
Software Reengineering
& Evolution

Serge Demeyer
Stéphane Ducasse
Oscar Nierstrasz

January 2019

http://scg.unibe.ch/download/oorp/

© S. Demeyer, S. Ducasse, O. Nierstrasz Software Reengineering and Evolution.2

Schedule
1. Introduction

There are OO legacy systems too !

2. Reverse Engineering
How to understand your code

3. Visualization
Scalable approach

4. Dynamic Analysis
To be really certain

5. Restructuring
How to Refactor Your Code

6. Code Duplication
The most typical problems

7. Software Evolution
Learn from the past

8. Going Agile
Continuous Integration

9. Conclusion

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.3

Goals

We will try to convince you:

• Yes, Virginia, there are object-oriented legacy systems too!

• Reverse engineering and reengineering are essential
activities in the lifecycle of any successful software system.
(And especially OO ones!)

• There is a large set of lightweight tools and techniques to
help you with reengineering.

• Despite these tools and techniques, people must do job and
they represent the most valuable resource.

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.4

What is a Legacy System ?
“legacy”

A sum of money, or a specified article, given to another by
will; anything handed down by an ancestor or predecessor.

— Oxford English Dictionary

Þ so, further evolution and development may be prohibitively expensive

A legacy system is a piece of
software that:

• you have inherited, and
• is valuable to you.

Typical problems with legacy systems:
• original developers not available
• outdated development methods used
• extensive patches and modifications have

been made
• missing or outdated documentation

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.5

Software Maintenance - Cost

requirement
design

coding
testing

delivery

x 1

x 5

x 10

x 20

x 200
Relative Maintenance Effort
Between 50% and 75% of
global effort is spent on

“maintenance” !

Relative Cost
of Fixing Mistakes

Solution ?
• Better requirements engineering?
• Better software methods & tools

(database schemas, CASE-tools, objects,
components, …)?

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.6

Continuous Development

17.4% Corrective
(fixing reported errors)

18.2% Adaptive
(new platforms or OS)

60.3% Perfective
(new functionality)

The bulk of the maintenance cost is due to new functionality
Þ even with better requirements, it is hard to predict new functions

data from [Lien78a]

4.1% Other

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.7

(*) process-oriented structured methods, information engineering,
data-oriented methods, prototyping, CASE-tools – not OO !

Contradiction ? No!
• modern methods make it easier to change

... this capacity is used to enhance functionality!

Modern Methods & Tools ?

[Glas98a] quoting empirical study from Sasa Dekleva (1992)

• Modern methods(*) lead to more reliable software

• Modern methods lead to less frequent software repair

• and ...

• Modern methods lead to more total maintenance time

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.8

Lehman's Laws

A classic study by Lehman and Belady [Lehm85a] identified several “laws”
of system change.

Continuing change
• A program that is used in a real-world environment must change, or

become progressively less useful in that environment.

Increasing complexity
• As a program evolves, it becomes more complex, and extra resources

are needed to preserve and simplify its structure.

Those laws are still applicable…

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.9

What about Objects ?

Object-oriented legacy systems
• = successful OO systems whose architecture and design no longer

responds to changing requirements

Compared to traditional legacy systems
• The symptoms and the source of the problems are the same
• The technical details and solutions may differ

OO techniques promise better
• flexibility,
• reusability,
• maintainability
• …

Þ they do not come for free

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.10

What about Components ?

Components are very brittle …
After a while one inevitably resorts to glue :)

© S. Demeyer, S. Ducasse, O. Nierstrasz Reengineering Legacy Systems.11

Soccer Field Metaphor

© A. Van Deursen

• Assume 10 lines of code
= 40 tiles of 1 x 1 cm

• 12.5 million lines of code
» 40 soccer fields

A. van Deursen, De software-evolutieparadox
Intreerede TU Delft, 23 feb 2005

Imagine 400 developers concurrently
moving tiles around on 40 soccer fields

…

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.12

How to deal with Legacy ?
New or changing requirements will gradually degrade original design
… unless extra development effort is spent to adapt the structure

New Functionality

Hack it in ?

• duplicated code
• complex conditionals
• abusive inheritance
• large classes/methods

First …
• refactor
• restructure
• reengineer

Take a loan on your software
Þ pay back via reengineering

Investment for the future
Þ paid back during maintenance

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.13

Common Symptoms

Lack of Knowledge
• obsolete or no documentation
• departure of the original

developers or users
• disappearance of inside

knowledge about the system
• limited understanding of entire

system
Þmissing tests

Process symptoms
• too long to turn things over to

production
• need for constant bug fixes
• maintenance dependencies

• difficulties separating products
Þsimple changes take too long

Code symptoms
• duplicated code
• code smells
Þbig build times

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.14

The Reengineering Life-Cycle

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection (3) problem

resolution

(4) program transformation

• people centric
• lightweight

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.15

A Map of Reengineering Patterns

Tests: Your Life Insurance

Detailed Model Capture

Initial Understanding

First Contact

Setting Direction

Migration Strategies

Detecting Duplicated Code

Redistribute
Responsibilities

Transform
Conditionals to
Polymorphism

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.16

2. Reverse Engineering

• What and Why
• First Contact

☞ Interview during Demo

• Initial Understanding

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.17

What and Why ?

Definition
Reverse Engineering is the process of analysing a subject system

☞ to identify the system’s components and their interrelationships and
☞ create representations of the system in another form or at a higher level of

abstraction. — Chikofsky & Cross, ’90

Motivation
Understanding other people’s code
(cfr. newcomers in the team, code reviewing,

original developers left, ...)

Generating UML diagrams is NOT reverse engineering
... but it is a valuable support tool

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.18

The Reengineering Life-Cycle

(0) req. analysis
(1) model capture
issues
• scale
• speed
• accuracy
• politics

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection

(3) problem
resolution

(4) program transformation

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.19

First Contact

System experts

Chat with the
Maintainers

Interview
during Demo

Talk with
developers

Talk with
end users

Talk about it

Verify what
you hear

feasibility assessment
(one week time)

Software System

Read All the Code
in One Hour

Do a Mock
Installation

Read it Compile it

Skim the
Documentation

Read
about it

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.20

First Project Plan

Use standard templates, including:
• project scope

☞ see "Setting Direction"

• opportunities
☞ e.g., skilled maintainers, readable source-code, documentation

• risks
☞ e.g., absent test-suites, missing libraries, …
☞ record likelihood (unlikely, possible, likely)

& impact (high, moderate, low) for causing problems

• go/no-go decision
• activities

☞ fish-eye view

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.21

• Solution: interview during demo
- select several users
- demo puts a user in a positive mindset
- demo steers the interview

Interview during Demo

Solution: Ask the user!

• ... however
☞ Which user ?

☞ Users complain

☞ What should you ask ?

Problem: What are the typical usage
scenarios?

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.22

Initial Understanding

understand Þ
higher-level model

Top down

Speculate about Design

Recover
design

Analyze the
Persistent Data

Study the
Exceptional

Entities

Recover
database

Bottom up

Identify
problems

ITERATION

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.23

3. Software Visualization

• Introduction
☞ The Reengineering life-cycle

• Examples
• Lightweight Approaches

☞ CodeCrawler

• Dynamic Analysis
☞ Key Concept Identification
☞ Feature Location

• Conclusion

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.24

The Reengineering Life-cycle

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection (3) problem

resolution

(4) program transformation

(2) problem detection
issues
• Tool support
• Scalability
• Efficiency

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.25

Visualising Hierarchies

• Euclidean cones
☞ Pros:

• More info than 2D

☞ Cons:
• Lack of depth
• Navigation

• Hyperbolic trees
☞ Pros:

• Good focus
• Dynamic

☞ Cons:
• Copyright

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.26

Bottom Up Visualisation

Filter

All program
entities and

relations

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.27

A lightweight approach

• A combination of metrics
and software visualization
☞Visualize software using

colored rectangles for the
entities and edges for the
relationships

☞Render up to five metrics
on one node:

• Size (1+2)
• Color (3)
• Position (4+5)

Relationship

Entity

Y Coordinate

Height Color tone

Width

X Coordinate

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.28

Nodes: Classes
Edges: Inheritance Relationships
Width: Number of attributes
Height: Number of methods
Color: Number of lines of code

System Complexity View

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.29

Inheritance Classification View

Boxes: Classes
Edges: Inheritance
Width: Number of Methods Added
Height: Number of Methods Overridden
Color: Number of Method Extended

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.30

Data Storage Class Detection View

Boxes: Classes
Width: Number of Methods
Height: Lines of Code
Color: Lines of Code

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.31

Industrial Validation

Nokia (C++ 1.2 MLOC >2300 classes)
Nokia (C++/Java 120 kLOC >400 classes)
MGeniX (Smalltalk 600 kLOC >2100classes)
Bedag (COBOL 40 kLOC)
...

Personal experience
2-3 days to get something

Used by developers + Consultants

State of the Art Tooling

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.32

1. source{d}
https://sourced.tech
https://github.com/src-d/engine

2. teamscale
https://www.cqse.eu/
https://github.com/cqse

3. codescene
https://codescene.io
https://github.com/empear-analytics

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.33

4. Dynamic Analysis

• Key Concept Identification
• Feature Location

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.34

• Extract run-time coupling
• Apply datamining (“google”)
• Experiment with documented

open-source cases (Ant, JMeter)
☞ recall: +- 90 %
☞ precision: +- 60 %

Key Concept Identification

Class

IC
_C

C
’ +

w
eb-

m
ining

A
nt docs

Project √ √
UnknownElement √ √
Task √ √
Main √ √
IntrospectionHelper √ √
ProjectHelper √ √
RuntimeConfigurable √ √
Target √ √
ElementHandler √ √
TaskContainer × √
Recall (%) 90 -
Precision (%) 60 -

© S. Demeyer, S. Ducasse, O. Nierstrasz Reengineering Legacy Systems.35

Feature Location
T. Eisenbarth, R. Koschke, and D.
Simon. Locating features in
source code. IEEE Transactions
on Software Engineering,
29(3):210–224, March 2003.

Replication is not supported, industrial cases are rare, …. In order to help the
discipline mature, we think that more systematic empirical evaluation is needed.
[Tonella et. Al, in Empirical Software Engineering]

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.36

5. Restructuring

Redistribute Responsibilities
☞ Move Behaviour Close to Data

☞ Eliminate Navigation Code
☞ Split up God Class

☞ Empirical Validation

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.37

Redistribute Responsibilities

Eliminate Navigation Code

Data containers

Monster client
of data containers

Split Up God Class

Move Behaviour Close to Data

Chains of
data containers

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.38

Move Behavior Close to Data (example 1/2)

Employee
+telephoneNrs
+name(): String
+address(): String

Payroll
+printEmployeeLabel()

System.out.println(currentEmployee.name());
System.out.println(currentEmployee.address());
for (int i=0; i < currentEmployee.telephoneNumbers.length; i++) {

System.out.print(currentEmployee.telephoneNumbers[i]);
System.out.print(" ");
}

System.out.println("");

TelephoneGuide
+printEmployeeTelephones()

*
*

…
for …

System.out.print(" -- ");
…

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.39

Move Behavior Close to Data (example 2/2)

Employee
- telephoneNrs
- name(): String
- address(): String
+printLabel(String)

Payroll
+printEmployeeLabel()

public void printLabel (String separator) {
System.out.println(_name);
System.out.println(_address);
for (int i=0; i < telephoneNumbers.length; i++) {

System.out.print(telephoneNumbers[i]);
System.out.print(separator);
}

System.out.println("");}

TelephoneGuide
+printEmployeeTelephones()

*
*

…
emp.printLabel(" -- ");
…

…
emp.printLabel(" ");
…

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.40

Car
-engine
+increaseSpeed()

Eliminate Navigation Code

…
engine.carburetor.fuelValveOpen = true

Engine
+carburetor

Car
-engine
+increaseSpeed()

Carburetor
+fuelValveOpen

Engine
-carburetor
+speedUp()

Car
-engine
+increaseSpeed()

…
engine.speedUp()

carburetor.fuelValveOpen = true

Carburetor
-fuelValveOpen
+openFuelValve()

Engine
-carburetor
+speedUp()

carburetor.openFuelValve()fuelValveOpen = true

Carburetor
+fuelValveOpen

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.41

Split Up God Class

Problem: Break a class which monopolizes control?
Solution: Incrementally eliminate navigation code
• Detection:

☞ measuring size

☞ class names containing Manager, System, Root, Controller
☞ the class that all maintainers are avoiding

• How:
☞ move behaviour close to data + eliminate navigation code

☞ remove or deprecate façade

• However:
☞ If God Class is stable, then don't split

Þ shield client classes from the god class

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.42

Split Up God Class: 5 variants

Controller
A

ControllerFilter1
Filter2

B

ControllerFilter1
Filter2

MailHeader

C

ControllerFilter1
Filter2

MailHeader

FilterActionD

ControllerFilter1
Filter2

MailHeader

FilterAction

NameValuePair

E

Mail client filters incoming mail

Extract
behavioral class

Extract
data class

Extract
behavioral class

Extract
data class

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.43

Empirical Validation

• Controlled experiment with 63 last-
year master-level students (CS and ICT)

IndependentVariables DependentVariables

Experimental
task

Institution

God class
decomposition

9

6

3 Time

Accuracy

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.44

Interpretation of Results

• “Optimal decomposition” differs with respect to training
☞ Computer science: preference towards C-E
☞ ICT-electronics: preference towards A-C

• Advanced OO training can induce a preference towards
particular styles of decomposition
☞ Consistent with [Arisholm et al. 2004]

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.45

6. Code Duplication

a.k.a. Software Cloning, Copy&Paste
Programming

• Code Duplication
☞ What is it?
☞ Why is it harmful?

• Detecting Code Duplication
• Approaches
• A Lightweight Approach
• Visualization (dotplots)
• Duploc
• Recent trends

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.46

The Reengineering Life-Cycle

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection (3) problem

resolution

(2) Problem detection

(2) Problem detection

issues
• Scale
• Unknown a priori

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.47

Code is Copied
Small Example from the Mozilla Distribution (Milestone 9)
Extract from /dom/src/base/nsLocation.cpp

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.48

Case Study LOC
Duplication

without
comments

with
comments

gcc 460’000 8.7% 5.6%

Database Server 245’000 36.4% 23.3%

Payroll 40’000 59.3% 25.4%

Message Board 6’500 29.4% 17.4%

How Much Code is Duplicated?

Usual estimates: 8 to 12% in normal industrial code
15 to 25 % is already a lot!

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.49

Copied Code Problems

• General negative effect:
☞ Code bloat

• Negative effects on Software Maintenance
☞ Copied Defects
☞ Changes take double, triple, quadruple, ... Work
☞ Dead code
☞ Add to the cognitive load of future maintainers

• Copying as additional source of defects
☞ Errors in the systematic renaming produce unintended aliasing

• Metaphorically speaking:
☞ Software Aging, “hardening of the arteries”,
☞ “Software Entropy” increases even small design changes become very

difficult to effect

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.50

Code Duplication Detection
Nontrivial problem:

• No a priori knowledge about which code has been copied
• How to find all clone pairs among all possible pairs of segments?

Type I

Type II
(& Type III)

Type IV

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.51

General Schema of Detection Process

Author Level Transformed Code
Comparison
Technique

[John94a] Lexical Substrings String-Matching

[Duca99a] Lexical Normalized Strings String-Matching

[Bake95a] Syntactical Parameterized Strings String-Matching

[Mayr96a] Syntactical Metric Tuples Discrete comparison

[Kont97a] Syntactical Metric Tuples Euclidean distance

[Baxt98a] Syntactical AST Tree-Matching

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.52

Simple Detection Approach (i)
• Assumption:

• Code segments are just copied and changed at a few places
• Code Transformation Step

• remove white space, comments
• remove lines that contain uninteresting code elements

(e.g., just ‘else’ or ‘}’)

…
//assign same fastid as container
fastid = NULL;
const char* fidptr = get_fastid();
if(fidptr != NULL) {

int l = strlen(fidptr);
fastid = newchar[l + 1];

…

fastid=NULL;
constchar*fidptr=get_fastid();
if(fidptr!=NULL)
intl=strlen(fidptr)
fastid = newchar[l+]

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.53

Simple Detection Approach (ii)

• Code Comparison Step
☞ Line based comparison (Assumption: Layout did not change

during copying)
☞ Compare each line with each other line.
☞ Reduce search space by hashing:

1. Preprocessing: Compute the hash value for each line
2. Actual Comparison: Compare all lines in the same hash
bucket

• Evaluation of the Approach
☞ Advantages: Simple, language independent
☞ Disadvantages: Difficult interpretation

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.54

A Perl script for C++ (1/2)

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.55

A Perl script for C++ (2/2)

• Handles multiple files
• Removes comments

and white spaces
• Controls noise (if, {,)
• Granularity (number of

lines)
• Possible to remove

keywords

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.56

Output Sample

Lines:
create_property(pd,pnImplObjects,stReference,false,*iImplObjects);
create_property(pd,pnElttype,stReference,true,*iEltType);
create_property(pd,pnMinelt,stInteger,true,*iMinelt);
create_property(pd,pnMaxelt,stInteger,true,*iMaxelt);
create_property(pd,pnOwnership,stBool,true,*iOwnership);
Locations: </face/typesystem/SCTypesystem.C>6178/6179/6180/6181/6182
</face/typesystem/SCTypesystem.C>6198/6199/6200/6201/6202
Lines:
create_property(pd,pnSupertype,stReference,true,*iSupertype);
create_property(pd,pnImplObjects,stReference,false,*iImplObjects);
create_property(pd,pnElttype,stReference,true,*iEltType);
create_property(pd,pMinelt,stInteger,true,*iMinelt);
create_property(pd,pnMaxelt,stInteger,true,*iMaxelt);
Locations: </face/typesystem/SCTypesystem.C>6177/6178
</face/typesystem/SCTypesystem.C>6229/6230

Lines = duplicated lines
Locations = file names and line number

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.57

Visualization of Duplicated Code

•Visualization provides insights into the duplication situation
•A simple version can be implemented in three days
•Scalability issue

•Dotplots — Technique from DNA Analysis
• Code is put on vertical as well as horizontal axis
• A match between two elements is a dot in the matrix

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.58

Visualization of Copied Code Sequences

All examples are made using Duploc from an industrial case study
(1 Mio LOC C++ System)

Detected Problem
File A contains two copies of a
piece of code

File B contains another copy of
this code

Possible Solution
Extract Method

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.59

Visualization of Repetitive Structures

Detected Problem
4 Object factory clones: a switch
statement over a type variable is
used to call individual construction
code

Possible Solution
Strategy Method

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.60

Visualization of Cloned Classes

Detected Problem:
Class A is an edited copy
of class B. Editing & Insertion

Possible Solution
Subclassing …

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.61

Visualization of Clone Families

20 Classes implementing lists for different data types

Detail
Overview

Recent
Trends

© S. Demeyer, S. Ducasse, O. Nierstrasz
Object-Oriented Reengineering.62

Clone Detection
Inside

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.63

7. Software Evolution

• Exploiting the Version Control System
☞ Visualizing CVS changes

• The Evolution Matrix
• Test History

It is not age that turns a piece of software into a legacy system,
but the rate at which it has been developed and adapted
without being reengineered.

[Demeyer, Ducasse and Nierstrasz: Object-Oriented Reengineering Patterns]

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.64

The Reengineering Life-Cycle

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection (3) problem

resolution

(2) Problem detection

(2) Problem detection
Issues
• scale

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.65

Analyse CVS changes

4) Block Shift = Design Change

3) Triangle = Core Reduces

1) Vertical lines = Frequent Changers

2) Horizontal line = Shotgun Surgery

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.66

Ownership Map:
Developer Activity

DialogueMonologue

Edit Takeover

Familiarization

What to (re)test ?

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.67

Data from Windows Vista and Windows 7

Software components with a
high level of ownership will
have fewer failures than
components with lower top
ownership levels.

Software components with
many minor contributors will
have more failures than
software components that
have fewer.

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.68

The Evolution Matrix

Last Version

First Version

Major Leap

Removed Classes

TIME (Versions)
Growth Stabilisation

Added
Classes

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.69

Example: MooseFinder (38 Versions)

© S. Demeyer, S. Ducasse, O. Nierstrasz Reengineering Legacy Systems.70

Test history

single test

unit tests

integration tests

… affect unit tests… affect unit tests

phased testing

System under study = checkstyle

Selenium Tests

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.71

Git repositories of the XWiki, OpenLMIS and Atlas
© Laurent Christophe (Vrije Universiteit Brussel)

Avoid Magic Constants !!

8. Going Agile

• Continuous Integration / Deployment

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.72

<<Breaking the Build>>

version	
control build developer	

tests deploy scenario	
tests

deploy	to	
production

measure	&	
validate

Mining Software Repositories

The Mining Repositories (MSR) field analyzes the rich data available in software
repositories to uncover interesting and actionable information about software
systems and projects.

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.73

Conferences
2018—15th edition, Gothenburg, Sweden
2017—14th edition, Buenos Aires, Argentina
2016—13th edition, Austin, Texas
2015—12th edition, Florence, Italy
2014—11th edition, Hyderabad, India
2013—10th edition, San Francisco, USA
2012—9th edition, Zürich, CH
2011—8th edition, Honolulu, HI, USA
2010—7th edition, Cape Town, ZAF
2009—6th edition, Vancouver, CAN
2008—5th edition, Leipzig, DEU
2007—4th edition, Minneapolis, MN, USA
2006—3rd edition, Shanghai, CHN
2005—2nd edition, Saint Luis, MO, USA
2004—1st edition, Edinburgh, UK

Hall of Fame — Mining Challenge
2018 — IDE Event Stream (JetBrains)
2017 — TravisTorrent (Github)
2016 — BOA (SourceForge & Github)
2015 — StackOverflow
2014 — GitHub
2013 — StackOverflow
2012 — Android
2011 — Netbeans+Eclipse
2010 — GNOME Projects
2009 — GNOME project
2008 — Eclipse
2007 — Eclipse Developer
2006 — PostgreSQL

[Khom2014] Khomh, F. Adams, B, Dhaliwal, T and Zou, Y
Understanding the Impact of Rapid Releases on Software Quality:
The Case of Firefox, Empirical Software Engineering, Springer.
http://link.springer.com/article/10.1007/s10664-014-9308-x

1.0 1.5 2.0 3.0 3.5 3.6 4.0 5.0 7.0
8.0

9.0

Traditional Release Cycle Rapid Release Cycle

(a) Time Line of Major Versions of FireFox

(b) Time Line of Minor Versions of FireFox

Figure 1. Timeline of FireFox versions.

channels are respectively 100,000 for NIGHTLY, 1 million
for AURORA, 10 million for BETA and 100+ millions for
a major Firefox version [11]. NIGHTLY reaches Firefox
developers and contributors, while other channels (i.e., AU-
RORA and BETA) recruit external users for testing. The
source code on AURORA is tested by web developers who
are interested in the latest standards, and by Firefox add-on
developers who are willing to experiment with new browser
APIs. The BETA channel is tested by Firefox’s regular beta
testers.

Each version of Firefox in any channel embeds an auto-
mated crash reporting tool, i.e., the Mozilla Crash Reporter,
to monitor the quality of Firefox across all four channels.
Whenever Firefox crashes on a user’s machine, the Mozilla
Crash Reporter [12] collects information about the event
and sends a detailed crash report to the Socorro crash
report server. Such a crash-report includes the stack trace
of the failing thread and other information about a user
environment, such as the operating system, the version of
Firefox, the installation time, and a list of plug-ins installed.

Socorro groups similar crash-reports into crash-types.
These crash-types are then ranked by their frequency of
occurrence by the Mozilla quality assurance teams. For the
top crash-types, testers file bugs in Bugzilla and link them to
the corresponding crash-type in the Socorro server. Multiple
bugs can be filed for a single crash-type and multiple crash-
types can be associated with the same bug. For each crash-
type, the Socorro server provides a crash-type summary, i.e.,
a list of the crash-reports of the crash-type and a set of bugs
that have been filed for the crash-type.

Firefox users can also submit bug reports in Bugzilla
manually. A bug report contains detailed semantic infor-
mation about a bug, such as the bug open date, the last
modification date, and the bug status. The bugs are triaged

by bug triaging developers and assigned for fixing. When
a developer fixes a bug, he typically submits a patch to
Bugzilla. Once approved, the patch code is integrated into
the source code of Firefox on the corresponding channel and
migrated through the other channels for release. Bugs that
take too long to get fixed and hence miss a scheduled release
are picked up by the next release’s channel.

III. STUDY DESIGN

This section presents the design of our case study, which
aims to address the following three research questions:

1) Does the length of the release cycle affect the software
quality?

2) Does the length of the release cycle affect the fixing
of bugs?

3) Does the length of the release cycle affect software
updates?

A. Data Collection

In this study, we analyze all versions of Firefox that were
released in the period from January 01, 2010 to December
21, 2011. In total, we study 25 alpha versions, 25 beta
versions, 29 minor versions and 7 major versions that were
released within a period of one year before or after the
move to a rapid release model. Firefox 3.6, Firefox 4 and
their subsequent minor versions were developed following
a traditional release cycle with an average cycle time of
52 weeks between the major version releases and 4 weeks
between the minor version releases. Firefox 5, 6, 7, 8, 9
and their subsequent minor versions followed a rapid release
model with an average release time interval of 6 weeks
between the major releases and 2 weeks between the minor
releases. Table I shows additional descriptive statistics of the
different versions.

[Khom2014] Khomh, F. Adams, B, Dhaliwal, T and Zou, Y Understanding
the Impact of Rapid Releases on Software Quality: The Case of Firefox,
Empirical Software Engineering, Springer.
http://link.springer.com/article/10.1007/s10664-014-9308-x

�bugs are fixed faster
(but … harder bugs propagated to later releases)

�amount of pre- & post-release bugs ± the same
�the program crashes earlier

(perhaps due to recent features)

Recommender Systems

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.76

Stack Trace � link to source code

Description � text mining

Who to fix ? How long to fix ?

Misclassified bug reports ?

© S. Demeyer, S. Ducasse, O. NierstraszQ§ Object-Oriented Reengineering.77

9. Conclusion
1. Introduction

There are OO legacy systems too !

2. Reverse Engineering
How to understand your code

3. Visualization
Scalable approach

4. Dynamic Analysis
To be really certain

5. Restructuring
How to Refactor Your Code

6. Code Duplication
The most typical problems

7. Software Evolution
Learn from the past

8. Going Agile
Continuous Integration

9. Conclusion

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.78

Goals

We will try to convince you:
• Yes, Virginia, there are object-oriented legacy systems too!

☞ … actually, that's a sign of health

• Reverse engineering and reengineering are essential
activities in the lifecycle of any successful software
system. (And especially OO ones!)
☞ … consequently, do not consider it second class work

• There is a large set of lightweight tools and
techniques to help you with reengineering.
☞ … check our book, but remember the list is growing

• Despite these tools and techniques,
people must do job and represent the most valuable
resource.
☞ … pick them carefully and reward them properly

Þ Did we convince you ?

