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1. Introduction

This paper deals with initial value problems for delay differential equations

(1) U ′(t) = f(t, U(t), U(α[t])) (t ≥ 0), U(t) = U0(t) (t ≤ 0),

where f , U0, α denote given functions with α[t] ≤ t, whereas U(t) is unknown (for t > 0). We
shall concentrate on stability questions in the numerical solution of problems (1) that are stiff.
With the last term we refer to cases where products

hK or hL

are large. Here h stands for a ”natural” stepsize in the numerical solution of (1) and K, L are
Lipschitz constants of f with respect to its 2nd and 3rd variables, respectively. For examples
we refer to [4, p.292-300] and sections 2, 5.

Before actually dealing with (1) we consider in this section the problem

(i) U ′(t) = f(t, U(t)) (t ≥ 0), U(0) = u0,

to which (1) reduces in case the delay argument U(α[t]) in (1) is absent. The two well known
θ-methods for solving (i) read

un+1 = un + hnf(θtn+1 + (1− θ)tn, θun+1 + (1− θ)un), n = 0, 1, 2, · · · ,(ii)
un+1 = un + hn{θf(tn+1, un+1) + (1− θ)f(tn, un)}, n = 0, 1, 2, · · · .(iii)

Here θ ∈ [0, 1] is a parameter specifying the methods, hn > 0 are stepsizes and un ' U(tn) are
approximations to the true solution of (i) at the grid points tn = h1 + h2 + · · ·+ hn. Method
(ii) can be viewed as a 1-stage Runge-Kutta method or as a one-leg method, whereas (iii) can
be regarded as a 2-stage Runge-Kutta method or a linear multistep method (cf. e.g. [2], [4],
[6]). Although both (ii) and (iii) are quite simple numerical methods, they have often been
used successfully in actual computations.

With respect to the linear testproblem

(iv) U ′(t) = λU(t) (t ≥ 0), U(0) = u0

with λ ∈ lC, the stability behaviours of the two methods (ii), (iii) are identical. Both methods
are A-stable for 1/2 ≤ θ ≤ 1. But, with respect to more general classes of, nonlinear, problems
(i) the stability behaviour of the two methods is different. The 1-stage method (ii) is BN -stable
for 1/2 ≤ θ ≤ 1 while the 2-stage method (iii) has this favourable property for θ = 1 only (cf.
[2], [6]). The 1-stage method (ii) may thus be preferable to the 2-stage method (iii) for reasons
of stability.

In the rest of this paper we deal with stability questions for versions of (ii), (iii) in the
numerical solution of the delay differential equation (1).



2. The θ-methods for delay differential equations

The obvious versions of (ii), (iii) in the solution of problem (1) read

un+1 = un + hnf(θtn+1 + (1− θ)tn, θun+1 + (1− θ)un, u(α[θtn+1 + (1− θ)tn])),(2)
un+1 = un + hn{θf(tn+1, un+1, u(α[tn+1])) + (1− θ)f(tn, un, u(α[tn]))},(3)
with n = 0, 1, 2, · · · .

Here u(t) = U0(t) for t ≤ 0, and u(t) is an approximation to U(t) for t > 0.
Since the θ-methods (ii), (iii) have an order of accuracy equal to 1 for θ 6= 1/2 and

equal to 2 for θ = 1/2, it is natural to restrict our considerations to approximations by linear
interpolation,

u(t) = (hk+1)−1
[
(tk+1 − t)uk + (t− tk)uk+1

]
for tk < t ≤ tk+1.

The corresponding process (2) was formulated e.g. in [9], [10] and can be seen to be
equivalent to a method of the type considered in [4, p.288], [12]. Process (3), with linear
interpolation, was formulated e.g. in [1], [3], [10] and is equivalent to a method belonging to
the class considered in [4, p.288], [5], [12].

As an illustration we consider

Example 1. U ′(t) = −500min[0, U(t)− 1] + 400 min[0, U(t− 1)− 1] (t ≥ 0),
U(t) = 0 (t ≤ 0).

We compare (2) and (3) in the approximation of the true solution at t = 10, which equals
U(10) ' 0.8926. Let M ≥ 1 be an integer, h = M−1 and define the set G1 of gridpoints in
(0, 1) by

G1 =
{

h

11
,

h

11
+ h,

h

11
+ 2h, · · · , h

11
+ (M − 1)h

}
.

Let the set Gj of gridpoints in (j−1, j) be generated by shifting G1 over a distance (j−1)(1+ h
11 )

Gj = {t : t = t′ + (j − 1)(1 +
h

11
) with t′ ∈ G1}

for j = 2, 3, · · · , 10. In the table we display the absolute value of the error at t = 10 for the
two methods with θ = 1/2 using the grid

G = {0, 1, · · · , 10} ∪G1 ∪G2 ∪ · · · ∪G10

with various values of M .

M 2 5 10 20 100 200
(2) 5.4E-2 8.5E+1 3.8E 0 1.4E-1 9.0E-16 9.6E-16
(3) 3.8E-2 7.5E-3 2.9E-4 2.9E-7 2.6E-16 4.3E-16

We see that method (2) behaves well, compared to (3), if the stepsizes are very small
(M large). This suggests that the large errors of method (2) for M ≤ 20 may be due to an
unstable error propagation manifesting itself as long as the stepsizes are greater than some
stability threshold. This is paradoxical in view of the remark at the end of section 1 about the
methods (ii), (iii). In the following we shall settle this question.



3. A linear testproblem

Following [1], [3], [5], [8], [10], [11], [12] we analyse the stability of (2), (3) by applying the
methods to the test problem

(4) U ′(t) = λU(t) + µU(t− τ) (t ≥ 0), U(t) = U0(t) (t ≤ 0).

Here τ > 0 is a constant delay, and λ, µ, U0(t) ∈ lC. To make the stability analysis feasible we
assume a constant stepsize h > 0. We put

(m− δ)h = τ with 0 ≤ δ < 1 and integer m ≥ 1.

The processes (2), (3) reduce, for n ≥ m, to

un+1 = γun + β2un−m+2 + β1un−m+1 + β0un−m,(2′)

un+1 = γun + β̃2un−m+2 + β̃1un−m+1 + β̃0un−m,(3′)

with γ, βj , β̃j depending only on θ, δ, x = hλ and y = hµ.
In view of the linearity of (2′), (3′) any propagated errors vn in the processes will also

satisfy the recurrence relations (2′), (3′), respectively. Therefore, a stable error propagation
will be present if all solutions vn to (2′), (3′) satisfy

vn → 0 for n →∞.
We define the stability region Sθ of method (2) to be the set of all (x, y) ∈ lC2 such that vn → 0
(for n →∞) whenever m ≥ 1, δ ∈ [0, 1) and vn satisfies (2′). With S̃θ we denote the analogous
stability region of method (3).

To the recurrence relations (2′), (3′) we associate the characteristic polynomials

Pm(z; θ, δ, x, y) = zm+1 − γzm − β2z
2 − β1z − β0,

P̃m(z; θ, δ, x, y) = zm+1 − γzm − β̃2z
2 − β̃1z − β̃0.

We recall that a polynomial is called a Schurpolynomial if all its zeros z have a modulus | z |< 1.
By a well known property of Schurpolynomials we have

Lemma 1. a) (x, y) ∈ Sθ if and only if Pm(z; θ, δ, x, y) is a Schurpolynomial for all
m ≥ 1, δ ∈ [0, 1).

b) (x, y) ∈ S̃θ if and only if P̃m(z; θ, δ, x, y) is a Schurpolynomial for all
m ≥ 1, δ ∈ [0, 1).

Partial results on the shape of Sθ, S̃θ are stated in the following references, or follow easily
from them: [1], [3], [5], [8], [10], [12]. These results essentially rely on the above Lemma. In
[7] characterizations of Sθ, S̃θ were given which will be dealt with in the following.

4. Characterizations of Sθ, S̃θ

In view of Lemma 1 the following theorem on the general polynomial
Pm(z) = zmq(z)− p(z)

is of importance. Here p(z), q(z) are given polynomials with degrees dp, dq, respectively, and
q(z) 6≡ 0.



Theorem 2. Let m1 be any integer with m1 ≥ max(0, dp − dq). Then Pm(z) is a Schurpoly-
nomial for all integers m ≥ m1 if and only if
(I) q(z) is a Schurpolynomial, and |p(z)| ≤ |q(z)| whenever |z| = 1.

(II) Pm(z) 6= 0 whenever m ≥ m1, |z| = 1, |p(z)| = |q(z)|.

Clearly, this theorem implies

Corollary 3. Let m1 ≥ max(0, dp − dq). Consider the statements
(A) q(z) is a Schurpolynomial, and |p(z)| < |q(z)| whenever |z| = 1,
(B) Pm(z) is a Schurpolynomial for all m ≥ max(0, dp − dq),
(C) Pm(z) is a Schurpolynomial for all m ≥ m1,
(D) q(z) is a Schurpolynomial, and |p(z)| ≤ |q(z)| whenever |z| = 1.
We then have the implications

(A) ⇒ (B) ⇒ (C) ⇒ (D).

This theorem and its corollary generalize a result in [7] on polynomials Pm(z) = zmq(z)−
p(z) with dq = 1. Further, the theorem is related to material in [8], [12].

Combining Corollary 3 (with dq = 1) and lemma 1 it is possible to find simple character-
izations of the stability regions Sθ, S̃θ. Details are given in [7]. For all θ ∈ (0, 1) it turns out
that Sθ ⊂6=S̃θ. For θ = 1/2 the set S1/2 can be characterized using

T =

{
(x, y) : 0 ≤ |y| < 2, Re(x) < −

{
1 +

(Imx)2

4− |y|2
}1/2

|y|
}

.

We have

T ⊂ S1/2 ⊂ closure (T ).(5)

Similarly, the set S̃1/2 can be characterized, using

T̃ = {(x, y) : Re(x) < −|y|}.
T̃ ⊂ S̃1/2 ⊂ closure (T̃ )(6)

In order to explain the numerical results reported in section 2 we choose x = −500h,
y = 400h with h = M−1. This choice seems reasonable since the true solution in example 1
can be seen to satisfy 0 < U(t) < 1 for 0 < t ≤ 10, so that

U ′(t) = −500U(t) + 400U(t− 1) + 100 for 0 ≤ t ≤ 10.

From (5) we see that (x, y) ∈ S1/2 for 2 > |y| = |400h| = 400M−1, i.e. M > 200, but
(x, y) /∈ S1/2 for M < 200. We thus arrive at a stability threshold for method (2). Since
(x, y) ∈ S̃1/2 for all M ≥ 1 there is no such threshold for (3).

In general we may thus conclude that, for 0 < θ < 1, the 2-stage method (3) can exhibit a
better stability behaviour than the 1-stage method (2).



5. A new θ-method

Clearly the conclusions at the end of the sections 4 and 1 are contrary to each other. Indeed,
for problems (1) which are ”close” to ordinary differential equation problems (i), method (3)
can be inferior to (2). We illustrate this point with

Example 2. U ′(t) = −500min[0, U(t)− 1] + min[0, U(t− 1)− 1] (t ≥ 0),
U(t) = 0 (t ≤ 0).

We compare (2) and (3) in the approximation of U(10) ' 1.000. We use the same grid G as in
section 2. In the table we display the error at t = 10 for the methods with θ = 1/2 and various
values of M .

M 2 5 10 20 100 200
(2) 1.1E-1 3.1E-2 4.9E-3 2.0E-6 0 0
(3) 9.3E 0 2.5E 0 2.6E-1 5.1E-3 7.1E-7 0

The question arises whether a simple robust numerical method exists behaving stable both
in the situations of example 1 and 2. We propose the method

(7) un+1 = un+hnf(θtn+1+(1−θ)tn, θun+1+(1−θ)un, θu(α[tn+1])+(1−θ)u(α[tn])), n ≥ 0.

When applied to testproblem (4) this method reduces to the recurrence relation (3′). Therefore
the stability region of (7) equals the stability region S̃θ of method (3). We thus may expect a
stable behaviour of (7) in the situation of example 1.

Further, in case the delay argument is absent, (7) reduces to method (ii), with the
favourable property of BN -stability when 1/2 ≤ θ ≤ 1. Method (7) may thus be expected to
exhibit the same favourable stability behaviour as (2) in the situation of example 2.

In the following tables we display the behaviour of (7) with θ = 1/2. For the ease of
comparison we have relisted the results for (2) and (3).

Absolute values of errors at t = 10 in example 1 using θ = 1/2

M 2 5 10 20 100 200
(2) 5.4E-2 8.5E+1 3.8E 0 1.4E-1 9.0E-16 9.6E-16
(3) 3.8E-2 7.5E-3 2.9E-4 2.9E-7 2.6E-16 4.3E-16
(7) 3.8E-2 7.5E-3 2.9E-4 2.9E-7 9.0E-16 9.9E-16

Errors at t = 10 in example 2 using θ = 1/2

M 2 5 10 20 100 200
(2) 1.1E-1 3.1E-2 4.9E-3 2.0E-6 0 0
(3) 9.3E 0 2.5E 0 2.6E-1 5.1E-3 7.1E-7 0
(7) 1.1E-1 2.6E-2 3.6E-3 5.2E-9 0 0

The numerical results are seen to be reasonably in agreement with the above considerations.
Method (7) looks more robust than (2) or (3).



6. Proof of theorem 2.

A. Let C denote the positively oriented unit circle in the complex plane. If D is any arc
of C and f is a complex valued function on D such that f(z) 6= 0 for all z ∈ D, then
∆[arg f(z), D] denotes the increment of the argument of f(z) when z runs through D.
Further we denote by |D| the length of the arc D.

B.1 Assume Pm(z) is a Schurpolynomial for all integers m ≥ m1. Obviously this implies
statement (II). In order to prove (I) we show first that |p(z)| ≤ q(z)| for all z ∈ C.

Either |p(z)| = |q(z)| for all z ∈ C or |p(z)| = |q(z)| only for a finite number of
elements of C, because p(z) and q(z) are polynomials. Thus C can be decomposed in
maximal arcs D1, · · · , Dr and E1, · · · , Es such that,

|p(z)| ≤ |q(z)| for all z ∈ Dj (1 ≤ j ≤ r),
|p(z)| > |q(z)| for all z ∈ Ej (1 ≤ j ≤ s).

B.2 Suppose z ∈ Dj . Then q(z) 6= 0 since Pm(z) 6= 0 (m ≥ m1). Hence we can write

Pm(z) = zmq(z)(1− δ(z))

where δ(z) = (zmq(z))−1p(z). It follows that |δ(z)| ≤ 1 and δ(z) 6= 1.
By using the equality

(8) ∆[arg Pm(z), Dj ] = ∆[arg q(z), Dj ] + ∆[arg zm, Dj ] + ∆[arg(1− δ(z)), Dj ]

we arrive at the inequality

(9) ∆[arg Pm(z), Dj ] ≤ m|Dj |+ (1 + 2dq)π (1 ≤ j ≤ r,m ≥ 0).

Suppose z ∈ Ej . Then p(z) 6= 0 and we can write

Pm(z) = p(z)(ε(z)− 1)

where ε(z) = p(z)−1zmq(z). Similarly as above we obtain

(10) ∆[arg Pm(z), Ej ] ≤ (1 + 2dp)π (1 ≤ j ≤ s,m ≥ 0).

B.3 Combining (9) and (10) and using the principle of the argument there follows

(11) (m + dq)2π ≤ m

r∑

j=1

|Dj |+ r(1 + 2dq)π + s(1 + 2dp)π (m ≥ m1).

Dividing both members of (11) by m, and letting m →∞ we obtain

2π ≤
r∑

j=1

|Dj |.

This implies r = 1 and s = 0. hence |p(z)| ≤ |q(z)| for all z ∈ C.
B.4 Now we can replace in formula (8) Dj by C so as to obtain

(12) ∆[arg Pm(z), C] = ∆[arg q(z), C] + m · 2π.

By an application of the principle of the argument we derive from (12)

(m + dq) · 2π = ∆[arg q(z), C] + m · 2π (m ≥ m1),

which can only be satisfied if q(z) is a Schurpolynomial.
C. Finally, assume that (I) and (II) hold. By rewriting Pm(z) in the same way as before

it follows that (12) holds. Using the principle of the argument we now obtain

∆[arg Pm(z), C] = (m + dq) · 2π (m ≥ m1)

Thus Pm(z) is a Schurpolynomial for all integers m ≥ m1.
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