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Performance of Redundancy(d) with Identical/Independent
Replicas

TIM HELLEMANS AND BENNY VAN HOUDT, University of Antwerp

Queueing systems with redundancy have received considerable attention recently. The idea of redundancy is

to reduce latency by replicating each incoming job a number of times and to assign these replicas to a set of

randomly selected servers. As soon as one replica completes service the remaining replicas are cancelled. Most

prior work on queueing systems with redundancy assumes that the job durations of the different replicas are

i.i.d., which yields insights that can be misleading for computer system design.

In this paper we develop a differential equation, using the cavity method, to assess the workload and

response time distribution in a large homogeneous system with redundancy without the need to rely on this

independence assumption. More specifically, we assume that the duration of each replica of a single job is

identical across the servers and follows a general service time distribution.

Simulation results suggest that the differential equation yields exact results as the system size tends to

infinity and can be used to study the stability of the system. We also compare our system to the one with

i.i.d. replicas and show the similarity in the analysis used for independent resp. identical replicas.

CCS Concepts: • Computer systems organization → Embedded systems; Redundancy; Robotics; • Net-
works → Network reliability.
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1 INTRODUCTION
Redundancy is regarded as an effective technique to reduce latency in a variety of systems including

large scale computer clusters [1, 8, 9, 11]. The idea of redundancy is to create a number of replicas

of each incoming job and to assign these replicas to a set of random servers. When the first of these

replicas is processed by a server, the remaining replicas get cancelled. An attractive feature of this

scheme is that the replicas can be assigned immediately without the need to consult the server states

or the need to maintain such information. Queueing models to study the effect of redundancy on the

job response time have been introduced recently (e.g., [2, 6]). One of the key assumptions to enable

their analysis often exists in assuming that the processing times of the replicas are independent

and identically distributed (i.i.d.) across servers. While this may be applicable in some contexts,

this assumption may result in misleading insights in a computer systems setting. For instance this

i.i.d. assumption suggests that mean response time reduces as a function of the number of replicas

(for sufficiently variable job sizes), while without such an assumption the mean response time may

increase sharply if too many replicas are used.
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In this paper we present a fixed point equation, based on the cavity process, to assess the workload

and response time distribution of a queueing model with redundancy when the processing times

of the replicas are assumed to be identical across servers as opposed to assuming they are i.i.d..

Next, we rewrite this fixed point equation as a Delayed Integro-Differential Equation (DIDE) for

general job sizes which have no atom in zero, which reduces to a Delayed Differential Equation

(DDE) in case the job sizes are discrete and an Integro-Differential Equation (IDE) in case job sizes

are continuous. For phase type distributed (PH-distributed) job sizes, we are able to simplify this

IDE further to an ODE. We conjecture that (when the queueing system is stable) this DIDE has

a unique solution that corresponds to the limit of the workload distribution as the number of

servers tends to infinity. We propose a numerical scheme to solve the DIDE and illustrate that its

accuracy improves with the system size for various job size distributions (i.e., for bounded Pareto,

(hyper)exponential and deterministic job sizes) using simulation. We also show how this DIDE

leads to a method to accurately obtain the stability region for a given model. Furthermore, we

use this technique to obtain the equilibrium workload and response time distribution to study

redundancy with identical replicas and compare it to redundancy with independent replicas. For

independent replicas we rely on the method suggested in [6] to obtain the equilibrium workload

and response time distribution which also provides a DIDE, we introduce it in our setting along

with redundancy with identical replicas in order to illustrate the similarities/differences in the

approach taken to derive it. This DIDE is also a DDE for discrete and an IDE for continuous job

sizes. When job sizes are PH-distributed, we can again simplify the associated IDE to an ODE.

Our main findings in case of identical replicas can be summarized as follows: When identical

replicas are used, the stability region shrinks severely as d increases and depends on the higher

moments of the job size distribution. As such replicating toomuch can easily cause system instability.

More variable job size distributions tend to result in a larger stability region, but still cause larger

response times when the system load is low. The mean and the variance of the response time in a

system with redundancy typically remains low and increases sharply as the system gets close to

becoming unstable. This increase is considerably sharper than in a system without redundancy.

The mean response time tends to increase linearly with the squared coefficient of variation (SCV)

of the job size distribution. For small SCVs increasing the SCV may reduce the mean response time.

Finally, the tails of the response time distribution often decay much faster compared to a system

without redundancy. We further show that these insights are considerably different from what is

observed in a system with independent replicas, where the stability region often increases as more

replicas are used, the mean response time tends to decrease as the SCV increases, etc.

The models considered in the paper (redundancy with independent resp. identical replicas) are

introduced in Section 2. The cavity processes associated to these queueing systems is presented in

Section 3. The DIDEs are derived in Section 4 where we also take a closer look at the numerical

method used to compute the equilibrium workload distribution. In Section 5 we show the accuracy

of our suggested method by comparing with simulations of finite dimensional systems and validate

our method to obtain the stability region by means of simulation. Numerical results on redundancy

with identical replicas can be found in Section 6. In Section 7 we make a comparison between

having independent and identical replicas. Section 8 discusses some future work.

2 MODEL DESCRIPTION
We consider a system with N identical servers (for large N ), each having an infinite waiting room.

Arrivals occur according to a Poisson process with rate λN . The service discipline at each server is

assumed to be first-come-first-served (FCFS) and jobs are processed at a constant rate 1. The job

sizes are distributed with cumulative distribution function (cdf) G(·), complementary cdf (ccdf)

Ḡ(·) and mean E[G]. We assume the job size distribution has no atom in zero, i.e. G(0) = 0. We can

ACM Trans. Web, Vol. ?, No. ?, Article ?. Publication date: May 2018.
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Redundancy d ?:3

(a) In dark gray, the workload right be-
fore the potential arrival occurs, in light
gray the amount of work that arrives
due to the potential arrival.

(b) In dark gray, the workload right af-
ter the potential arrival occurs, i.e. all
light gray area right of the dotted line
in Figure 1a.

Fig. 1. Graphical representation of what happens at an arrival instant for Redeq(d) with d = 3 and N = 5.

decompose G in a continuous and discrete part by stating G = G1 +G2, where G1 has a density

function д1 : [0,∞) → [0,∞), G2 has a discrete density given by д2(·) =
∑∞

n=0
pnδan (·) (assuming

0 < a0 < a1 < . . . ) and we have

∫ ∞

0
д1(u)du +

∑∞
n=0

pn = 1. Here we use the notation δx for the

dirac measure. For simplicity we denote д(s)ds = д1(s)ds + д2(s), thus for a subset A ⊆ [0,∞) we

have

∫
A д(s)ds =

∫
A д1(s)ds +

∑
n pnδan (A), where δa(A) equals one if a ∈ A and zero otherwise. By

abuse of notation, for s ∈ (0,∞) we write д(s) = д1(s) +
∑∞

n=0
pnδ {s = an} (where δ {x = y} equals

one if x = y and zero otherwise). In what follows we generally employ the following notation: a

capital letter for cdf, a capital letter with an overline for ccdf, a lowercase letter for pdf and E for
an expectation.

For this model we consider 2 distinct policies:

Redundancy-d with identical replicas (Redeq(d)) : Each incoming job is replicated d times and

each replica joins a random server (in total d , distinct, random servers receive an identical arrival).

As soon as one replica finishes service, the remaining replicas are cancelled (whether in service

or not). Cancellation is assumed to be immediate, although this assumption can be relaxed (see

Section 4.2). It is important to emphasize that in this model, all d replicas of one job are assumed to

be identical (i.e. equal in size).

Redundancy-d with independent replicas (Rediid(d)) : At each arrival instant, replicas are

made and distributed in the same manner as for Redeq(d). The processing times of the d replicas of

a job are however i.i.d. rather than identical, this model was studied in [6].

In Figure 1, we graphically show what happens at an arrival instant for N = 5 and d = 3 in the

Redeq(d) model. The dark gray area indicates actual workload while the light gray area indicates

potential workload from the arrival. The same arbitrary amount of work is added to all (randomly)

selected servers, this work is indicated in light gray in Figure 1a. All work that still needs to be done

after the shortest queue finished serving the job may be discarded and the actual new workload of

the queues is depicted in dark gray in Figure 1b.

In Figure 2, we show the events at an arrival instant for N = 5 and d = 3 for the Rediid(d) model.

An independent arbitrary amount of work is added to each selected queue. The workload at each

chosen queue is then increased to match the workload at the server that finishes the new job first

(which is the first queue in this case).

As in [7] the corresponding Markov processes only need to keep track of the workload at each

of the N queues. We provide an analysis for Redeq(d), the policy Rediid(d) has been studied in [6].

We restate their result for general job sizes in our notation in Proposition 4.6. Redeq(d) is stable if

λE[G] < 1/d and unstable for λE[G] ≥ 1, its stability is unclear for λE[G] ∈ (1/d, 1). It was shown
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(a) In dark gray, the workload right be-
fore the potential arrival occurs, in light
gray the amount of work that arrives
due to the potential arrival.

(b) In dark gray, the workload right af-
ter the potential arrival occurs, i.e. all
light gray area right of the dotted line
in Figure 2a is now dark gray.

Fig. 2. Graphical representation of what happens at an arrival instant for Rediid(d) with d = 3 and N = 5.

in [6] that Rediid(d) with exponential job sizes is stable iff λE[G] < 1, one would expect that the

stability region grows as a function of the job size variability (note that, for deterministic job sizes,

these policies are equivalent).

3 CAVITY PROCESS
The cavity process methodology introduced in [3] is used to analyze both systems. The cavity

process intends to capture the evolution of the workload of one queue for the limiting system when

the number of servers N tends to infinity.

• For Redeq(d) we find that when a potential arrival of size S occurs to servers with workloads

U1, . . . ,Ud , each workloadUi becomes max{Ui ,min
d
j=1

{Uj }+S} after the (possibly redundant)
work of the arrival has been added.

• For Rediid(d) we find that when a potential arrival of i.i.d. sizes S1, . . . , Sd occurs to servers

with workloadsU1, . . . ,Ud , then each workloadUi becomes max{Ui ,min
d
j=1

{Uj + S j }}.

Definition 3.1 (Cavity Process). LetH(t), t ≥ 0, be a set of probability measures on R called the

environment process. The cavity process XH(·)(t), t ≥ 0, takes values in R and is defined as follows.

Potential arrivals occur according to a Poisson process with rate λd . When a potential arrival

occurs at time t , the cavity process XH(·)(t) becomes max

{
XH(·)(t),min

d
j=2

{XH(·)(t) + S,Uj + S}
}

resp. max

{
XH(·)(t),min

d
j=2

{XH(·)(t) + S1,Uj + S j }
}
for Redeq(d) resp. Rediid(d). HereU2, . . . ,Ud are

d − 1 independent random variables with lawH(t) and S, S1, . . . , Sd are d + 1 independent random

variables with lawG. The cavity process decreases at rate one during periods without arrivals and

is lower bounded by zero.

We now define the cavity process associated to the equilibrium environment process, which is

such that the cavity process has distribution H(t) at time t :

Definition 3.2 (Equilibrium Environment). When a cavity process XH(·)(·) has distribution H(t)
for all t ≥ 0, we say that H(·) is an equilibrium environment process. Further, a probability measure

H is called an equilibrium environment ifH(t) = H for all t and XH(·)(t) has distributionH for all

t .

The modularized program for analyzing load balancing systems presented in [3] when applied

to our policies involves the following steps (assuming stability for N large):

ACM Trans. Web, Vol. ?, No. ?, Article ?. Publication date: May 2018.
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Redundancy d ?:5

a. Asymptotic Independence. Demonstrate ΠN → Π as N → ∞, where ΠN
is the stationary

distribution for the studied policy withN queues andΠ is a stationary and ergodic distribution

on [0,∞)∞. Show that the limit Π is unique, depending only on the service time distribution.

Show that, for every k :

Π(k ) =

k⊗
i=1

Π(1),

where Π(k )
is Π restricted to its first k coordinates.

b. The queue at the cavity. Let BN
s denote the arrival size distribution (which may be zero

with a non-zero probability) in case of a potential arrival when the queue at the cavity has

workload s . Show that the arrival process of a queue in the system of size N converges to a

Poisson process with rate λd and a job size distribution Bs that depends on the workload s at
arrival time. Denote B = {Bs , s ≥ 0}.

c. Calculations. Given B, the arrival size distributions, analyze the queue at the cavity in the

large N limit using queueing techniques to express Π(1)
as a function of B:

Π(1) = T (B).

The arrival size distribution is determined by the workload distribution Π(1)
(as explained

above) we thus have:

B = H (Π(1)).

We then must solve these two fixed point equations to obtain the equilibrium environment

Π(1) = H .

In this work, we focus on c, the computational step of the program. We present a numerical

method to compute the Equilibrium EnvironmentH corresponding to Redeq(d), and validate it with

simulation. Under the same setup, Rediid(d) can be studied. Therefore we conjecture (numerical

evidence to support this conjecture is presented in Section 5):

Conjecture 3.3. Consider a load balancing system operating under the Redeq(d) or Rediid(d) policy
on N servers, assume λ,d and G are such that this system is uniformly stable for sufficiently large N
and the local service is FCFS. Then, in the large N limit, there is a unique equilibrium distribution.
Under this distribution, any finite number of queues are independent. Moreover, this equilibrium can
be found as the unique fixed point in step c.

We now characterize the evolution of the cavity process associated with the equilibrium envi-

ronment process. Let f (t, s), t ∈ [0,∞), s ∈ (0,∞) describe the density at which a random server, at

time t , has workload s > 0. Note that f (t, ·) is not an actual pdf as the probability that the server is

empty is non-zero. Let F (t, s) = F (t, 0) +
∫ s

0
f (t,u)du denote the cdf of the workload of a random

server, here F (t, 0) = 1 −
∫ ∞

0
f (t, s) is the probability that a random server is idle.

We define cd (t, s, r ) as the double density that, if a potential arrival occurs at time t , the queue at
the cavity has workload s > 0 and its workload is increased to r > s by the potential arrival. Lastly

we let Cd (t, r ) denote the density at which, if a potential arrival occurs at time t , the queue at the
cavity has workload 0 and its workload is increased to r > 0.

We now obtain a partial DIDE (PDIDE) which describes the transient evolution of the cavity

queue as a function of cd ,Cd . The proof is similar to the proof of Theorem 3.4 in [7].

ACM Trans. Web, Vol. ?, No. ?, Article ?. Publication date: May 2018.
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t t + ∆

s

s + ∆

(a) Q1 : no arrivals. t t +v t + ∆

s

s + (∆ −v)

(b) Q2 : arrival to empty queue.

t t +v t + ∆

u −v

u

s

s + (∆ −v)

(c) Q3 : arrival to non-
empty queue.

Fig. 3. Graphical representation to illustrate (3), all ways one can have workload s at time t + ∆ (which are
not o(∆)).

Theorem 3.4. The evolution of the cavity process associated to the equilibrium environment process
of the Redeq(d),Rediid(d) policy is captured by the following set of equations:

∂ f (t, s)

∂t
−
∂ f (t, s)

∂s
= λd ·

(
−

∫ ∞

s
cd (t, s, r )dr +Cd (t, s) +

∫ s

0

cd (t,u, s)du

)
(1)

∂F (t, 0)

∂t
= −λdF (t, 0) + f (t, 0+), (2)

for s > 0, where f (x, z+) = limy↓z f (x,y).

Proof. We first let t, s > 0 and 0 < ∆ < s be arbitrary. We now describe the possible evolution

of the workload of the queue at the cavity in the interval [t, t + ∆] s.t. it has exactly workload s at
time t + ∆. We write:

f (t + ∆, s) = Q1 +Q2 +Q3 + o(∆), (3)

and describe how to obtain these Qi .

(Q1) First, we consider the case where the queue at the cavity has s + ∆ work at time t and no

potential arrivals in [t, t + ∆] make its workload increase. For this case we find:

Q1 = f (t, s + ∆) − λd

∫ ∆

0

∫ ∞

s+∆−v
cd (t +v, s + ∆ −v, r )drdv .

(Q2) Second, we consider the case in which the queue at the cavity is empty at time t +v,v ∈ [0,∆]
and its workload is increased to s + (∆ −v) by a potential arrival. This happens with density:

Q2 = λd
∫ ∆

0
Cd (t +v, s + (∆ −v))dv .

(Q3) Lastly, the queue at the cavity may be non-empty at time t +v,v ∈ [0,∆] and its workload

increases to s + (∆ −v) by a potential arrival. This case has density:

Q3 = λd
∫ ∆

0

∫ s+∆
v cd (t +v,u −v, s + (∆ −v))dudv .

We graphically show the three options,Q1,Q2 andQ3 in Figure 3. Note that any other event involves

having at least 2 arrivals which yields terms that are o(∆). Subtracting f (t, s + ∆), dividing by ∆
and taking the limit ∆ → 0 on both sides of (3), we find that (1) indeed holds.

We have not yet considered the case s = 0, for this we need to consider which events on [t, t +∆]
result in the workload of the queue at the cavity to be 0 at time t + ∆. To this end we consider the

following scenarios:
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t t + ∆

(a) Start off with an idle
server.

t t +v t +v + u t + ∆

u
∆ −v

(b) Start off with a non-idle server.

Fig. 4. Graphical representation to illustrate all ways one can end up with an empty queue at time t + ∆
(which are not o(∆)).

• The queue at the cavity is empty at time t and no actual arrivals occur in the interval [t, t +∆].
As each potential arrival is an actual arrival for empty queues, we find that this event occurs

with probability F (t, 0)(1 − λd∆).
• The queue at the cavity is non empty at some time t +v,v ∈ [0,∆], and decreases to zero by

time t + ∆. We find that this event occurs with probability

∫ ∆

0

∫ ∆−v
0

f (t +v,u)du dv .

Putting these together, we find that the following equality holds for F (t + ∆, 0):

F (t + ∆, 0) = F (t, 0)(1 − λd∆) +

∫ ∆

0

∫ ∆−v

0

f (t +v,u)dudv + o(∆).

Subtracting F (t, 0), dividing by ∆ and taking the limit ∆ → 0 on both sides results in (2). �

Remark. The PDIDE found in Theorem 3.4 could alternatively have been derived using the general-
ized Master Equation given by (7.25-7.26) in [10].

We still require an exact expression for cd and Cd . Moreover, we need an efficient method to

compute the quantities

∫ ∞

s cd (t, s, r )dr and
∫ s

0
cd (t,u, s)du. Therefore, in the next Proposition, we

describe how to determine cd and Cd .

Proposition 3.5. For the Redeq(d) policy we have cd (t, s, r ) = cd ,1(t, s, r )+ cd ,2(t, s, r )+ cd ,3(t, s, r )
such that: ∫ ∞

s
cd ,1(t, s, r )dr = Ḡ(s)f (t, s)(1 − F̄ (t, 0)d−1) (4)∫ ∞

s
cd ,2(t, s, r )dr = f (t, s)F̄ (t, s)d−1

(5)∫ ∞

s
cd ,3(t, s, r )dr = (d − 1)f (t, s)

(
F̄ (t, ·)d−2 f (t, ·) ∗ Ḡ(·)

)
(s) (6)∫ s

0

cd ,1(t,u, s)du = д(s) · (F (t, s) − F (t, 0))(1 − F̄ (t, 0)d−1)∫ s

0

cd ,2(t,u, s)du =
(
д(·) ∗ f (t, ·)F̄ (t, ·)d−1

)
(s)∫ s

0

cd ,3(t,u, s)du = (d − 1)F (t, s) ·
(
д(·) ∗ f (t, ·) · F̄ (t, ·)d−2

)
(s)

− (d − 1)

(
д(·) ∗ F (t, ·)f (t, ·)F̄ (t, ·)d−2

)
(s),

ACM Trans. Web, Vol. ?, No. ?, Article ?. Publication date: May 2018.
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where (f1 ∗ f2)(s) =
∫ s

0
f1(u)f2(s − u)du denotes the convolution product. These quantities can all be

computed quickly which simplifies solving (1-2) significantly. Lastly, we have Cd (t, s) = F (t, 0) · д(s).

Proof. First we define cd ,1, cd ,2 and cd ,3 as follows:

• At least one of the d−1 independent random variables with lawH(t) is zero and the incoming

job has size r . We find (for s < r ):

cd ,1(t, s, r )dr ds = д(r )f (t, s)(1 − F̄ (t, 0)d−1)dr ds .

• The queue at the cavity is the queue with the minimal workload (i.e. s) and the size of the

arrival is exactly r − s:

cd ,2(t, s, r )dr ds = д(r − s)f (t, s)F̄ (t, s)d−1 dr ds .

• The queue with minimal workload has 0 < u < s workload, where s is the workload of the

queue at the cavity, and the arrival size is r − u:

cd ,3(t, s, r )dr ds = (d − 1)f (t, s)

∫ s

0

д(r − u)F̄ (t,u)d−2 f (t,u)du dr ds .

now the claimed equalities all follow from direct computation and applying Fubini (which is allowed

as all integrands are positive functions). It is trivial to derive the expression for Cd . �

The PDIDE (1-2) can now be solved using an (improved) Euler scheme. This result is also of

interest to obtain a fixed point equation for the equilibrium environment, i.e., workload distribution.

In the subsequent section, we provide an efficient method to compute the equilibrium workload

(and thus also response time) distribution.

4 EQUILIBRIUM REGIME
For the equilibrium we use the same notations as in the transient case, but we leave out the time

dependence, i.e., we write f (s) instead of f (t, s) and set
∂f (t ,s)

∂t = 0. From the PDIDE describing the

transient behaviour (1-2) we now derive a method to compute the equilibriumworkload distribution.

Proposition 4.1. The equilibrium workload distribution associated to the equilibrium environment
of Redeq(d) or Rediid(d) satisfies the following equation:

F̄ ′(s) = −f (s) = −λd

(
F (0)Ḡ(s) +

∫ s

0

∫ ∞

s
cd (u,v)dvdu

)
(7)

Proof. Integrating (1) w.r.t. s and using (2) as a boundary condition (f (0+) = λdF (0)), we obtain:

f (s) = λd

(
F (0) −

∫ s

0

Cd (u)du +

∫ s

0

∫ ∞

u
cd (u, r )dr du −

∫ s

0

∫ r

0

cd (u, r )du dr

)
. (8)

We can further simplify (8) by applying Fubini to the term

∫ s
0

∫ r
0
cd (u, r )du dr to obtain (7). �

4.1 Redeq(d)
From Proposition 4.1 we obtain a simple DIDE which can be solved numerically:

Theorem 4.2. The stationary workload distribution associated to the equilibrium environment
satisfies the following DIDE:

F̄ ′(s) = −λd

[
Ḡ(s)(1 − F̄ (s)) +

∫ s

0

д(u)F̄d−1(s − u)(F̄ (s − u) − F̄ (s))du

]
. (9)
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Proof. Using (4-6) we can simplify (7) applied to Redeq(d) to obtain:

F̄ ′(s) = −λd

[
Ḡ(s)

(
(1 − F̄ (0)d ) − F̄ (s)(1 − F̄ (0)d−1)

)
+ d(Ḡ ∗ f F̄d−1)(s) − (d − 1)F̄ (s)(Ḡ ∗ f F̄d−2)(s)

]
(10)

We decompose the ccdf Ḡ = Ḡ1 + Ḡ2, where Ḡ1 corresponds to the continuous part and Ḡ2 the

discrete part. For the continuous part we apply integration by parts to obtain:

(Ḡ1 ∗ f F̄n)(s) =
1

n + 1

(
Ḡ1(s)F̄

n+1(0) − Ḡ1(0)F̄
n+1(s) + (д1 ∗ F̄

n+1)(s)

)
. (11)

For the discrete part we first define ι(s) = sup{n | an ≤ s}, where an for n ∈ {1, 2, . . . } are the
atoms of the job size distribution. We find that the following equality holds:

(Ḡ2 ∗ f F̄n)(s) =
1

n + 1

(
Ḡ2(s)F̄

n+1(0) − Ḡ2(0)F̄
n+1(s) +

ι(s)∑
n=0

pn F̄
n+1(s − an)

)
. (12)

This equation follows by splitting the integral over the intervals [0,a0], [a0,a1], . . . , [aι(s)−1,aι(s)],
[aι(s), s]. Putting integrands together and using the definition of д, we find that (11-12) simplifies to

(9). �

The ccdf of the waiting time is given by F̄W (s) = F̄ (s)d . The ccdf of the response time is given by

the convolution of д with the ccdf of the waiting time, i.e. F̄R (s) = Ḡ(s) + (д ∗ F̄W )(s).
The DIDE found in (9) can be simplified to a set of ODEs in case job sizes have a PH distribution.

Corollary 4.3. If job sizes have a PH distribution with parameters (α,A) then (9) simplifies to the
following ODE:

F̄ ′(s) = −λdα
[
esA1(1 − F̄ (s)) + h1(s) − h2(s)F̄ (s)

]
h′

1
(s) = Ah1(s) + µF̄

d (s)

h′
2
(s) = Ah2(s) + µF̄

d−1(s),

with µ = −A1 and boundary condition h1(0) = h2(0) = 0.

Proof. For PH distributed job sizes we find Ḡ(s) = αesA1 and д(s) = αesAµ. Applying this to (9)

and splitting terms, we find:

F̄ ′(s) = −λdα

[
esA1(1 − F̄ (s)) +

∫ s

0

euAµF̄d (s − u)du −

∫ s

0

euAµF̄d−1(s − u)duF̄ (s)

]
. (13)

Letting h1(s) =
∫ s

0
euAµF̄d (s − u)du =

∫ s
0
e(s−u)AµF̄d (u)du we find:

h′
1
(s) = Ah1(s) + µF̄

d (s).

Analogously for h2(s) =
∫ s

0
euAµF̄d−1(s − u)du we find h′

2
(s) = Ah2(s) + µF̄

d−1(s). �

Remark. We can generalize the result in Corollary 4.3 to conditioned Phase type distributions.
I.e. let X have PH distribution with parameters (α,A) and a < b two positive numbers. If job sizes have
distribution (X | a < X < b) we find:

Ḡ(s) =


1 s < a

pα(eAs − eAb )1 a ≤ s < b

0 b ≤ s

,д(s) =


0 s < a

pαeAsµ a ≤ s < b

0 b ≤ s
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with p = 1

α (eAa−eAb )1 . This allows us to find the following delayed differential equation for the
equilibrium workload distribution:

F̄ ′(s) = −λd(1 − F̄ (s)) s ≤ a

F̄ ′(s) = −λd
[
pα(eAs − eAb )1(1 − F̄ (s)) + pα(h1(s) − h2(s)F̄ (s))

]
a < s ≤ b

F̄ ′(s) = −λdpα(h1(s) − h2(s)F̄ (s)) b < s,

where h1,h2 satisfy h1(a) = h2(a) = 0 and

h′
1
(s) = Ah1(s) + e

AaµF̄d (s − a) a < s ≤ b

h′
1
(s) = Ah1(s) + (e

Ab F̄d (s − b) − eAa F̄d (s − a))µ b < s

h′
2
(s) = Ah2(s) + e

AaµF̄d−1(s − a) a < s ≤ b

h′
2
(s) = Ah2(s) + (e

Ab F̄d−1(s − b) − eAa F̄d−1(s − a))µ b < s .

Remark. It is not hard to see that when the job size distribution is some combination (product,
sum, mixture, . . . ) of discrete and PH-distributed random variables, one can still obtain a DDE by
generalizing Corollary 4.3.

4.2 Redeq(d) with delayed cancellation
We now assume there is some delay in the cancellation of jobs, i.e. after the first server finishes a

job, the other d − 1 servers continue working on the job for some time δ > 0. We find the following

result:

Proposition 4.4. The stationary workload distribution associated to the equilibrium environment
for Redeq(d) with a cancellation delay equal to δ > 0 satisfies the following DIDE:

F̄ ′(s) = −λd

(
Ḡ(s) +

∫ s

0

д(s − u)F̄ (u)du − F̄ (s)

)
s ≤ δ (14)

F̄ ′(s) = −λd

(
Ḡ(s) − F̄ (s)Ḡ(s − δ ) +

∫ δ

0

F̄ (u)д(s − u)du

+

∫ s−δ

0

F̄ (s − u − δ )d−1(F̄ (s − u) − F̄ (u))д(u)du

)
s > δ . (15)

Proof. It is not hard to see (analogue to Proposition 3.5) that in this case we have:

cd (s, r )dr ds = д(r − δ )f (s)(1 − F̄ (0)d−1)dr ds

+ д(r − s)f (s)F̄ (s)d−1 dr ds

+ (d − 1)f (s)

∫ s

0

д(r − u − δ )F̄ (u)d−2 f (u)du dr ds .

The result then follows using arguments similar to the proof of Theorem 4.2. �

Remark. As for the Redeq (d) model, the ccdf of the waiting time is given by F̄W (s) = F̄ (s)d and the
response time by F̄R (s) = Ḡ(s) + (д ∗ F̄W )(s).

The above DIDE simplifies to a delayed differential equation in case X has a PH distribution:
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Corollary 4.5. If job sizes have a PH distribution with parameters (α,A), then the DIDE given by
(14-15) simplifies to the following DDE:

F̄ ′(s) = −λd(Ḡ(s) + αξ1(s) − F̄ (s)) s ≤ δ

F̄ ′(s) = −λd

(
Ḡ(s) − F̄ (w)Ḡ(w − δ ) + α(ξ1(s) + ξ2(s) − ξ3(s)F̄ (s))

)
s > δ

ξ ′
1
(s) = Aξ1(s) + F̄ (s)µ s ≤ δ

ξ ′
1
(s) = Aξ1(s) s > δ

ξ ′
2
(s) = F̄ (w − δ )d−1F̄ (s)µ +Aξ2(s) s > δ

ξ ′
3
(s) = F̄ (w − δ )d−1µ +Aξ3(s) s > δ ,

with boundary condition ξ1(0) = ξ2(δ ) = ξ3(δ ) = 0.

Proof. This follows from Proposition 4.4 by defining :

ξ1(s) =

∫
min{s ,δ }

0

e(s−u)AF̄ (u)duµ

ξ2(s) =

∫ s−δ

0

F (u)d−1F̄ (u + δ )e(w−u−δ )A duµ

ξ3(s) =

∫ s−δ

0

F̄ (u)d−1e(w−u−δ )A duµ .

�

4.3 Rediid(d)
If we were to analyze Rediid(d) in the same manner as we did for Redeq(d), we would again find

that the ccdf of the workload distribution satisfies equation (7). In the case of Rediid(d), we find for

arbitrary 0 < s < r :

cd (s, r ) = f (s) ·
(
д(r − s)F̄U+S (r )

d−1 + (d − 1)Ḡ(r − s)fU+S (r )F̄U+S (r )
d−2

)
, (16)

where U and S are random variables with distribution F and G. Plugging (16) in (7) one finds a

functional differential equation describing the workload distribution. This equation is hard to solve

and it is not immediately clear how to simplify it. However, as shown in [6] the following result

holds (the proof of which we summarize in a few words, for more details see [6]):

Proposition 4.6. The equilibrium workload distribution associated to Rediid(d) satisfies the follow-
ing DIDE:

F̄ ′(s) = −λdF̄R1
(s)d−1(F̄R1

(s) − F̄ (s)), (17)

with F̄R1
(s) = Ḡ(s) + (д ∗ F̄ )(s), the probability that the response time is at least s if a job is sent to

only 1 server.

Proof. If one were to send only one replica, this replica has a response time which is at least s if
and only if either the job size is at least s or the job size is exactly u < s and the workload of the

queue to which the replica is sent is at least s − u. This shows that F̄R1
(s) = Ḡ(s) + (д ∗ F̄ )(s).

The probability that a potential arrival increases the workload of the queue at the cavity from a

value under s to a value above s is equal to the probability that all d − 1 replicas which are sent to

other queues have a response time which is at least s , the response time of the replica sent to the

queue at the cavity is at least s and the queue at the cavity has a workload which is at most s . Note
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that the individual response times R1 can be written as a product because of the independence

assumption of both the workload processes and the job sizes. �

For PH-distributed job sizes we find a result which is similar to Corollary 4.3:

Corollary 4.7. If job sizes have a PH distribution with parameters (α,A) then (17) simplifies to
the following ODE:

F̄ ′(s) = −λd(Ḡ(s) + αh(s))d−1
(
Ḡ(s) + αh(s) − F̄ (s)

)
,

h′(s) = Ah(s) + F̄ (s)µ,

with µ = −A1 and boundary condition h(0) = 0.

Proof. This follows in a similarmanner as Corollary 4.3, but herewe seth(s) =
∫ s

0
e(s−u)AµF̄ (u)du.

�

Remark. One can again generalize this result to conditional PH-distributions and combinations of
PH-distributions and discrete distributions.

In case of independent replicas there are several possible definitions for the waiting time, that

is, it could be the time until the first replica enters service or the time until the replica that first

completes service enters service. As such we only consider the response time, the ccdf of which is:

F̄R (s) =
(
Ḡ(s) + (д ∗ F̄ )(s)

)d (
= F̄R1

(s)d
)
.

4.4 Numerical Considerations
Throughout all sections which contain numerical examples, we exclusively make use of job size

distributions which have a mean equal to one. In particular we focus our attention to the following

job size distributions:

• Exponential Job Sizes : Job sizes have an exponential distribution with mean equal to one.

• Deterministic Job Sizes : Job sizes are always equal to one.

• Bounded Pareto Job Sizes : Job sizes are bounded Pareto with lower bound 0.2, upper bound
72 and α = 1.1, meaning E[G] = 1 and E[G2] = 10.

• Hyperexponential Job Sizes : Job sizes are hyperexponential with two phases and balanced

means, chosen such that E[G] = 1. When the Squared Coefficient of Variation SCV is not

specified, we take E[G2] = 10.

• Erlang Job Sizes : Job sizes which have an Erlang distribution with 2 up to 50 phases such

that E[G] = 1 (i.e. λ = k with k the number of phases).

Remark. For bounded Pareto job sizes, we need to resort to solving an IDE which is O(M2), for all
other job size distributions the required computation time is onlyO(M). HereM denotes the number of
control points used to numerically represent F̄ .

Note that Theorem 4.2, Corollary 4.3, Proposition 4.6 and Corollary 4.7 do not specify a boundary

condition for F̄ (0). This is not surprising as F̄ (0) corresponds to the unknown actual system load.

We have the following Lemma which is used as a basis for an algorithm to find F̄ (0):

Lemma 4.8. Let λ > 0,d ∈ {2, 3, . . . } be such that the associated system is stable then the following
are equivalent:

• F̄ (s) is a solution to (9) resp. (17) and infs>0 F̄ (s) = 0,
• F̄ (s) is the unique ccdf of the workload equilibrium for Redeq(d) resp. Rediid(d).
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Proof. Obviously, if F̄ (s) is the ccdf of the workload equilibrium, it is a solution to the associated

fixed point equation and thus also of the associated DIDE, moreover infs>0 F̄ (s) = 0 holds for any

ccdf.

We should still show that the solution F̄ is indeed a ccdf if it is a solution to (9) or (17) and

infs>0 F̄ (s) = 0. The uniqueness then follows from the Conjecture 3.3. We show that for arbitrary

t > 0, we have: if for all s < t, F̄ ′(s) ≤ 0 and F̄ (s) ≥ 0 then F̄ ′(t) ≤ 0, this shows that F̄ is a

decreasing function as it is positive. For (9) it suffices to note that F̄ (t − u) − F̄ (t) appearing in the

integral equals −
∫ t
t−u F̄

′(v)dv ≥ 0. For (17) we note that:

FR1
(t) = Ḡ(t) +

∫ t

0

F̄ (u)д(t − u)du

≥ Ḡ(t) +

∫ t

0

F̄ (t)д(t − u)du

= Ḡ(t) +G(t)F̄ (t)

≥ F̄ (t).

We have thus shown that if F̄ satisfies the stated conditions, it is also a non-increasing function, as

infs>0 F̄ (s) = 0 we find that lims→∞ F̄ (s) = 0. This shows that F̄ is indeed a ccdf. �

Based on the result shown in Lemma 4.8 we now obtain an algorithm which can be used to

find the ccdf F̄ which is the solution for (9) and (17). Also, we present a simple method to check

whether for a given job size distribution, λ and d the system is stable (i.e. the equilibrium workload

distribution is not infinite). Note that the DIDE however still makes sense when the system is

unstable: we find the boundary condition F̄ (0) = 1 and from this it is not hard to see that both for

Redeq(d) and Rediid(d) we find F̄ (s) = 1 for all s , i.e. the system load is almost surely infinite.

We employ the following bisection algorithm to find the value of F̄ (0) for which the associated

solution satisfies infs>0 F̄ (s) = 0:

(1) Set lb = 0 and ub = 1,

(2) Computey = infs>0 F̄ (s), where F̄ (s) is computed as the solution of (9) or (17), with boundary

condition F̄ (0) = x0 =
lb+ub

2
.

(3) Set lb = x0 if y < 0 otherwise set ub = x0, return to Step 2.

Due to Lemma 4.8, we are certain this algorithm converges, provided that infs>0 F̄ (s) is increasing as
a function of the boundary condition F̄ (0). Actually all we need is if F̄1(0) < F̄2(0) and infs>0 F̄2(s) <
0 then infs>0 F̄1(s) < 0. Unfortunately this statement appears to be hard to prove and we only

managed to confirm this numerically (see also Figure 7).

We now provide some deeper insight into how well the algorithm performs. For this discussion

let us focus on Redeq(d) and note that the discussion for Rediid(d) is completely analogous. We

need to numerically solve (9) for each step of the algorithm, which takes O(N 2) resp. O(N ) time

for continuous resp. discrete or PH distributed job sizes (use Corollary 4.3). For a function f , we
let ∥ f ∥∞ = sups>0

| f (s)| denote its supremum norm. In Figure 5, we first compute the limiting

distribution F̄∞ which satisfies (9) and F̄ (0) is chosen such that | infs>0 F̄ (s)| < 10
−10

. We let F̄n
denote the solution to (9) after n steps have been taken in the algorithm. We show the difference

∥F̄n − F̄∞∥∞ for n varying from 1 to 34 (note that 34 is the first value n for which 2
−n < 10

−10
). Figure

5a is for exponential job sizes, λ = 0.48 and d = 2, 3, 4, 5 while Figure 5b is for d = 2, λ = 0.7 and

varying (i.e. exponential, deterministic, bounded Pareto and hyperexponential) job sizes. We observe

that the accuracy of F̄n increases exponentially which means that ∥F̄n − F̄∞∥∞ ≈ |F̄n(0)− F̄∞(0)|. We

now show F̄n for n = 1, . . . , 34 in Figure 6 (on a logarithmic scale, negative values are discarded).

Rather than labelling each line, we increase the linewidth as n increases. We clearly observe that as
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10-10
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100

(a) Exponential Job Sizes with λ = 0.48.

0 5 10 15 20 25 30 35
10-10

10-5

100

(b) Varying job sizes, d = 2 and λ = 0.7.

Fig. 5. Convergence of F̄n , the ccdf found after n steps to the limiting distribution ccdf F̄∞.

(a) Bounded Pareto Job Sizes. (b) Exponential Job Sizes.

Fig. 6. Plot of F̄n with n = 1, . . . , 34, λ = 0.7 and d = 2 for bounded Pareto resp. exponential job size
distributions. The linewidth is increased with n.

n increases, F̄n gets increasingly closer to being an actual ccdf. Moreover we see that none of the

lines cross, which supports the claim that if F̄1(0) < F̄2(0), then for all s : F̄1(s) < F̄2(s).
In Figure 7 we show infs>0 F̄ (s), where F̄ is the solution of (9) as a function of the used initial

value F̄ (0). In Figure 7a, job sizes are deterministic, λ = 0.4 and d = 2, 3, 4, 5. Here we observe that
for certain values of λ,d and F̄ (0) the infimum might be −∞, but it is clearly monotone increasing

and close to linear with a steeper ascend close to F̄ (0) = 1. In fact, all of these curves converge to 1

as F̄ (0) converges to 1 and the incline close to 1 is so steep that it is not even visible in Figure 7. In

Figure 7b, bounded Pareto job sizes are used with d = 2 and λ = 0.1, 0.3, 0.5, 0.7, we observe the
same behaviour as for deterministic job sizes: the trajectory is close to linear with a steep incline

when F̄ (0) gets close to one. This curve, let us denote it by y = f (x), is in fact the one for which

we need to find the value x0 that satisfies f (x0) = 0 (i.e. this value x0 is exactly the F̄ (0) boundary
condition for which F̄ becomes a ccdf). The system is deemed unstable if and only if y = f (x)
does not cross zero in [0, 1] and this happens when f (x) < 0 for all x ∈ [0, 1), meaning there is a

discontinuity in 1 as we necessarily have f (1) = 1 as mentioned before. Moreover, as y = f (x) is
a curve which is close to linear, better (i.e. faster) algorithms could be used to obtain a root of f ,
e.g. a simple Newton iteration would converge extremely fast in this case.

Let λmax be defined as the highest value value of λ for which a system is still stable. That is, for

any λ < λmax the system is stable whilst for any λ ≥ λmax it is unstable. We know that for Redeq(d),
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(b) Bounded Pareto Job Sizes and d = 2.

Fig. 7. Plot of infs>0 F̄ (s) as a function of F̄ (0) for the solution of (9).

λmax ∈ [1/d, 1]. To obtain an algorithm which allows to compute λmax we note that if we pick ε > 0

small and we find λ > 0 such that for this λ and F̄ (0) = 1 − ε we have infs>0 F̄ (s) = 0, then the

system load for this λ is 1 − ε . If we now pick ε > 0 small enough this means that the system is

close to instability, and this value can then be used as an approximation for λmax. We verify this

method in Section 5.2 where we show that the approximation of λmax obtained in this manner is at

least accurate up to 0.001.

5 VALIDATION OF THE MODEL
5.1 Finite System Accuracy
In this section we use the algorithm presented in Section 4.4 to find the limiting workload distribu-

tion for Redeq(d) , where we find the value of F̄ (0) such that F̄ is a ccdf.

We compare the equilibrium workload distribution with the simulated workload distribution

for a finite system with N servers. We do this for 4 of the main job size distributions: exponential,

deterministic, bounded Pareto and hyperexponential. All simulation runs simulate the system up to

time t = 10
7/N and use a warm-up period of 30%. We simulate a system of N = 10, 50, 250 servers.

The results are shown in Figure 8. We see that as N increases the approximation provided by the

DIDE becomes more accurate (which supports Conjecture 3.3). Note that a similar figure can easily

be made for the response time distribution and Rediid(d).

5.2 Stability Region
In this section we apply the algorithm presented in Section 4.4 to obtain the maximum value λmax

for which the system is still stable. For this purpose, we first compute the value of λmax for a system

with d = 2 and deterministic, exponential resp. hyperexponential job sizes. We find:

• λmax = 0.80554 . . . for deterministic job sizes,

• λmax = 0.81669 . . . for exponential job sizes,
• λmax = 0.83441 . . . for hyperexponential job sizes.

Note that in this example λmax increases as the job size variability increases. For each distribution,

we set λ = λmax − 0.001 and simulate a system with N = 300, arrival rate λ and the corresponding

job size distribution for a time of 2 · 10
4
. We observe in Figure 9a that the system indeed appears to

be stable. In Figure 9b we observe that, when taking arrival rate λ = λmax + 0.001 and simulating

the system with N = 300 seems to result in an unstable system for each job size distribution. This

suggests that our method to obtain λmax is indeed quite accurate.
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(d) λ = 0.7, hyperexponential job sizes.

Fig. 8. For the Redeq(d) policy: Limiting workload distribution vs. simulation for N servers with exponential,
deterministic, bounded Pareto and hyperexponential job sizes. The full line represents the solution of the
IDE/DDE/ODE, which is compared with the simulated 95% confidence intervals.
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Fig. 9. The mean workload of a simulated system with N = 300 servers, d = 2 and deterministic, exponential
resp. hyperexponential job sizes.
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Fig. 10. Workload F̄ (0) as a function of the arrival rate λ for Redeq(d).

(a) d = 2 and different job size distributions. (b) d = 2, 3, 4, 5 and bounded Pareto job sizes.

Fig. 11. Mean response time
(
1 +

∫ ∞

0
F̄ (s)dds

)
as a function of the arrival rate λ for Redeq(d).

6 NUMERICAL EXPERIMENTS FOR REDeq(D)
6.1 Mean Response Time and Workload distribution
In Figures 10 and 11 we show the actual workload F̄ (0) and the mean response time E[R] =

1 +
∫ ∞

0
F̄ (s)d ds of the Redeq(d) policy as a function of the arrival rate λ (recall E[G] = 1). From

Figure 10a, it is clear that the stability region not only depends on the mean and the variance of the

job size distribution, but also on higher moments (as E[G2] = 10 for both the bounded Pareto and

hyperexponential job sizes, see also Figure 14b). This makes the question of stability for Redeq(d)

for general job size distributions a hard problem (which in turn makes proving Conjecture 3.3

hard). We can already infer from the plot that the more variable the job size distribution, the lower

the associated workload. From Figure 10b, it is obvious that λmax (defined as the supremum of the

arrival rates λ for which F̄ (0) < 1) decreases and the workload increases as a function of d (we have

numerically verified that this also holds for the other job size distributions considered). For a more

detailed discussion on λmax, see Section 6.3. Note that, as one would expect from a system that

employs redundancy, the workload increases as a concave function as the arrival rate λ increases.

We show in Figure 11a that, despite the fact that the workload for the less variable jobs is

consistently higher than that of the more variable ones, the same does not hold for the response

times. We see that adding variability to the job size distribution also increases the mean response
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Fig. 12. Mean response time
(
1 +

∫ ∞

0
F̄ (s)dds

)
as a function of the job sizes’ SCV ford = 2, 3, 4, 5 and λ = 0.45.

time (for λ sufficiently bounded away from instability). From Figure 11b it is clear that only for

small values of λ there is a reduction in response time by increasing d : this reduction is due to the

fact that for small arrival rates a job is more likely to find an idle server by increasing d , but as λ
increases higher values of d cause too much extra load on the servers which causes an increased

response time. In all plots in Figure 11 we observe that mean response times stay relatively small

until λ is close to λmax at which point the mean response time explodes to infinity. This effect is

more visible as the SCV of the jobs decreases and as the value of d increases.

6.2 Impact Of Job Size Variability
We now investigate how well Redeq(d) behaves as a function of the job sizes distribution’s SCV. In

Figure 12 we show the mean response time as a function of the job sizes’ SCV. On [0, 1] we use
deterministic, Erlang and exponential job sizes with mean one (see Figure 12a), while on (1, 40]

we use a hyperexponential distribution with balanced means and mean one (see Figure 12b). In

both figures, we fix λ = 0.45 and d = 2, 3, 4, 5. We observe that the mean response time generally

increases more or less linear as a function of the SCV. The most notable exception occurs when

d = 5 and the SCV is close to zero. In this case E[R] decreases as the system with deterministic jobs

is close to instability and increasing the job size variability somewhat increases the value of λmax,

which causes E[R] to decrease. Moreover, we observe that increasing d in case of deterministic

job sizes also increases the mean response time, whilst for large SCV this is not necessarily the

case. This makes sense as for jobs with low variability, the risk of picking a server that is serving a

large job is smaller than for more variable jobs, meaning there is less incentive to increase d and

increasing d also increases the amount of work on the servers.

In Figure 13 we make the same plots as in Figure 12, but now instead of fixing λ and taking

multiple values of d , we fix d = 2 and consider multiple values of λ. As expected, we observe that
increasing λ also increases the mean response time and the slope of E[R] as a function of the SCV.

Moreover we again observe that a decrease for low job size variability occurs when the system is

close to instability.

6.3 Stability
Let F̄ satisfy (9), we then find for all t for which F̄ (s) ≥ 0, s ∈ [0, t]:

F̄ ′(s) ≤ −λdḠ(s)(1 − F̄ (s)).
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Fig. 13. Mean response time
(
1 +

∫ ∞

0
F̄ (s)dds

)
as a function of the job sizes’ SCV.
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Fig. 14. The evolution of λmax as a function of d for deterministic, exponential, bounded Pareto and hyperex-
ponential job sizes in the Redeq(d) model.

This shows that, if there exists an ε > 0 for which Ḡ(ε) > 0 (i.e. job sizes are not identically zero)

and F̄ (0) < 1, then in the limit d → ∞ we find that F̄ (s) falls off at an unbounded speed. This

shows that as d tends to infinity, λmax tends to zero. It is also intuitively clear that this is the case

as for d = N we find that Redeq(d) becomes an M/G/1 queue with arrival rate λN where N tends to

infinity.

This fact is also reflected in Figure 14a, where we show the evolution of λmax as a function of d
for Redeq(d) with deterministic job sizes. We observe that for d = 1, λmax = 1 (naturally as this is

simply an M/D/1 queue), as d increases there is first a sharp drop in λmax until λmax ≈ 0.2 around

d = 20 after which we see that the curve slowly converges to its horizontal asymptote at λmax = 0.

In Figure 14b, we compare the value of λmax for other job sizes to λmax for deterministic job sizes.

We observe that the difference starts at zero (as for any M/G/1 queue λmax = 1), then jumps up for

d = 2 and d = 3 after which it decays to zero. We observe that the difference in stability region

increases as the tail of the job size distribution is more fat. The difference in λmax is however fairly

modest (no larger than 0.06).
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Fig. 15. The variance of the Response time distribution as a function of the arrival rate λ for d = 2, 3, 4, 5 in
the Redeq(d) model.

6.4 Variance of the Response Time Distribution
We now take a closer look at the behaviour of the variance of the response time distribution. To

compute the variance, it is best to first compute the ccdf of the squared response time F̄R2 and then

integrate, i.e. we compute the variance as:

Var(R) =

∫ ∞

0

F̄R2 (s)ds −

(∫ ∞

0

F̄R (s)ds

)
2

.

This is numerically more stable as it avoids the need to differentiate F̄R to obtain its density fR . Do
note that the computation of F̄R2 requires a quadratically wider s range [0, smax] than F̄R in order to

ensure that F̄R2 (smax) is sufficiently small.

In Figure 15 we show the variance of the response time distribution as a function of the arrival

rate λ for deterministic and exponential job sizes. We observe in Figure 15a that Var(R) remains

very small until it explodes when λ approaches λmax. As long as λ < λmax − 0.01, we observe that

Var(R) < 1. When taking a closer look at the curves for small λ, we see that the variance decreases
as d increases, this is due to the fact that, for low loads, having more replicas increases the chance

of finding an empty server. However, as d increases, λmax decreases which makes Var(R) explode
to infinity faster.

For exponential job sizes (see Figure 15b), we also observe that the variance explodes as λ
approaches λmax and for small λ we still have a higher variance for smaller d . We see that for small

values of λ the variance stays around 1 (this is due to the fact that for small loads all incoming jobs

have a high probability of finding an idle server). The variance does however increase more quickly

than for deterministic job sizes. Whereas for deterministic job sizes the workload at all queues

increases at a similar speed, for an exponential job size distribution the workloads at the different

servers will be less balanced as an arrival of a large job drives the workload of the d selected servers

up by a large amount.

6.5 Tail of the Response Time distribution
In Figure 16 we show F̄R for d = 1, . . . , 6 and λ = 0.48. We note that for both exponential and

bounded Pareto job sizes, the system becomes unstable for d ≥ 7, therefore these are no longer

shown. We see in both Figures 16a and 16b that for identical replicas (d ≥ 2) the tail of the response

time distribution is lighter than for a classic M/G/1 queue (d = 1). However, the probability of

having a very small response time is larger for the M/G/1 queue than for the case of identical
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(a) Redeq(d) with exponential job sizes. (b) Redeq(d) with bounded Pareto job sizes.

Fig. 16. Logarithmic plot of the response time distribution for Redeq(d) with exponential resp. bounded Pareto
job sizes, λ = 0.48 and varying values of d .
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(b) Redeq(d) for varying job sized and λ = 0.8.

Fig. 17. Logarithmic plot of the response time distribution for Redeq(d) for all main job size distributions,
λ = 0.5 resp. λ = 0.8 and d = 2.

replicas, especially for d = 6. This is due to the fact that, while replicas decrease the probability that

a job ends up in a long queue, the queues are more heavily loaded, which decreases the probability

of finding a queue with a very small workload (especially for d = 6 as the system is close to

instability in this case). This figure also confirms that as the job size variability increases, the gain

from having replicas increases.

In Figure 17a we compare the ccdf for various job size distributions, d = 2 and λ = 0.5. The tails
behave as expected: the fatter the tail of the job size distribution, the fatter the tail of the response

time distribution. However what is interesting to note is that for sufficiently small values of s
(around s < 4), the value of F̄ (s) is greater for the less variable job sizes. Moreover, when looking at

Figure 17b, we see that this effect is strengthened when λ increases. This can be understood by

recalling that λmax is smaller for less variable job size distributions.

6.6 Redeq(d) with cancellation delay
In this subsection, we look at the impact of having a cancellation delay on the performance of

Redeq(d). In Figure 18 we take λ = 0.7,d = 2 and consider 4 distributions forX : Erlang with 2 phases,

mean one and SCV 1/2, Exponential and Hyperexponential with balanced means and SCV = 2 and

3. We observe in Figure 18a that the system load increases in a concave manner as the cancellation
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Fig. 18. Plots for Redeq(d) with cancellation delay for X Erlang with 2 phases, mean one and SCV 1/2,
Exponential and Hyperexponential with balanced means and SCV = 2, 3, d = 2 and λ = 0.7.

delay δ increases. Moreover we observe that as job sizes are more variable, this increase is less steep.

Further, we observe in Figure 18b, that while for a small delay, the mean response time increases as

the job size variability increases, this relation is reversed for a delay of δ ≥ 0.8. Finally we note

that the system becomes unstable as we increase the cancellation delay δ , and the maximum point

of stability λmax increases as the SCV of the job size increases.

7 COMPARISON REDeq(D) AND REDiid(D)
In this section, we take a look at Rediid(d) by comparing it to Redeq(d). We first show that Rediid(d)

always performs better than Redeq(d). Afterwards, we revisit some of the numerical experiments

from Section 6 to indicate key differences between the two models. These results show why it may

be misleading to apply Rediid(d) as a model when the replica sizes are in fact not independent.

7.1 Rediid(d) stochastically outperforms Redeq(d)
Through a simple coupling argument we can show that the workload (and thus also the response

time) for Rediid(d) is always lower than for Redeq(d).

Proposition 7.1. Suppose we have d ≤ N < ∞ servers, incoming job sizes follow a general
distribution and the arrival process has a general distribution. Then the workload and response time
distribution of the system of N servers operating under Rediid(d) is always stochastically lower than
for the same system operating under Redeq(d).

Proof. Suppose the two systems are coupled such that arrivals occur at the same time and

choose the same servers in both systems. At the first arrival, both systems are still empty and the

new workload of a selected server for Rediid(d) is given by min
d
i=1

Si and S for Redeq(d), where

S, S1, . . . , Sd are independent and have distribution G. The inequality min
d
i=1

Si ≤d S obviously

holds (where ≤d denotes the distributional inequality). By induction, we assume that at an arbitrary

arrival instant in the future, the chosen servers for Rediid(d) have workload U1, . . . ,Ud while

the chosen servers for Redeq(d) have workload V1, . . . ,Vd with Ui ≤d Vi for all i . We find (with
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Fig. 19. Workload F̄ (0) as a function of the arrival rate λ for Rediid(d). This Figure should be compared to
Figure 10.

S, S1, . . . , Sd independent random variables with distribution G):

max

{
U1,

d
min

i=1

{Ui + Si }

}
≤d max

{
V1,

d
min

i=1

{Vi + Si }

}
≤d max

{
V1,

d
min

i=1

{Vi } + S

}
this shows (by permutingU1, . . . ,Ud ) that after an arrival instant the workload for Rediid(d) is still

stochastically smaller than that of Redeq(d). As the service is constant at rate 1 in both systems this

shows that the inequality regarding the workload process indeed holds.

For the response times, we note that when a job as the one above arrives, its response time is

exactly given by min
d
i=1

{Ui + Si } resp. min
d
i=1

{Vi } + S for the Rediid(d) resp. Redeq(d) model. This

shows by the above discussion that the distributional inequality for the response time distributions

also holds. �

Remark. For deterministic job sizes equal to one, it is obvious that Redeq(d) and Rediid(d) become
equivalent. We can also show this analytically by looking at Theorem 4.2 and Proposition 4.6, in
Proposition 4.6 we find for deterministic job sizes that: F̄R1

(s) = 1, s ≤ 1 and F̄R1
(s) = F̄ (s−1) otherwise.

This allows one to verify that (17) reduces to the same expression as (9) in case of deterministic job
sizes.

7.2 Mean Response Time and Workload distribution
In this section, we take another look at the setting in Section 6.1 for Rediid(d) instead of Redeq(d).

Figure 19 shows the workload as a function of the arrival rate λ and should be compared to Figure

10. We observe in Figure 19a that the workload equals λ for exponential job sizes (a fact which is

shown in [6]). For bounded Pareto and hyperexponential job sizes, we also observe a close to linear

growth as a function of λ with a less steep slope, implying that the stability region is larger for the

more variable job size distributions. This is to be expected as the minimum of two more variable

job size distributions has a smaller mean than the minimum of two exponential distributions. In

Figure 19b we observe that, despite the fact that workload decreased when going from d = 1 to

d = 2, the workload increases when we further increase the value of d in case of bounded Pareto

job sizes. This is further discussed in Section 7.4, where the stability is investigated.

In Figure 20, we observe the mean response time as a function of λ for the same settings as in

Figure 19 (it should be compared to Figure 11). We observe some similarity between Redeq(d) and

Rediid(d): the mean response time is very low until λ gets very close to λmax at which point it snaps

ACM Trans. Web, Vol. ?, No. ?, Article ?. Publication date: May 2018.



1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

?:24 Tim Hellemans and Benny Van Houdt

0 0.5 1 1.5

0.5

1

1.5

2

2.5

(a) d = 2 and different job size distributions.
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Fig. 20. Mean response time
(
1 +

∫ ∞

0
F̄ (s)dds

)
as a function of the arrival rate λ for Rediid(d). This Figure

should be compared to Figure 11.
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(a) Erlang job sizes with mean one and SCV on
the x-axis.
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(b) Hyperexponential job sizes with balanced
means, mean one and SCV on the x-axis.

Fig. 21. Mean response time
(
1 +

∫ ∞

0
F̄ (s)dds

)
as a function of the job sizes’ SCV for d = 2, 3, 4, 5 and λ = 0.45

for the Rediid(d) model. This Figure should be compared to Figure 12.

and goes to infinity. It is obvious that mean response times for Rediid(d) lies far below the mean

response times for Redeq(d) and also the point at which it snaps (i.e. λmax) lies way further to the

right.

7.3 Impact Of Job Size Variability
In this section, we take the same setting as in Section 6.2. We observe in Figure 21 that Rediid(d)

behaves completely different as a function of the SCV compared to Redeq(d). The mean response

time decreases sharply as the SCV increases, moreover taking a higher value ofd is always beneficial

irrespective of the job size variability. In Figure 22, we observe that increasing the value of λ has

no effect on the behaviour of E[R] w.r.t. the SCV, it still decreases monotonically as the SCV

increases. These Figures should be compared to Figures 12 and 13. These results further illustrate

the inappropriateness of assuming independence for systems where the replicas do not have

independent sizes.

Things are even more clear when we take the quotient of the mean response time for the Redeq(d)

policy and the Rediid(d) policy for the same parameter settings. In Figure 23, we show the quotient
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Fig. 22. Mean response time
(
1 +

∫ ∞

0
F̄ (s)dds

)
as a function of the job sizes’ SCV for the Rediid(d) model.

This Figure should be compared to Figure 13.

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

(a) Erlang job sizes with mean one and SCV on
the x-axis.

0 10 20 30 40
0

5

10

15

20

25

30

35

(b) Hyperexponential job sizes with balanced
means, mean one and the SCV on the x-axis.

Fig. 23. Quotient of the mean response time for identical replicas and independent replicas as a function of
the job sizes’ SCV for d = 2, 3, 4, 5 and λ = 0.45.

of the data found in Figure 12 and Figure 21. We observe that increasing the job size variability

and the number of chosen servers d both increase the mismatch between Redeq(d) and Rediid(d)

dramatically. Furthermore Figure 24 depicts the quotient of the mean response times for Redeq(d)

resp. Rediid(d) found in Figures 13 resp. Figure 22. We observe that the mismatch is even further

increased by taking a higher value for λ.

7.4 Stability
We now reuse the setting in Figure 14, the results are shown in Figure 25a. For deterministic job

sizes the value of λmax is obviously identical for Rediid(d) and Redeq(d). For other distributions,

we observe a completely different picture, for hyperexponential job sizes: λmax increases quickly

at first and then increases to a horizontal asymptote. For exponential job sizes the value of λmax

is constant and equal to 1 (as shown in [6]). For bounded Pareto job sizes, we observe that first,

λmax increases but afterwards it decreases to zero. It is in fact easy to show that for any job size

distribution which has a lower bound, the value of λmax decreases to zero. Indeed, if the job sizes
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Fig. 24. Quotient of the mean response time for identical replicas and independent replicas as a function of
the job sizes’ SCV for the Rediid(d) model.
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Fig. 25. Plot of λmax as a function of d for Rediid(d) .

are lower bounded by a value a > 0, then we find for all s < a that F̄R1
(s) = 1, therefore by (17)

F̄ ′(s) = −λd(1 − F̄ (s)) for s < a. This ODE has the solution F̄ (s) = 1 − (1 − F̄0)e
λds

(with F̄ (0) = F̄0).

As d → ∞ we see that for any F̄0 < 1, F̄ (s) decreases to −∞ and is thus not a ccdf.

For hyperexponential job sizes, it seems like λmax converges to some constant around 1.8. We

can indeed show that this is the case: the value of λmax for sufficiently large d is approximated by

1/(E[min
d
i=1

{Gi }] · d), where Gi are i.i.d. distributed as G. For d = N this approximation is exact

for any job size distribution as the queue behaves like an M/G/1 queue with arrival rate λN and

processing time min
d
i=1

{Gi }. For exponential job sizes we have E[min
d
i=1

{Gi }] · d = 1 for all d . For
hyperexponential job sizes we find limd→∞ λmax = 1.79 . . . . We illustrate this approximation as a

function of d for bounded Pareto job sizes in Figure 25b.

7.5 Tail of the Response Time distribution
In Figure 26 we show the tail of the response time distribution when replicas are independent (for

the same setting as when replicas were assumed to be identical in Figure 16). For independent

replicas the discussion is much simpler, as both the exponential and bounded Pareto distribution are
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(a) Rediid(d) with exponential job sizes. (b) Rediid(d)with bounded Pareto job sizes.

Fig. 26. Logarithmic plot of the response time distribution for Rediid(d) for exponential resp. bounded Pareto
job sizes with λ = 0.48 and varying values of d . These Figures shoul be compared to Figure 16.

sufficiently variable, there is a clear advantage by making independent replicas. When considering

distributions with a lighter tail, the results would be more similar to the case of identical replicas

(see e.g. Figure 22a versus Figure 13a).

8 FUTUREWORK
An important generalization is to look at the S&X model introduced in [5]. The Redeq(d) model

corresponds to the S&X model with no slowdown (i.e., S = 1), which implies that the replica that

starts execution first also finishes first. As such it is always better to cancel the other replicas as soon

as one starts execution. The Rediid(d) model corresponds to the S&X model with deterministic job

sizes (i.e., X = 1), which implies that if job sizes are more variable than exponential, extra replicas

reduce latency. As such it is always better to replicate on as many servers as possible. However, with

the S&X model different replicas may experience different slowdowns and cancellation-on-start

may no longer be superior. It is not hard to obtain general expressions for cd (t, s, r ) and Cd (t, r )
for the S&X model, which may lead to a similar differential equation with unknown boundary

condition. Proving Conjecture 3.3 would give a theoretical basis for the analysis provided here (as

was done for other load balancing schemes in [4]). We note that this is also an open problem for

replication with i.d.d. replicas considered in [6]. It might be worth trying to explicitly solve the

DIDE (9) for certain job size distributions.
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