
12 Introduction 37

FIBONACCI HEAPS

12 Introduction

Priority queues are a classic topic in theoretical computer science. The search
for a fast priority queue implementation is motivated primarily by two net-
work optimization algorithms: Shortest Path (SP) and Minimum Spanning
Tree (MST), i.e., the connector problem. As we shall see, Fibonacci Heaps
provide a fast and elegant solution.
The following 3-step procedure shows that both Dijkstra’s SP-algorithm or
Prim’s MST-algorithm can be implemented using a priority queue:

1. Maintain a priority queue on the vertices V (G).

2. Put s in the queue, where s is the start vertex (Shortest Path) or any
vertex (MST). Give s a key of 0. Add all other vertices and set their
key to infinity.

3. Repeatedly delete the minimum-key vertex v from the queue and mark
it scanned. For each neighbor w of v do: If w is not scanned (so far),
decrease its key to the minimum of the value calculated below and w’s
current key:

• SP: key(v) + length(vw),

• MST: weight(vw).

The classical answer to the problem of maintaining a priority queue on the
vertices is to use a binary heap, often just called a heap. Heaps are commonly
used because they have good bounds on the time required for the following
operations: insert O(log n), delete-min O(log n), and decrease-key O(log n),
where n reflects the number of elements in the heap.
If a graph has n vertices and e edges, then running either Prim’s or Dijkstra’s
algorithms will require O(n log n) time for inserts and deletes. However, in



13 Definition and Elementary Operations 38

the worst case, we will also perform e decrease-keys, because we may have to
perform a key update every time we come across a new edge. This will take
O(e log n) time. Since the graph is connected, e ≥ n, and the overall time
bound is given by O(e log n). As we shall see, Fibonacci heaps allow us to
do much better.

13 Definition and Elementary Operations

The Fibonacci heap data structure invented by Fredman and Tarjan in 1984
gives a very efficient implementation of the priority queues. Since the goal
is to find a way to minimize the number of operations needed to compute
the MST or SP, the kind of operations that we are interested in are insert,
decrease-key, link, and delete-min (we have not covered why link is a useful
operation yet, but this will become clear later on). The method to achieve
this minimization goal is laziness - do work only when you must, and then

use it to simplify the structure as much as possible so that your future work

is easy. This way, the user is forced to do many cheap operations in order to
make the data structure complicated.
Fibonacci heaps make use of heap-ordered trees. A heap-ordered tree is one
that maintains the heap property, that is, where key(parent) ≤ key(child)
for all nodes in the tree.

Definition 13.1: A Fibonacci heap H is a collection of heap-ordered trees
that have the following properties:

1. The roots of these trees are kept in a doubly-linked list (the root list of
H),

2. The root of each tree contains the minimum element in that tree (this
follows from being a heap-ordered tree),

3. We access the heap by a pointer to the tree root with the overall min-
imum key,

4. For each node x, we keep track of the degree (also known as the order
or rank) of x, which is just the number of children x has; we also keep
track of the mark of x, which is a Boolean value whose role will be
explained later.



13 Definition and Elementary Operations 39

Fig. 9: A detailed view of a Fibonacci Heap. Null pointers are omitted for
clarity.

For each node, we have at most four pointers that respectively point to the
node’s parent, to one of its children, and to two of its siblings. The sibling
pointers are arranged in a doubly-linked list (the child list of the parent
node). We have not described how the operations on Fibonacci heaps are
implemented, and their implementation will add some additional properties
to H . The following are some elementary operations used in maintaining
Fibonacci heaps:

Inserting a node x: We create a new tree containing only x and insert it
into the root list of H ; this is clearly an O(1) operation.

Linking two trees x and y: Let x and y be the roots of the two trees we
want to link; then if key(x) ≥ key(y), we make x the child of y; otherwise,
we make y the child of x. We update the appropriate node’s degrees and the
appropriate child list; this takes O(1) operations.

Cutting a node x: If x is a root in H , we are done. If x is not a root in
H , we remove x from the child list of its parent, and insert it into the root
list of H , updating the appropriate variables (the degree of the parent of x
is decremented, etc.). Again, this takes O(1) operations. We assume that
when we want to cut/find a node, we have a pointer hanging around that
accesses it directly, so actually finding the node takes O(1) time.



13 Definition and Elementary Operations 40

Cleanup:

newmin ← some root list node
for i← 0 to ⌊log n⌋

B[i]← Null

for all nodes v in the root list
parent(v) ← Null

unmark v
if key(newmin) > key(v)

newmin← v
LinkDupes(v)

LinkDupes:

w ← B[deg(v)]
while w 6= Null

B[deg(v)]← Null

if key(w) ≤ key(v)
swap v and w

remove w from root list
link w to v
w ← B[deg(v)]

B[deg(v)]← v

Fig. 10: The Cleanup algorithm executed after performing a delete-min

Marking a node x: We say that x is marked if its mark is set to true, and
that it is unmarked if its mark is set to false. A root is always unmarked.
We mark x if it is not a root and it loses a child (i.e., one of its children is
cut and put into the root-list). We unmark x whenever it becomes a root.
We shall see later on that no marked node will lose a second child before it
is cut itself.

13.1 The delete-min Operation

Deleting the minimum key node is a little more complicated. First, we remove
the minimum key from the root list and splice its children into the root list.
Except for updating the parent pointers, this takes O(1) time. Then we scan
through the root list to find the new smallest key and update the parent
pointers of the new roots. This scan could take O(n) time in the worst
case. To bring down the amortized deletion time (see further on), we apply
a Cleanup algorithm, which links trees of equal degree until there is only
one root node of any particular degree.
Let us describe the Cleanup algorithm in more detail. This algorithm
maintains a global array B[1 . . . ⌊log n⌋], where B[i] is a pointer to some
previously-visited root node of degree i, or Null if there is no such previously-
visited root node. Notice, the Cleanup algorithm simultaneously resets the
parent pointers of all the new roots and updates the pointer to the minimum
key. The part of the algorithm that links possible nodes of equal degree is
given in a separate subroutine LinkDupes, see Figure 10. The subroutine



13 Definition and Elementary Operations 41

Promote:

unmark v
if parent(v) 6= Null

remove v from parent(v)’s child list
insert v into the root list
if parent(v) is marked

Promote(parent(v))
else

mark parent(v)

Fig. 11: The Promote algorithm

ensures that no earlier root node has the same degree as the current. By the
possible swapping of the nodes v and w, we maintain the heap property. We
shall analyze the efficiency of the delete-min operation further on. The fact
that the array B needs at most ⌊log n⌋ entries is proven in Section 15, where
we prove that the degree of any (root) node in an n-node Fibonacci heap is
bounded by ⌊log n⌋.

13.2 The decrease-key Operation

If we also need the ability to delete an arbitrary node. The usual way to do
this is to decrease the node’s key to −∞ and then use delete-min. We start
by describing how to decrease the key of a node in a Fibonacci heap; the
algorithm will take O(log n) time in the worst case, but the amortized time
will be only O(1). Our algorithm for decreasing the key at a node v follows
two simple rules:

1. If newkey(v) < key(parent(v)), promote v up to the root list (this
moves the whole subtree rooted at v).

2. As soon as two children of any node w have been promoted, immedi-
ately promote w.

In order to enforce the second rule, we now mark certain nodes in the Fi-
bonacci heap. Specifically, a node is marked if exactly one of its children has
been promoted. If some child of a marked node is promoted, we promote
(and unmark) that node as well. Whenever we promote a marked node, we



14 Amortized Analysis 42

unmark it; this is the only way to unmark a node (if splicing nodes into the
root list during a delete-min is not considered a promotion). A more formal
description of the Promote algorithm is given in Figure 11. This algorithm
is executed if the new key of the node v is smaller than its parent’s key.

14 Amortized Analysis

In an amortized analysis, time required to perform a sequence of data struc-
ture operations is averaged over all the operations performed. Amortized
analysis can be used to show that the average cost of an operation is small,
if one averages over a sequence of operations, even though a single operation
might be expensive. Amortized analysis differs from average-case analysis
in that probability is not involved; an amortized analysis guarantees that
average performance of each operation in the worst case.

There are several techniques used to perform an amortized analysis, the
method of amortized analysis used to analyze Fibonacci heaps is the potential
method. When using this method we determine the the amortized cost of
each operation and may overcharge operations early on to compensate for
undercharges later. The potential method works as follows. We start with
an initial data structure D0 on which s operations are performed. For each
i = 1, . . . , s, we let ci be the actual cost of the i-th operation and Di be
the data structure that results after applying the i-th operation to the data
structure Di−1. A potential function Φ maps each data structure Di to a
real number Φ(Di), which is the potential (energy) associated with the data
structure Di. The amortized cost ĉi of the i-th operation with respect to the
potential function Φ is defined by:

ĉi = ci + Φ(Di)− Φ(Di−1). (1)

The amortized cost of each operation is thus its actual cost plus the increase
in potential due to the operation. The total amortized costs of the s opera-
tions is

∑

i

ĉi =
∑

i

ci + ΦDs
− ΦD0

, (2)

If we can prove that ΦDs
≥ ΦD0

, then we have shown that the amortized
costs bound the real costs. Thus, we can analyze the amortized costs to
obtain a bound on the actual costs. In practice, we do not know how many



14 Amortized Analysis 43

operations s might be performed. Therefore, if we require that Φ(Di) ≥ ΦD0

for all i, then we guarantee that we pay in advance. It is often convenient to
define Φ(D0) = 0 and then to show that Φ(Di) ≥ 0.

Intuitively, if the potential difference Φ(Di)−Φ(Di−1) of the i-th operation
is positive, then the amortized cost ĉi represents an overcharge to the i-th
operation, and the potential of the data structure increases. If the potential
difference is negative, then the amortized costs represents an undercharge
and the actual cost of the operation is paid by a decrease in the potential.

14.1 Amortized Analysis of the delete-min and

decrease-key Operation

Define Φ(H) as the number of root nodes t(H) plus two times the number of
marked nodes m(H) in the Fibonacci heap H , i.e., Φ(H) = t(H) + 2m(H).
We assume that a single unit of potential can pay for a constant amount
of work, where the constant is sufficiently large to cover the cost of any of
the specific constant-time pieces of work that we might encounter. Assume
that a Fibonacci heap application begins with no heaps (this is the case for
both the SP and MST algorithm). The initial potential, therefore, is 0, and
obviously the potential is nonnegative at all subsequent times. Hence, the
total amortized cost is thus an upper bound on the total actual cost for
the sequence of operations (see Eq. (2)). We further assume that there is
some upper bound D(n) on the maximum degree of any node in an n-node
Fibonacci heap. We derive this upper bound in Section 15.

The actual cost of a delete-min operation can be accounted for as follows.
An O(1) contribution comes from splicing the (at most D(n)) children of the
minimum node in the root list (because setting the parent pointers to Null

and unmarking the nodes is done by the Cleanup algorithm). The size of
the root list upon calling the Cleanup algorithm is D(n) + t(H)− 1, since
it consist of the original t(H) root list nodes, minus the minimum node, plus
the children of the extracted node. Meaning, at most D(n) + t(H)− 1 link
operations are performed. Thus, the total amount of work performed is at
most proportional to D(n)+t(H), i.e., O(D(n)+t(H)). The potential before
extracting the minimum node is t(H) + 2m(H), and the potential afterward
is at most (D(n) + 1) + 2m(H), since at most D(n) + 1 roots remain and no
nodes become marked during the operation. The amortized cost is thus at



15 Bounding the Maximum Degree 44

most

O(D(n) + t(H)) + ((D(n) + 1) + 2m(H))− (t(H) + 2m(H))

= O(D(n)) + O(t(H))− t(H)

= O(D(n)),

since we can scale up the units of the potential to dominate the hidden
constant in O(t(H)). Intuitively, the cost of performing the link operations
is paid by the decrease in the potential due to reducing the number of nodes
on the root list.

Let us now consider the decrease-key operation. Decreasing the key has
an actual cost of O(1). Suppose that c recursive invocations of the Pro-

mote function are called. Each recursive call takes O(1) time except for
the recursive calls, hence, the actual cost of decrease-key is O(c). Next, we
compute the change in potential. Each recursive call, except for the last,
cuts a marked node and unmarks the node. Afterward, there are t(H) + c
trees (the original t(H), c− 1 trees produced by the recursive calls, and the
tree rooted at the node whose key was decreased). Whereas the maximum
number of marked nodes equals m(H)− c + 2 (c− 1 were unmarked and the
last call may have marked a node). The change in potential is therefore at
most

((t(H) + c) + 2(m(H)− c + 2)− (t(H) + 2m(H)) = 4− c. (3)

Thus, the amortized cost of the decrease-min is at most

O(c) + 4− c = O(1), (4)

by scaling up the units of the potential to dominate the hidden constant in
O(c).

15 Bounding the Maximum Degree

In order to prove that the amortized time of the delete-min operation is
O(log(n)), we must show that D(n) is bounded by O(log n). In this section
we shall show that D(n) ≤ ⌊logφ n⌋, where φ = (1 +

√
5)/2 is the golden

ratio.



15 Bounding the Maximum Degree 45

Lemma 15.1: Let x be any node in a Fibonacci heap, and suppose that
d(x) = k, where d(x) denotes the degree of x. Let y1, y2, . . . , yk denote the
children of x in the order in which they were linked to x, from the earliest to
the latest. Then, d(y1) ≥ 0 and d(yi) ≥ i− 2, for i = 2, 3, . . . , k.

Proof: Obviously, d(y1) ≥ 0. For i ≥ 2, we note that when yi was linked to
x, all of y1, y2, . . . , yi−1 were children of x, so we must have had d(yi) ≥ i−1,
as yi was only linked to x if d(x) = d(yi). Since then, node yi has lost at most
one child, otherwise yi would have been cut. We may conclude d(yi) ≥ i− 2.

Q.E.D.

Let us now define the Fibonacci numbers Fk, for k ≥ 0 as follows: F0 = 0,
F1 = 1 and Fk = Fk−1 + Fk−2, for k ≥ 2. Then, we can easily show by
induction on k that Fk+2 = 1+

∑k

i=0
Fk, for all k ≥ 0 (simply apply induction

on the term Fk+1). Moreover, Fk+2 ≥ φk (apply induction on both terms and
use the fact that (1 + φ) = φ2).

Theorem 15.1: Let x be any node in a Fibonacci heap, and let k = d(x).
Then, size(x) ≥ Fk+2 ≥ φk, where φ = (1 +

√
5)/2.

Proof: Let sk denote the minimum possible value of size(z) over all nodes
z such that d(z) = k. That is, sk denotes the minimum number of nodes
in a tree that is rooted by a degree k root node. Let y1, y2, . . . , yk denote
the children of x as in Lemma 15.1 in the order they were linked to x. To
compute a lower bound on size(x), we count one for x itself, one for the first
child y1 and then apply Lemma 15.1 for the remaining children. We have

size(x) ≥ sk ≥ 2 +
k∑

i=2

si−2. (5)

We now show by induction that sk ≥ Fk+2, for all k ≥ 0. The cases for
k = 0 and 1 are trivial. By induction, we have si ≥ Fi+2 for i = 0, . . . , k− 1,
therefore,

sk ≥ 2 +
k∑

i=2

si−2

≥ 1 + F1 +
k∑

i=2

Fi = Fk+2.

Thus, we have shown size(x) ≥ sk ≥ Fk+2 ≥ φk.



15 Bounding the Maximum Degree 46

Q.E.D.

Corollary 15.1: The maximum degree D(n) of any node in an n-node Fi-
bonacci heap is bounded by ⌊logφ n⌋, meaning it is O(logn).

Proof: Let x be any node of an n-node Fibonacci heap and let k be its
degree. By the previous theorem we have n ≥ size(x) ≥ φk. Taking the
base-φ logarithms yields k ≤ logφ n. Therefore, the maximum degree is
O(log n).

Q.E.D.

As a results of this corollary, Prim’s MST algorithm (or Dijkstra’s SP)
has an amortized cost of O(n logn + e), as a decrease-key operation is O(1)
and a delete-min operations is O(log n).


