
Could you begin by telling us about your 
core interests in software engineering?

I am a professor in Software Engineering 
at the University of Antwerp. Over the past 
20 years, my research interests have been 
extremely diverse, from software evolution 
and software quality, through to hypermedia. 
However, the universal theme has always 
been to help people ‘out there’ and, since 
software has such an impact on society, I 
want to leverage it to improve the world we 
live in. That’s why, ultimately, I found my 
calling in software engineering – the research 
field that investigates ways to improve how we 
build software systems.

Traditionally, software engineering was mainly 
concerned with reducing the number of ‘bugs’ 
inside a software system. In recent years, 
this focus has veered towards ‘agility’ – the 
capacity to respond to changing customer 
requests, legislation and technology. 
Additionally, all the social facilities are now 
part of the software engineering tool suite. 
My core interests can be summed up in three 
words: quality, change and social.

What are the key objectives of the Antwerp 
System Modelling (ANSYMO) research group 
at the University of Antwerp?

We are a research group investigating 
foundations, techniques, methods and tools 
for the design, analysis and maintenance 
of so-called software-intensive systems. 
Indeed, our world and society are shaped 
and governed by systems and software; 
all devices, machines and artefacts 
surrounding us incorporate software to 
some extent. It is the primary driver for all of 
today’s technology.

The nature of software-intensive systems, 
however, has changed considerably in the 
past few years. First, the availability of 
more computational resources, including 
parallel computation and interactive 
behaviour has enabled one to tackle ever 

more complex applications. Second, the 
need to consider interactions of software 
with physical components has led to the 
study of hybrid systems, adding even more 
complexity. Third, the view that a software 
system is a static entity has given way to the 
view that software needs to evolve – that 
changes in requirements of platforms can be 
accommodated easily.

How have you overcome challenges faced 
in automation in an industrial continuous 
integration environment?

The main problem is the accidental 
complexity that comes with deploying a 
tool in a realistic environment; there is an 
enormous amount of detail that needs to be 
taken care of. Each detail looks harmless on 
the surface, but can be the make-or-break 
factor for being adopted by practitioners. 
For example, academic research typically 
focuses on the precision and recall of 
the tools. However, when validating in a 
realistic environment, we noticed that the 
real problem is actually the amount of data 
needed to feed into the tool before it can give 
a good enough recommendation. If a software 
team works in sprints of six weeks, they 
will not produce enough defects to train the 
underlying algorithms.

To deal with the accidental complexity, we rely 
on an extensible source-code meta-model 
to represent what’s inside a software system 
that can also be extended to hook in plug-ins 
when needed. This is not a new idea – the 
quest for a good source-code meta-model 
has been going on for over 15 years.

Can you reveal more about this quest for a 
source-code meta-model?

It all began with the FAMIX meta-model, 
which originated at the University of Bern in 
the context of a European project that took 
place between 1996 and 1999. The project 
focused on methods and tools to analyse and 
detect design problems in object-oriented 

legacy systems. Thus, we needed tools 
that could manipulate systems in C++, Ada, 
Smalltalk and Java, where extra analysis 
tools, such as metrics and refactoring, could 
be plugged in when needed. In retrospect, 
this plug-in architecture was a defining 
feature of the meta-model, and one of the 
reasons FAMIX was adopted in many other 
reengineering-related tools. The change-
distiller in particular was created at the 
University of Zurich and, during a six-month 
sabbatical, I witnessed first-hand how 
FAMIX influences tool-orientated research in 
other labs.

How do you envisage the ANSYMO research 
group will impact software engineering, 
particularly within industry, in the 
near future?

The next step for us is to apply our ideas in 
other areas with stringent quality standards. 
In particular, in the avionics and automotive 
industries, where there is a small but thriving 
ecosystem of SMEs in Belgium. If we could 
improve the effectiveness of testing in such 
environments the investment would pay off 
enormously, because of the risk that defects 
escape into the field.

We are also seeking ways to apply our 
techniques in the context of enterprise 
information systems. Among others, we have 
contacted the software team responsible 
for ‘tax-on-web’ – the Belgian online system 
where law-abiding citizens submit their 
tax forms every year. Here, as well, the 
risk of defects is enormous, so even small 
improvements can have a big impact.

Finally, we are considering the launch 
of a spin-off company that offers a 
combination of tooling (with some form 
of open-source freemium licensing), with 
consultancy services.

Professor Serge Demeyer is the spokesperson for a research group that provides solutions 
associated with the ever-increasing complexity of software intensive systems. Below, he 
discusses his research interests and elaborates on what he considers the impact of the group’s 
work will be in the future

Simplifying software complexity

INTERNATIONAL INNOVATION

COMPUTER ENGINEERING

1



IN 1935, COMPUTER scientist Alan Turing 
coined the term ‘software’ in his essay 
‘Computable numbers with an application to the 
Entscheidungsproblem’. While Turing’s coining 
of the term has come to represent the first 
theory of software, it was not until much later 
that it actually existed. Indeed, the very first 
software program that was held in electronic 
memory was successfully executed in 1948 
by Tom Kilburn, which calculated the highest 
factor of a particular integer.

Since then, software has become one of the 
most useful and important aspects of modern 
life. The entire world is, to some extent, shaped 
and governed by both systems and software. 
The smartphones we use on a daily basis 
could not exist without software, nor could the 
computers we use to perform the tasks we take 
for granted every day at work. In fact, almost all 
of the devices and machines used by individuals 
and organisations around the world rely on 
software – the internet, transport networks and 
even pacemakers.

Because of the ubiquity of – and our reliance on 
– software, maintaining its function is of huge 

importance. However, where in previous years 
‘reliable software’ referred to software that did 
not have any ‘bugs’, it has since come to mean 
software that is easier to adapt – something 
increasingly relevant given that technology (and 
its software), is almost perpetually changing. 
In response to this, the Antwerp System 
Modelling (ANSYMO) research group has been 
established; the team acknowledges the view 
that software is continuously evolving – not a 
static entity – and therefore requires reliability 
and agility.

QUALITY THAT MUST BE CHANGE-CENTRIC
Professor Serge Demeyer is the ANSYMO 
group’s spokesperson and helps the team 
strikes a delicate balance between two 
seemingly contrary forces; attaining reliability 
by creating perfect software, while striving 
for agility to meet the ever-changing needs of 
the product or service it supports. The tension 
created by these two ambitions is something 
ANSYMO is working to reduce in collaboration 
with the Software Languages Lab (SOFT) at 
the University of Brussels. This endeavour is 
exemplified by their joint project – Change-
Centric Quality assurance (Cha-Q) – which is 

The Antwerp System Modelling research group investigates a 
variety of aspects pertaining to software-intensive systems. Their 
work seeks to develop software that is both reliable and agile, 
and, importantly, is tested in in vivo circumstances to advance the 
field of software engineering

A model system for ensuring software 
quality, reliability and agility

www.internationalinnovation.com 2



sponsored by the Flemish research funding 
institution IWT, and concerned with transferring 
state of the art into state of the practice.

“In the Cha-Q project, we want to make a leap in 
current software-engineering tooling by making 
changes themselves explicit in the backbone 
of the tools,” explains Demeyer. “Indeed, if you 
look at modern version control systems such 
as GitHub, software engineers tend to commit 
much more frequently – we want to exploit 
this trend.” Thus, instead of using a passive 
storage system for the data, the team wants to 
develop a means of applying data analytics on 
the massive amount of data produced within 
a software team. In doing so, insights into the 
past, present and future of a particular project 
are made possible. Ultimately, the team will 
investigate how to safeguard the quality of a 
system in an incremental manner, so reliability 
is maintained as the system continuously 
improves to meet the evolving needs of what 
that particular software serves.

A PLETHORA OF PROBLEMS ADDRESSED
In addition to the Cha-Q project, ANSYMO 
addresses a wide range of other problems. 
Work is concerned with demonstrating that test 
processes of software meet quality guidelines, 
so that, for example, every bug fix is covered 
by a regression test. Importantly, rather than 
running all tests for any given release, the team 
works to identify the tests that are affected by 
a given change, thereby saving valuable time in 
determining the precise location of a bug.

Further examples of problems ANSYMO tackles 
include: ensuring all severe bugs are fixed 
prior to a release of software, determining who 
the best person in the team is for handling 
the issue (as well as reliably estimating the 
time it will take to solve the problem) and 
monitoring all changes as they are made, 
as well as enabling accurate tracking and 
traceability so that all related code is changed 
accordingly too. It is not a case of reinventing 
the wheel each time new software is released 
or new bugs are found; far more effectively, 
it provides a means of historical analysis to 
use what was done before to inform what is 
done subsequently. This ensures adequate 
procedure as well as saving countless hours 
of work – something of obvious benefit 
to all involved.

LIFE-SAVING WORK PLUS IMPORTANCE 
OF IN VIVO
Since its inception in 2010, ANSYMO has made 
exciting progress in its research on quality 
assurance. One notable success was its method 
of injecting artificial defects into 38,000 lines 
of Java code to verify whether the software 

would be able to catch them. This pilot project, 
which was conducted on Agfa Healthcare’s 
test suite, provided an accurate means of 
determining which parts were strong, and when 
parts needed improving. As better software 
testing in healthcare can save human lives, this 
methodology is providing real-world impact.

More recently, the team has been involved in 
an experiment on the Stack Flow Overview 
community website, where a robot answered 
duplicate questions. “Duplicate questions are 
a nasty problem for such Q&A websites as they 
waste time for the volunteers answering the 
question,” explains Demeyer. “So we created 
a bot that listens in on the incoming questions 
and, when it notices a duplicate, can point to 
the answer provided on the original question in 
a matter of minutes.” Fascinatingly, in the first 
run of the experiment, the bot impersonated 
a human and received overwhelming support 
on the forums; however, later, when it 
revealed itself to be a bot, the feedback was 
overwhelmingly negative – testament to the 
impact social factors can have on the design of 
software tools.

With that in mind, the team has always 
conducted ‘in vivo’ research to avoid merely 
speculating on what might happen in a real-life 
scenario. Software will continue to evolve more 
rapidly as time goes on, and with ANSYMO 
providing a means of ensuring quality at the 
same time as maintaining a vital agility, the 
demands of software can be met effectively 
long into the future.

The team strikes a delicate 
balance between two seemingly 
contrary forces; attaining 
reliability by creating perfect 
software, while striving for 
agility to meet the ever-
changing needs of the product 
or service it supports

INTERNATIONAL INNOVATION3



ANTWERP SYSTEM MODELLING RESEARCH GROUP

OBJECTIVES
To investigate foundations, techniques, methods and 
tools for the design, analysis and maintenance of 
software-intensive systems.

KEY COLLABORATOR
Professor Coen De Roover, Free University of 
Brussels, Belgium

FUNDING
Institute for the Promotion of Innovation through 
Science and Technology in Flanders (IWT)

CONTACT
Professor Serge Demeyer
Spokesperson for the Antwerp System Modelling 
(ANSYMO) research group

University of Antwerp
Department of Mathematics and Computer Science
Antwerp, 2020
Belgium

T +32 326 539 08
E serge.demeyer@ua.ac.be

www.uantwerpen.be/ansymo

www.researchgate.net/profile/Serge_Demeyer

www.be.linkedin.com/in/SergeDemeyer 

www.plus.google.com/+SergeDemeyer

SERGE DEMEYER is a professor in 
the Department of Mathematics and 
Computer Science at the University of 
Antwerp, Belgium, and Spokesperson 
for the ANSYMO research group. He 
directs a research lab called Lab On 

REengineering (LORE), which investigates the theme 
of software reengineering. He completed his MSc in 
1987 and PhD in 1996, both at the Free University of 
Brussels. His main research interest concerns software 
reengineering, more specifically the evolution of object-
orientated software systems.

IN 1985, MANNY Lehman and Les Belady formulated what is 
known as the ‘Laws of Software Evolution’. Two laws in particular 
are at the forefront of what ANSYMO is trying to achieve through the 
course of its endeavours.

The Law of Continuing Changes states that a program used in a 
real-world environment must change, otherwise it will become less 
useful in that environment.

The Law of Increasing Complexity states that as a program evolves 
it becomes more complex, thereby necessitating additional 
resources to preserve and simplify its structure.

Professor Serge Demeyer and his team understand the impact of 
these two laws, and of how the software community must alter its 
viewpoints to provide solutions to them. “We are kidding ourselves 
if we think we can know all the requirements and build the perfect 
system,” explains Demeyer. “The best we can hope for is to build a 
useful system that will survive long enough for it to be asked to do 
something new.”

In response to this, the software community has embraced the 
evolutionary view on software so that, rather than seeing it as 
a problem, they welcome the agility it necessitates. “The agile 
movement has resulted in a whole new generation of software 
tools falling under the umbrella of continuous integration or – one 
step further – continuous delivery,” says Demeyer. “Continuous 
integration allows chrome and Mozilla to release a new version of 
their browser ever six weeks. Continuous delivery allows Facebook 
and Google to release several times a day; Amazon even claims to 
deploy new software into production every 11.6 seconds!”

These remarkable numbers attest to not only how quickly 
everything is developing, but how quickly companies need to 
respond and adapt to such developments.

The world is now a numbers game

www.internationalinnovation.com 4


