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Abstract—In this paper we introduce a mean field model
to analyze an optical switch equipped with both wavelength
converters (WCs) and fiber delay lines (FDLs) to resolve con-
tention in OBS networks. Under some very general conditions,
that is, a general burst size distribution and any Markovian
burst arrival process at each wavelength, this model determines
the minimum number of WCs required to achieve a zero loss
rate as the number of wavelengths becomes large. The mean
field result is exact as the number of wavelengths goes to
infinity and turns out to be very accurate for systems with
(a few) hundred wavelengths, commonly occurring when using
wavelength division multiplexing (WDM). Moreover, we show
that if the number of WCs is underdimensioned, (i) periodic
system behavior may occur (with the period being the greatest
common divisor of the burst lengths) and (ii) increasing the
number of WCs may even worsen the loss rate under the often
studied minimum horizon allocation policy (as opposed to the
minimum gap policy). Finally, we further demonstrate that in
terms of the loss rate, including (more) FDLs may have little or
no effect on the number of WCs required to achieve a near-zero
loss, especially for higher loads.

I. INTRODUCTION

Optical burst switching (OBS) has been proposed as a

solution to minimize the opto-electronic translations at the

backbone network switches [1], [2]. As only the burst header

requires this translation, the main part of the signal can

be processed in the optical domain. In consequence, OBS

enables the switches to catch up with the growing transmission

capacity of the optical fibers, driven by wavelength division

multiplexing (WDM). With WDM several signals can be sent

at the same time using different wavelengths, increasing the

fiber capacity by tens or hundreds. As the main part of the

signal is processed in the optical domain, contention can be

resolved using wavelength conversion or optical buffering.

A wavelength converter allows an incoming burst to use a

different wavelength for transmission if the one it used to enter

the switch is unavailable. On the other hand, optical buffering

is implemented using Fiber Delay Lines (FDLs) that allow an

incoming packet to be delayed for a specific amount of time

proportional to the length of each fiber.

a) Our Contribution: In this work we introduce a mean

field model of an optical switch equipped with a pool of full-

range wavelength converters and a set of FDLs per output

port. The mean field model is exact when the number of

wavelengths tends to infinity, while it is shown, via time

consuming simulations, to be very accurate when compared

to a finite system with a large number of wavelengths. This

case is particularly relevant as WDM technology has increased

the number of signals that a single fiber can carry to more than

a hundred. Our model allows a general burst size distribution

while the burst arrival process at each wavelength is modeled

as a Markovian arrival process (MAP) [3]. This process is able

to represent general correlated inter-arrival times. In order to

select a wavelength for a specific incoming burst we consider

two different allocation policies, the minimum horizon and

minimum gap policies, both explained in Section II.

As the loss rate in an Erlang loss model decreases to zero

as the number of servers becomes large, it is clear that a near-

zero loss rate can be realized for WDM links with hundreds

of wavelengths provided that there are plenty of wavelength

converters (WCs) available. On the other hand, as switches

with a high number of WCs is not very cost effective, limiting

their numbers is important. Therefore, in switches with partial

wavelength conversion, one typically has only C = σW
converters, with σ ∈ (0, 1) and W the number of wavelengths.

Some important questions that arise are: (i) how to determine

σ to achieve a near-zero loss and (ii) how is σ affected by the

presence of FDLs. The main new insights gathered from the

mean field model can be summarized as follows:

1) The mean field model allows us to determine σ in the

general setting defined above (using only a single run).

2) If the number of WCs is underdimensioned, meaning

σ is selected too small, periodic system behavior may

occur, which is a very unwanted effect in any system.

The period seems to be equal the greatest common

divisor of the burst lengths.

3) Moreover, if the number of WCs is too small, increasing

the number of WCs may even worsen the loss rate under
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the minimum horizon policy (which aims at minimizing

the burst delays). This is not the case when the minimum

gap policy is used.

4) The number of FDLs in the system may have little or

no effect on the required σ, meaning if the number

of WCs is sufficiently large, there might be no use in

incorporating FDLs (as far as the loss rate is concerned).

5) Even if the number of WCs is insufficient, increasing the

number of FDLs may not improve the loss rate. More-

over, the load tends to decrease the use of incorporating

FDL buffers.

To the best of our knowledge, each of these conclusions is

novel and of significant importance when designing optical

switches with partial wavelength conversion and fiber delay

lines.

b) Related work: In previous studies analytical models

have been used to evaluate the effect of wavelength conversion

on a bufferless switch [4], [5], and to examine the performance

of a switch equipped with FDLs but without converters [6]–

[8]. The analysis of a switch including both solutions turns

out to be more complex since the multidimensional nature

of a multi-wavelength switch has to be combined with the

special queuing behavior of the optical buffer. The interaction

of both wavelength conversion and FDLs has been analyzed

by means of simulation models in [9]–[11]. Additionally,

an approximation for the multi-wavelength case based on a

single-wavelength model was presented in [12]. It is shown

to work well for fixed packet size, few wavelengths and a

specific allocation policy. In these studies, as well as in the

present paper, the converters are assumed to have full-range

conversion, i.e., a burst can be converted to any wavelength.

The case where the bursts can only be converted to a restricted

set of wavelengths has been treated in [13]–[16].

This paper is organized as follows: in Section II we present

the characteristics of the switch under analysis and the wave-

length allocation policies; Section III describes the mean field

model in detail, while Section IV compares the results of the

model with results from the simulation of a finite system. This

section also analyzes the effect of the allocation policies and

of various parameters on the performance of the switch.

II. THE OPTICAL SWITCH

In this section we describe the operation and main features

of the optical switch, the wavelength allocation policies and

some modeling issues relevant for the description of the

switch. In this and the next sections we use the terms packet

and burst interchangeably. The optical switch under analysis,

shown in Figure 1, is made of a number of input/output ports,

each one connected to a fiber with W wavelengths. The switch

works in a synchronous manner, where the time is divided in

equally-spaced slots and the state of the switch is observed at

slot boundaries. The synchronous operation, as opposed to the

asynchronous case, makes the switching matrix design simpler

but requires packet synchronization and alignment [4], [10].

The arrival process at each wavelength is modeled as

a MAP [3] characterized by the set of m × m matrices
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Figure 1. Optical switch with K input/output ports, W wavelengths,
converters and FDLs

{B0, B1, . . . , BLmax
}, where Lmax is the maximum packet

length. The MAP is driven by an underlying Markov chain

with transition matrix B =
∑Lmax

k=0 Bk. For k ≥ 1, the (i, j)
entry of the matrix Bk is the probability that a packet of size

k arrives and the underlying Markov chain makes a transition

from i to j. Correspondingly, B0 contains the transition proba-

bilities of the underlying chain involving no arrivals. The class

of MAP processes has been used to model the arrival process

at a bufferless optical switch [4]. It includes many well-known

processes as special cases, e.g., the discrete-time versions of

the Poisson process, interrupted Poisson process (IPP), Markov

modulated Poisson process (MMPP), etc. When a burst arrives

it is switched to the corresponding output port using its own

wavelength, called home wavelength. If the home wavelength

is available for transmission in the output port, the burst

starts transmission immediately. If the wavelength is already

transmitting another burst or has scheduled the transmission

of a burst waiting in the FDL, the new packet is buffered

using the FDL. In case the FDL has no available buffering

capacity in that wavelength, the incoming burst is converted

to a different wavelength using one of the available converters.

If there are no idle converters or no wavelengths with available

buffering capacity, the burst must be dropped. Thus, to resolve

contention the switch first tries to buffer the signal and only

if this is not possible it tries to convert it, aiming to minimize

the converter usage, as the minConv strategy in [11].

To analyze the performance of the switch we can focus on

a single output port as the incoming traffic is assumed to be

uniformly distributed among the output ports. To describe the

state of one of these ports we consider two types of objects:

wavelengths and converters. The state of a single wavelength

is described by the scheduling horizon, which is the time

until all the packets already scheduled for transmission in that

wavelength have left the switch. If the horizon is equal to 0 and

a packet of size L arrives, it can start transmission immediately

and the horizon increases to L. On the other hand, if the

incoming burst finds a horizon equal to h, it will experience

a delay of at least h units before actual transmission. As the

buffering is carried out by a set of N FDLs, the possible delay

a packet can experience depends on the length of these delay
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lines. Here we assume the N FDLs have linearly growing

length with granularity D, i.e., the first line provides a delay

of D time slots, the delay in the second is equal to 2D, and

the last line delays the packet for ND slots. With this setup

an incoming packet that observes a scheduling horizon equal

to h has to wait for D
⌈

h
D

⌉

slots, if h ≤ ND. If the packet is

of size L the new value of the horizon is D
⌈

h
D

⌉

+ L. Notice,

in this particular case the wavelength remains unused for a

length of D
⌈

h
D

⌉

− h just prior to the packet transmission,

we refer to this as a gap. If h is greater than ND the packet

cannot be buffered in the FDL using the same wavelength and

it must be reallocated in another wavelength with horizon less

than or equal to ND.

A packet that cannot be buffered in its home wavelength,

called an extra-packet, can be reallocated if there is both

a wavelength with scheduling horizon no greater than ND
and an available converter. Hence, it is necessary to check

the state of all the wavelengths and the converters. There

are C converters per output port and the state of a single

converter is also described by its scheduling horizon. In this

case the converter has no buffering capacity, therefore its

horizon reduces to the time required by the packet already

in service to be completely converted to the other wavelength.

Then, if an extra-packet of size L finds an available converter

(and there is a wavelength with available buffering capacity)

the horizon of the selected converter changes its value from

0 to L. Naturally, when this conversion occurs the horizon

of the wavelength that receives the burst increases its value

as described previously. An important assumption is that each

wavelength with available buffering capacity can only receive

one extra-packet during one slot, even if it has enough free

FDLs to receive more than one additional packet. Removing

this assumption would complicate both the possible set of

wavelength allocation policies and its corresponding modeling

aspects. The number of converters C per output port is

determined as a fraction of the number of wavelengths W ,

i.e., C = σW , where σ is the conversion ratio. If σ = 0 (resp.

σ = 1) the switch is said to have null (resp. full) conversion.

Here we assume that σ takes values between 0 and 1, which

is called partial conversion. If an extra-packet finds an idle

converter it has to choose a wavelength among those with

horizon less than or equal to ND. This selection can be made

using two different allocation policies: minimum horizon,

which selects the wavelength with the minimum scheduling

horizon; and minimum gap, which selects the wavelength with

a horizon such that the allocation of a new packet generates

a gap of minimum value. Recall, the gap is the difference

between the horizon observed by an incoming packet and the

actual delay that a packet assigned to the wavelength must

face.

To model the evolution of the switch in a single slot

we consider the following order of events: first, the busy

wavelengths (resp. converters) transmit (resp. translate) part of

the packet in service, reducing their horizons by one. Second,

a new packet may arrive at each wavelength with a probability

related to the phase of its arrival process; the packet is buffered

if there is space available in its home wavelength, otherwise

it becomes part of the set of extra-packets. Third, the extra-

packets are converted to a different wavelength with available

buffering capacity. Any extra-packet that does not find an

available converter or a wavelength with buffering capacity

must be dropped. The probability that a packet is dropped is

called loss probability and is considered the main measure of

performance.

III. THE MEAN FIELD MODEL

Our model is based on a general result for a system of

interacting objects introduced in [17]. In this case, the system

consists of two types of objects: wavelengths and converters.

To describe the evolution of the system during a time slot we

start with the state of the objects at the beginning of the time

slot. Then we determine the transition matrices that describe

the state transitions at each of the three steps: transmission,

arrivals and reallocation. The matrices associated to these steps

are Sk, Ak and Qk, respectively, where the subscript k may

be equal to w or c depending on whether the matrix describes

the transition of a wavelength or a converter. These matrices

are then used to build a complete description of the evolution

of the switch at each time slot. At the beginning of slot t
(before packet transmission) the state of a single wavelength

can be described by the tuple {(H(t), J(t)), t ≥ 0}, with H(t)
the scheduling horizon of the wavelength and J(t) the phase

of its arrival process. Its state space is the set {(i, j)|0 ≤
i ≤ ND + Lmax, 1 ≤ j ≤ m}. Similarly, a converter can be

described by its scheduling horizon {(H̄(t), t ≥ 0} with state

space {i|0 ≤ i ≤ Lmax}. We now define the evolution matrices

for each of the three steps.

A. Step 1, packet transmission

In the first step (S1) the horizon of each busy wavelength

and each busy converter is reduced by one, as they transmit

(translate) part of the scheduled packets. Let Tk be the (k +
1) × k matrix with entries

[Tk]ij =







1, i = j = 1
1, j = i − 1, i = 2, . . . , k + 1
0, otherwise.

Then the evolution of a single wavelength in S1 is given

by the transition matrix Sw = TND+Lmax
⊗ Im, where Ik is

the identity matrix of size k and ⊗ denotes the Kronecker

product. This product shows that packet transmissions affect

the horizon value but not the phase of the arrival process.

Accordingly, the matrix Sc = TLmax
contains the transition

probabilities for a converter in S1.

B. Step 2, packet arrivals

The arrival of packets during the second step (S2) has no

influence in the state of a converter; therefore, its transition

matrix in this step is given by Ac = ILmax
. Similarly, the

matrix Aw describes the transition of a single wavelength in

S2, but its definition is more involved. If the wavelength has

a horizon less than or equal to ND after S1, it can accept
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any incoming packet. On the other hand, if the scheduling

horizon is greater than ND and a packet arrives, it cannot

be buffered and becomes part of the extra-packets. To keep

track of the size of the possibly empty set of extra-packets,

the horizon and the phase of the arrival process, we separate

the resulting state space after S2 into two sets. The first set

is {(i, j)|0 ≤ i ≤ ND+Lmax, 1 ≤ j ≤ m}, which captures

two cases: first, the horizon was less than or equal to ND
after S1, and the transition in S2 results in a horizon equal

to i and a phase of the arrival process equal to j; second,

the horizon was greater than ND but no packet is received.

In this first set the wavelength holds zero extra-packets. The

second set is {(ND + Lmax + (i − 1)Lmax + k, j)|1 ≤ i ≤
Lmax − 1, 1 ≤ k ≤ Lmax, 1 ≤ j ≤ m}, considering the case

when the horizon was equal to ND+i after S1 and the arrival

process (during S2) generates a packet of size k and makes a

transition to phase j. Therefore, the transition matrix Aw is of

size m(ND + Lmax)×m(ND + L2
max + 1) (as the maximum

horizon value after step S1 is at most ND + Lmax − 1).

To explicitly describe the matrix Aw we partition the state

space before and after S2 in levels, where the level k is the

set of states {(k, j)|1 ≤ j ≤ m}. The matrix A
{k,k′}
w contains

the transition probabilities from level k to level k′, for 0≤k≤
ND+Lmax−1 and 0≤k′≤ND+L2

max. As the arrivals that find

the wavelength idle can start transmission without any delay,

the transitions from level 0 are given by A
{0,k}
w = Bk, for

0 ≤ k ≤ Lmax. Also, the horizon is not modified if no packet

arrives, then A
{k,k}
w = B0, for 1 ≤ k ≤ ND + Lmax − 1.

On the other hand, if an incoming packet of size l finds a

scheduling horizon between 1 and ND it must be buffered,

affecting the horizon according to the transition probabilities

given by A
{k,k′}
w = Bl, for 1 ≤ k ≤ ND, k′ = D

⌈

k
D

⌉

+ l
and 1 ≤ l ≤ Lmax. Finally, if a packet of size l arrives and the

horizon is greater than ND, a conversion is required, making

the transitions from this set of states equal to

A{ND+k,ND+Lmax+k′}
w = Bl,

for 1 ≤ k ≤ Lmax−1, k′ = (k−1)Lmax + l and 1 ≤ l ≤ Lmax.

This completes the description of the transition matrices at S2.

C. Step 3, packet conversion and reallocation

In this step (S3) the extra-packets that arrived in the pre-

vious step are reallocated using the available converters. To

determine the evolution of a single wavelength or converter

it is necessary to consider the state of the whole system

(W wavelengths and C converters). It is important to stress

however that we do not need to determine the joint evolution of

multiple wavelengths or converters for the mean field result to

apply. Let wi(t) be the 1×m vector whose j-th entry contains

the number of wavelengths holding no extra-packets with

horizon equal to i and phase of the arrival process equal to j
after S2, for 0 ≤ i ≤ ND+Lmax and 1 ≤ j ≤ m. Additionally,

let the j-th entry of the 1 × m vector wND+iLmax+k(t) be

the number of wavelengths at time t with horizon equal to

ND + i after S1 that receive a packet of size k in S2, after

which the phase of the arrival process is equal to j, for

1≤ i≤Lmax−1, 1 ≤ k ≤ Lmax and 1 ≤ j ≤ m. The vector

MW,(w)(t) = 1
W

[w0(t), . . . , wND+L2
max

(t)] describes the state

of all the wavelengths at time t before S3 as fractions of the

total number of wavelengths W . Analogously, let ci(t) be the

number of converters with horizon equal to i at time t before

S3, for i = 0, . . . , Lmax. The state of the converters at time

t, as a fraction of the total number of converters, is therefore

contained in the vector MW,(c)(t) = 1
C

[c0(t), . . . , cLmax
(t)].

The superscript W indicates that the system is composed of

W wavelengths and C = σW converters.

The state of the complete system at time t can be described

by the vector

MW (t) =

[

1

1 + σ
MW,(w)(t),

σ

1 + σ
MW,(c)(t)

]

,

which is called the occupancy vector and contains the fraction

of objects in each state, including both wavelengths and

converters. The weights 1
1+σ

and σ
1+σ

are the proportion

of wavelengths and converters, respectively, in relation to

the total number of objects. Based on this vector, we can

define the matrices Qw(MW (t)) and Qc(M
W (t)), which

contain the transition probabilities in S3 under the minimum

horizon policy for wavelengths and converters, respectively.

The matrices Q̄w(MW (t)) and Q̄c(M
W (t)) contain similar

information for the minimum gap policy. However, to specify

these matrices it is necessary to first determine the number

and size of the extra-packets that can actually be converted,

regardless the wavelength allocation policy.

Let di(M
W (t)) be the number of extra-packets of size i,

for 1 ≤ i ≤ Lmax, which is given by

di(M
W (t)) =

Lmax−1
∑

k=1

wND+kLmax+i(t)1m,

where 1m is a column vector of size m with all its entries

equal to one. Therefore, the total number of extra-packets

is d(MW (t)) =
∑Lmax

i=1 di(M
W (t)). Also, let WND(MW (t))

be the number of wavelengths with horizon less than or

equal to ND after S2, i.e., WND(MW (t)) =
∑ND

i=0 wi(t)1m.

The number of extra-packets that can actually be converted

(d̂(MW (t))) is given by the minimum of three quantities:

the number of packets to convert, the number of wavelengths

with available buffering capacity, and the number of available

converters, i.e.,

d̂(MW (t)) = min{d(MW (t)), WND(MW (t)), c0(t)}.

Since each wavelength with available buffering capacity re-

ceives at most one extra-packet, d̂(MW (t)) is also the num-

ber of wavelengths that receive an extra-packet in S3. The

selection of these d̂(MW (t)) wavelengths is done using the

minimum horizon or minimum gap policies. Once a wavelength

is chosen to receive an extra-packet, the selection of the packet

is done randomly among the d(MW (t)) extra-packets. This

means that the probability that a selected wavelength receives a

packet of size i, for 1 ≤ i ≤ Lmax, is pi(M
W (t)) = di(M

W (t))
d(MW (t)) .

Relying on these definitions, the purpose of the following
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subsections is to determine the transition matrices for both

wavelength allocation policies.

1) Minimum Horizon: To determine the wavelengths that,

under the minimum horizon (minH) policy, will receive the

d̂(MW (t)) extra-packets, we need to define the quantities

αi(M
W (t)) as the number of wavelengths with horizon less

than or equal to i after S2, i.e., αi(M
W (t)) =

∑i

k=0 wk(t)1m,

for 0 ≤ i ≤ ND. As the extra-packets are assigned to the

wavelengths with the smallest horizons, we need to find an

h(MW (t)) such that

αh(MW (t))−1 < d̂(MW (t)) ≤ αh(MW (t)).

This means that the wavelengths with horizon strictly less

than h(MW (t)) receive one extra packet each, while those

with a horizon strictly greater than h(MW (t)) receive no

extra-packets. The packets that cannot be accommodated in

the wavelengths with horizons up to h(MW (t)) − 1 are

randomly assigned among the wavelengths with horizon equal

to h(MW (t)). Let θ(MW (t)) be the probability that a wave-

length receives a packet in S3 if its horizon is equal to

h(MW (t)). This is given by

θ(MW (t)) =
d̂(MW (t)) − αh(MW (t))−1

wh(MW (t))(t)1m

.

Now we can define ri(M
W (t)), the probability that a

wavelength with horizon equal to i receives an extra-packet

in S3 under the minH policy, as

ri(M
W (t)) =







1, 0 ≤ i < h(MW (t)),
θ(MW (t)), i = h(MW (t)),
0, h(MW (t)) < i ≤ ND.

Let uii′(M
W (t)) be the probability that a wavelength in state

i after S2 ends up with a horizon equal to i′ after S3, for

0 ≤ i ≤ ND + L2
max and 0 ≤ i′ ≤ ND + Lmax. For clarity

reasons we divide the definition of uii′(M
W (t)) in two parts.

The first part refers to the possible reception of an extra-packet

when the wavelength has a horizon less than or equal to ND
after S2,

uii′(M
W (t)) =






1 − ri(M
W (t)), 0 ≤ i = i′ ≤ ND,

ri(M
W (t))pk(MW (t)), 0 ≤ i ≤ ND,

i′ = D
⌈

i
D

⌉

+ k.

The second part considers the case of those wavelengths with

horizon greater than ND after S2, which cannot accommodate

an extra-packet and simply keep the same horizon they had,

uND+i,ND+i′(M
W (t)) =















1, 1 ≤ i = i′ ≤ Lmax,
1, i′Lmax + 1 ≤ i ≤ (i′ + 1)Lmax,

1 ≤ i′ ≤ Lmax − 1,
0, otherwise.

Here the second case is related to the wavelengths with horizon

ND + i′ after S1 that received an extra-packet in S2 and

now return to this original horizon as the extra-packet is either

converted or dropped in step S2 . Let U(MW (t)) be the (ND+
L2

max+1)× (ND+Lmax+1) matrix with entries uii′(M
W (t)).

Therefore, the transition matrix for a single wavelength during

S3 is Qw(MW (t)) = U(MW (t)) ⊗ Im, making explicit that

the allocation of extra-packets has no effect on the phase of

the arrival process.

For the converters, only those with horizon equal to 0 may

be affected during S3 since these are used to translate the

d̂(MW (t)) extra-packets. Let bi(M
W (t)) be the probability

that an idle converter receives a packet of size i in S3, for

1 ≤ i ≤ Lmax. Also, let b0(M
W (t)) be the probability that

the converter remains idle. Clearly,

bi(M
W (t)) =







c0(t)−d̂(MW (t))
c0(t)

, i = 0,
d̂(MW (t))

c0(t)
pi(M

W (t)), 1 ≤ i ≤ Lmax.

Therefore, the entries of the Lmax×(Lmax+1) transition matrix

for a single converter in S3 can be defined as

[Qc(M
W (t))]ij =







bj(M
W (t)), i = 0, 0 ≤ j ≤ Lmax

1, 1 ≤ i=j ≤ Lmax−1
0, otherwise.

2) Minimum Gap: In this section we determine the matrices

Q̄w(MW (t)) and Q̄c(M
W (t)) to describe the evolution of the

system during S3 under the minimum gap (minG) policy. Since

the wavelength allocation policy has no effect on the state of

the converters, Q̄c(M
W (t)) = Qc(M

W (t)). To specify the

transition matrix for a single wavelength we start by defining

the gap function v(h) = D
⌈

h
D

⌉

− h, which is the size of

the gap created when assigning a packet to a wavelength with

horizon h, for 0 ≤ h ≤ ND. Now we can define gi(M
W (t))

as the number of wavelengths with v(·) = i, which is given

by

gi(M
W (t)) =

∑

{j|v(j)=i}

wj(t)1m, 0 ≤ i ≤ D − 1.

In a similar way as in the previous section, we define

γi(M
W (t)) as the number of wavelengths with v(·) ≤ i, i.e.,

γi(M
W (t)) =

∑i

j=0 gj(M
W (t)), for 0 ≤ i ≤ D − 1. In this

case we need to find an x(MW (t)) such that

γx(MW (t))−1 < d̂(MW (t)) ≤ γx(MW (t)).

Thus, γx(MW (t))−1 extra-packets can be assigned to the wave-

lengths with v(·) < x(MW (t)). The packets that cannot be ac-

commodated in these wavelengths are distributed among those

with v(·) = x(MW (t)), while the rest of the wavelengths

receive zero extra-packets. In this case, however, we use the

minH policy to allocate these d̂(MW (t))−γx(MW (t))−1 extra-

packets among the wavelengths with v(·) = x(MW (t)) (as

opposed to randomly). Since the horizon h can be expressed

as h = D
⌈

h
D

⌉

− v(h) and the wavelengths that may receive

a packet have v(·) = x(MW (t)), we only need to focus

on l(h) =
⌈

h
D

⌉

, which takes values between 0 and N . Let

fi(M
W (t)) be the number of wavelengths with horizon h such

that v(h)=x(MW (t)) and l(h) = i, for 0≤ i ≤N . Also, let
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φi =
∑i

j=0 fj(M
W (t)) be the number of wavelengths with

horizon h such that v(h) = x(MW (t)) and l(h) ≤ i, for

0≤ i ≤N . We then need to find a y(MW (t)) such that

φy(MW (t))−1 < d̂(MW (t)) − γx(MW (t))−1 ≤ φy(MW (t)).

Then, among the wavelengths with horizon h such that v(h)=
x(MW (t)), one extra-packet is assigned to the wavelengths

with l(h) < y(MW (t)), no extra-packet is assigned to those

with l(h) > y(MW (t)), and the rest of the extra-packets

are randomly assigned among the wavelengths with l(h) =
y(MW (t)). Therefore, the probability that a wavelength with

horizon h such that v(h) = x(MW (t)) and l(h) = y(MW (t))
receives an extra-packet during S3 is

η(MW (t))=
d̂(MW (t)) − γx(MW (t))−1 − φy(MW (t))−1

fy(MW (t))(MW (t))
.

Now we can define r̄i(M
W (t)) as the probability that a

wavelength with horizon equal to i receives an extra-packet in

S3 under the minG policy, given by

r̄i(M
W (t)) =































1, 0 ≤ v(i) < x(MW (t)),
1, v(i) = x(MW (t)),

l(i) < y(MW (t)),
η(MW (t)), v(i) = x(MW (t)),

l(i) = y(MW (t)),
0, otherwise.

Based on these probabilities we can build a matrix Ū(MW (t))
in the same manner as the matrix U(MW (t)) for the minH

policy, but replacing the ri(M
W (t)) by r̄i(M

W (t)), for 0 ≤
i ≤ ND. Thus, the transition matrix of a wavelength in S3

under the minG policy is Q̄w(MW (t)) = Ū(MW (t)) ⊗ Im.

D. Computation of MW (t) for large W

In the previous sections we built the transition matrices

related to each of the three main events (steps) in a slot,

for wavelengths and converters separately. These matrices can

be combined to describe the evolution of a single object as

a discrete-time Markov chain (DTMC). We will observe the

system just after S2 and, therefore, the state at time t of

the wavelengths (resp. converters) is described by the vector

wW (t) (resp. cW (t)). Since the order of the events is S3,

S1 and S2, the transition matrices of a single wavelength or

converter under the minH policy are

KW
k (MW (t)) = Qk(MW (t))Sk Ak, k ∈ {w, c}.

Here the superscript W refers to the total number of wave-

lengths in the system. We now combine these two matrices

into KW (MW (t)) to describe the evolution of a single object,

which can be a wavelength or a converter, as a DTMC with

two non-communicating classes

KW (MW (t)) =

[

KW
w (MW (t)) 0

0 KW
c (MW (t))

]

.

A similar construction can be made to determine the matrix

K̄W (MW (t)) for the minG policy.

We now consider the framework in [17] to compute MW (t)
when W is large. The discussion is for the minH policy,

but it applies mutatis mutandis for the minG policy. In [17]

the authors show that, under some mild conditions, a system

of interacting objects converges to its mean field when the

number of objects is large. The mean field is a time-dependent

deterministic system that can be used to approximate the

behavior of a system with a large number of objects. The

first condition for this result to hold is that the entries of the

transition matrix of a single object [KW (MW (t))]ij converge

uniformly to some [K(MW (t))]ij on the set of all occupancy

vectors when W + C → ∞. In our model the transition

matrix KW (MW (t)) is actually independent of the number

of objects W + C. This can be seen by dividing all the

quantities involved in the computation of the probabilities

uii′(M
W (t)) and bi(M

W (t)) by W + C. This means that

K(MW (t)) = KW (MW (t)). The second condition is that

[K(MW (t))]ij must be continuous in MW (t), which also

holds for both allocation policies. Since both conditions are

valid for the model described by the matrix K(MW (t)), we

can approximate the evolution of the system by means of

the mean field, which is described by the vector µ(t), for

t ≥ 0. Let µ(t) =
[

1
1+σ

µ(w)(t), σ
1+σ

µ(c)(t)
]

, for t ≥ 0.

We define the initial state of wavelengths and converters

as µ(w)(0) = [πB, 0, . . . , 0], where the 1 × m vector πB

is the stationary probability distribution of the phase arrival

process, and µ(c)(0) = [1, 0, . . . , 0]. The initial distribution is

independent of the number of objects and establishes that all

the wavelengths and converters are idle at time 0. Now, let the

mean field model evolve as µ(t + 1) = µ(t)K(µ(t)), then, by

[17, Theorem 4.1], for any fixed time t, almost surely,

lim
W→∞

MW (t) = µ(t).

Using the mean field model we can compute the state of the

system at time t by performing t vector-matrix multiplications,

where the vector is of size 1 × m(ND + L2
max + Lmax + 1).

We are particularly interested in the long-run behavior of the

switch but the mean field model is time-dependent and gives

no additional information about the steady-state behavior, if it

exists. However, we have numerically observed that when the

conversion ratio is large enough to prevent losses caused by the

lack of available converters, the state of the system converges

to a unique steady state. When the conversion ratio is not

enough to avoid packet losses the system shows a stationary

periodic behavior. The length of the period was observed to

be the greatest common divisor of the possible packet sizes.

Even though we do not provide a formal proof of this fact, the

results presented in the next section, as well as many others not

included here, support this observation. Let δ be the greatest

common divisor of the possible packet sizes. As we do not

know in advance if the conversion ratio is enough to prevent

losses or not1, we observe the system every δ time slots to

check the difference in the entries of the state vector, and

1Actually, by running the mean field model once with σ = 1, we can
determine the required σ value at once.
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we let it evolve until this difference is less than ǫ = 10−10.

For each of the δ steady states we compute the performance

measures, as shown in the next section, and their average is

the value of the steady-state performance measures.

E. Computation of the measures of performance

If time t corresponds to a steady state, then d(MW (t)) is

also the number of packets requiring conversion per slot in this

steady state, which we call the spill rate. Similarly, d̂(MW (t))
is the conversion rate, and d(MW (t)) − d̂(MW (t)) the loss

rate. In a system with W wavelengths the total arrival rate is

Wλ, where λ is the arrival rate at each wavelength, given by

λ = πB

∑Lmax

k=1 Bk1m = πB(Im − B0)1m. Therefore the spill

probability pspill, i.e., the probability that an incoming packet

requires conversion, is given by pspill = d(MW (t))
Wλ

. Dividing the

numerator and denominator by the number of objects W +C,

we get

pspill =
δ(MW (t))

λ
1+σ

=

Lmax
∑

i=1

Lmax−1
∑

k=1

M
W,(w)
ND+kLmax+i(t)1m

λ
1+σ

,

where δ(MW (t)) = d(MW (t))
W+C

is independent of the number of

objects. Likewise, we define δ̂(MW (t)) as
d̂(MW (t))

W+C
, which

allows us to define the conversion probability pconv and the

loss probability ploss as

pconv =
δ̂(MW (t))

λ
1+σ

, ploss =
δ(MW (t)) − δ̂(MW (t))

λ
1+σ

.

IV. RESULTS

In this section we first concentrate in the long-run behavior

of the model, showing the periodic and non-periodic cases.

Next, we compare the results of the mean field model with

estimates from the simulation of a switch with a finite number

of wavelengths. Finally, we analyze the effect of various pa-

rameters on the switch performance. In Figure 2 we illustrate

the time-dependent behavior of the mean field model using the

fraction of converters with horizon equal to 5, i.e., µ
(c)
5 (t). The

selection of this value is arbitrary as all the other entries in the

state vector behave in a similar manner. To fix the arrival rate

we use the load ρ = λL̄, where L̄ is the expected value of the

packet size. In this scenario the switch has N = 3 FDLs per

output port, the load ρ is 0.8, the granularity is D = 10, the

burst length equals 10, the inter-arrival times (IATs) follow a

geometric distribution (meaning B0 = 1 − 0.8/10 = 0.92
and B10 = 0.8/10 = 0.08), the policy is minG and the

conversion ratio is between 0.1 and 0.3. As can be seen, when

the conversion ratio is equal to 0.1 the state of the converters

is highly variable and after a short warm-up period it adopts a

periodic behavior. When the conversion ratio rises to 0.2 the

warm-up period becomes longer and the state of the converters

is clearly less variable, but the period is exactly the same and

equal to the packet size, in this case 10 slots. Finally, if the

conversion ratio is equal to 0.3 no losses are caused by lack of

converters. In this case the warm-up period is even longer but
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Figure 2. Time-dependent behavior of a switch with N = 3, ρ = 0.8,
D = 10, geometric IATs and packet size equal to 10

the system reaches a unique steady state. A similar behavior

has been observed in all the experiments performed (including

the simulations), with a periodic steady state and period equal

to the greatest common divisor of the possible packet sizes.

This periodic behavior arises when the conversion ratio is

not enough to prevent packet losses. This is an important

observation as it indicates that an underdimensioned number of

WCs leads to a periodic system behavior. If there are plenty of

converters to translate any extra-packet, the system converges

to a unique steady state, as in Figure 2 for σ = 0.3.

A relevant issue for the mean field model is how it approx-

imates the behavior of a finite system. Here we compare the

results of the mean field model with results from simulation

of a switch with 100, 200 and 500 wavelengths. The estimates

from simulations have confidence intervals with half width less

than 1% of the mean, obtained with the batch-means method.

As can be expected, the simulations require long execution

times to obtain a small confidence interval, particularly for

a large number of wavelengths and small loss probabilities.

Figure 3 shows how the performance of the finite system tends

to that of the mean field model, getting closer as the number

of wavelengths increases. In this scenario, as in many others,

the convergence for the minG policy, shown in Figure 3(b),

is smoother than for the minH policy, shown in Figure 3(a).

This is useful since the minG policy tends to use the buffer

capacity in a more efficient manner as shown further on.

We now compare the spill, conversion and loss probabilities

for both allocation policies. In Figure 4 these three quantities

are shown for a switch with N = 3 FDLs, granularity

D = 10, load equal to 0.8, geometric arrivals and packet size

with equally probable values 8 and 12. For both policies the

conversion probability increases linearly with the number of

converters up to a point from which it no longer increases. Dur-

ing the interval where this probability increases the converters

are the bottleneck of the system, and therefore they are busy all

the time. When the switch has enough converters to translate

any extra-packet, i.e., when spill and conversion probabilities

are equal, the switch no longer experiences losses due to the

lack of converters. Notice, we can even determine the σ value

where the loss rate becomes zero by running the mean field



8

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

Granularity

L
o
s
s
 P

ro
b
a
b
ili

ty

Mean Field
Sim W=100
Sim W=200
Sim W=500

(a) minimum horizon policy
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(b) minimum gap policy

Figure 3. Mean field model vs. simulation for a switch with N = 5, ρ = 0.8,
σ = 10, packet size equal to 10 and geometric IATs

model once with σ = 1 and noting the percentage of busy

converters, solving the dimensioning problem of WCs in a

single run. The minG policy requires a smaller conversion ratio

to reach the point where spill and conversion probabilities are

the same than the minH policy. Furthermore, from this point

on the spill probability under minH is larger than under minG,

confirning the well-known result that minH is less efficient in

managing the buffering resources (FDLs). An observation that

can be made from Figure 4, also found in Figure 5 as well

as in many other experiments, is the existence of jumps in

the spill and loss probabilities as a function of the conversion

ratio, for the minH policy. These jumps are closely related

to the discrete nature of the FDLs and the way the minH

policy reallocates the extra-packets. As this policy selects the

wavelengths with minimum horizon, the reallocated packets

go first to the wavelengths with horizon 0 and, if the number

of converted packets is larger than the number of wavelengths

with horizon 0, the packets are sent to the wavelengths with

horizon equal to 1. However, this allocation creates large gaps

(of size D − 1) in the wavelengths that receive the converted

packets. This implies that the gap size distribution is affected

in a bad manner, reducing the capacity of the wavelengths

and causing the spill probability to increase. Hence, the jump

in the spill probability, and therefore in the loss probability,

is caused by an increase in the conversion ratio that makes

the system able to convert more packets than the wavelengths
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Figure 4. Comparison of policies for a switch with N = 3, ρ = 0.8,
D = 10, geometric arrivals and packet size equal to {8, 12}
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Figure 5. Comparison of policies for a switch with ρ = 0.8, D = 10,
geometric arrivals and packet size equal to {5, 15}

with horizon equal to 0 are able to admit. This jump can be

seen in Figure 4 when σ goes from 0.12 to 0.13. The other

jumps occur similarly when the conversion ratio goes from a

value in which the reallocated packets can be handled by the

wavelengths with horizon less than or equal to iD to a value

in which they cannot, for 1 ≤ i ≤ N . Notice that the number

of jumps is at most equal to N but might be less than this

value.

Another interesting issue for the design of an optical switch

is the influence of the number of FDLs on the loss probability.

Figure 5 shows the loss probability as a function of the

conversion ratio, for a variable number of FDLs and both

allocation policies. The packet size can be 5 or 15 with equal

probability, the load is 0.8 and the granularity is 10. The

effect of adding FDLs on the loss probability depends on the

conversion ratio. If the conversion ratio is large enough, then

adding more FDLs has no effect. However, the conversion

ratio σ where the loss rate drops to zero does depend on

N . For instance, in Figure 5, having N = 1 FDLs allows

us to use significantly fewer WCs compared to having zero

FDLs, while increasing N to 2 has a smaller effect, and an

additional FDL has no effect (as a buffer capacity of N = 2
suffices with C = 0.3W WCs). If σ is such that the switch

has losses due to the lack of converters, then the addition

of buffering capacity might reduce the losses substantially.
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Figure 6. Comparison of policies for a switch with D = 10, geometric
arrivals and packet size uniformly distributed between 5 and 15

However, adding an extra FDL might also have no effect at

all, even if the switch presents losses. This is clear in Figure

5 for σ = 0.25, where the loss with two FDLs is lower than

with one, but the addition of a third makes no difference.

As stated before, we can determine the value of σ at which

the loss probability drops to zero, denoted σ∗, in a single run

of the mean field model. In Figure 6 we illustrate how the

load affects the value of σ∗ for both policies. In this case

the IATs follow a geometric distribution, the packet size is

uniformly distributed between 5 and 15, and the granularity

is 10. As expected, a higher load implies a larger σ∗. Also,

for high loads the minG policy requires a smaller conversion

ratio to achieve zero losses than the minH policy. In relation

to the number of FDLs, it is clear that the addition of one FDL

reduces the value of σ∗ for the minG policy, but the effect of

additional FDLs depends on the load. For high loads, there is

no difference in having one or more FDLs, while for middle

and low loads the addition of FDLs may reduce the value

of σ∗. If the switch has enough converters to prevent losses

and the load is one, the probability that a wavelength has

horizon less than ND after S1 is almost zero in steady state.

When the load diminishes, the probability that the horizon is

between (N −1)D and ND−1 smoothly increases, but for

values less than (N−1)D it remains close to zero. To obtain

a positive probability of having a wavelength with horizon

less than (N −1)D it is necessary for the load to go below

a certain threshold, which in Figure 6 corresponds to 0.82.

This behavior is independent of the value of N , explaining

why the addition of more than one FDL has no effect in the

conversion ratio required to achieve zero losses for loads over

0.82 in this scenario. Similar thresholds can be found for the

values of the load required to have a positive probability that

a wavelength has a horizon between (i− 1)D and iD− 1, for

1 ≤ i ≤ N . Hence, for loads above these thresholds having

more than N−i+1 FDLs has no effect on σ∗. These thresholds

coincide with the location of the jumps for the minH policy,

but under this policy the probability of having a horizon less

than ND is zero if σ ≥ σ∗ and the load is greater than 0.82.

If the load goes below this value, the probability of a horizon

between (N−1)D and ND−1 suddenly becomes positive and

takes similar values to those of the minG policy. Therefore,

both policies reach a similar σ∗ at ρ = 0.81, but the minG

policy does it in a smooth manner while the minH policy

shows a big reduction in σ∗ when the load goes from from

0.82 to 0.81. We may conclude that incorporating one or two

FDLs may result in a significant cost reduction, as fewer WCs

are needed. However, the results suggest that additional FDLs

have little use as they affect the required number of FDLs in

a less profound manner, especially for higher loads.
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