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SIMPLE ANALYTICAL SOLUTIONS FOR THE Mb/Ek/1/m, Ek/Mb/1/m
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Abstract

In this paper we revisit some classical queueing systems such as the Mb/Ek/1/m

and Ek/Mb/1/m queue for which fast numerical and recursive methods exist

to study their main performance measures.

We present simple explicit results for the loss probability and queue length

distribution of these queueing systems as well as for some related queues such

as the Mb/D/1/m, the D/Mb/1/m queue and fluid versions thereof. In order

to establish these results we first present a simple analytical solution for the

invariant measure of the M/Ek/1 queue that appears to be new.
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1. Introduction

Queueing theory is a well established discipline in the field of applied probability

with applications in various areas [1, 2, 4, 6, 7]. While simple closed form results for

various finite capacity queueing systems have been derived, these systems typically

have an underlying Markov chain with a birth-death structure.

In this paper we revisit a number of elementary finite capacity queueing systems

which do not have an underlying birth-death structure and for which, to the best of our

knowledge, no simple closed form results have appeared in the literature. More specif-

ically, we present a simple analytical solution for the Mb/Ek/1/m, the Ek/Mb/1/m

queue and some closely related queues. In an Mb/Ek/1/m queue arrivals occur in

batches of size b according to a Poisson process, a job requires an Erlang-k service

∗ Postal address: Middelheimlaan 1, B2020 Antwerp, Belgium
∗ Email address: benny.vanhoudt@uantwerpen.be

1



2 Benny Van Houdt

time, a single server processes jobs in FCFS order and at most m jobs can be present

in the queue. An Ek/Mb/1/m also offers room for up to m jobs, but jobs arrive

according to a renewal process with Erlang-k inter-arrival times and are processed in

batches (of size b), where the service time of a batch is exponential.

The contributions of the paper are the following:

1. We first present a closed form expression for the stationary measure of a simple

class of Markov chains in Section 2, which immediately yields an expression for

the queue length distribution of the M/Ek/1 queue, that appears to be new.

2. We prove a number of properties of this stationary measure in Section 3.

3. Sections 4 and 5 then present the analytical solution for the Mb/Ek/1/m and the

Ek/Mb/1/m queue, respectively.

4. By letting k tend to infinity, we obtain simple closed form results for the Mb/D/1/m

and D/Mb/1/m queue in Section 6. Setting b = 1 for the Mb/D/1/m queue yields

the analytical solution of the M/D/1/m queue presented in [3].

5. Finally, in Section 7 we let b tend to infinity which yields closed form results for

some fluid queues with jumps.

To establish the results in Sections 4 and 5 we make use of a general truncation result

for the MX/GI/1/m and GI/MY /1/m queue established by Miyazawa in [10]. It should

however be noted that in a number of cases the use of this truncation result can be

replaced by a censoring argument. We further note that the analytical results presented

in the paper can also be used to numerically compute the loss probability and queue

length distribution of the Mb/Ek/1/m and the Ek/Mb/1/m queue in O(km) time.

Finite capacity queueing systems are typically studied using numerical methods

[8, 12, 13]. Such numerical methods can also give rise to closed form results in some

particular cases (e.g., the M/PH/1/m queue [12]), but these are expressed in matrix

form and therefore do not immediately yield a simple analytical solution.

The work presented in this paper was motivated by some recent work on load-

balancing in large-scale systems. More precisely, in [5] a number of load balancing

policies are studied that have bounded queue lengths in the large-scale limit. In case
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of the resource pooling policy (initially introduced in [14]) the maximum queue length

of this load balancing policy when subject to phase-type distributed job sizes, can be

determined via the loss probability in an M/PH/1/m queue. As the loss probability in

an M/PH/1/m queue is minimized over all phase-type distributions of order k by an

Erlang-k distribution (due to [10]), the loss probability in an M/Ek/1/m queue can be

used to establish a lower bound on the maximum queue length of the resource pooling

policy over all order k phase-type distributions.

2. A simple Markov chain

We define a continuous time Markov chain (X
(`,x)
t )t≥0 on the state space {0, 1, . . .}

such that X
(`,x)
t decreases by one at rate q` and increases by ` at rate qx. Note that

this Markov chain is positive recurrent for x < 1, transient for x > 1 and null-recurrent

when x = 1. Further any stationary measure of this chain is independent of q.

Let (p
(`)
0 (x), p

(`)
1 (x), p

(`)
2 (x), . . .) be any stationary measure of (X

(`,x)
t )t≥0. The first

` balance equations imply that `p
(`)
1 (x) = xp

(`)
0 (x) and `p

(`)
n (x) = (` + x)p

(`)
n−1(x) for

n = 2, . . . , `, meaning

p(`)n (x) = p
(`)
0 (x)

x

`

(
1 +

x

`

)n−1
,

for n = 1, . . . , `. From the remaining balance equations we see

p(`)n (x) =
(

1 +
x

`

)
p
(`)
n−1(x)− x

`
p
(`)
n−1−`(x), (1)

for n > `. Therefore given p
(`)
0 (x) the chain has a unique stationary measure.

The next theorem presents a simple closed form expression for p
(`)
n (x):

Theorem 1. The unique stationary measure (p
(`)
0 (x), p

(`)
1 (x), p

(`)
2 (x), . . .) with p

(`)
0 (x) =

1 of the Markov chain (X
(`,x)
t )t≥0 can be expressed as

p(`)n (x) = c(`)n (x)− c(`)n−1(x),

with c
(`)
0 (x) = 1,

c(`)n (x) =

b n
`+1 c∑
i=0

(−1)i
(x
`

)i(n− i`
i

)(
1 +

x

`

)n−i(`+1)

, (2)

for n > 0 and c
(`)
n (x) = 0 for n < 0.
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Proof. The proof is by direct verification of the balance equations (it is also possible

to derive this expression using the generating function approach). For n ≤ ` we have

c
(`)
n (x) = (1 + x/`)n and therefore p

(`)
n (x) = (1 + x/`)n−1x/` as required. For n > `,

we verify (1), by showing that c
(`)
n (x) + xc

(`)
n−(`+1)(x)/` = (1 + x/`)c

(`)
n−1(x). Now,

x

`
c
(`)
n−(`+1)(x) =

b n
`+1 c−1∑
i=0

(−1)i
(x
`

)i+1
(
n− (i+ 1)`− 1

i

)(
1 +

x

`

)n−(i+1)(`+1)

= −
b n
`+1 c∑
i=1

(−1)i
(x
`

)i(n− i`− 1

i− 1

)(
1 +

x

`

)n−i(`+1)

.

Therefore,

c(`)n (x) +
x

`
c
(`)
n−(`+1)(x) =

(
1 +

x

`

)n
+

b n
`+1 c∑
i=1

(−1)i
(x
`

)i [(n− i`
i

)
−
(
n− i`− 1

i− 1

)](
1 +

x

`

)n−i(`+1)

=
(

1 +
x

`

) bn−1
`+1 c∑
i=0

(−1)i
(x
`

)i(n− 1− i`
i

)(
1 +

x

`

)n−1−i(`+1)

=
(

1 +
x

`

)
c
(`)
n−1(x), (3)

where the second equality holds as both binomial coefficients are equal to one when n

is a multiple of (`+ 1) and i = n/(`+ 1). �

Remarks:

1. The sequence c
(`)
n (x) is increasing in n as p

(`)
n (x) is a stationary measure, meaning

p
(`)
n (x) ≥ 0. Moreover, given x and `, we can numerically compute the values

of c
(`)
1 (x), c

(`)
2 (x) . . . , c

(`)
n (x) in O(n) time by noting that cn(x) = (1 + x/`)n for

n ≤ ` and using (3) for n > `.

2. As the stationary measure of an irreducible transient or null-recurrent Markov

chain always sums to infinity, this result implies that c
(k)
n (x) tends to infinity for

x ≥ 1 as n tends to infinity. A direct proof of this is also presented in Section 3.

Corollary 2.1. The queue length distribution Q
(b,k)
λ in an Mb/Ek/1 queue with mean
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job size equal to 1/b and batch arrival rate λ < 1 is given by

P[Q
(b,k)
λ ≤ j] = (1− λ)c

(bk)
jk (λ)

= (1− λ)

b jk
bk+1 c∑
i=0

(−1)i
(
λ

bk

)i(
(j − ib)k

i

)(
1 +

λ

bk

)(j−ib)k−i

.

Proof. If we keep track of the number of phases present in an Mb/Ek/1 queue with

batch arrival rate λ and mean job size 1/b, we obtain the Markov chain (X
(bk,λ)
t )t≥0

with q = 1. The result therefore follows from Theorem 1 as the Mb/Ek/1 queue with

load λ is empty with probability 1− λ. �

Setting b = 1 in the above result appears to yield a new expression for the queue

length distribution of the M/Ek/1 queue. The queue length distribution of the M/Ek/1

queue is typically expressed in terms of the k roots of a degree k polynomial (that are

computed numerically), see [1]. A more involved explicit expression for the queue

length distribution in the M/Ek/1 queue that does not require the computation of any

roots can be found in [9, p167].

3. Properties of c(`)n (x)

We now study c
(`)
n (x) in some more detail. More specifically, we show that c

(`)
n (x)

is a degree n polynomial in x and provide two simple closed form expressions for its

coefficients. To prove one of the expressions, we rely on the following well-known

equality:

Proposition 3.1. (j-th difference formula of a degree j polynomial.) Let j ≥ 0 be an

integer and y,∆ real numbers, then

j∑
i=0

(−1)i
(
j

i

)
Q(y + i∆) = (−1)jaj∆

jj!, (4)

where Q(x) =
∑j
q=0 aqx

q is any degree j polynomial.

Theorem 2. Let c
(`)
n (x) be defined by (2), then c

(`)
n (x) is a degree n polynomial in x.

Let [xs]c
(`)
n (x) denote the coefficient of xs of the polynomial c

(`)
n (x), then for 0 ≤ s ≤ n
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we have

[xs]c(`)n (x) =
1

`s

min(s,b(n−s)/`c)∑
i=0

(−1)i
(
s

i

)(
n− i`
s

)
(5)

= 1− 1

`s

s∑
i=bn/`c+1

(−1)i+s
(
s

i

)(
s+ i`− n− 1

s

)
, (6)

where the second expression implies that [xs]c
(`)
n (x) = 1 for s ≤ bn/`c.

Proof. Expanding (1 + x/`)n−i(`+1) in (2) yields

c(`)n (x) =

b n
`+1 c∑
i=0

(−1)i
(
n− i`
i

) n−i(`+1)∑
s=0

(
n− i(`+ 1)

s

)(x
`

)s+i
.

=

b n
`+1 c∑
i=0

(−1)i
(
n− i`
i

) n−i`∑
s=i

(
n− i(`+ 1)

s− i

)
xs

`s
.

=

n∑
s=0

xs

`s

min(s,b(n−s)/`c)∑
i=0

(−1)i
(
n− i`
i

)(
n− i(`+ 1)

s− i

)
.

The expression in (5) now follows by applying the cancellation identity which states

that (
t

r

)(
t− r
a

)
=

(
t

r + a

)(
r + a

r

)
,

with t = n− i`, r = i and a = s− i.

To obtain (6) we first note that

1

`s

s∑
i=0

(−1)i
(
s

i

)(
n− i`
s

)
=

1

`s

s∑
i=0

(−1)i
(
s

i

)
Q(n− i`)

s!
= 1,

due to (4) with j = s, y = n, ∆ = −` and Q(x) =
∏s−1
q=0(x− q). Therefore (5) implies

that

[xs]c(`)n (x) = 1− 1

`s

s∑
i=b(n−s)/`c+1

(−1)i
(
s

i

)(
n− i`
s

)
.

Note that s exceeds n − i` when i ≥ b(n − s)/`c + 1. Hence,
(
n−i`
s

)
is zero when

n− i` ≥ 0, that is, for i ≤ bn/`c and it suffices to sum i from bn/`c+ 1 to s. �

Theorem 3. The values c
(`)
n (x) obey the following simple recursion:

c(`)n (x) = 1 +
x

`

min(n,`)∑
j=1

c
(`)
n−j(x), (7)
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for n ≥ 1. Further,

1 = [x0]c(`)n (x) ≥ [x1]c(`)n (x) ≥ . . . ≥ [xn]c(`)n (x) = `−n ≥ 0, (8)

c
(`)
n (x) is convex and increasing in x on [0,∞) and c

(`)
j` (x) ≥

∑j
i=0 x

i.

Proof. For n ≤ ` we have c
(`)
n (x) = (1 + x/`)n, which implies that the recursion

holds for n ≤ `. For n > `, we have by (3) that

c(`)n (x)− c(`)n−1(x) =
x

`

(
c
(`)
n−1(x)− c(`)n−(`+1)(x)

)
.

Plugging this into

c(`)n (x)− c(`)` (x) =

n∑
i=`+1

(
c
(`)
i (x)− c(`)i−1(x)

)
,

yields

c(`)n (x)− c(`)` (x) =
x

`

∑̀
j=1

c
(`)
n−j(x)− x

`

`−1∑
i=0

c
(`)
i (x)

=
x

`

∑̀
j=1

c
(`)
n−j(x)− (c

(`)
` (x)− 1)

which proves the recursion.

Using induction on n, this recurrence together with (5) implies (8). Hence c
(`)
n (x) is a

degree n polynomial in x with non-negative coefficients and therefore all its derivatives

with respect to x are non-negative on [0,∞). The lower bound on c
(`)
j` (x) follows by

noting that [xs]c
(`)
j` (x) = 1, for s = 0, . . . , j due to Theorem 2, while [xs]c

(`)
j` (x) ≥ 0 for

s > j. �

4. The Mb/Ek/1/m queue

We now derive results for the Mb/Ek/1/m queue with batch arrival rate λ by relying

on the following Theorem by Miyazawa. We assume without loss of generality that the

mean (Erlang distributed) service time of a job equals 1/b, such that the load equals

λ (which may exceed 1).

Theorem 4. (Theorem 2.1 in [10].) Let (ψ0, ψ1, . . .), with ψ0 = 1, be the unique

stationary measure of the Markov chain (Yt)t≥0 that keeps track of the number of
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jobs in an MX/G/1 queue immediately after a service completion. The queue length

distribution in an MX/G/1/m queue immediately after a service completion can be

written as

P[QM
X/G/1/m(service) = j] =

ψj∑m−1
i=0 ψi

(9)

for j = 0, . . . ,m− 1.

Miyazawa also derived a formula for the loss probability in an MX/G/1/m queue

using the above result. This formula is however incorrect in case of batch arrivals (as

the probability that the server is busy should be 1 − pa0mH instead of 1 − pa0). It is

easy to see that the correct formula for the loss probability in case of batch arrivals is

given by

PM
X/G/1/m

loss = 1−
∑m−1
i=0 ψi

mH + λ
∑m−1
i=0 ψi

= 1− 1

ρ

(
1− mH

mH + λ
∑m−1
i=0 ψi

)
, (10)

where mH is the mean batch size (see also [Equation (3.7)][11]). Note that the same

argument to prove Theorem 4.1 in [10] remains valid with this corrected loss probability

formula.

We are now in a position to express the queue length distribution and loss probability

of the Mb/Ek/1/m queue in terms of the polynomials c
(kb)
n (λ).

Theorem 5. The loss probability Pλloss(k, b,m) in the Mb/Ek/1/m queue is given by

Pλloss(k, b,m) = 1− 1

λ

(
1− b

b+ λ
∑m−1
i=0 ψ

(k,b)
i (λ)

)
, (11)

with

ψ
(k,b)
i (λ) =

kb

λ
(c

(kb)
ik+1(λ)− c(kb)ik (λ)) = c

(kb)
ik (λ)− c(kb)(i−b)k(λ), (12)

and

j∑
i=0

ψ
(k,b)
i (λ) =

min(j,b−1)∑
i=0

c
(kb)
(j−i)k(λ), (13)

for j ≥ 0, where c
(`)
n (x) is given by (2). The queue length distribution Q

(k,b,m)
λ can be

expressed as

P[Q
(k,b,m)
λ ≤ j] =

bc
(kb)
jk (λ)

b+ λ
∑m−1
i=0 ψ

(k,b)
i (λ)

for j = 0, . . . ,m− 1.
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Proof. If we keep track of the number of phases present in the Mb/Ek/1 queue,

we obtain the Markov chain (X
(`,x)
t )t≥0 with x = λ, ` = kb and q = 1. Theorem 1

therefore implies that p
(kb)
n (λ) = c

(kb)
n (λ) − c(kb)n−1(λ) is a stationary measure for this

chain.

The queue length becomes i after a service completion from state ik+ 1. Therefore

the measure ψ
(k,b)
i (λ) used in Theorem 4 is proportional to p

(kb)
ik+1(λ) and is given by

ψ
(k,b)
i (λ) =

kb

λ
(c

(kb)
ik+1(λ)− c(kb)ik (λ)), (14)

where the factor kb/λ is such that ψ
(k,b)
0 (λ) = 1. From (7) we note that

c
(kb)
ik+1(λ)− c(kb)ik (λ) =

λ

kb
(c

(kb)
ik (λ)− c(kb)(i−b)k(λ)), (15)

for i ≥ b and

c
(kb)
ik+1(λ)− c(kb)ik (λ) =

λ

kb
c
(kb)
ik (λ), (16)

for i < b. These equalities can be combined with (14) to yield (12). It is now easy to

verify that

j∑
i=0

ψ
(k,b)
i (λ) =

min(j,b−1)∑
i=0

c
(kb)
(j−i)k(λ). (17)

Further, by Theorem 4 and (2.9) in [10] we have

P[Q
(k,b,m)
λ (arrival) = j] =

ψ
(k,b)
j (λ)

b+ λ
∑m−1
i=0 ψ

(k,b)
i (λ)

,

for j = 0, . . . ,m− 1. Note that this is the queue length distribution just prior to a job

arrival. In case of batch arrivals, the i − 1 jobs preceding the i-th job of a batch are

also considered as being part of the queue just before the arrival of the i-th job.

As the arrivals occur in batches of size b, we have

P[Q
(k,b,m)
λ (arrival) = j] =

min(j,b−1)∑
i=0

1

b
P[Q

(k,b,m)
λ = j − i].

This implies that

P[Q
(k,b,m)
λ (arrival) = j]− P[Q

(k,b,m)
λ (arrival) = j − 1]

=
1

b
(P[Q

(k,b,m)
λ = j]− P[Q

(k,b,m)
λ = j − b]1[j ≥ b]).
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Reordering yields the recursion

P[Q
(k,b,m)
λ = j] = bP[Q

(k,b,m)
λ (arrival) = j]− bP[Q

(k,b,m)
λ (arrival) = j − 1]

+ P[Q
(k,b,m)
λ = j − b]1[j ≥ b].

Hence,

P[Q
(k,b,m)
λ = j] = b

bj/bc∑
i=0

(
P[Q

(k,b,m)
λ (arrival) = j − ib]

− P[Q
(k,b,m)
λ (arrival) = j − ib− 1]

)
=
b
∑bj/bc
i=0 (ψ

(k,b)
j−ib(λ)− ψ(k,b)

j−ib−1(λ))

b+ λ
∑m−1
i=0 ψ

(k,b)
i (λ)

,

with ψ
(k,b)
−1 (λ) = 0. Finally, (12) implies that

c
(kb)
jk (λ) = ψ

(k,b)
j (λ) + c

(kb)
jk−bk(λ),

which can be used to show that

c
(kb)
jk (λ) =

bj/bc∑
i=0

ψ
(k,b)
j−ib(λ),

and similarly as ψ
(k,b)
−1 (λ) = 0

c
(kb)
(j−1)k(λ) =

bj/bc∑
i=0

ψ
(k,b)
j−ib−1(λ).

Therefore

P[Q
(k,b,m)
λ = j] =

b(c
(kb)
jk (λ)− c(kb)(j−1)k(λ))

b+ λ
∑m−1
i=0 ψ

(k,b)
i (λ)

,

�

We now focus on two special cases: the M/Ek/1/m queue and the Mb/M/1/m queue:

Corollary 4.1. The loss probability Pλloss(k, 1,m) in an M/Ek/1/m queue is given by

Pλloss(k,m) = 1− 1

λ

1− 1

1 + λc
(k)
(m−1)k(λ)

 , (18)
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where c
(k)
(m−1)k(λ) is given by (2). The queue length distribution can be expressed as

P[Q
(k,1,m)
λ ≤ j] =

c
(k)
jk (λ)

1 + λc
(k)
(m−1)k(λ)

,

for j = 0, . . . ,m− 1.

Proof. Setting b = 1 implies that
∑j
i=0 ψ

(k,1)
i (λ) = c

(k)
jk (λ). �

Corollary 4.2. The loss probability Ploss(1, b,m) in an Mb/M/1/m queue is given by

Pλloss(1, b,m) = 1− 1

λ

(
1− 1

c
(b)
m (λ)

)
, (19)

where c
(b)
m (λ) is given by (2). The queue length distribution can be expressed as

P[Q
(1,b,m)
λ ≤ j] =

c
(b)
j (λ)

c
(b)
m (λ)

,

for j = 0, . . . ,m.

Proof. Setting k = 1 immediately implies that ψ
(1,b)
i (λ) = b(c

(b)
i+1(λ) − c(b)i (λ))/λ

and therefore
∑j
i=0 ψ

(1,b)
i (λ) = b(c

(b)
j+1(λ)− 1)/λ. �

5. The Ek/Mb/1/m queue

Consider the Ek/Mb/1/m queue with arrival rate λ and a mean batch service rate

1/b, such that the load equals λ. To express the queue length distribution and loss

probability we rely on the following duality result by Miyazawa:

Theorem 6. (Theorem 3.1 in [10].) Let (φ0, φ1, . . .), with φ0 = 1, be the unique

stationary measure of the Markov chain (Zt)t≥0 that keeps track of the number of

jobs in a modified MX/G/1 queue immediately after a service completion where the

modification is such that the batch size equals one when the queue is empty. Let λ be

the batch arrival rate and G the service time distribution.

The queue length distribution in a GI/MX/1/m queue with inter-arrival time dis-

tribution G and batch service rate λ just prior to an arrival can be written as

P[QGI/M
X/1/m(arrival) = j] =

φm−j∑m
i=0 φi

(20)

for j = 0, . . . ,m.
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Lemma 5.1. Let (φ
(k,b)
0 (x), φ

(k,b)
1 (x), . . .), with φ

(k,b)
0 (x) = 1, be the unique stationary

measure of the Markov chain (Z
(k,b,x)
t )t≥0 that keeps track of the number of jobs in a

modified Mb/Ek/1 queue with load x immediately after a service completion where

the modification is such that the batch size equals one when the queue is empty, then

φ
(k,b)
i (x) = c

(kb)
ik (x)− c(kb)(i−1)k(x), (21)

for i ≥ 0.

Proof. The stationary measure of the MX/G/1 queue without the modification is

given by (12). The expression for the complementary generating functions in (2.7) in

[10] implies that for 0 < z < z0 for some z0 sufficiently small

∞∑
i=0

φ
(k,b)
i (x)zi =

1− z
1− zb

∞∑
i=0

ψ
(k,b)
i (x)zi =

∞∑
i=0

ψ
(k,b)
i (x)zi(1− z)

∞∑
j=0

zbi,

which yields

φ
(k,b)
i (x) =

bi/bc∑
j=0

ψ
(k,b)
i−jb(x)−

b(i−1)/bc∑
j=0

ψ
(k,b)
i−jb−1(x).

Combined with (12) this proves the statement. �

Lemma 5.2. The polynomials defined by (2) obey the following equality

k−1∑
i=0

c
(kb)
jk+i(x) =

kb

x

bj/bc∑
i=0

(c
(kb)
(j+1)k−ibk(x)− c(kb)jk−ibk(x)), (22)

for k, b > 0 and j ≥ 0.

Proof. By (3) we have

c
(`)
n−i`+1(x)− c(`)n−i`(x) =

x

`
(c

(`)
n−i`(x)− c(`)n−(i+1)`(x)),

for n− i`+ 1 > 0. Summing over i then yields

c(`)n (x) =
`

x

bn/`c∑
i=0

(c
(`)
n−i`+1(x)− c(`)n−i`(x)),
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as c
(`)
n−`−bn/`c`(x) = 0. Setting ` = kb and n = jk we therefore have

k−1∑
s=0

c
(kb)
jk+s(x) =

kb

x

k−1∑
s=0

b(jk+s)/kbc∑
i=0

(c
(kb)
jk+s−ikb+1(x)− c(kb)jk+s−ikb(x))

=
kb

x

bj/bc∑
i=0

k−1∑
s=0

(c
(kb)
jk+s−ikb+1(x)− c(kb)jk+s−ikb(x))

=
kb

x

bj/bc∑
i=0

(c
(kb)
jk−ikb+k(x)− c(kb)jk−ikb(x)),

where the second equality holds as b(jk + s)/kbc = bj/bc for s ∈ {0, . . . , k − 1}. �

Theorem 7. The loss probability P̃λloss(k, b,m) in the Ek/Mb/1/m queue with load λ

is given by

P̃λloss(k, b,m) =
1

c
(kb)
mk (1/λ)

. (23)

The queue length distribution is given by

P[Q̃
(k,b,m)
λ ≥ m− j] =

∑k−1
i=0 c

(kb)
jk+i(1/λ)

kc
(kb)
mk (1/λ)

,

for j = 0, . . . ,m− 1.

Proof. The loss formula follows by combining Theorem 6 with Lemma 5.1 where we

note that the Mb/Ek/1 queue has load 1/λ if the dual Ek/Mb/1/m queue has load λ.

By Theorem 6, (2.9) in [10] and Lemma 5.1 we have for j = 0, . . . ,m− 1:

P[Q̃
(k,b,m)
λ (service) = j] =

c
(kb)
(m−j)k(1/λ)− c(kb)(m−j−1)k(1/λ)

c
(kb)
mk (1/λ)− 1

,

where Q̃
(k,b,m)
λ (service) represents the queue length immediately after a job completion

in an Ek/Mb/1/m queue, where the b − i jobs after the i-th job of a batch are still

counted as present in the queue when the i-th job completes service.

As the batch service completions occur at rate 1/b, we have

P[Q̃
(k,b,m)
λ (service) = m− j] =

P[m− j + 1 ≤ Q̃(k,b,m)
λ ≤ min(m− j + b,m)]

bλ(1− P̃λloss(k, b,m))
,
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for j = 1, . . . ,m. Combining the previous two equations with the expression for

P̃λloss(k, b,m) shows that

P[m− j + 1 ≤ Q̃(k,b,m)
λ ≤ min(m− j + b,m)] =

λb(c
(kb)
jk (1/λ)− c(kb)(j−1)k(1/λ))

c
(kb)
mk (1/λ)

,

for j = 0, . . . ,m−1. The probability P[Q̃
(k,b,m)
λ ≥ m−j] for can therefore be expressed

as

P[Q̃
(k,b,m)
λ ≥ m− j]

=

bj/bc∑
i=0

P[m− j − ib ≤ Q̃(k,b,m)
λ ≤ min(m− j − ib+ b− 1,m)]

=
λb

c
(kb)
mk (1/λ)

bj/bc∑
i=0

(c
(kb)
((j+1)−ib)k(1/λ)− c(kb)(j−ib)k(1/λ)),

for j = 0, . . . ,m− 1. The proof now completes by applying Lemma 5.2 with x = 1/λ.

�

We now focus on two special cases: the Ek/M/1/m queue and the M/Mb/1/m queue:

Corollary 5.1. The loss probability P̃λloss(k, 1,m) in an Ek/M/1/m queue is given

by 1/c
(k)
mk(1/λ), where c

(`)
n (x) is given by (2). The queue length distribution can be

expressed as

P[Q̃
(k,1,m)
λ ≥ m− j] =

λ(c
(k)
(j+1)k(1/λ)− 1)

c
(k)
mk(1/λ)

,

for j = 0, . . . ,m− 1.

Proof. Setting b = 1 implies that

P[Q̃
(k,1,m)
λ ≥ m− j] =

∑k−1
i=0 c

(k)
jk+i(1/λ)

kc
(k)
mk(1/λ)

=
λ(c

(k)
(j+1)k(1/λ)− 1)

c
(k)
mk(1/λ)

,

due to (3) with ` = k and x = 1/λ. �

Corollary 5.2. The loss probability P̃loss(1, b,m) in an M/Mb/1/m queue is given

by 1/c
(b)
m (1/λ), where c

(`)
n (x) is given by (2). The queue length distribution can be

expressed as

P[Q̃
(1,b,m)
λ ≥ m− j] =

c
(b)
j (1/λ)

c
(b)
m (1/λ)

,

for j = 0, . . . ,m.
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Proof. Setting k = 1 in Theorem 7 yields the result. �

It is worth noting that the loss probability of the Ek/M/1/m queue and the M/Mk/1/mk

queue are identical, even though their associated finite state Markov chains are not.

6. The Mb/D/1/m and D/Mb/1/m queue

We now present closed form results for the Mb/D/1/m and D/Mb/1/m queue.

Setting b = 1 in the Mb/D/1/m queue yields the results in [3] (as ξj(λ) corresponds to

bj in [3]).

Theorem 8. The loss probability Pλloss(∞, b,m) in the Mb/D/1/m queue is given by

Pλloss(∞, b,m) = 1− 1

λ

(
1− b

b+ λ
∑min(b−1,m−1)
i=0 ξ(m−1−i)/b(λ)

)
, (24)

with

ξy(x) =

byc∑
i=0

(−1)ixi

i!
(y − i)iex(y−i), (25)

for y ≥ 0 real. The queue length distribution Q
(∞,b,m)
λ can be expressed as

P[Q
(∞,b,m)
λ ≤ j] =

bξj/b(λ)

b+ λ
∑min(m−1,b−1)
i=0 ξ(m−1−i)/b(λ)

,

for j = 0, . . . ,m− 1.

Proof. The result follows from Theorem 5 by letting k tend to infinity and noting

that ξj/b(λ) = limk→∞ c
(kb)
jk (λ). �

Theorem 9. The loss probability P̃λloss(∞, b,m) in the D/Mb/1/m queue is given by

P̃λloss(∞, b,m) =
1

ξm/b(1/λ)
, (26)

where ξy(x) is given by (25). The queue length distribution Q̃
(∞,b,m)
λ can be expressed

as

P[Q̃
(∞,b,m)
λ ≥ m− j] =

λb
∑bj/bc
i=0 (ξ(j+1)/b−i(1/λ)− ξj/b−i(1/λ))

ξ
(b)
m (1/λ)

,

for j = 0, . . . ,m− 1.

Proof. The result follows from Theorem 7 and Lemma 5.2 by letting k tend to

infinity. �
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7. Some finite capacity fluid queues

In this section we present results for the following two fluid queues. In both queues

we have a buffer with capacity m. In the first queueing system fluid drains from the

queue at rate 1 and arrivals occur at rate λ that instantaneously add one unit of fluid

to the buffer unless the fluid in the buffer exceeds m− 1, in which case the fluid level

becomes m. Note that this fluid queue corresponds to the work present in an M/D/1

queue with bounded workload and partial acceptance.

The second queueing system is the dual of the first, where the fluid level increases at

rate λ and Poisson arrivals at rate 1 instantaneously remove one unit of fluid from the

buffer or empty the buffer if the fluid is below 1. We denote these queueing systems

as the fluid M/D/1 and fluid D/M/1 queue, respectively.

Corollary 7.1. The fraction of lost work in the fluid M/D/1 is given by

lim
b→∞

Pλloss(1, b, bm) = 1− 1

λ

(
1− 1

ξm(λ)

)
,

where ξy(x) is defined in (25). The probability that the fluid level is at most y ∈ [0,m]

is given by ξy(λ)/ξm(λ).

Proof. The fluid M/D/1 queue is equivalent to the Mb/M/1/bm queue if we let b

tend to infinity and renormalize the buffer size by b, therefore the result follows from

Corollary 4.2 and the fact that ξy(x) = limb→∞ c
(b)
by (x). �

Corollary 7.2. The fraction of lost fluid in the fluid D/M/1 is given by

lim
b→∞

P̃λloss(1, b, bm) =
1

ξm(1/λ)
,

where ξy(x) is defined in (25). The probability that the fluid level exceeds m − y with

y ∈ [0,m] is given by ξy(1/λ)/ξm(1/λ).

Proof. The fluid D/M/1 queue is equivalent to the M/Mb/1/bm queue if we let b

tend to infinity and renormalize the buffer size by b, therefore the result follows from

Corollary 5.2 and the fact that ξy(x) = limb→∞ c
(b)
by (x). �

Note that the above results are also valid if m is not an integer.
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8. Conclusions

In this paper we presented simple analytical expressions for the Mb/Ek/1/m and

Ek/Mb/1/m queue as well as for some closely related queueing systems. We demon-

strated that both the loss probability and queue length distribution can be expressed

in terms of the polynomials c`n(x) given by (2).

We further note that these polynomials can also be used to obtain analytical expres-

sions for other queueing systems not considered in this paper such as the M/Mb/1/m

queue where the server is interrupted if the number of jobs in the system is below

b. It may also be possible to extend some of the results in this paper to multi-server

systems.
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