
Essence and Accidents of
Software li eermng

Frederick P. Brooks, Jr.
University of North Carolina at Chapel Hill

Fashioning complex f all the monsters that fill the throughs-and indeed, I believe such to be
nightmares of our folklore, none inconsistent with the nature of soft-

conceptual constructs 0 terrify more than werewolves, ware-many encouraging innovations are
is ,he essence;

because they transform unexpectedly under way.A disciplined, consistent effort
iS the essence; from the familiar into horrors. For these, to develop, propagate, and exploit these

accidental tasks arise one seeks bullets of silver that can magic- innovations should indeed yield an order-ally lay them to rest. of-magnitude improvement. There is no
in representing the The familiar software project, at least as royal road, but there is a road.

seen by the nontechnical manager, has The first step toward the managementconstructs in1 something of this character; it is usually in- of disease was replacement of demon
language. Past nocent and straightforward, but is capable theories and humours theories by the germ

of becoming a monster of missed sched- theory. That very step, the beginning of
progress has so ules, blown budgets, and flawed products. hope, in itself dashed all hopes of magical

reduced the accidental So we hear desperate cries for a silver solutions. It told workers that progress
bullet-something to make software costs would be made stepwise, at great effort,

tasks that future drop as rapidly as computer hardware and that a persistent, unremitting care
costs do. would have to be paid to a discipline of

progress now depends But, as we look to the horizon of a cleanliness. So it is with software engi-

upon addressing the decade hence, we see no silver bullet. neering today.There is no single development, in either
essence. technology or in management technique,

that by itself promises even one order-of- Does it have to be
magnitude improvement in productivity, ad?E en_
in reliability, in simplicity. In this article, I hard?-Essent
shall try to show why, by examining both difficulties
the nature ofthe software problem and the
properties of the bullets proposed. Not only are there no silver bullets now

Skepticism is not pessimism, however. in view, the very nature of software makes
Although we see no startling break- it unlikely that there will be any-no in-

ventions that will do for software prod-
This article was first published in Infonnation Process- uctivity, reliability, and simplicity what
ing '86, ISBN No. 0-444-70077-3, H.-J. Kugler, ed.,
Elsevier Science Publishers B.V. (North-Hollad) © electronics, transistors, and large-scale
IFIP 1986. integration did for computer hardware.

10 COMPUTER

We cannot expect ever to see twofold gains orders-of-magnitude more states than difficulty of enumerating, much less
every two years. computers do. understanding, all the possible states of

First, one must observe that the anom- Likewise, a scaling-up of a software en- the program, and from that comes the
aly is not that software progress is so slow, tity is not merely a repetition of the same unreliability. From complexity of function
but that computer hardware progress is so elements in larger sizes, it is necessarily an comes the difficulty of invoking function,
fast. No other technology since civilization increase in the number of different ele- which makes programs hard to use. From
began has seen six orders of magnitude in ments. In most cases, the elements interact complexity of structure comes the diffi-
performance-price gain in 30 years. In no with each other in some nonlinear fashion, culty of extending programs to new func-
other technology can one choose to take and the complexity of the whole increases tions without creating side effects. From
the gain in either improved performance much more than linearly. complexity of structure come the un-

or in reduced costs. These gains flow from The complexity of software is an essen- visualized states that constitute security
the transformation of computer manufac- tial property, not an accidental one. trapdoors.
ture from an assembly industry into a pro- Hence, descriptions of a software entity Not only technical problems, but
cess industry. that abstract away its complexity often management problems as well come from
Second, to see what rate of progress one abstract away its essence. For three cen- the complexity. It makes overview hard,

can expect in software technology, let us turies, mathematics and the physical thus impeding conceptual integrity. It
examine the difficulties of that tech- sciences made great strides by constructing makes it hard to find and control all the
nology. Following Aristotle, I divide them simplified models of complex phenomena, loose ends. It creates the tremendous
into essence, the difficulties inherent in the deriving properties from the models, and learning and understanding burden that
nature of software, and accidents, those verifying those properties by experiment, makes personnel turnover a disaster.
difficulties that today attend its produc- This paradigm worked because the com-
tion but are not inherent. plexities ignored in the models were not Conformity. Software people are not

The essence of a software entity is a con- the essential properties ofthe phenomena. alone in facing complexity. Physics deals
struct of interlocking concepts: data sets It does not work when the complexities are
relationships among data items, algo- the essence.
rithms, and invocations of functions. This Many of the classic problems of devel-
essence is abstract in that such a concep- oping software products derive from this
tual construct is the same under many dif- essential complexity and its nonlinear in-
ferent representations. It is nonetheless creases with size. From the complexity
highly precise and richly detailed. comes the difficulty of conununication

I believe the hard part of building soft- among team members, which leads
ware to be the specification, design, and to product flaws, cost overruns,
testing of this conceptual construct, not schedule delays. From the
the labor ofrepresenting it and testing the complexity comes the
fidelity of the representation. We still
make syntax errors, to be sure; but they
are fuzz compared with the conceptual
errors in most systems.

If this is true, building software will
always be hard. There is inherently no
silver bullet.

Let us consider the inherent properties
of this irreducible essence of modern soft-
ware systems: complexity, conformity,
changeability, and invisibility.

Complexity. Software entities are more
complex for their size than perhaps any
other human construct because no two
parts are alike (at least above the statement
level). If they are, we make the two similar
parts into a subroutine-open or closed.
In this respect, software systems differ
profoundly from computers, buildings, or
automobiles, where repeated elements
abound.

Digital computers are themselves more c
complex than most things people build:
They have very large numbers of states.
This makes conceiving, describing, and -
testing them hard. Software systems have

April 1987

with terribly complex objects even at the new computers, then at least new disks, lack not only impedes the process of
"fundamental" particle level. The phys- new displays, new printers come along; design within one mind, it severely hinders
icist labors on, however, in a firm faith and the software must be conformed to its communication among minds.
that there are unifying principles to be new vehicles of opportunity.
found, whether in quarks or in unified- In short, the software product is embed-
field theories. Einstein argued that there ded in a cultural matrix of applications, Past breakthroughs
must be simplified explanations of nature, users, laws, and machine vehicles. These solved accidental
because God is not capricious or arbitrary. all change continually, and their changes difficulties
No such faith comforts the software en- inexorably force change upon the software

gineer. Much of the complexity that he product. If we examine the three steps in soft-
must master is arbitrary complexity, ware-technology development that have
forced without rhyme or reason by the Invisibility. Software is invisible and un- been most fruitful in the past, we discover
many human institutions and systems to visualizable. Geometric abstractions are that each attacked a different major dif-
which his interfaces must conform. These powerful tools. The floor plan of a build- ty in build softwfrentmajose
differ from interface to interface, and ing helps both architect and client evaluate ficulty in building software buta t
from time to time, not because of necessity spaces, traffic flows, views. Contra- difficultiesh be antal, t
but only because they were designed by dictions and omissions become obvious. ntial dificultie exca n o eech
different people, rather than by God. such_atual ti

In many cases, the software must con-
form because it is the most recent arrival
on the scene. In others, it must conform Despite progress in High-level languages. Surely the most
because it is perceived as the most resctig and implifg powerful stroke for software productivity,
conformable. But in all cases, much com- softnare stct s they reliability, and simplicity has been the pro-
plexitycomes fromconformationtoother rmainihrently y gressive use of high-level languages for
interfaces; this complexity cannot be remaM 'lnherntly programming. Most observers credit that
simplified out by any redesign of the soft- unVisualizable, and thus development with at least a factor of five
ware alone. do not permit the mind to in productivity, and with concomitant

use someofits most gains in reliability, simplicity, and com-
Changeability. The software entity is use some of itS most prehensibility.

constantly subject to pressures for change. powerful conceptual tools. What does a high-level language ac-
Of course, so are buildings, cars, com- complish? It frees a program from much
puters. But manufactured things are infre- of its accidental complexity. An abstract
quently changed after manufacture; they program consists of conceptual con-
are superseded by later models, or essen- Scale drawings of mechanical parts and structs: operations, data types, sequences,
tial changes are incorporated into later- stick-figure models of molecules, al- and communication. The concrete ma-
serial-number copies of the same basic though abstractions, serve the same pur- chine program is concerned with bits, reg-
design. Call-backs of automobiles are pose. A geometric reality is captured in a isters, conditions, branches, channels,
really quite infrequent; field changes of geometric abstraction. disks, and such. To the extent that the
computers somewhat less so. Both are The reality of software is not inherently high-level language embodies the con-
much less frequent than modifications to embedded in space. Hence, it has no ready structs one wants in the abstract program
fielded software. geometric representation in the way that and avoids all lower ones, it eliminates a

In part, this is so because the software of land has maps, silicon chips have dia- whole level of complexity that was never
a system embodies its function, and the grams, computers have connectivity inherent in the program at all.
function is the part that most feels the schematics. As soon as we attempt to dia- The most a high-level language can do is
pressures of change. In part it is because gram software structure, we find it to con- to furnish all the constructs that the pro-
software can be changed more easily-it is stitute not one, but several, general grammer imagines in the abstract pro-
pure thought-stuff, infinitely malleable. directed graphs superimposed one upon gram. To be sure, the level of our thinking
Buildings do in fact get changed, but the another. The several graphs may represent about data structures, data types, and
high costs of change, understood by all, the flow of control, the flow of data, pat- operations is steadily rising, but at an ever-
serve to dampen the whims of the terns of dependency, time sequence, decreasing rate. And language devel-
changers. name-space relationships. These graphs opment approaches closer and closer to

All successful software gets changed. are usually not even planar, much less the sophistication of users.
Two processes are at work. First, as a soft- hierarchical. Indeed, one of the ways of Moreover, at some point the elabora-
ware product is found to be useful, people establishing conceptual control over such tion of a high-level language creates a tool-
try it in new cases at the edge of or beyond structure is to enforce link cutting until mastery burden that increases, not re-
the original domain. The pressures for ex- one or more of the graphs becomes hierar- duces, the intellectual task of the user who
tended function come chiefly from users chical.1 rarely uses the esoteric constructs.
who like the basic functionandinventnew In spite of progress in restricting and
uses for it. simplifying the structures of software, Time-sharing. Time-sharing brought a

Second, successful software survives they remain inherently unvisualizable, and major improvement in the productivity of
beyond the normal life of the machine thus do not permit the mind to use some of programmers and in the quality of their
vehicle for which it is first written. If not its most powerful conceptual tools. This product, although not so large as that

12 COMPUTER

brought by high-level languages.
Time-sharing attacks a quite different To slay the werewolf

difficulty. Time-sharing preserves im-
mediacy, and hence enables one to main- Why a silver bullet? Magic, of course. Silver is identified with the moon and thus
tain an overview of complexity. The slow has magic properties. A silver bullet offers the fastest, most powerful, and safest
turnaround of batch programming means way to slay the fast, powerful, and Incredibly dangerous werewolf. And what could

. be more natural than using the moon-metal to destroy a creature transformed
that one inevitably forgets the minutiae, if under the light of the full moon?
not the very thrust, of what one was think- The legend of the werewolf is probably one of the oldest monster legends
ing when he stopped programming and around. Herodotus In the fifth century BC gave us the first written report of
called for compilation and execution. This werewolves when he mentioned a tribe north of the Black Sea, called the Neuri,
interruption is costly in time, for one must who supposedly turned into wolves a few days each year. Herodotus wrote that he
refresh one's memory. The most serious didn't believe it.
effectmaywellbethedecayofthegraspof Sceptics aside, many people have believed in people turning into wolves or
all that is going on in a complex system. other animals. In medieval Europe, some people were killed because they were
Slow turnaround, like machine-lan- thought to be werewolves. In those times, it didn't take being bitten by a werewolf

guage complexities, is an accidental rather to become one. A bargain with the devil, using a special potion, wearing a special
than an essential difficulty of the software belt, or being cursed by a witch could all turn a person into a werewolf. However,medieval werewolves could be hurt and killed by normal weapons. The problemprocess. The limits of the potential con- was to overcome their strength and cunning.
tribution of time-sharing derive directly. Enter the fictional, not legendary, werewolf. The first major werewolf movie, The
The principal effect of time-sharing is to Werewolf of London, in 1935 created the two-legged man-wolf who changed into a
shorten system response time. As this monster when the moon was full. He became a werewolf after being bitten by one,
responsetimegoestozero, atsomepointit and could be killed only with a silver bullet. Sound familiar?
passes the human threshold of noticeabil- Actually, we owe many of today's Ideas about werewolves to Lon Chaney Jr.'s
ity, about 100 milliseconds. Beyond that unforgettable 1941 portrayal in The Wolf Man. Subsequent films seldom strayed far
threshold, no benefits are to be expected. from the mythology of the werewolf shown In that movie. But that movie strayed

far from the original mythology of the werewolf.
Would you believe that before fiction took over the legend, werewolves weren't

Unified programming environments, troubled by silver bullets? Vampires were the ones who couldn't stand them. Of
UnixandInterlisp,thefirstintegratedpro- course, If you rely on the legends, your only salvation if unarmed and attacked by a
gramming environments to come into werewolf is to climb an ash tree or run into a field of rye. Not so easy to find in an
widespread use, seem to have improved urban setting, and hardly recognizable to the average movie audience.
productivity by integral factors. Why? What should you watch out for? People whose eyebrows grow together, whose
They attack the accidental difficulties index finger is longer than the middle finger, and who have hair growing on their

that result from using individual programs palms. Red or black teeth are a definite signal of possible trouble.
together, by providing integratedlibraries, Take warning, though. The same symptoms mark people suffering from hyper-
unified file formats, and pipes and filters. trichosis (people born with hair covering their bodies) or porphyria. In porphyria, a
As a result, conceptual structures that in person's body produces toxins called porphyrins. Consequently, light becomes
principle could always call, feed, and use painful, the skin grows hair, and the teeth may turn red. Worse for the victim's

reputation, his or her increasingly bizarre behavior makes people even more
one another can indeed easily do so in suspicious of the other symptoms. It seems very likely that the sufferers of this
practice. disease unwittingly contributed to the current legend, although in earlier times

This breakthrough in turn stimulated they were evidently not accused of murderous tendencies.
the development of whole toolbenches, It Is worth noting that the film tradition often makes the werewolf a rather sym-
sinceeachnewtoolcouldbeappliedtoany pathetic character, an Innocent transformed against his (or rarely, her) will into a
programs that used the standard formats. monster. As the gypsy said in The Wolf Man,

Because of these successes, environ-
ments are the subject of much of today's Even a man who Is pure at heart,
software-engineering research. We look at And says his prayers at night,
their promise and limitations in the next Can become a wolf when the wolfbane blooms,
section. And the moon is full and bright.

Hopes for the silver
Now let us consider the technical devel- - Nancy Hays 5

opments that are most often advanced as Assistant Editor
potential silver bullets. What problems do
they address-the problems of essence, or
the remaining accidental difficulties? Do
they offer revolutionary advances, or in-
cremental ones?

Ada and other high4evel language ad- The Benrman Arcte
vances. One of the most touted recent de-

April 1987

velopments is Ada, a general-purpose which should be hidden. Examples are gramming. In this approach human ex-
high-level language of the 1980's. Ada not Ada packages (with private types) and perts are studied to determine what

heuristics or rules of thumb they use in
only reflects evolutionary improvements Modula's modules. solving problems.... The program is
in language concepts, but indeed em- Hierarchical types, such as Simula-67's designed to solve a problem the way that
bodies features to encourage modern classes, allow one to define general in- humans seem to solve it.
design and modularization. Perhaps the terfaces that can be further refined by pro- The first definition has a sliding mean-
Ada philosophy is more of an advance viding subordinate types. The two con- ing.... Something can fit the definition

of Al-I today but, once we see how the
than the Ada language, for it is the cepts are orthogonal-one may have program works and understand the prob-
philosophy of modularization, of abstract hierarchies without hiding and hiding lem, we will not think of it as AI any
data types, of hierarchical structuring. without hierarchies. Both concepts repre- more. ... Unfortunately I cannot iden-
Ada is over-rich, a natural result of the sent real advances in the art of building tify a body of technology that is unique to

this field . . Most of the work is prob-
process by which requirements were laid software. lem-specific, and some abstraction or
on its design. That is not fatal, for sub- Each removes yet another accidental creativity is required to see how to transfer
setted working vocabularies can solve the difficulty from the process, allowing the it.
learning problem, and hardware advances designer to express the essence of the I agree completely with this critique.
will give us the cheap MIPS to pay for the design without having to express large The techniques used for speech recog-
compiling costs. Advancing the structur- amounts of syntactic material that add no nition seem to have little in common with
ing of software systems is indeed a very those used for image recognition, and
good use for the increased MIPS our both are different from those used in
dollars will buy. Operating systems, loudly Many students of the art expert systems. I have a hard time seeing
decried in the 1960's for their memory and hold out more hope for how image recognition, for example, will
cycle costs, have proved to be an excellent make any appreciable difference in pro-
form in which to use some of the MIPS Object-oriented gramming practice. The same problem is
and cheap memory bytes of the past hard- programming than for true of speech recognition. The hard thing
ware surge. other technical fads of about building software is deciding what

Nevertheless, Ada will not prove to be one wants to say, not saying it. No facilita-
the silver bullet that slays the software the day. tion of expression can give more than mar-
productivity monster. It is, after all, just ginal gains.
another high-level language, and the big- Expert-systems technology, AI-2,
gest payoff from such languages came information content. For both abstract deserves a section of its own.
from the first transition-the transition up types and hierarchical types, the result is to
from the accidental complexities of the remove a higher-order kind of accidental Expert systems. The most advanced
machine into the more abstract statement difficulty and allow a higher-order expres- part of the artificial intelligence art, and
of step-by-step solutions. Once those ac- sion of design. the most widely applied, is the technology
cidents have been removed, the remaining Nevertheless, such advances can do no for building expert systems. Many soft-
ones will be smaller, and the payoff from more than to remove all the accidental dif- ware scientists are hard at work applying
their removal will surely be less. ficulties from the expression of the design. this technology to the software-building

I predict that a decade from now, when The complexity ofthe design itself is essen- environment. 3,5 What is the concept, and
the effectiveness of Ada is assessed, it will tial, and such attacks make no change what are the prospects?
be seen to have made a substantial dif- whatever in that. An order-of-magnitude An expert system is a program that
ference, but not because of any particular gain can be made by object-oriented pro- contains a generalized inference engine
language feature, nor indeed because of all gramming only if the unnecessary type- and a rule base, takes input data and
of them combined. Neither will the new specification underbrush still in our pro- assumptions, explores the inferences
Ada environments prove to be the cause of gramming language is itself nine-tenths of derivable from the rule base, yields
the improvements. Ada's greatest contri- the work involved in designing a program conclusions and advice, and offers to
bution will be that switching to it occa- product. I doubt it. explain its results by retracing its reasoning
sioned training programmers in modern for the user. The inference engines typ-
software-design techniques. Artificial intelligence. Many people ex- ically can deal with fuzzy or probabilistic

pect advances in artificial intelligence to data and rules, in addition to purely deter-
Object-oriented programming. Many provide the revolutionary breakthrough ministic logic.

students of the art hold out more hope for that will give order-of-magnitude gains in Such systems offer some clear advan-
object-oriented programming than for software productivity and quality.3 I do tages over programmed algorithms
any ofthe other technical fads ofthe day. 2 not. To see why, we must dissect what is designed for arriving at the same solutions
I am among them. Mark Sherman of Dart- meant by "artificial intelligence." to the same problems:
mouth notes on CSnet News that one must D.L. Parnas has clarified the termi- * Inference-engine technology is devel-
be careful to distinguish two separate ideas nological chaos 4: oped in an application-independent
that go under that name: abstract data Two quite different definitions of AI way, and then applied to many uses.
types and hierarchical types. The concept are in common use today. AN-I: The use One can justify much effort on the in-
oftheabstractdatatypeisthatanobject's of computers to solve problems that ference engines. Indeed, that
type should be defined by a name, a set of previously could only besolvedAIyTh pply- technology is well advanced.tYPe should ~~~~~~~~inghuman intelligence. AI-2: The use of a tcnlg swl dacd
proper values, and a set of proper opera- specific set of programming techniques * The changeable parts of the
tions rather than by its storage structure, known as heuristic or rule-based pro- application-peculiar materials are en-

14 COMPUTER

coded in the rule base in a uniform important is the twofold task of knowl- * There are many known methods of
fashion, and tools are provided for edge acquisition: finding articulate, self- solution to provide a library of alter-
developing, changing, testing, and analytical experts who know why they do natives.
documenting the rule base. This reg- things, and developing efficient tech- * Extensive analysis has led to explicit
ularizes much of the complexity of niques for extracting what they know and rules for selecting solution techniques,
the application itself. distilling it into rule bases. The essential given problem parameters.

The power of such systems does not prerequisite for building an expert system It is hard to see how such techniques
come from ever-fancier inference mecha- is to have an expert. generalize to the wider world of the or-
nisms, but rather from ever-richer knowl- The most powerful contribution by ex- dinary software system, where cases with
edge bases that reflect the real world more pert systems will surely be to put at the ser- such neat properties are the exception. It is
accurately. I believe that the most impor- vice of the inexperienced programmer the hard even to imagine how this break-
tant advance offered by the technology is experience and accumulated wisdom of through in generalization could occur.
the separation of the application complex- the best programmers. This is no small
ity from the program itself. contribution. The gap between the best Graphical programming. A favorite
How can this technology be applied to software engineering practice and the subject for PhD dissertations in software

the software-engineering task? In many average practice is very wide-perhaps engineering is graphical, or visual, pro-
ways: Such systems can suggest interface wider than in any other engineering gramming-the application of computer
rules, advise on testing strategies, remem- discipline. A tool that disseminates good graphics to software design. 6'7 Sometimes
ber bug-type frequencies, and offer opti- practice would be important. the promise held out by such an approach
mization hints. is postulated by analogy with VLSI chip

Consider an imaginary testing advisor, "Automatic" programming. For almost design, in which computer graphics plays
for example. In its most rudimentary 40 years, people have been anticipating so fruitful a role. Sometimes the theorist
form, the diagnostic expert system is very and writing about "automatic program- justifies the approach by considering
like a pilot's checklist, just enumerating ming," or the generation ofaprogram for flowcharts as the ideal program-design
suggestions as to possible causes of diffi- solving a problem from a statement of the medium and by providing powerful
culty. As more and more system structure problem specifications. Some today write facilities for constructing them.
is embodied in the rule base, and as the as if they expect this technology to provide Nothing even convincing, much less ex-
rule base takes more sophisticated account the next breakthrough.5 citing, has yet emerged from such efforts. I
of the trouble symptoms reported, the Parnas4 implies that the term is used am persuaded that nothing will.
testing advisor becomes more and more for glamor, not for semantic content, In the first place, as I have argued
particular in the hypotheses it generates asserting, elsewhere,8 the flowchart is a very poor
and the tests it recommends. Such an In short, automatic programming abstraction of software structure. Indeed,
expert system may depart most radically always has been a euphemism for program- it is best viewed as Burks, von Neumann,
from the conventional ones in that its rule ming with a higher-level language than was and Goldstine's attempt to provide a
base should probably be hierarchically presently available to the programmer. desperately needed high-level control lan-
modularized in the same way the corre- He argues, in essence, that in most cases guage for their proposed computer. In the
sponding software product is, so that as it is the solution method, not the problem, pitiful, multipage, connection-boxed
the product is modularly modified, the whose specification has to be given. form to which the flowchart has today
diagnostic rule base can be modularly One can find exceptions. The technique been elaborated, it has proved to be useless
modified as well. of building generators is very powerful, as a design
The work required to generate the and it is routinely used to good advantage tool-

diagnostic rules is work that would have to in programs for sorting. Some systems for program-
be done anyway in generating the set of integrating differential equations have mers
test cases for the modules and for the sys- also permitted direct specification of the draw
tem. If it is done in a suitably general problem, and the systems have assessed
manner, with both a uniform structure for the parameters, chosen from a library of
rules and a good inference engine avail- methods of solution, and generated the
able, it may actually reduce the total labor programs.
of generating bring-up test cases, and help These applications have very favorable
as well with lifelong maintenance and properties:
modification testing. In the same way, one * The problems are readily charac-
can postulate other advisors, probably terized by relatively few parameters.
many and probably simple, for the other
parts of the software-construction task.
Many difficulties stand in the way ofthe

early realization of useful expert-system
advisors to the program developer. A
crucial part of our imaginary scenario is
the development of easy ways to get from
program-structure specification to the
automatic or semiautomatic generation of The Bettana Arcthive
diagnostic rules. Even more difficult and

April 1987

flowcharts after, not before, writing the reduce the program-testing load, it cannot Promising attacks on the
programs they describe. eliminate it. concept al

Second, the screens of today are too More seriously, even perfect program conceptual essence
small, in pixels, to show both the scope verification can only establish that a pro- Even though no technological
and the resolution of any seriously detailed gram meets its specification. The hardest breakthough no thnolof
software diagram. The so-called "desktop part of the software task is arriving at a breakthrough promises to give the sort of
metaphor" of today's workstation is in- complete and consistent specification, and magicalresultswithwhichwearesofami
stead an "airplane-seat" metaphor. Any- much of the essence of building a program liar in the hardware area, there is both an
one who has shuffled a lap full of papers is in fact the debugging ofthe specification. abundance of good work going on now,
while seated between two portly passen- and the promise of steady, if unspecta-
gers will recognize the difference-one can Environments and tools. How much cular progress.
see only a very few things at once. The true more gain can be expected from the ex- All of the technological attacks on the
desktop provides overview of, and ran- ploding researches into better program- accidents of the software process are
dom access to, a score of pages. Moreover, ming environments? One's instinctive fundamentally limited by the productivity
when fits of creativity run strong, more reaction is that the big-payoff prob- equation:
than one programmer or writer has been lems-hierarchical file systems, uniform
known to abandon the desktop for the file formats to make possible uniform pro- timeoftask= (frequency)1 x (time)'
more spacious floor. The hardware tech-
nology will have to advance quite substan- If, as I believe, the conceptual compo-
tially before the scope of our scopes is suf- Language-specific smart nents of the task are now taking most of
ficient for the software-design task. editors promise at most the time, then no amount of activity on the
More fundamentally, as I have argued freedom from task components that are merely the ex-

above, software is very difficult to freedom pression of the concepts can give large
visualize. Whether one diagrams control sYntactc errors and productivity gains.
flow, variable-scope nesting, variable simple semantic errors. Hence we must consider those attacks
cross-references, dataflow, hierarchical that address the essence of the software
data structures, or whatever, one feels problem, the formulation of these com-
only one dimension of the intricately in- gram interfaces, and generalized tools- plex conceptual structures. Fortunately,
terlocked software elephant. If one were the first attacked, and have been some of these attacks are very promising.
superimposes all the diagrams generated solved. Language-specific smart editors
by the many relevant views, it is difficult to are developments not yet widely used in Buy versus build. The most radical
extract any global overview. The VLSI practice, but the most they promise is possible solution for constructing soft-
analogy is fundamentally misleading-a freedom from syntactic errors and simple ware is not to construct it at all.
chip design is a layered two-dimensional semantic errors. Every day this becomes easier, as more
description whose geometry reflects its Perhaps the biggest gain yet to be real- and more vendors offer more and better
realization in 3-space. A software system ized from programming environments is software products for a dizzying variety of
is not. the use of integrated database systems to applications. While we software engineers

keep track of the myriad details that must have labored on production methodology,
Program verification. Much of the ef- be recalled accurately by the individual the personal-computer revolution has

fort in modern programming goes into programmer and kept current for a group created not one, but many, mass markets
testing and the repair of bugs. Is there of collaborators on a single system. for software. Every newsstand carries
perhaps a silver bullet to be found by Surely this work is worthwhile, and monthly magazines, which sorted by
eliminating the errors at the source, in the surely it will bear some fruit in both machine type, advertise and review dozens
system-design phase? Can both productiv- productivity and reliability. But by its very of products at prices from a few dollars to
ity and product reliability be radically nature, the return from now on must be a few hundred dollars. More specialized
enhanced by following the profoundly dif- marginal. sources offer very powerful products for
ferent strategy of proving designs correct the workstation and other Unix markets.
before the immense effort is poured into Workstations. What gains are to be ex- Even software tools and environments can
implementing and testing them? pected for the software art from the cer- be bought off-the-shelf. I have elsewhere

I do not believe we will find productivity tain and rapid increase in the power and proposed a marketplace for individual
magic here. Program verification is a very memory capacity of the individual work- modules. 9
powerful concept, and it will be very im- station? Well, how many MIPS can one Any such product is cheaper tobuythan
portant for such things as secure operat- use fruitfully? The composition and edit- to build afresh. Even at a cost of one hun-
ing-system kernels. The technology does ing of programs and documents is fully dred thousand dollars, a purchased piece
not promise, however, to save labor. Veri- supported by today's speeds. Compiling of software is costing only about as much
fications are so much work that only a could stand a boost, but a factor of 10 in as one programmer-year. And delivery is
few substantial programs have ever been machine speed would surely leave think- immediate! Immediate at least for prod-
verified, time the dominant activity in the program- ucts that really exist, products whose de-
Program verification does not mean mer's day. Indeed, itappearstobesonow. velopercan referproductsto ahappyuser.

error-proof programs. There is no magic More powerful workstations we surely Moreover, such products tend to be much
here, either. Mathematical proofs also can welcome. Magical enhancements from better documented and somewhat better
be faulty. So whereas verification might them we cannot expect. maintained than home-grown software.

16 COMPUTER

The development of the mass market is, puters day in and day out on various ap- moreover, things that act, that move, that
I believe, the most profound long-run plications without ever writing a program. work. The dynamics of that action are
trend in software engineering. The cost of Indeed, many of these users cannot write hard to imagine. So in planning any soft-
software has always been development new programs for their machines, but they ware-design activity, it is necessary to
cost, not replication cost. Sharing that are nevertheless adept at solving new prob- allow for an extensive iteration between
cost among even a few users radically cuts lems with them. the client and the designer as part of the
the per-user cost. Another way of looking I believe the single most powerful soft- system definition.
at it is that the use of n copies ofa software ware-productivity strategy for many or- I would go a step further and assert that
system effectively multiplies the produc- ganizations today is to equip the it is really impossible for a client, even
tivity of its developers by n. That is an computer-naive intellectual workers who working with a software engineer, to
enhancement of the productivity of the are on the firing line with personal com- specify completely, precisely, and correct-
discipline and of the nation. puters and good generalized writing, ly the exact requirements ofa modern soft-
The key issue, of course, is applicabil- drawing, file, and spreadsheet programs ware product before trying some versions

ity. Can I use an available off-the-shelf and then to turn them loose. The same of the product.
package to perform my task? A surprising strategy, carried out with generalized Therefore, one ofthe most promising of
thing has happened here. During the mathematical and statistical packages and the current technological efforts, and one
1950's and 1960's, study after study some simple programming capabilities, that attacks the essence, not the accidents,
showed that users would not use off-the- will also work for hundreds of laboratory of the software problem, is the devel-
shelf packages for payroll, inventory con- scientists. opment of approaches and tools for rapid
trol, accounts receivable, and so on. The prototyping of systems as prototyping is
requirements were too specialized, the Requirements refinement and rapid part of the iterative specification of
case-to-case variation too high. During the prototyping. The hardest single part of requirements.
1980's, we find such packages in high building a software system is deciding Aprototypesoftware system is one that
demand and widespread use. What has precisely what to build. No other part of simulates the important interfaces and
changed? the conceptual work is as difficult as performs the main functions of the in-
Not the packages, really. They may be establishing the detailed technical re- tended system, while not necessarily being

somewhat more generalized and some- quirements, including all the interfaces to bound by the same hardware speed, size,
what more customizable than formerly, people, to machines, and to other software or cost constraints. Prototypes typically
but not much. Not the applications, systems. No other part of the work so crip- perform the mainline tasks of the applica-
either. If anything, the business and scien- ples the resulting system if done wrong. tion, but make no attempt to handle the
tific needs of today are more diverse and No other part is more difficult to rectify exceptional tasks, respond correctly to in-
complicated than those of 20 years ago. later. valid inputs, or abort cleanly. The purpose
The big change has been in the hard- Therefore, the most important function of the prototype is to make real the con-

ware/software cost ratio. In 1960, the that the software builder performs for the ceptual structure specified, so that the
buyer of a two-million dollar machine felt client is the iterative extraction and refine- client can test it for consistency and
that he could afford $250,000 more for a ment of the product requirements. For the usability.
customized payroll program, one that truth is, the client does not know what he Much of present-day software-acquisi-
slipped easily and nondisruptively into the wants. The client usually does not know tion procedure rests upon the assumption
computer-hostile social environment. To- what questions must be answered, and he that one can specify a satisfactory system ;
day, the buyer of a $50,000 office machine has almost never thought of the problem in advance, get bids for its construction,
cannot conceivably afford a customized in the detail necessary for specification. have it built, and install it. I think
payroll program, so he adapts the payroll Even the simple answer-"Make the new this assumption is fundamentally ,
procedure to the packages available. Com- software system work like our old manual - X wrong, and that many
puters are now so commonplace, if not yet information-processing system" * software-acquisition
so beloved, that the adaptations are ac- -is in fact too simple. One never problems
cepted as a matter of course. wants exactly that. Complex

There are dramatic exceptions to my software systems are,
argument that the generalization of soft-
ware packages has changed little over the
years: electronic spreadsheets and simple
database systems. These powerful tools,
so obvious in retrospect and yet so late in
appearing, lend themselves to myriad
uses, some quite unorthodox. Articles and_
even books now abound on how to tackle
unexpected tasks with the spreadsheet.
Large numbers of applications that would
formerly have been written as custom pro-
grams in Cobol or Report Program Gener-
ator are now routinely done with these
tools. The Betbnan Archive

Many users now operate their own com-

April 1987

spring from that fallacy. Hence, they can- Table 1. Exciting vs. useful but ferences between the great and the average
not be fixed without fundamental revi- unexciting software products. approach an order of magnitude.
sion-revision that provides for iterative
development and specification of pro- _A little retrospection shows that
totype sand products. although many fine, useful software sys-totypes and products. tems have been designed by committees

Incremental development-grow, don't and built as part of multipart projects,
build, software. I still remember the jolt I those software systems that have excited
felt in 1958 when I first heard a friend talk passionate fans are those that are the prod-
about building a program, as opposed to ucts of one or a few designing minds, great
writing one. In a flash he broadened my designers. Consider Unix, APL, Pascal,
whole view of the software process. The Modula, the Smailtalk interface, even
metaphor shift was powerful, and accu- Fortran; and contrast them with Cobol,
rate. Today we understand how like other PL/I, Algol, MVS/370, and MS-DOS.
building processes the construction of (See Table 1.)
software is, and we freely use other Hence, although I strongly support the
elements of the metaphor, such as specifi- technology-transfer and curriculum-de-
cations, assembly of components, and velopment efforts now under way, I think
scaffolding. double when the first picture from a new the most important single effort we can
The building metaphor has outlived its graphics software system appears on the mount is to develop ways to grow great

usefulness. It is time to change again. If, as screen, even if it is only a rectangle. One designers.
I believe, the conceptual structures we always has, at every stage in the process, a No software organization can ignore
construct today are too complicated to be working system. I find that teams can this challenge. Good managers, scarce
specified accurately in advance, and too grow much more complex entities in four though they be, are no scarcer than good
complex to be built faultlessly, then we months than they can build. designers. Great designers and great
must take a radically different approach. The same benefits can be realized on managers are both very rare. Most

Let us turn to nature and study com- large projects as on my small ones. ii organizations spend considerable effort in
plexity in living things, instead of just the finding and cultivating the management
dead works of man. Here we find con- Great designers. The central question in prospects; I know of none that spends
structs whose complexities thrill us with how to improve the software art centers, equal effort in finding and developing the
awe. The brain alone is intricate beyond as it always has, on people. great designers upon whom the technical
mapping, powerful beyond imitation, rich We can get good designs by following excellence of the products will ultimately
in diversity, self-protecting, and self- good practices instead ofpoor ones. Good depend.
renewing. The secret is that it is grown, not design practices can be taught. Program- My first proposal is that each software
built. mers are among the most intelligent part organization must determine and pro-
So it must be with our software systems. of the population, so they can learn good claim that great designers are as important

Some years ago Harlan Mills proposed practice. Hence, a major thrust in the to its success as great managers are, and
that any software system should be grown United States is to promulgate good that they can be expected to be similarly
by incremental development. 10 That is, modern practice. New curricula, new nurtured and rewarded. Not only salary,
the system should first be made to run, literature, new organizations such as the but the perquisites of recognition-office
even if it does nothing useful except call Software Engineering Institute, all have size, furnishings, personal technical equip-
the proper set of dummy subprograms. come into being in order to raise the level ment, travel funds, staff support-must
Then, bit by bit, it should be fleshed out, of our practice from poor to good. This is be fully equivalent.
with the subprograms in turn being devel- entirely proper. How to grow great designers? Space
oped-into actions or calls to empty stubs Nevertheless, I do not believe we can does not permit a lengthy discussion, but
in the level below. make the next step upward in the same some steps are obvious:

I have seen most dramatic results since I way. Whereas the difference between poor * Systematically identify top designers
began urging this technique on the project conceptual designs and good ones may lie as early as possible. The best are often not
builders in my Software Engineering in the soundness of design method, the the most experienced.
Laboratory class. Nothing in the past difference between good designs and great * Assign a career mentor to be respon-
decade has so radically changed my own ones surely does not. Great designs come sible for the development of the prospect,
practice, or its effectiveness. The ap- from great designers. Software construc- and carefully keep a career file.
proach necessitates top-down design, for tion is a creative process. Sound * Devise and maintain a career-devel-
it is a top-down growing ofthe software. It methodology can empower and liberate opment plan for each prospect, including
allows easy backtracking. It lends itself to the creative mind; it cannot inflame or carefully selected apprenticeships with top
early prototypes. Each added function inspire the drudge. designers, episodes of advanced formal
and new provision for more complex data The differences are not minor-they are education, and short courses, all inter-
or circumstances grows organically out of rather like the differences between Salieri spersed with solo-design and technical-
what is already there. and Mozart. Study after study shows that leadership assignments.
The morale effects are startling. En- the very best designers produce structures * Provide opportunities for growing

thusiasm jumps when there is a running that are faster, smaller, simpler, cleaner, designers to interact with and stimulate
system, even a simple one. Efforts re- and produced with less effort. 12 The dif- each other.O

18 COMPUTER

artificial intelligence and software engi-Acknowledgments neering), J. Mostow, guest ed., Vol. 11,
No. 11, Nov. 1985, pp. 1257-1267.

I thank Gordon Bell, Bruce Buchanan, Rick 6. Computer (special issue on visual pro-
Hayes-Roth, Robert Patrick, and, most gramming), R.B. Graphton and T.
especially, David Parnas for their insights and Ichikawa, guest eds., Vol. 18, No. 8, Aug.
stimulating ideas, and Rebekah Bierly for the 1985.
technical production of this article. 7. G. Raeder, "A Survey of Current

Graphical Programming Techniques,"
Computer (special issue on visual pro-
gramming), R.B. Graphton and T. Frederick P. Brooks is Kenan Professor of
Ichikawa, guest eds., Vol. 18, No. 8, Aug. Computer Science at the University of North

References 1985, pp. 11-25. Carolina in Chapel Hill. He is best known as theReferences ~~~~~~~~~~~~~~~~~~~"fatherof the IBM System/360 computer famn-8. EP. Brooks, The Mythical Man-Month, ily," having served as project manager for the
1975, Addison-Wesley, Reading, Mass., System/360 hardware and later as project man-1. D.L. Parnas, "Designing Software for New York, Chapter 14. ager for the Operating Systemn/360 software.Ease of Extension and Contraction," 9. Defense Science Board, Report of the At Chapel Hill, Brooks founded the UNC

IEEE Trans. Software Engineering, Vol. TaskForceonMilitarYSoftwareinPress. Dept. of Computer Science and has par-
5, No. 2, Mar. 1979, pp 128-138. 10. H.D. Mills, "Top-Down Programming in ticipated in the establishment andguiding of the

2. G. Booch, "Object-Oriented Design," Large Systems," in Debugging Tech- Microelectronics Center of North Carolina, the
Software Engineering with Ada, 1983, niques in Large Systems, R. Ruskin, ed., Triangle Universities Computation Center, and
Benjamin/Cummings, Menlo Park, Prentice-Hall, Englewood Cliffs, N.J., the North Carolina Educational Computing
Cauif. 1971. Service. He has received the National Medal of

3. IEEE Trans. Software Engineering 11. B.W. Boehm, "A Spiral Model of Technology, a Guggenheim Fellowship, andthe
(special issue on artificial intelligence and Software Development and Enhance- McDowell and Computer Pioneer awards of
software engineering), J. Mostow, guest ment," 1985, TRW tech. report the Computer Society of the IEEE.
ed., Vol. 11, No. 11, Nov. 1985. 21-371-85, TRW, Inc., I Space Park, Brooks received his PhD (in what is today

4. D.L. Parnas, "Software Aspects of Redondo Beach, CA 90278. computer science) from Harvard, where he was
Strategic Defense Systems," American 12. H. Sackman, WJ. Erikson, and E.E. a student of Howard Aiken.
Scientist, Nov. 1985. Grant, "Exploratory Experimental

5. R. Balzer, "A 15-Year Perspective on Studies Comparing Online and Offline Readers may write to F.P. Brooks at the
Automatic Programmning," IEEE Trans. Programming Performance," CACM, University of North Carolina, Dept. of Com-
Software Engineering (special issue on Vol. 11, No. 1, Jan. 1968, pp. 3-11. puter Science, Chapel Hill, NC 27514.

DIRECTOR I/O Architects
UNIVERSITY COMPUTER CENTER Software Professionals
The University of Massachusetts at Amherst invites

applications and nominations for the position of Direc- Performance Analysts
tor, University Computing Center, a position beginning
September 1, 1987 or as soon as possible thereafter. Digital's Northeast Technology Center in
Located in the Connecticut River Valley, UMA is a com- Shrewsbury, Massachusetts develops mass storage
prehensive, public university with an enrollment of systems for Digital's entire range of VAX' systems.
26,000. These include memories, optical and small
The Director is responsible for planning and directing magnetic disks, and high speed tapes.

the overall activity of the University Computer Center,
which provides instructional and research computing We seek to lead the technologdcal advancement
services to students and to faculty. of intelligent I/O subsystems and distributed file

Qualifications: Candidates should have experience in systems.
the management of academic or research computer ser- Our Systems Group is seeking a team of profes-
vices. We seek a person who understands the effective sionals for development of an intelligent l/O subsys-
management and direction of a complex enterprise, who tem that provides distributed file services. We par-
has demonstrated leadership ability, and who can work ticipate in architectural committees on controllers,
well with peers in planning and negotiation. Doctorate tape loaders, buses, networks, file systems and pro-
and faculty experience preferred. Salary commensurate tocols. We construct performance models to aid in
with qualifications and experience, architectural analysis. Our software team constructs

Deadline for applications is April 22, 1987. Letters of ap- both advanced development prototypes and soft-
plication should include a current resume, a brief state- ware products for media and resource management.
ment of qualifications for the position, and the names, A graduate degree and/or at least three years'
addresses, and telephone numbers of at least three refer- experience are preferred. If your technical interest
ences who are familiar with the applicant's professional is in one of these areas, please send your resume
experience. to: Chris Larkin, Department 0487 7812,

Applications should be sent te: Digital Equipment Corporation, 333 South
Street, Shrewsbury, MA 01545-4112.

Charles Moran, Chair, UCC Director Search Committee *Trademark of Digital Equipment Corporation.
Office of Computing and Information Systems
362 Whitmore Administration Building We are an affirmative action employer.
University of Massachusetts
Amherst, MA 01003 w A N A NNfR

The University of Masschusetts Is an L i L1I U U
AffirmatIh Actlon/Equal Opportunity Employer.

