Software Reengineering
& Evolution

Serge Demeyer

Stéephane Ducasse
Oscar Nierstrasz

January 2019

Ob’ ct- rlentéﬁ’
Reeﬁgmeerm’g‘i

Patterns http://scg.unibe.ch/download/oorp/

Software

Evolution

Schedule

. Introduction

There are OO legacy systems too !
. Reverse Engineering
How to understand your code
. Visualization

Scalable approach

. Dynamic Analysis

To be really certain

. Restructuring

How to Refactor Your Code

. Code Duplication

The most typical problems

. Software Evolution

Learn from the past

. Going Agile

Continuous Integration

. Conclusion

Goals

We will try to convince you:
* Yes, Virginia, there are object-oriented legacy systems too!

* Reverse engineering and reengineering are essential
activities in the lifecycle of any successful software system.
(And especially OO ones!)

* There is a large set of lightweight tools and techniques to
help you with reengineering.

* Despite these tools and techniques, people must do job and
they represent the most valuable resource.

What is a Legacy System ?

“legacy”

A sum of money, or a specified article, given to another by
will; anything handed down by an ancestor or predecessor.
— Oxford English Dictionary

A legacy system is a piece of Typical problems with legacy systems:
software that: * original developers not available
* you have inherited, and * outdated development methods used
* is valuable to you. * extensive patches and modifications have
been made

* missing or outdated documentation

= so, further evolution and development may be prohibitively expensive

Software Maintenance - Cost

Relative Maintenance Effort
Between 50% and 75% of
global effort is spent on
“maintenance” !

Relative Cost
of Fixing Mistakes

Solution ?
* Better requirements engineering?

* Better software methods & tools
(database schemas, CASE-tools, objects,
components, ...)!?

© S. Demeyer, S. Ducasse, O. Nierstrasz

XSII

requirement coding delivery
design testing

Object-Oriented Reengineering.5

Continuous Development

eeeeee data from [Lien78a]

17.4% Corrective
(fixing reported errors)

60.3% Perfective
(new functionality)

18.2% Adaptive
(new platforms or OS)

4.1% Other

The bulk of the maintenance cost is due to new functionality
—> even with better requirements, it is hard to predict new functions

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.6

Modern Methods & Tools ?

[Glas98a] quoting empirical study from Sasa Dekleva (1992)

Modern methods() lead to more reliable software
Modern methods lead to less frequent software repair

and ...
Modern methods lead to more total maintenance time

Contradiction ? No!
* modern methods make it easier to change
... this capacity is used to enhance functionality!

() process-oriented structured methods, information engineering,
data-oriented methods, prototyping, CASE-tools — not OO !

Lehman's Laws

A classic study by Lehman and Belady [Lehm85a] identified several “laws”
of system change.

Continuing change

* A program that is used in a real-world environment must change, or
become progressively less useful in that environment.

Increasing complexity

* As a program evolves, it becomes more complex, and extra resources
are needed to preserve and simplify its structure.

Those laws are still applicable...

What about Objects !

Object-oriented legacy systems

e = successful OO systems whose architecture and design no longer
responds to changing requirements

Compared to traditional legacy systems
* The symptoms and the source of the problems are the same

e The technical details and solutions may differ

OO techniques promise better
N

* flexibility,

* reusability, >

— they do not come for free

* maintainability

What about Components !

SISISISIS
] é

ST e
B8 9
N~ 3 (¥
O

— TS

Components are very brittle ...
After a while one inevitably resorts to glue :)

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.|10

occer Field Metaphor

7,
y -~ 1

oA - e Assume 10 lines of code
' =40 tilesof | x | cm
e |2.5 million lines of code
~ 40 soccer fields

Imagine 400 developers concurrently
moving tiles around on 40 soccer fields

A.van Deursen, De software-evolutieparadox
Intreerede TU Delft, 23 feb 2005

©A. Van Deursen :asse, O. N Reengineering Legacy Systems.| |

How to deal with Legacy !

New or changing requirements will gradually degrade original design
... unless extra development effort is spent to adapt the structure

[New Functionality]

T

. N 2. N
* duplicated code First ...
* complex conditionals * refactor
* abusive inheritanc * restructure
* large classes/meth * reengineer
N A/ - Y

Investment for the future
—> paid back during maintenance

Take a loan on your software
—> pay back via reengineerin

Common Symptoms

Lack of Knowledge Process symptoms
* obsolete or no documentation ¢ too long to turn things over to
* departure of the original production
developers or users * need for constant bug fixes
 disappearance of inside * maintenance dependencies
knowledge about the system * difficulties separating products

* limited understanding of entire —>simple changes take too long
system

——>missing tests
Code symptoms

* duplicated code

* code smells
—>big build times

The Reengineering Life-Cycle

’/
Requirements e
C oo

* people centric
 lightweight

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.l4

A Map of Reengineering Patterns

Tests: Your Life Insurance

Migration Strategies

Detailed Model Capture

Initial Understanding Detecting Duplicated Code

Redistribute

First Contact Responsibilities

Transform
Conditionals to
Polymorphism

Setting Direction

2. Reverse Engineering

* What and Why

* First Contact
= Interview during Demo

* |nitial Understanding

What and Why ?

Definition
Reverse Engineering is the process of analysing a subject system

= to identify the system’s components and their interrelationships and

= create representations of the system in another form or at a higher level of

abstraction. — Chikofsky & Cross, '90

Motivation
Understanding other people’s code

(cfr. newcomers in the team, code reviewing,
original developers left, ...)

Generating UML diagrams is NOT reverse engineering
... but it is a valuable support tool

The Reengineering Life-Cycle

)

C (D

(0) req. analysis

(1) model capture It
issues

* scale

* speed

* accuracy
* politics

Requirements

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering. |8

First Contact [\

feasibility assessment

System experts (one week time)
Talk with Talk with
developers end users -7 .
Chat with the Interview \\\\ Talk about it
Maintainers during Demo \‘
| \
""""" I,’ ‘\‘L

Software System

I i |
|) i |
! Ver:fthhat fead
‘\\ you hear Read it g boStait Compile it !

i Read All the Code Skim the Do a Mock
| in One Hour Documentation Installation

~~
-~
-
-

First Project Plan

Use standard templates, including:
* project scope
= see "Setting Direction”
* opportunities
= e.g., skilled maintainers, readable source-code, documentation
* risks
= e.g., absent test-suites, missing libraries, ...

= record likelihood (unlikely, possible, likely)
& impact (high, moderate, low) for causing problems

* go/no-go decision
* activities
= fish-eye view

Interview during Demo

Problem:What are the typical usage

scenarios!

Solution: Ask the user!

... however

= Which user ?

= Users complain

* Solution: interview during demo
- select several users
- demo puts a user in a positive mindset
- demo steers the interview

= VWWhat should you ask ?

Initial Understanding 7(-\

Top down
Recover
design

Speculate about Design

..................
‘‘‘‘‘‘
a®

understand =

higher-level model v G
Analyze ¢ Exceptional

Persistent Data Entities

Recover Identify
database problems

—> Bottom up

3. Software Visualization

Introduction
= The Reengineering life-cycle
Examples
Lightweight Approaches
= CodeCrawler
Dynamic Analysis
= Key Concept ldentification

i Feature Location

Conclusion

The Reengineering Life-cycle

4
Requirements (“m) -
A 3
Designs ﬁ\ |

(2) problem detection
issues

* Tool support

- Scalability

- Efficiency

>

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.24

Visualising Hier

* Euclidean cones

= Pros:
* More info than 2D

== Cons:
* Lack of depth

* Navigation
* Hyperbolic trees

= Pros:
* Good focus
* Dynamic
= Cons:
» Copyright

fats \
ica %
SR h*inxight‘)(‘

Bottom Up Visualisation

All program
entities and
relations

25854 nodes selected

Filter

15 nodes selected

A lightweight approach D

e A combination of metrics
and software visualization Entity

= Visualize software using
colored rectangles for the
entities and edges for the
relationships

Relationship —

= Render up to five metrics
on one node: X Coordinate

* Size (1+2) Y Coordinate —
* Color (3) Height

* Position (4+5) Width

System Complexity View

oo ﬁ%&{?@j Dﬁﬁ%\ﬂ HHD”U %DDDDD

LR
,,/ ‘\
T |||'||Il'|l-l
Ny

1

Nodes: Classes

Edges: Inheritance Relationships
Width: Number of attributes
Height: Number of methods
Color: Number of lines of code

Inheritance Classification View

Boxes: Classes

Edges: Inheritance

Width: Number of Methods Added
Height: Number of Methods Overridden
Color: Number of Method Extended

Data Storage Class Detection View

‘"‘Mm_

Boxes: Classes

Width: Number of Methods
Height: Lines of Code
Color: Lines of Code

Industrial Validation

Graph _Model Nodes Edges
Graph Name: temparary | Metrics: | NOM NOM HNL -~

I O
5 . I W
I8 I O O
I

ijDDDDDDE‘%:I:I,]DIEIDDIID

o L
]8I O O

mDEDD-“D;“DSEEEE&HEEEE'mDE%E%%%%HBDBBEE@MEEMM%%%%%%% Nokia (C++ 1.2 MLOC >2300 classes)

] D]EDEDD]EDEDEIEIIEIEIEIEIEIEIEIDEI:IDDDBH;
LT OO CMOOOE0 T TIETICT LT T T I T

et tee b | Nokia (C++/Java 120 kLOC >400 classes)

LT T 00T T
DDIEIEEIDDDDIIIDDIEDIDDID-IEIIEDDEDD
B TR T TR LTI

~[1l Shrink: 2/ 2]

Personal experience
2-3 days to get something

ORODOBECO000CD)

OOE0000000E000

[11 T 15

MGeniX (Smalltalk 600 kLOC >2100classes)

LT

R g EEE EmE am
B] [[]

Bedag (COBOL 40 kLOC)

I |

| C: MessageBox (308308.2.0.0)

=== Used by developers + Consultants

#* CodeCrawler [-[o]x]
File ‘Window Graph Model MNodes Edges

Graph Name: tempaorary | Metrics: | NIV NOM NOC--|----- | NAA NCM NAA--| || Shrink: 1/ 1]

|u||||||hu|u||||||||m|||||||||||||||||ll|||||||||l||||||m||||||||||||||||||||l||||‘|" ~

| C: AED_EventType (2.14,1,0,0) | <Max: 33.83,96,0,0> | <Nodes/Edges: 459,434> ‘

State of the Art Tooling

1. source{d}
https://sourced.tech
https://github.com/src-d/engine

2. teamscale
https://www.cqse.eu/
https://github.com/cqgse

3. codescene
https://codescene.10
https://github.com/empear-analytics

4. Dynamic Analysis

* Key Concept Identification
* Feature Location

Key Concept Identification

IClass

Suluiw

-gom

-+ c:):)_:)l

s20p Uy

Project
UnknownElement
Task

Main
IntrospectionHelper
ProjectHelper
RuntimeConfigurable
Target
ElementHandler

TaskContainer

X & & & & € € € < <

R < < f & & < < <

Recall (%)

0
&

Precision (%)

o
&

Extract run-time coupling

Apply datamining (“google”)
Experiment with documented
open-source cases (Ant, |Meter)

ww recall: +- 90 %

= precision: +- 60 %

(initially)
relevant
features

Feature Location

need for additional scenarios (incremental analysis)

scenario
creation

1

domain
expert

X

source

code

scenarios

human involvement

/

Y

filter, granularity

execution [.
dynamic profiles - interpretation
analysis = | of concept

f lattice 4

5.0 5

Q | @

3 _g' N 23 %

6E8 8% 5|5 =

&2l 8AIEI 8 g
©

static dependenc!
" y dependency graph

(not part of IDEFO notation)

graph extraction

\

\

dependency

graph
extractor

static _/
dependency
. i
analysis .
statically
validated
feature-
- unit map
(2
Xt
©
c
©

Replication is not supported, industrial cases are rare, In order to help the
discipline mature, we think that more systematic empirical evaluation is needed.

[Tonella et.Al, in Empirical Software Engineering]

T. Eisenbarth, R. Koschke, and D.
Simon. Locating features in
source code. [EEE Transactions
on Software Engineering,

29(3):210-224, March 2003.

5. Restructuring

Redistribute Responsibilities
= Move Behaviour Close to Data
= Eliminate Navigation Code
= Split up God Class

= Empirical Validation

Redistribute Responsibilities

Monster client

Chains of of data containers

data containers

Split Up God Class

Eliminate Navigation Code

Data containers

v

Move Behaviour Close to Data

Move Behavior Close to Data (example 1/2)

*

Employee

+telephonelNrs

+name(): String
+address(): String

*

Payroll

+printEmployeeLabel()

TelephoneGuide

+printEmployeeTelephones()

System.out.println(currentEmployee.name());

System.out.println(currentEmployee.address());

for (int i=0; i < currentEmployee.telephoneNumbers.length; i++) {
System.out.print(currentEmployee.telephoneNumbers[i]);

System.out.print(" ");

}

System.out.println(™); ®

for .

System.out.print(" -- ");

k‘

.

Move Behavior Close to Data (example 2/2)

*

+printEmployeeLabel()

Jmployee N Payroll

- felephoneNrs

- Bame(): String .

- address(): String TelephoneGuide
L#BrintLabel(String) | | *PrintEmployeeTelephonesQ).

public void printLabel (String separator)
System.out.println(_name);
System.out.println(_address);

for (int i=0; i < telephoneNumbers.length; i++) {
System.out.print(telephoneNumbers[i]);

System.out.print(separator);

emp.printLabel(“}“);

2
L 3

2
2

} >
SyStemOllth’lntln("");} “ eII‘lppI’IIltLabel(" . n);
‘ »,
.
\ 4

Eliminate Navigation Code

Carburetor

+fuelValveOpen

Carburetor

+fuelValveOpen

Carburetor

: Car
Engine “engine
+carburetor +increaseSpeed()
engine.carburetor.fuelValveOpen 2 true
“‘_‘-IIII... iy
Engine o Car
-carburetox -engine
+speed Up[+increaseSpeed()

carburetor.fuelValveOpen = true J

-fuelValveOpen

+openFuel VaJve(’»*

“

engine.speedUp()J

“’
JLandine Car
-carburetor -engine
+speedUp() +increaseSpeed()

fuelValveOpen = tfue J

ca,rburetor.openFlieIVa,lve() J

Split Up God Class

Problem: Break a class which monopolizes control?
Solution: Incrementally eliminate navigation code
* Detection:

1= measuring size
= class names containing Manager, System, Root, Controller

= the class that all maintainers are avoiding

* How:
= move behaviour close to data + eliminate navigation code
= remove or deprecate facade

* However:

w |f God Class is stable, then don't split
—> shield client classes from the god class

Split Up God Class: 5 variants

Mail client filters incoming mail

Fi

Extract C
behavioral class

Mail ader

Extract .
behavioral class C Extract
data class
< Mail
Extract
data class

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.42

Empirical Validation

 Controlled experiment with 63 last-
year master-level students (CS and ICT)

Independent Variables Dependent Variables

Accurac
Institution ‘ \ / ® y
/ \ ‘ Time
God class
decompositio

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.43

Interpretation of Results

* “Optimal decomposition™ differs with respect to training
= Computer science: preference towards C-E

= |CT-electronics: preference towards A-C

* Advanced OO training can induce a preference towards
particular styles of decomposition
= Consistent with [Arisholm et al. 2004]

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.44

6. Code Duplication

a.k.a. Software Cloning, Copy&Paste
Programming

Code Duplication
= What is it?
= Why is it harmful?
* Detecting Code Duplication

* Approaches

* A Lightweight Approach
* Visualization (dotplots)
* Duploc

* Recent trends

The Reengineering Life-Cycle

(4
L R

Requirements

(2) Problem detection

issues
* Scale
* Unknown a priori

I

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.46

[432] NS_IMETHODIMP

{gi %ocationlmpl::GetPathnanw(nsString
[435] nsAutoString href;

[436} nsIURI *url;

[43; nsresult result = NS_OK;

(4

|439] result = GetHref(href);

[440] if (NS_OK ==result) {

[441] #ifndef NECKO

|442 result = NS_NewURL(&url, href);
[443] #else

|444 result = NS_NewURI(&url, href);
[445] #endif // NECKO

(446 if (NS_OK == result) {

|447| #ifdef NECKO

[448] char* file;

|449] result = url->GetPath(&file);
[450] #else

[451] const char* file;

|452] result = url->GetFile(&file);
[453] #endif

|454) if (result == NS_OK) {
[455) aPathname SetString(file);
[456] #ifdef NECKO

|457] nsCRT::free(file);

[458] #endif

|459] }

[460] NS_IF_RELEASE(url);
[461] }

(462] }

[463]

|464| return result;

[465] }

[466]

Code is Copied

Small Example from the Mozilla Distribution (Milestone 9)
Extract from /dom/src/base/nsLocation.cpp

[467]
468
469
470
471
472
473
474
[475]
476
477
478
479
480
481
482
[483]
[484]
[485]
[486]
[487]
[488]
[489]
[490]
[491]
[492]
[493]
[494]
[495]
[496]

© S. Demeyer, S. Ducasse, O. Nierstrasz

NS_IMETHODIMP
LocationImpl::SetPathname(const nsString

nsAutoString href;
nsIURI *url;
nsresult result = NS_OK;

result = GetHref(href);
if (NS_OK == result) {
#ifndef NECKO
result = NS_NewURL(&url, href);
#else
result = NS_NewURI(&url, href);
#endif // NECKO
if (NS_OK == result) {
char *buf = aPathname. ToNewCString();
#ifdef NECKO
url->SetPath(buf);
#else
url->SetFile(buf);
#endif
SetURL(url);
delete[] buf;
NS_RELEASE(url);
}
}

return result;

}

[497] NS_IMETHODIMP

238 l{‘ocationlmpl::GeLPon(nsString& aPort)
500] nsAutoString href;

501] nsIURI *url;

Ssgg nsresult result = NS_OK;

[504 result = GetHref(href);

[505] if (NS_OK == result) {

506] #ifndef NECKO

507 result = NS_NewURL(&url, href);
508] #else

509 result = NS_NewURI(&url, href);
510] #endif // NECKO

511 if (NS_OK == result) {

512 aPort.SetLength(0);

[513] #ifdef NECKO

|514] PRInt32 port;

[515] (void)url->GetPort(&port);
[516] #else

[517] PRUint32 port;

[518] (void)url->GetHostPort(&port);
|519] #endif
1520) if (-1 = port) {

[521] aPort. Append(port, 10);

322] ppend(pol

[523] NS_RELEASE(url);

(524] }

[525] }

[526]

|527] return result;

[528] }

[529]

Object-Oriented Reengineering.47

How Much Code is Duplicated?

Usual estimates: 8 to 12% in normal industrial code
|5 to 25 % is already a lot!

Duplication with
Case Study LOC without
comments
comments
gcc 460’000 8.7% 5.6%
Database Server | 245’000 36.4% 23.3%
Payroll 40’000 59.3% 25.4%
Message Board 6’500 29.4% 1'7.4%

Copied Code Problems

General negative effect:
= Code bloat

Negative effects on Software Maintenance

= Copied Defects

= Changes take double, triple, quadruple, ... Work

= Dead code

= Add to the cognitive load of future maintainers
Copying as additional source of defects

= Errors in the systematic renaming produce unintended aliasing
Metaphorically speaking:

= Software Aging, “hardening of the arteries”,

= “Software Entropy” increases even small design changes become very
difficult to effect

Code Duplication Detection

Nontrivial problem:
* No a priori knowledge about which code has been copied
* How to find all clone pairs among all possible pairs of segments!?

— | === @%—\ ===
= — |2 — 7 = — ==
== l_% SHLN A —
= — _C = T = = - =
- = =
Type | [Lexical Equivalence A\ L\ _ll—/' / — == _:
Tpell =1 = N[N LIS =an5——
(&Type Il Svntactical Equivalence = 7 1 |—|
= | = Feal= — | —
Tvpe IV — | Semantic Equivalence ﬁéé?’f | — IE'
yP - =] — =] - —

© S. Demeyer, S. Ducasse, O. Nierstrasz

Object-Oriented Reengineering.50

General Schema of Detection Process

Transformation

-

Source Code

Comparison

Transformed Code

-

Duplication Data

Author Level Transformed Code C;en:’i:::';i’:n
[John94a] Lexical Substrings String-Matching
[Duca99a] Lexical Normalized Strings String-Matching
[Bake95a] Syntactical Parameterized Strings String-Matching
[Mayr96a] Syntactical Metric Tuples Discrete comparison
[Kont97a] Syntactical Metric Tuples Euclidean distance
[Baxt98a] Syntactical AST Tree-Matching

Simple Detection Approach (i)

* Assumption:
* Code segments are just copied and changed at a few places
 Code Transformation Step
* remove white space, comments
* remove lines that contain uninteresting code elements
(e.g., just‘else’ or‘})

//assign same fastid as container

fastid = NULL; fastid=NULL;
const char* fidptr = get fastid(); constchar*fidptr=get fastid();
if (fidptr != NULL) ({ if (fidptr!=NULL) B

int 1 = strlen(fidptr); intl=strlen (fidptr)
fastid = newchar[1 + 1]; fastid = newchar[l+]

Simple Detection Approach (ii)

e Code Comparison Step
= Line based comparison (Assumption: Layout did not change
during copying)
= Compare each line with each other line.
= Reduce search space by hashing:
|. Preprocessing: Compute the hash value for each line

2. Actual Comparison: Compare dall lines in the same hash
bucket

 Evaluation of the Approach
= Advantages: Simple, language independent
= Disadvantages: Difficult interpretation

A Perl script for C++ (1/2)

$equiv alenceClassMinimalSiz e = 1; while (<) {

$slidingWindo wSize =5; chomp;

$remo veK eywords =0; $totalLines++;

@keywords = qw(if
then # remo ve comments of type /* */
else my $codeOnly =";
); while(($inComment && mi*/) |l

(I$inComment && miIA*1)) {

$keyw ordsRegExp = join 'I' @k eywords; unless($inComment) { $codeOnly .= §" }
$inComment = !$inComment;

$_=§,
@unw antedLines = qw(else }
return $codeOnly .= $_ unless $inComment;
return; $_ = $codeOnly;
{
} sl//.*$ll; # remo ve comments of type /
; sN\s+//g; #remo ve white space
); s/$keyw ordsRegExp//og if
push @unw antedLines, @keywords; $remo veKeywords; #remo ve keywords

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.54

A Perl script for C++ (2/2)

$codeLines++;
push @currentLines, $_;
push @currentLineNos, $.;
if($slidingWindowSiz e < @currentLines) {
shift @currentLines;
shift @currentLineNos;}
#print STDERR "Line $totalLines >$_<\n";
my $lineToBeCompared =join", @currentLines;
my SlineNumbersCompared ="<$ARGV>"; # append
the name of the fi le
$lineNumbersCompared .= join /', @currentLineNos;
#print STDERR "S$lineNumbersCompared\n";
if(SbucketRef = $eqLines{$lineT oBeCompared}) {
push @$bucketRef, $lineNumbersCompared;
} else {$eqLines{$lineT oBeCompared} = [
$lineNumbersCompared |;}
if(eof) { close ARGV } # Reset linerumber-count for next
file

Handles multiple files
Removes comments
and white spaces
Controls noise (if, {,)
Granularity (number of
lines)
Possible to remove
keywords

Output Sample

Lines:

create_property(pd,pnlmplObjects,stReference,false, *iImplObjects);
create_property(pd,pnElttype,stReference,true, *iEltType);
create_property(pd,pnMinelt,stInteger,true, *iMinelt);
create_property(pd,pnMaxelt,stInteger,true, *iMaxelt);
create_property(pd,pnOwnership,stBool,true, *iOwnership);

Locations: </face/typesystem/SCTypesystem.C>6178/6179/6180/6181/6182
</face/typesystem/SCTypesystem.C>6198/6199/6200/6201/6202

Lines:

create_property(pd,pnSupertype,stReference,true, *iSupertype);
create_property(pd,pnImplObjects,stReference,false, *ilmplObjects);
create_property(pd,pnElttype,stReference,true, *iEltType);
create_property(pd,pMinelt,stInteger,true, *iMinelt);
create_property(pd,pnMaxelt,stInteger,true, *iMaxelt);

Locations: </face/typesystem/SCTypesystem.C>6177/6178
</face/typesystem/SCTypesystem.C>6229/6230

Lines = duplicated lines
Locations = file names and line number

Visualization of Duplicated Code

*Visualization provides insights into the duplication situation
*A simple version can be implemented in three days
*Scalability issue

*Dotplots — Technique from DNA Analysis
* Code is put on vertical as well as horizontal axis
* A match between two elements is a dot in the matrix

abcdefabcdef abcdefabxyef abcdeabxycde axbc xdexfgxh

'0 .0 '0 .0 '0 .0 '0 e O o
.0 .0 .0 .0 .0 .0
® ® ® ® ® o e Oo_0 o
o .0 ¢ o ‘0 ¢ .0 .0 ‘O
® ® ® ® ® e O o_o
.0 ‘0 ‘0 ® .0 .0
® ® ® ° ® ® ® ° ® ° ® ° e o o o °
Exact Copies Copies with Inserts/Deletes Repetitive

Variations Code Elements

Visualization of Copied Code Sequences
File A File B
Detected Problem SN
File A contains two copies of a IR
piece of code

File A
File B contains another copy of
this code

Possible Solution ———
Extract Method SR \

File B | | N

\\\\\

\\\\\

\\\\\

\\\\\

\\\\\
\\\\\

All examples are made using Duploc from an industrial case study
(I Mio LOC C++ System)

Visualization of Repetitive Structures

Detected Problem

4 Object factory clones: a switch
statement over a type variable is
used to call individual construction
code

Possible Solution
Strategy Method

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.59

Visualization of Cloned Classes

Class A Class B

Detected Problem:

Class A is an edited copy
of class B. Editing & Insertion Class A

Possible Solution
Subclassing ...

Overview

Visualization of Clone Families

¥
P

Detail

20 Classes implementing Iv'isté‘f'or' dlffer

© S. Demeyer, S. Ducasse, O. Nierstrasz

AN

ent data types

Object-Oriented Reengineering.61

Recent
Trends

© S. Demeyer, S. Ducasse, O. Nierstrasz
/ Object-Oriented Reengineering.62

/. Software Evolution

* Exploiting the Version Control System
= Visualizing CVS changes

e The Evolution Matrix
* Test History

It is not age that turns a piece of software into a legacy system,
but the rate at which it has been developed and adapted

without being reengineered.
[Demeyer, Ducasse and Nierstrasz: Object-Oriented Reengineering Patterns]

The Reengineering Life-Cycle

r
Requirements C
Co2

(2) Problem detection
Issues
* scale

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.64

1.08E+12

1.06E+12

1.04E+12

1.02E+12

1E+12

Dates

9.8E+11

9.6E+11

9.4E+11

9.2E+11

2) Horizontal line = Shotgun Surgery

Analyse CVS changes

) Vertical lines = Frequent Changers

= o o= <% s ® g oo *
*
*e - . - .0.00
t,

. {00
St <
*
530
* 0
- “ o ™
- ~%.
L J .:
.i. - *%e
L 2
: =i o oy ¥’
: uu’.h.m

3) Triangle = Core Reduces

File

4) Block Shift = Design Change

Ownership Map:
Developer Activity

Edit Takeover
\ /
\ /

of ¢ A

M0n0|0gue icasse, Ol-:lamm@rlzatlon DIanC&'J'E!_cet-Oriented Reengineering.66

Percent of Commits

20 30 40 50 60

10

Data from Windows Vista and Windows 7

What to (re)test !

4 major contributors (MAJOR)

8 total contributors (TOTAL)
T T T

1 2 3 - 5

Developer

Software components with
many minor contributors will
have more failures than
software components that
have fewer.

© S. Demeyer, S. Ducasse, O. Nierstrasz

Top contributor makes 49% of commits (OWNERSHIP)

4 minor contributors (MINOR)

20 30 40 SO

10

Software components with a
high level of ownership will
have fewer failures than
components with lower top
ownership levels.

Top contributor makes 22% of commits (OWNERSHIP)

4 major contributors (MAJOR)
74 minor contributors (MINOR)

80

The Evolution Matrix

-4_ Removed Classes Last Version
-
First Version -

[]
Added -
Classes +— -
Major Leap -
[]
[]

Growth Stabilisation

A\ 4

» TIME (Versions)

Examp_Ifg;MMooseFinder (38 Versions)

File Views Selection Highlighting Transformation Colors Extras Evolution Hel

Item: Class MSEMooseFinderUl [<(NOM: 50)(-: 0)> <(-:0)> <(-: 0)(-: 0)>] belongs to model MooseFinder1.099a.xml
TV S e P E E T E T D E T L EE L EE L D E_ PERSISENTCLASSES
STAGNATION DAYFLIES A O A A
Leap2——| | F £ § 5 F

4
3252 Nodes, 0 Edges

i

FilelD's

System under study = checkstyle

Test history

integration tests Change History View

90.
875
850 '
i 3 . o e . oo oo .
800
775 E ee e A . . ™ . o o-. * .‘. i
750 0 o e " » » o--8-8 s
725 = .
700 -moee ® < e Lo%nb ® [)] L [[
675] - o . K
e Py P [P a a d
825 H
600 ° «
- . . affect unit tests - Ao,
::: [- - .
— " ee e A . . » .
475 ‘
450 - o « L] o} o & *e L] [] L e C L] L ae - ' .. LR] L]
425] » « . o ee em e® o 3 e ec e o o = o0 o m
00 " o e . T ee e e® o . e ec e o ®e = ®iCe ®
375 [] o [] ..'.“‘&.‘ ..~ . 2 ® [; (f\:..c.::.. L]
350 L] . oo v 90 4 n) 3 . 3¢ s
w " 8 'etii”i ty & 8o g
. :8 > e Q? ‘ a}tgé » ¢ !c. J\)g
3 ,‘C Y
b2
s AQ: ° .;;.
° ©
.
5-9 Cogc
.
g". %
L J
®ee. ° o
“lt\'Ysz
: Se 5.,
noenee Jur o3

1500 1600 1700 1800 1900 2000 2100 2200 2300

L]
S I ngl e te st W Added java file ® Modified java file 4 Added testfile Modified test file

Selenium Tests

Git repositories of the XWiki, OpenLMIS and Atlas
© Laurent Christophe (Vrije Universiteit Brussel)

‘m’m',ﬁ :‘C" ' g‘.l L " . ":’;

1500+
1500
ChangeType
1000 = * added-raqular
addad-selenium 10004
* galete-ragular g
+ daleta-selenkum <
edit-ragular
* edit-selenium
500+
5004
0- 0-
e 1000 200 00 w00 0 50
Commitld
Project Total Locator ~ Command Demarcator Asserts
Atlas 8068 90 3 104 3282
XWiki 68665 115 154 24 1490
Tama 31821 95 89 43 36
Zanata 12959 497 119 0 |
EEG/ERP 248 3 0 0 6
OpPenkMIb e m&ydr 5. bud, 0. Nierdthsz 8 3454

ChangeType

* added-requiar
addad-salenium

* delete-raguler

+ delete-selanium

" adit-regular

* adit-gelanium

l 1500 2000
Commitid

Avoid Magic Constants !!

Object-Oriented Reengineering.7 |

8. Going Agile
* Continuous Integration / Deployment
version measure &
o XD ZDED
! 1 1 4 4
|

w2 o <a <a <ao <

<<Breaking the Build>>

© S. Demeyer, S. Ducasse, O. Nierstrasz Object-Oriented Reengineering.72

Mining Software Repositories

The Mining Repositories (MSR) field analyzes the rich data available in software
repositories to uncover interesting and actionable information about software
systems and projects.

Conferences Hall of Fame — Mining Challenge
2018—15th edition, Gothenburg, Sweden 2018 — IDE Event Stream (JetBrains)
2017—14th edition, Buenos Aires, Argentina 2017 — TravisTorrent (Github)
2016—13th edition, Austin, Texas 2016 — BOA (SourceForge & Github)
2015—12th edition, Florence, Italy 2015 — StackOverflow

2014—1 Ith edition, Hyderabad, India 2014 — GitHub

2013—10th edition, San Francisco, USA 2013 — StackOverflow

2012—9th edition, Zirich, CH 2012 — Android

201 1—8th edition, Honolulu, HI, USA 2011 — Netbeans+Eclipse

2010—7th edition, Cape Town, ZAF 2010 — GNOME Projects

2009—-6th edition,Vancouver, CAN 2009 — GNOME project

2008—>5th edition, Leipzig, DEU 2008 — Eclipse

2007—4th edition, Minneapolis, MN, USA 2007 — Eclipse Developer

2006—3rd edition, Shanghai, CHN 2006 — PostgreSQL

2005—2nd edition, Saint Luis, MO, USA
2004— I st edition, Edinburgh, UK

Traditional Release Cycle Ra;iiRelease Cycle

.0
40 5.0 70 9.0

o0 R
% > N & Ko ‘) S O S AN A » 3
Voo N S 5 O N NN S A RS Ny I ¢ o
52" 0P OSSR S S N SRS S S RS S PR N S
r T T ‘ |‘ T T H T T ‘ ‘ T T T ‘ T T T ‘ T ‘l T T T T T
F P PSPPI
g N @ ng N @'b N N 8 g X 8 ® N @ ng NS @’b N N N g X s X
> N > >
o e A8 %"
XN S A S o

(b) Time Line of Minor Versions of FireFox

[Khom2014] Khomh, F. Adams, B, Dhaliwal, T and Zou,Y
Understanding the Impact of Rapid Releases on Software Quality:

The Case of Firefox, Empirical Software Engineering, Springer.
http://link.springer.com/article/10.1007/s10664-014-9308-x

Rapid Release Cycle
20
40 50 7.0 8.0
I J,_ ,,l,_,_]_ J"l New Feature Development L
N N Y S — e — —
& & & (5.0 NIGHTLY) (6.0 NIGHTLY) (7.0 NIGHTLY) (8.0 NIGHTLY)
\
‘ﬂ A 4 :a >
(5.0 AURORA) (6.0 AURORA) (7.0 AURORA)
O AN ™ h - h . h .
}'5‘9'}'5‘9’9'5?;}% ,,’%;'\ l
(5.0BETA) H | 6.0BETA)
NN A N Y L -t
ol & ‘\o“'\ & l
S A S _ 5.0MAIN)
> ° o o
A ® > | 6 Weeks | 6 Weeks | 6 Weeks | 6 Weeks |
/ bugs are fixed faster

(but ... harder bugs propagated to later releases)
/ amount of pre- & post-release bugs * the same
/ the program crashes earlier

(perhaps due to recent features)

Recommender Systems

r
[SXeXs) Enter Bug: OAW4
| < > C|v | X || @] * nttp://www.openarchitectureware.org/bugzilla/enter_bug.cgi?product=0AW4 v

Meistbesuchte Seiten openArchitectureW .. + LEO Karsten Thoms Fornax ~ Net Braindrops TinyURL!

Bugzilla - Enter Bug: OAW4
Home | New | Search |’ |(7nd)| Reports | My Requests | My Votes | Preferences | Log out karsten.thoms@itemis.de
Before reporting a bug, please read the bug writing guidelines, please look at the list of most frequently reported bugs, and please search for the bug.
Reporter: karsten.thoms@itemis.de Product: OAW4
Version: 4.2.1 [Component: ocAw-adapter E
43.0 0AW-build
43.1 0AW-check
y | . .o ~classic 2
CExTem- — Misclassified bug reports ? Swdoes s
Severity: enhancement |3, Platform: ec [
Priority:| »s 13) 0S: Mac0s I8
Initial State: new %)
Assign To: \ .
ce:] Who to fix ? How long to fix ?
Default CC:
Estimated Hours:ro,o -
Deadline: oo Description = text mining
URL: nup /s)
Summary: =
Description:
Attachment: Gsdmemdmen) <— Stack Trace = link to source code
Depends on:
Blocks:
Commit) R ber values as able

We've made a guess at your operating system and platform. Please check them and, if we got it wrong, email karsten.thoms@itemis.de.

Actions: Home | New | Search | "(Frind) | Reports | My Requests | My Votes | Preferences | Log out karsten.thoms@itemis.de 76
Edit: Parameters | Default Preferences | Sanity Check | Users | Products | Flags | Custom Fields | Field Values | Groups | Keywords | Whining

Saved Searches:My Bugs

9. Conclusion

. Introduction
There are OO legacy systems too !

. Reverse Engineering
How to understand your code

. Visualization
Scalable approach

. Dynamic Analysis
To be really certain

. Restructuring
How to Refactor Your Code

. Code Duplication

The most typical problems

. Software Evolution
Learn from the past

. Going Agile
Continuous Integration
. Conclusion

Goals

We will try to convince you:

* Yes, Virginia, there are object-oriented legacy systems too!
w .. actually, that's a sign of health
* Reverse engineering and reengineering are essential

activities in the lifecycle of any successful software
system. (And especially OO ones!)

= ... consequently, do not consider it second class work

* There is a large set of lightweight tools and
techniques to help you with reengineering.

ww ... check our book, but remember the list is growing

* Despite these tools and techniques,
people must do job and represent the most valuable
resource.

= ... pick them carefully and reward them properly

= Did we convince you ?

