � Âr−1

1 Âr−1
0

Ê Ĉr Ĉr−1 Ĉr−2 � � � Ĉ2 Ĉ1


.

Let n be the current time instant and assume some customer c leaves
the server at time n. Then, the first customer that arrived after customer c
at some time n − k (0 ≤ k < r ) does not enter the server at time n if he has
already reached his critical age or if his remaining patience is not sufficient
to be served entirely. This probability is given by qk = pk + ∑r

i=k+1 ai�T
i−ke .
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Assume a customer c of age k is in phase s of the service process at
time n. Denote the probability that the sum of his age and his remaining
service time does not exceed his critical age as the sth component of
the mser × 1 vector vk . Then, (vk)s = ∑r

i=k ai
∑i−k

j=0(T
j t)s , which equals 1 −

pk−1 − ∑r
i=k ai(T

i−k+1e)s , using the relation t = e − Te . Hence,

vk = e − pk−1e −
r∑

i=k

aiT i−k+1e .

Let uk , a column vector of dimension mser , represent the probability that a
customer of age k completes his service. Since this customer was admitted
by the server, we know that his critical age is at least as much as the sum
of his age (k) and his remaining service time. Thus, for 1 ≤ k ≤ r and for
1 ≤ s ≤ mser we have,

(uk)s = ak(t)s + ak+1(t)s + · · · + ar (t)s
(vk)s

= (1 − pk−1)(t)s
(vk)s

.

Consider an age k customer in phase i of the service process at time
n. The probability that this customer continues his service in phase j is
represented by the (i , j)th entry of the mser × mser matrix U k . Notice, since
the customer was admitted in the server, he only leaves the system when his
service finishes. Hence, this probability is given by

(U k)ij =
∑r

h=k+1 ah(T )ij
∑h−k

l=1 (T
l−1t)j

(vk)i
= (T )ij(vk+1)j

(vk)i
,

for 1 ≤ k ≤ r and 1 ≤ i , j ≤ mser .
We are now in a position to set up an equation for each of the transition

blocks appearing in the matrix P̂ . For the matrices on level zero, the
only difference with the system discussed in section 3 is that an arriving
customer who finds the server idle, does not necessarily enter the service
facility. If he has not enough patience to stay in the system until his service
has completed, he abandons the system. This leads to B̂1 = D0 + q0D1 and
B̂0 = (1 − q0)D1.

The MC makes a transition from level i to level zero if the customer
in servicec completes his service and there is no customer who enters the
server. For 0 < i < r , the expression of the mtot × m matrix B̂i+1 is given by
the following equation:

B̂i+1 = ui ⊗
i∏

k=1

(D0 + qi−kD1). (9)

cDue to the definition of the levels of the MC, the age of this customer equals i time units.
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Remember, the continuation and completion of the service of a customer
with an age equal to k time units, is given by the matrix U k and the vector
uk , respectively. Arguments similar to those presented in section 3 yield the
following expressions:

Âi
0 = U i ⊗ Im , (10)

Âi
l+1 = ui�⊗

(
l∏

k=1

(D0 + qi−kD1)

)
(1 − qi−l−1)D1, (11)

Ê = e ⊗
r∏

k=1

(D0 + qr−kD1), and (12)

Ĉi+1 = e�⊗
i∏

k=1

(D0 + qr−kD1)(1 − qr−i−1)D1. (13)

As the transition matrices P and P̂ have the same form, we can make
use of the LJG algorithm to obtain the steady state vector �̂ of P̂ . An
expression for the probability that a customer receives a complete service
and has a response time of i time units is then established as P [X̂ = i] =
1
�

∑mser
s=1(u

i)s
∑m

j=1(�̂i)(s,j), for 0 < i ≤ r . The rejection probability P̂out , being
the probability that a customer abandons the system without entering the
service facility, is given by P̂out = 1 − ∑r

i=1 P [X̂ = i].

5. IMPATIENT CUSTOMERS IN THE WAITING ROOM

In sections 3 and 4, we considered customers who remain impatient
even when they have already entered the service facility. In this section we
assume that a customer is no longer impatient during his sojourn time, but
only while waiting. Once a customer enters the server, he remains there
until his service is completed. When focusing on the rejection probabilities
or on the response time distribution (of successful customers), this system
coincides with both the “limitation on waiting time with aware or unaware
customers” (Baccelli[1]) as in neither system abandoning customers use
any service capacity. We assume that a customer who reaches his critical
age at the exact moment that the server becomes available to him, leaves
the system.

If we define a MC analogue to the previous sections, the corresponding
transition matrix P ′ is either finite or infinite, depending on the service
time distribution. For unbounded service times, we get an infinite matrix
P ′ as there is no limit on the age of the customer in service. In order to find
the steady state vector of P ′, we introduce a new MC with an m + rmtot ×
m + rmtot transition matrix P , on which we can apply the LJG algorithm to
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find its steady state vector. The transition matrix P corresponds to the MC
that we get when censoring the MC P ′ on the set of states for which the
age of the customer in service is at most r :

P =



B1 B0 0 0 � � � 0 0

B2 A
1
1 A

1
0 0 � � � 0 0

B3 A
2
2 A

2
1 A

2
0 � � � 0 0

...
...

...
...

. . .
...

...

Br A
r−1
r−1 A

r−1
r−2 A

r−1
r−3 � � � A

r−1
1 A

r−1
0

E C r C r−1 Cr−2 � � � C 2 C 1


.

Notice, the matrices corresponding to level zero are identical to those
in section 3, as the distinction between this model and the one in
section 3 lies only in the customer behavior inside the service facility.
The expressions for the matrices, representing a transition from level i
(0 < i < r ) are altered, because the probability that a customer leaves
(remains in) the server no longer depends upon the age of this customer.
However, apart from the vector and the matrix holding the probabilities
that a service completion and continuation occurs, respectively, the system
evolves identical to the one in section 3:

Bi+1 = t ⊗
i∏

k=1

(D0 + pi−kD1), (14)

A
i
0 = T ⊗ Im , and (15)

A
i
l+1 = t�⊗

(
l∏

k=1

(D0 + pi−kD1)

)
(1 − pi−l−1)D1, (16)

for 1 ≤ i < r and 0 ≤ l < i . Next, let us derive an expression for the
matrices at level r . The matrix E contains the probabilities that the MC
makes a transition from state (s1, j1) at level r to state j2 at level zero.
Consider a customer c of age r who is being served at time n. Customers
present in the service facility are patient and remain in the system until
their service is completed. Thus, with probability (T kt)s1 , customer c will
remain in the server for another k time units, meaning the next time
instant observed by the censored chain P is time n + k + 1. When customer
c leaves the server at time n + k, the next customer if present can start
his service. Because no customer has a critical age of more than r time
units, customers who arrived at some time n − r + i , with 0 < i ≤ k, will
leave the waiting room before or at time n + k. In order to have a
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transition to level zero, some arrivals may occur at one of the time instants
n − r + k + 1, � � � ,n + k − 1, as long as these customers reach their critical
age before or at time n + k.d This probability is given by

∏r−1
h=1(D0 + pr−hD1)

and therefore the probability of having an empty waiting room at time n +
k + 1 equals Dk

∏r
h=1(D0 + pr−hD1). This leads to

E =
( ∞∑

k=0

(T kt)⊗Dk

) r∏
h=1

(D0 + pr−hD1). (17)

The MC makes a transition to level r − i from level r if there are no arrivals
at time n − r + k + 1, � � � ,n − r + k + i of customers who are still in the
waiting room at time n + k and a customer c ′ with a critical age larger than
r − i − 1 arrives at time n − r + k + i + 1. If the customer in service leaves
the system, customer c ′ enters the server and will remain there until his
service is completed. For 0 ≤ i < r , we get:

C i+1 =
( ∞∑

k=0

(T kt)⊗Dk

)(
�⊗

i∏
h=1

(D0 + pr−hD1)(1 − pr−i−1)D1

)
. (18)

If the service time is unbounded, an infinite sum occurs in both Eqn. (17)
and (18). This sum can be truncated after k ′ terms if

∑∞
k=k ′(T kt)⊗Dk < 	,

for some 	 small. Because T , resp. D, is a substochastic, resp. stochastic
matrix, we can always find such a k ′.

The LJG algorithm can be used to find the steady state vector �̄ =
(�̄0, �̄1, � � � , �̄r ) of P . The steady state vector �′ = (�′

0, �
′
1, � � � ) of P

′ obeys the
following relation:

�′
i = �̄i/c and �′

r+j = �̄r (T j ⊗ Im)/c ,

for 0 ≤ i < r and j ≥ 0. The normalization constant c can be calculated
by c = ∑r−1

i=0 �̄i e + �̄r

(
(Imser − T )−1 ⊗ Im

)
e . As before, the probability that

a customer receives a complete service and has a response time of i
time units is found as P [X ′ = i] = 1

�

∑mser
s=1(t)s

∑m
j=1(�

′
i)(s,j), and the rejection

probability P ′
out = 1 − ∑

i>0 P [X ′ = i].

Remark. In this case one easily obtains the relation 1 − P ′
idle = �(1 −

P ′
out)/�, as

∑
i ,j(�

′
i)(s,j) = 
s , where 
(T + t�) = 
, 
e = 1 and 
t = 1/�. This

result is also intuitively clear as the server only serves successful customers
and the mean service time of such a customer is 1/�.

dRecall, a customer who reaches his critical age on the exact moment that the server becomes
available, leaves the system nevertheless.
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6. QUASI-BIRTH-DEATH REDUCTION

In the previous sections, we constructed a GI/M/1-type Markov chain
to compute the response time distribution of the D-MAP/PH/1 + GI
queue. A limitation of this method lies in the fact that the time complexity
of the algorithm is a square function of r , the maximum tolerable
customer patience. In this section, we introduce a different approach,
using QBDs, which speeds up the computational process. The idea behind
this reduction was also applied in Van Houdt[13] to calculate the response
time distribution in a queue with multiple types of customers (i.e., the
MMAP[K]/PH[K]/1 queue).

In order to construct the QBD we add m states to each level i , for 0 <
i < r , to the state space of the transition matrix of interest (P , P̂ or P ).
These additional states are referred to as artificial states. The basic idea
behind this construction is to replace a transition from level i to i − k,
for k ≥ 0, by k + 1 transitions, where for each of the first k transitions we
decrease the level by one, while for the (k + 1)st transition the level will
remain identical.e Thus, instead of making a transition from level i to i −
k at once, the new MC will visit k intermediate states, which shall all be
artificial states. We will only need m artificial states due to the specific form
of the matrices that correspond to transitions causing the level to decrease.

Roughly speaking, we can explain the idea behind the QBD reduction
as follows. A transition from level i to i − k < i can be regarded as scanning
the k + 1 time instants n − i + 1, � � � ,n − i + k + 1 for a customer arrival
who is still present in the system at time n + 1 (where n is the current time
instant). The first k of these scans results in a negative result, whereas the
last one is successful (unless i − k = 0). Whether the l th scan is successful,
is solely determined by the D-MAP state at time n − i + l , say state jl , and
the amount of patience i − l + 1 needed to be in the system at time n + 1.
Thus, instead of going directly from some state (s, j1) of level i to a state of
the form (s ′, j ′) of level i − k, we make a series of k + 1 transitionsf: the first
one to artificial state j2 of level i − 1, the l th, for l = 2, � � � , k, going from
artificial state jl of level i − l + 1 to state jl+1 of level i − l and the last one
from artificial state jk+1 of level i − k to state (s ′, j ′) of level i − k. We do not
need to keep track the phase s ′ as this is determined by the vector �.

We only discuss the system presented in section 3 in detail, the QBD
Markov chain for the other two systems can be set up in an analogue way.
First, we add m additional states to every level, except the first and the
last one (level zero and level r ). As explained above, these states will corres-
pond to those of the D-MAP arrival process. Define �i = � j |1 ≤ j ≤ m�,

eActually, for i − k = 0 we split the transition into k steps instead of k + 1.
fIf i − k = 0, we have only k transitions, the kth one going from artificial state jk at level one

to state jk+1 at level zero.
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for 0 ≤ i < r and �i = �(s, j)|1 ≤ s ≤ mser , 1 ≤ j ≤ m�, for 0 < i ≤ r . Using
these definitions, the states of level zero are denoted as �0, those of level
i (0 < i < r ) as �i ∪ �i and the states of level r are denoted as �r . The
states of �0 and �i (0 < i ≤ a) correspond to those of the Markov chain
presented in section 3. The states of �i (1 < i < r ) are those that have
been added, which we call the artificial states. For our convenience, let us
call the other states, original states and let us define mart = mtot + m.

Define the QBD using the following rmart × rmart matrix P ∗:

P ∗ =



B∗
1 B∗

0 0 0 � � � 0 0

B∗
2 A1∗

1 A1∗
0 0 � � � 0 0

0 A2∗
2 A2∗

1 A2∗
0 � � � 0 0

...
...

. . . . . . . . .
...

...

0 0 0 � � � Ar−1∗
2 Ar−1∗

1 C ∗
0

0 0 0 � � � 0 C ∗
2 C ∗

1


,

where B∗
1 is an m × m matrix, B∗

2 an mart × m matrix, B∗
0 an m × mart matrix

and Ai∗
0 , A

i∗
1 (0 < i < a) and Ai∗

2 are mart × mart matrices. Also, the matrix
C ∗
0 is an mart × mtot matrix, C ∗

1 an mtot × mtot and C ∗
2 is an mtot × mart matrix.

The matrices B∗
1 and B∗

0 represent the situation in which the QBD is
at level zero, that is, the system is idle. As the transitions from level 0 are
unaltered, the only difference with the expressions for B1 and B0 is caused
by the presence of the artificial states added to level one, therefore B∗

1 =
B1 and B∗

0 = [
0 B0

]
. The expression for the mart × mtot matrix B∗

2 can be
divided into two parts. The first m rows correspond to the situation in
which the QBD is in an artificial state of level one at time n. If no customer
arrives at this moment, the QBD makes a transition to level zero. These
probabilities are, by definition, given by the matrix D0. The other rows
represent the situation in which the age of the customer in service equals
one time unit.g In this case, the QBD makes a transition to level zero if
this customer leaves the server and there is no arrival at the current time
instant. Notice, the waiting room is empty because the customer in service
arrived at time n − 1. Hence,

B∗
2 =

[
B1

B2

]
=

[
D0

(t + a1(e − t))⊗D0

]
. (19)

The same arguments can be used to determine an expression for the
matrices Ai∗

2 (1 < i < r ), which contain the probabilities of a transition
from level i to level i − 1. In order to have such a transition, there can be

gThe QBD is in an original state of level one at time n.
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no arrival i − 1 time units ago of a customer with a critical age greater than
or equal to i time units (that is, the scan of time instant n − i + 1 ought to
be unsuccessful). When the QBD makes a transition to a lower level, the
resulting state is always an artificial state. Therefore, all the entries in the
last mtot columns are equal to zero and we get,

Ai∗
2 =

[ D0 + pi−1D1 0(
t + ai

1−pi−1
(e − t)

) ⊗ (D0 + pi−1D1) 0

]
. (20)

The transitions to a higher level are identical to those in section 3.
Moreover, we never increase the level from an artificial state, implying

Ai∗
0 =

[
0 0
0 Ai

0

]
and C ∗

0 =
[

0
Ar−1

0

]
. (21)

The probabilities of a transition between two original states of level i , are
given by the matrix Ai

1, for 0 < i < r and by C1 for i = r . Apart from
the transitions between original states, a transition from an artificial to an
original state at level i can occur when a customer with a critical age of at
least i time units arrives (that is, the scan at time n − i + 1 is a success).
This yields,

Ai∗
1 =

[ 0 (1 − pi−1)�⊗D1

0
(
t + ai

1−pi−1
(e − t)

)
�⊗ (1 − pi−1)D1

]
(22)

and C ∗
1 = e�⊗ arD1.

Finally, the probabilities that the QBD makes a transition from level r
to level r − 1, can be found in the mtot × mart matrix C ∗

2 . The customer in
service leaves the system, whether he finishes his service or not. There is a
transition to level r − 1 if no customer of age r will be in the queue at the
next time instant. Hence, C̃ ∗

2 = [
e ⊗ (D0 + (1 − ar )D1) 0

]
.

The matrix P ∗ is a finite level-dependent QBD matrix, therefore, its
steady vector �∗ = (�∗

0, �
∗
1, � � � , �

∗
r ) can be computed by a variant on the LJG

algorithm, described in Gaver[9]. For reasons of completeness, the details
of this algorithm are presented in Appendix A. In this appendix, we also
indicate how to obtain the steady state vector � of P from �∗. Having found
� we can apply the formulas given at the end of section 3 to obtain the
performance measures of interest.

7. NUMERICAL EXAMPLES

In this section, we discuss some fairly arbitrary numerical examples
of systems with impatient customers. The D-MAP arrival process is
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characterized by the following two matrices:

D0 =
[
0. 76 0. 19
0. 09 0. 81

]
and D1 =

[
0. 04 0. 01
0. 01 0. 09

]
.

This arrival process has a mean arrival rate � = 1/12. The service time of
a customer consists of two components. Every customer needs an initial
service time of 3 time units. On top of that, with probability 0. 4, 0. 4,
and 0. 2 a customers needs some extra, geometrically distributed, service
with an average of 5, 10, and 20 time units, respectively. We have, � =
(1, 0, 0, 0, 0, 0) and

T =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0. 4 0. 4 0. 2
0 0 0 0. 8 0 0
0 0 0 0 0. 9 0
0 0 0 0 0 0. 95


.

The mean service time 1/� equals 13 time units, meaning without the
customer impatience we would have an unstable system as �/� = 13/12 > 1.

We consider 4 possible patience distributions Z , each having the same
mean E [Z ] of 275 time units:

Za : One half of the customers runs out of patience after 50 time units,
whereas the other half will be patient for 500 time units, i.e., a50 =
a500 = 0. 5.

Zb : The critical age of a customer equals 50, 175, 275, 375 or 500 time units,
each with a probability 0. 2.

FIGURE 1 Response time distribution of successful impatient customers.
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FIGURE 2 Response time distributions of successful impatient customers in the entire
system/waiting room.

Zc : The patience distribution of the customers is uniformly distributed
between 50 and 500 time units.

Zd : All customers have the same amount of patience, being 275 time units.

For each of the patience distributions considered, Figure 1 shows us
the response time distribution Rs of a successful customer, who remains
impatient in the entire system (i.e., section 3). The behavior of these
curves can be understood as follows: when considering the probability
that a successful customer has a response time of x time units, one might
intuitively say that the load of the system x ≈ �P [Z ≥ x]/�. Notice, x

decreases as a function of x and equals 13/12 for x = 1. As such, we
expect that the curves in Figure 1 start to decrease as soon as x drops
below 1. Moreover, the smaller x becomes the sharper the decrease.
For the distributions Za and Zb , the value P [Z ≥ x] decreases only in a
few steps, which correspond to the different “stairs” in those curves. The
curve corresponding to Zc reaches a maximum at x = 72, even though
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TABLE 1 Expected number of lost customers

Distribution Impatient in server Server time aware Patient in server

Za 0.1885 0.1437 0.1673
Zb 0.1415 0.1286 0.1324
Zc 0.1192 0.1047 0.1144
Zd 0.0918 0.0334 0.0873

72 ≈ 1. 03 > 1. This might be explained by the fact that the mean time
that a customer spends in the server is less than 1/�, due to the impatience
(i.e., x slightly overestimates the load).

In Figure 2, we compare the distribution Rs of the three systems
discussed in sections 3-5, for each of the patience distributions considered.
The system with impatient customers in the entire system is represented
by a dashed line (section 3), service time aware customers correspond to
a full line (section 4), whereas the situation in which the customers are
only impatient in the waiting room is given by a dotted line (section 5).
The computation times for the curves in this figure, using an AMD Athlon
2.0GHz processor with 512Mb of memory, are about 173 seconds for the
method using the GI/M/1 type Markov chains and about 21 seconds when
applying the QBD approach (see Section 6). Because the maximum critical
age of a customer equals either 275 or 500 time units and the number of
states of the arrival process is relatively small, the method using QBDs takes
remarkably less time while the memory requirements only increase with a
factor 1.36.

Table 1 represents the probabilities that a customer abandons the
system without receiving a complete service. If we compare the four
patience distributions, the probability that a customer leaves the system
early decreases together with the variance of the patience distribution Z ,
while the average response time of a customer (given by Table 2) increases.
Whether becoming patient while entering the server reduces the rejection
probability (as is the case in our numerical example) depends to a great
extent on the variation of the service time distribution (see Van Houdt[14]).
An interesting open problem related to this result is whether, given a

TABLE 2 Expected response time of a successful impatient customer

Distribution Impatient in server Rejected by server Patient in server

Za 38.9042 34.4974 46.1523
Zb 73.4010 68.1397 80.1541
Zc 90.4167 83.9073 98.0788
Zd 179.8562 171.7786 189.5891
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mean mu , the deterministic patience distribution would result in the lowest
rejection probability Pout of all patience distributions Z with a mean E [Z ] =
mu . For the system with customers who are only impatient while waiting,
one can prove that this is the case for the M/M/1 + GI queue by making
use of Theorem 3.1 from Brandt[6] or Boxma[5].

APPENDIX A: COMPUTING THE STEADY STATE VECTOR � OF
P VIA THE QBD MC P∗

The matrix Q ∗ = P ∗ − I is a tridiagonal infinitesimal generator block
matrix. Thus, we can apply the algorithm presented in Gaver[9], the time
and space complexity of which equal O(rm3

art) and O(rm2
art), respectively:

1. Input: D0 and D1 of the arrival process, the PH distribution, character-
ized by � and T and the stochastic vector ã.

2. Calculate the matrices Gi , for 0 ≤ i ≤ r , by means of the equations:

• G0 = B∗
1 − Im

• G1 = A1∗
1 − Imart + B∗

2 (−G−1
0 )B∗

0

• Gi = Ai∗
1 − Imart + Ai∗

2 (−G−1
i−1)A

i−1∗
0 (for 1 < i < r )

• Gr = C ∗
1 − Imtot + C ∗

2 (−G−1
r−1)C

∗
0

3. The steady state probabilities are found using the following expressions:
�∗
r Gr = 0, with �∗

r e = 1, �∗
r−1 = �∗

r C
∗
2 (−G−1

r−1), �
∗
i = �∗

i+1A
i+1∗
2 (−G−1

i ), for
i = r − 2, � � � , 1, �∗

0 = �∗
1B

∗
2 (−G−1

0 ) and
∑r

i=0 �
∗
i e = 1.

4. Finally, compute the steady state vector � of the original transition
matrix P as follows. Denote �∗

i (0 < i < r ) as (�∗
i (m), �∗

i (mtot)), where the
probabilities of the row vector �∗

i (m) of size m correspond to the artificial
states and those of the 1 × mtot vector �∗

i (mtot) to the original states.
Then, the steady state vector � can be computed by �0 = �∗

0/(1 − d),
�i = �∗

i (mtot)/(1 − d), for 1 ≤ i < r and �r = �∗
r /(1 − d), where d =∑r−1

i=1 �
∗
i (m)e .

The advantage of this algorithm in comparison with the LJG algorithm
lies in the difference in the time complexity. The time needed by the
algorithm using QBDs is only linear in the maximum critical age r of a
customer, whereas with the GI/M/1 type MC it is a square function of r .
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