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The stability of #-methods for

systems of delay differential equations®
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This paper deals with the numerical solution of initial value problems for systems of
differential equations with a delay argument. We investigate the stability of adaptations of
the #-methods in the numerical solution of these problems. We assess the stability of the
adaptations under consideration by analyzing their stability behaviour in the solution of the
test equation U'(t) = LU(t) + MU(t — ) (¢ > 0), where L, M denote constant complex
matrices, and 7 > 0.
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1. Introduction

1.1. ADAPTATION OF THE 6-METHODS TO DELAY DIFFEREN-
TIAL EQUATIONS

This paper deals with the numerical solution of initial value problems for
systems of delay differential equations,

U'(t) =ft,U@),U(t-7) (t20), Ut)=g() (-7<t<0), (L1

where f, g denote given vector-valued functions, 7 is a given real number with
7> 0, and U(t) is unknown (for ¢ > 0). We are interested in the case where (1.1)
is stiff.

For the numerical solution of (1.1) we consider adaptations of the §-methods.
The f-methods are well-known numerical methods for solving problems (1.1)
without a delay argument U(t — 7). If h > 0 denotes a given stepsize, the grid-
points t, are given by t, = nh (n =0,1,2,...) and ug = ¢(to), then adaptation
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of the so-called I-stage O-methods to problems of type (1.1) gives rise to the
following formula defining approximations u, to U(t,),

Up = Un—1 + hf(tn_1+0h,0uy, + (1 — Nup_1,v,) (n>1). (1.2.a)
Adaptation of the so-called 2-stage §-methods gives rise to the formula
Up = Up—1 T h‘{e.f(tna Unp 'Un) + (]- - e)f(tn—lu un—lavn—l)} (TL > 1) (133)

Here, 6 € [0,1] denotes a real parameter that specifies the method. Further, v,
in (1.2.a) denotes an approximation to U(t,—1 + 0h — 7), whereas v, in (1.3.a)
denotes an approximation to U(t, — 7).

In order to give the definitions for v, in (1.2.a), (1.3.a) that we deal with in
this paper, we write 7 = (m — §)h with integer m > 1 and § € [0,1). Further,
we put tA] =tj_1+ 0h, Tj = 0u; + (1 — O)u;_1 (for j = 1,2,3,...). Then, v, in
(1.2.a) is defined by

Vn = 0Up—my1 + (1 = 8)Up—m (whenever n > m+ 1), (1.2.b)
and v, in (1.3.a) is defined by
Uy = OUp_my1 + (1 — O)Up—m (whenever n > m). (1.3.b)

Thus, in the case of the 1-stage #-methods the approximations v, are obtained
from linear interpolation at points tAJ using values @; (with j < n), whereas in
the case of the 2-stage f-methods the v, are obtained from linear interpolation
at (grid)points ¢; using values u; (with j < n).

We note that, for the purposes of our paper, we do not define v, in (1.2.a),
(1.3.a) for n < m and n < m — 1, respectively.

The adaptation of the 1-stage #-methods described above is equivalent to the
adaptation that has been proposed for these methods in [6]. The adaptation of
the 2-stage #-methods has already been considered often in the literature (cf. e.g.
(1], [3], [6], [13], [14], [19]). Further, the interpolation formulas (1.2.b), (1.3.b)
are both of the new type of interpolation procedures recently considered in [9]
for adapting general Runge-Kutta methods to problems of type (1.1), and con-
sequently methods (1.2), (1.3) belong to the general class of numerical methods
for (1.1) that is investigated in [9].

For a 1-stage f-method, a natural, alternative adaptation to (1.1) is obtained
when v, in (1.2.a) is computed from linear interpolation at points ¢; using values
u; (with j < n), just as in the case of the 2-stage f-methods. However, for reasons
of stability (cf. section 1.2), we consider in this paper the adaptation formulated
above instead of dealing with this alternative adaptation.
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1.2. STABILITY ANALYSIS OF METHODS (1.2),(1.3)

The aim of our paper is to gain insight into the stability of methods (1.2),
(1.3) in the numerical solution of general systems (1.1). For that purpose, we
investigate the stability behaviour of the methods in the numerical solution of
the test equation

U'(ty=LU(t)+ MUt —7) (t>0), (1.4)

where L, M denote constant complex d x d—matrices and 7 > 0.

Define X = hL, Y = hM and let I denote the d X d identity matrix. Ap-
plication of methods (1.2), (1.3) in case of the linear system (1.4) yields, for
both methods, the following linear recurrence relation for the approximations u,
(n>m+1),

(I—0X)up= (I+(1=60)X)up—1+60Yup_ms1 + (1.5)
+(6(1=0)+ (1 =08)0)Yup—m + (1 —8)(1 — )Y up_m—1 .

We have
DEFINITION 1.1

Let (X,Y) be a given pair of complex d x d—matrices. Then, process (1.5) is
called stable at (X,Y) if
(i) the matrix (I — X — 60Y") is invertible whenever 0 < 6 < 1,
(ii) any solution ug, w1, usg,...to (1.5) satisfies nli_lgo u, = 0 whenever m > 1,

0<6 <.

In the literature, many authors have dealt with the scalar case (d = 1) of test
equation (1.4) in order to arrive at conclusions about the stability of numerical
methods for delay differential equations (cf. e.g. [1], (3], [6]-(10], [13], [19]-[21]).
From these investigations, a complete characterization for the set Sy of all pairs
of complex numbers (x,y) at which process (1.5) is stable can easily be obtained,
cf. [13]. Further, the question has been studied whether or not, for a given ¢, the
condition H C Sy is fulfilled, where H = {(z,y) | z € C, y € C, Re(z) < —|y|}.
The reason for considering this condition lies in the fact that for equation (1.4)
with d =1 it is known (cf. e.g. [1], [21]) that

Re(\) < —|u| = tlim U(t) =0 (whenever 7 > 0) = Re()\) < —|ul,

where we have written L = (X), M = (p). The condition H C Sy can be viewed
as a generalization of the concept of A-stability to the case of delay differential
equations. It follows from [3] that for process (1.5) one has H C Sy if and only if
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0 € [%,1] (see also [9], [10], [13], [19]). This is clearly in complete correspondence
with the A-stability of the underlying f-methods.

We remark that for the adaptation of a 1-stage #-method by linear interpola-
tion at the gridpoints (cf. end of section 1.1) it has been shown (cf. [13], [19], [20],
also [8], [10]) that the stability condition H C Sy is always violated (whenever
6 <1).

The general case of test equation (1.4) seems not to have been studied in the
literature so far. Some results on the asymptotic stability of process (1.5) and
equation (1.4) can be obtained from the literature for cases where the matrices
L, M are of a special type. In [4] results have been derived relevant to the case
where L, M are both real and symmetric. In [14] results have been obtained
when L, M are diagonal and reverse diagonal, respectively. Further, if L, M are
simultaneously diagonalizable, then the results from the scalar case of (1.4) can
immediately be generalized.

In this paper we shall consider the general case of (1.4), i.e., arbitrary dimen-
sion d and arbitrary matrices L, M.

1.3. SCOPE OF OUR PAPER

In section 2 we derive a complete characterization for the set of all pairs of
complex d x d-matrices (X,Y’) at which process (1.5) is stable. This generalizes
the known characterization for d = 1 (cf. [13]) to the general case d > 1.

In section 3 we obtain a new and simple criterion on the matrices L, M such
that all exact solutions U to test equation (1.4) satisfy U(t) — 0 for t — oo
(whenever 7 > 0). This generalizes the criterion of [21], which dealt with the
case where d = 1.

The results from [4], [14] on the stability of (1.5), (1.4) follow easily from our
results in sections 2, 3.

In section 4 we assess the stability of the numerical methods (1.2), (1.3) by
comparing the stability results from sections 2, 3. Further, we consider adaptation
of the §-methods by using the general interpolation procedure from [9]. Finally,
we give some references for stiff systems of delay differential equations that arise
in mathematical modelling.

2. The stability of process (1.5)

Denote for any matrix A its determinant by det[A], its spectrum by o[A], and
its spectral radius by p[A].

Let 6 € [0,1] be given, and let (X, Y) be a given pair of complex d x d-matrices.
Define P(z;6) = (6z4+1-060)(0z+1-0)Y, Q(z) = 2(I - 0X) — (I + (1 - 6)X)
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(whenever z € €, 0 < ¢ < 1). It easily follows from well-known results on linear
recurrence relations (cf. e.g. [12]) that process (1.5) is stable at (X,Y) if and
only if

(I = 6X — 60Y) is invertible (whenever 0 < 4§ < 1), (2.1.a)

det[2™Q(z) — P(2;0)] =0=|z| < 1 (2.1.b)
(whenever integer m > 1, 0 < 6 < 1).

Consider the statements
(I —0X — 60Y) is invertible (whenever 0 < § < 1), Q(z) is invertible (2.2.a)
(whenever |z > 1), supj,j=; p[Q(2) 7' P(2;6)] < 1 (whenever 0 < § < 1),

(I — 60X — 60Y) is invertible (whenever 0 < § < 1), Q(z) is invertible (2.2.b)
(whenever |z > 1), supj,j=; p[Q(2) 7' P(2;6)] < 1 (whenever 0 < 6 < 1).

By application of a general theorem that was derived in [7] on conditions of type
(2.1.b), we immediately obtain

LEMMA 2.1

The following implications hold,

(2.2.a) = process (1.5) is stable at (X,Y) = (2.2.b).

In the following we investigate the statements (2.2.a), (2.2.b). Consider the
well-known stability region S* given by

1+ (1-6)¢

s ={Clcee |y

‘<1}.

LEMMA 2.2

Conditions (i), (ii) are equivalent, where
(i) o[X] C S*,
(ii) (I —6X) is invertible, Q(z) is invertible (whenever |z| > 1).

Proof

The matrix Q(z) is invertible (whenever |z| > 1) if and only if

z—1
S ee———————=n _/r 1 1 4y ) > _ '
(0z 1o 91 X) is invertible (whenever |z| > 1, 0z +1—60 #0)
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One easily verifies that

z—1 14+(1-6)¢

and it follows that Q(z) is invertible (whenever |z| > 1) if and only if (¢ — X)
is invertible (whenever ¢ ¢ S*, 1 — 6¢ # 0). This yields the equivalence in the
lemma. O

Let

1+(1—9)(}:1}_

={<l<e®,l T o

LEMMA 2.3
Assume o[X] C S*. Then for all § € [0,1),

sup p[Q(2)"1P(z;6)] < supp[(¢I — X)7'Y]).
|z]=1 (eT

Moreover, if 6 = 0, then the above inequality is an equality.

Proof
For z € € with |z| =1, 0z + 1 — 60 # 0 we have
p[Q 1P Z 5)] = |(5z +1 = 6' /)[(9 Fi— QI_X)ﬂIY]

< pllg51 - X)7Y,

where the last inequality is an equality if § = 0. Further, p[Q(z) " P(2;6)] = 0
whenever 0z +1 — 6 = 0. From this and the equivalence (2.3), the statements in
the lemma follow. O

LEMMA 2.4

Assume o[X]| C S*. Then

pl(¢I — X)7'Y] < supp[(¢C] — X)7'Y] whenever ¢ ¢ S* .
¢er
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For brevity, we omit the proof of lemma 2.4. We remark that it follows from the
maximum principle (cf. e.g. [5]) and the fact that the eigenvalues of ((—X)~'Y
are algebraic functions (cf. e.g. [11]) of the complex variable .

LEMMA 2.5

Assume o[X] C S* and supcpp[((1 — X)7'Y] < 1. Then the matrix
(I — 60X — 60Y) is invertible (whenever 0 < ¢ < 1).

Proof
Assume 6 # 0. Since % ¢ S*, we have that (I — 60X — 66Y) is invertible if and
only if (I —8(3I — X)~'Y) is invertible. Lemma 2.4 implies pl(3I - X)7Y] <1,

and the statement follows. O

By a combination of lemmas 2.1, 2.2, 2.3 and 2.5 we arrive at the main result
of this section.

THEOREM 2.6

Consider the statements

o[X] € 8* , supeerpl(¢f—-X)'Y] <1, (24.a)
o[X] € 5* , supeerpl(¢f—X)T'Y] <1 (2.4.b)

Then, (2.4.a) = process (1.5) is stable at (X,Y) = (2.4.b).

3. The stability of test equation (1.4)

Define H* = {¢ | ¢ € C, Re(¢) < 0}. Let L, M be given complex d x d-
matrices and consider the statements

all exact solutions U to (1.4) satisfy tlim U(t) = 0 (whenever 7 > 0), (3.1)

o[L] € H*, p[(¢I — L)~'M] < 1 (whenever Re(¢) =0, ¢ #0), (3.2)
and — 1 ¢ o[L71M].

Then we have
THEOREM 3.1

Statements (3.1), (3.2) are equivalent.
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Proof

From [2] we immediately obtain that (3.1) holds if and only if
det[(I - L—e"M]=0 = Re(() <0 (whenever 7 >0). (3.3)

In the following we show that (3.2) <= (3.3).
1. Assume (3.2). Then (cf. lemma 2.4 with 0 = %)

pl(CI —L)™*M] <1 whenever Re(¢) > 0.
By using that
det[(] — L —e ™ M]=0<+= ¢ €0[((I—L)"*M] (whenever Re(¢) > 0),

it easily follows that (3.3) holds.

2. Assume (3.3). We first prove that all eigenvalues X of L satisfy Re(\) < 0.
Suppose that there exists A € o[L] with Re(\) > 0. Let A be a positively oriented
circle centered at A such that Re(¢) > 0 and ({I — L) is invertible (whenever
¢ € A). For any complex valued function f that is defined, continuous and
nonzero on A, we denote by [arg f(()]a the increase of the argument of f along A
(cf. [5]). Note that, since A is closed, [arg f(()]a is equal to an integer multiple
of 27. Let 7 > 0 be given such that p[e™7¢(¢I — L)~!M] < 1 whenever ¢ € A.
For o € [0,1] define ho(¢) = det[I — ae™™(¢I — L)' M]. Since hqo(C) # 0 for
any ¢ € A, we have that [arg ho(()]a is defined and equal to an integer multiple
of 2w. Moreover,

g ha(Ols = 7 [ {B0)/ha(O} d¢

depends continuously on a. Consequently, [arghi(()]a = [argho({)]a = 0.
Hence,

[argdet[I — e "¢ (¢TI — L)' M] |p = 0,
and
[arg det[C] — L — e ™ M] |a = [arg det[C] — L] ]a -

Application of the argument principle yields that det[(] — L — e""¢M] = 0 for
some ( in the interior of A, but this contradicts (3.3). Therefore, all eigenvalues
A of L satisfy Re(A) < 0.

We complete the proof of theorem 3.1 by showing that (3.2) holds. Define
oo[L] = {\ | A € o[L], Re(\) = 0}. It easily follows from (3.3) that

() weol(CI—L)'M]= |ul#1 (whenever Re(() =0, ¢ # 0, ¢ ¢ oo[L).
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Further,
(ii) pl(¢CI—L)""M] =0 (for Re(¢) =0, [¢] — o0).

Let Ao € op[L] be such that [A\g| > |A| (whenever A € og[L]). Suppose Im(Ag) <0,
and consider the polynomial p given by p(y;¢) = det[u((I — L) — M]. Since
pl(¢I — L)™' M] is a continuous function of ¢ on {¢ | Re(¢) = 0, ¢ & oo[L]},
the conditions (i), (ii) imply that all zeros p of p(p;() satisfy |u| < 1 whenever
Re(¢) = 0, Im(¢) < Im(Xg). By considering Re(¢) = 0, Im(¢) T Im(Ap), it can
be seen that p(u;\g) = 0. However, this contradicts (3.3). Analogously, one
obtains a contradiction when Im(\g) > 0. Therefore, o¢[L] is empty. It follows
that all eigenvalues X of L satisfy Re()\) < 0, and p[((] — L)™' M] < 1 (whenever
Re(¢) = 0, ¢ # 0). Finally, (3.3) yields that det[L 4+ M] # 0, and consequently,
-1¢o[L7'M]. O

Remark 3.2

The equivalence (3.2) <= (3.3) can be viewed as a continuous analogue to
theorem 1.1 in [7].

A useful corollary to theorem 3.1 is

COROLLARY 3.3

Consider the statements

U[L] C H* ) SupRe(C):O p[(gl - L)_IAJ] < 1a (343‘)
CT[L] C H* y SupRe(C)zo [)[(CI = L)_]'A/[] S 1. (34b)

Then, (3.4.a) = (3.1) = (3.4.b).

4. Concluding remarks

4.1. COMPARING THE STABILITY OF PROCESS (1.5) TO THE
STABILITY OF TEST EQUATION (1.4)

In view of corollary 3.3 it is natural to consider the following definition.
DEFINITION 4.1

Process (1.5) is called stable if it is stable at (X,Y’) whenever o[X] C H* and
SUPRe(¢)=0 P[(CI — X)~'Y] < L.
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From theorem 2.6 and lemma 2.4 we immediately obtain
THEOREM 4.2

Process (1.5) is stable whenever § € [4,1].

Theorem 4.2 shows that, in essence, it holds that if the linear system (1.4) is
asymptotically stable (whenever 7 > 0), and 8 € [3,1], then methods (1.2), (1.3),
in case of (1.4), always yield sequences of approximations that are asymptotically
stable whenever i > 0.

4.2. USING A GENERAL INTERPOLATION PROCEDURE

In [9] a general interpolation procedure was proposed for adapting the class of
Runge-Kutta methods to delay differential equations. Considering this procedure
in the case of the 1-stage and 2-stage #-methods, we obtain the following formulas
for the approximations v, in (1.2.a), (1.3.a),

Un = Z Lk(é)ﬂn—m—l—k ) (]—Qb/)
k=—r

Up = Z Li(0)un—mark » (1.3.b")
k=—7r

respectively. Here 7, s denote given integers with 0 <r < s <7+ 2, and

L@ = I (‘:%j) (= 5. 0., 8.
j#k

The interpolation formulas (1.2.b), (1.3.b) from section 1.1 are given by the
special case (r,s) = (0,1) of (1.2.b'), (1.3.b"), respectively.

For the adaptations of 1-stage and 2-stage #-methods by the general formulas
(1.2.b"), (1.3.b") a similar stability analysis can be carried out as performed in
this paper in the case of (1.2.b), (1.3.b). Using lemma 2.5 from [9], one easily
verifies that theorems 2.6, 4.2 remain valid in case of these general interpolation
formulas.
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4.3. STIFF DELAY DIFFERENTIAL EQUATIONS IN MATHEMATI-
CAL MODELLING

In this section we give some references for initial value problems for systems
of delay differential equations that arise in mathematical modelling and appear
to be stiff.

We call problem (1.1) stiff when for the tolerance under consideration explicit
methods are not efficient for the numerical solution of the problem. A more pre-
cise definition is that AL > 1 or hM > 1, where L, M denote Lipschitz constants
of the function f with respect to its second and third variables, respectively, and
h stands for a stepsize in the numerical solution of (1.1) which only depends on
the tolerance and the variation of the exact solution U.

Stiff initial value problems for systems of delay differential equations seem to
arise often in immunology. A first example is given by [18]. The model derived in
[18] consists of an initial value problem for a system of seven nonlinear differential
equations with one constant delay. Numerical experiments show that this problem
is probably stiff.

A second example is given by [16], [17]. The model in [16], [17] consists of an
initial value problem for a system of ten nonlinear differential equations with five
constant delays, and also appears to be stiff (cf. [17, p. 48]).

Finally, the monograph [15] contains various models from immunology which
consist of initial value problems for systems of delay differential equations that
are apparently stiff.
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