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Abstract

The power of d random choices has been widely recognized in the balls-and-
bins, hashing and load balancing setting and various refinements such as the
introduction of asymmetry or memory have been proposed. Recently, the d-
choices garbage collection algorithm for flash-based SSDs was introduced and
shown to provide an excellent tradeoff between performance and simplicity. In
this paper we study the impact of asymmetry and memory on the performance
of the d-choices garbage collection algorithm using both mean field models and
trace-based simulations. Numerical examples demonstrate that both asymmetry
and memory reduce the write amplification, however the reduction is typically
less than 2% when exploiting asymmetry, while more significant gains exceeding
10% are observed when memory is introduced.

1. Introduction

The power of d random choices, initially studied in a simple balls-and-bins
model in [1], has becomes a general and robust paradigm applicable to a wide
variety of systems, see [19]. New applications and refinements still appear regu-
larly, some of these refinements include the use of asymmetry [28, 20] and mem-
ory [18]. Recently, the power of the d-choices algorithm as a garbage collection
(GC) algorithm for flash-based solid state drives (SSDs) was also demonstrated
in [25, 14]. In this paper, we introduce the d-left GC algorithm, which exploits
asymmetry, and the d-memory GC algorithm, that relies on memory. This paper
is an extended version of [24], that was limited to the analysis of the d-memory
algorithm. We study the so-called write amplification, which has a profound
impact on the write performance and life-span of an SSD, of both these algo-
rithms under synthetic and real life workloads. For the synthetic workloads we
consider uniform random writes and extend the mean field model of [25] in two
different ways, while for the real life workloads we rely on trace-driven simula-
tion experiments. The main overall finding is that while memory can result in a
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significant reduction of the write amplification, asymmetry seems to offer little
benefit.

Data on an SSD is organized in blocks each containing a fixed number of
fixed sized pages. The page size is typically a few kilobytes and it is also the
unit of data transfer with the SSD. The number of pages per block b is a power
of 2 ranging from b = 32 to 256 in modern SSDs. The number of physical blocks
N on the drive depends on the SSD storage capacity and often exceeds 100,000.
At any point in time, a page is either in the valid, invalid or erase state. In order
to write data on a page, it must be in the erase state. However, a page cannot
be erased individually, instead erase operations must be performed on entire
blocks. As such SSDs tend to write new data elsewhere and simply invalidate
the data in the old location.

To support out-of-place writes the device maintains a mapping between the
logical and physical page numbers, called the flash translation layer (FTL) [5, 7].
In a page-mapped FTL any logical page can be mapped to any physical page at
the expense of requiring as many entries in the map as there are pages on the
SSD. Many flash-based devices rely on a hybrid-mapped FTL (e.g., [11, 13, 10,
12]) as this reduces the size of the FTL map. However, some of these solutions
were designed specifically for mobile embedded systems (e.g., MP3 and PDAs)
and are not very suitable for the workloads with random writes and temporal
locality characteristics encountered in general-purpose computing.

We focus on a page-mapped FTL and any new data is sequentially written
to a special block, called the write frontier (WF). The main task of the garbage
collection algorithm is to select a new WF whenever the current one becomes
full and ideally it should select blocks with as few valid pages as possible (see
Section 2.1 for more details). Recently, the d-choices GC algorithm was shown to
provide an excellent tradeoff between simplicity and performance [25]. This GC
algorithm was inspired by the well-known d-choices algorithm in load balancing
[29, 17], where whenever a job needs to be dispatched d queues are chosen
uniformly at random and the job is assigned to the shortest among the d chosen
queues. The d-choices GC algorithm behaves similarly as it chooses d blocks
uniformly at random and selects the one containing the fewest number of valid
pages.

Often several of the d chosen blocks may in fact contain a small number of
valid pages and one may wonder whether in general the system performance
improves if we keep track of some of the best choices, instead of reselecting d
blocks each time the GC algorithm is activated. Adding memory on top of the
d choices should be beneficial, but it is less obvious if any gain can be achieved
if we keep track of the block ids of the next c best choices and reselect only
d− c blocks, for some c > 0. The idea of combining memory with d-choices to
recall some of the best choices of the previous selection has also been explored
in a load balancing setting [18], where the main finding is that memory may
increase the mean response time, but it does give rise to improved queue length
asymptotics.

Another idea that was used in a load balancing setting to improve the queue
length asymptotics is to introduce asymmetry [28, 20]. In this case the N
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queues are partitioned into d sets of size N/d, labeled 1 to d, and the d choices
are made such that one queue is selected uniformly at random within each set.
Further, when ties occur between queues belonging to different sets, they are no
longer broken at random. Instead the queue in the set with the smallest label is
selected, creating a form of asymmetry in the system. An interesting question is
whether this type of asymmetry is also beneficial in a garbage collection setting.

In this paper we study the write amplification of the d-choices GC algorithm
with memory, which we call the d-memory GC algorithm, and the d-choices GC
algorithm with asymmetry, which we call the d-left GC algorithm. We consider
both synthetic and trace-based workloads, where the synthetic workload consists
of uniform random writes, meaning all pages are accessed equally often and there
is no temporal or spacial locality, and the write amplification is analyzed by
extending the mean field model of [25] in two ways. Although this extension is
not hard, the resulting set of ODEs that captures the evolution of the mean field
model for the d-memory GC algorithm relies on the steady state probabilities
of a Markov chain with (b+ 1)c states, where c represents the number of block
ids stored by the d-memory GC algorithm and b denotes the number of pages
per block. Hence, for realistic values of b and c, e.g., b = 64 and c = 10, this
ODE cannot be solved in a direct manner. Instead we show that the necessary
steady state probabilities of these (b+1)c-state Markov chains can be expressed
through the steady state probabilities of b different Markov chains, each having
c+ 1 states only.

For the trace-based workloads, we rely on simulation experiments and an-
alyze the write amplification of SSDs that either make use of a single or the
double write frontier as described in [26]. As such the paper makes the follow-
ing contributions:

1. We extend the mean field model of [25] in two ways to analyze the write
amplification of the d-left and d-memory GC algorithm under uniform
random writes. For the d-memory GC algorithm we use lumpability prop-
erties to solve the resulting ODE in an efficient manner for realistic param-
eter values. We validate both mean field models by means of simulation
experiments and present numerical results to demonstrate the added value
of incorporating asymmetry or memory.

2. We use trace-based simulation experiments to confirm that the main find-
ings of the mean field model that relies on uniform random writes, also
apply under real workloads. As real workloads contain both hot and cold
data we consider SSDs that operate either using a single or a double write
frontier (see Section 2.1 for details). In the latter case adding more mem-
ory does not always reduce the write amplification, that is, there exists an
optimal amount of memory.

3. The main overall finding is that while memory can result in a significant
reduction of the write amplification (exceeding 10%), asymmetry seems
to offer rather limited benefit.

The paper is structured as follows. Section 1.1 discusses some related work,
while Section 2 described the system operation and introduces the d-left and
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d-memory GC algorithm. The mean field models are presented and validated in
Section 3, while various numerical results are presented in Section 4. In Section
5 we look at the impact of using real-life workloads, while conclusions are drawn
in Section 6.

1.1. Related work
The write amplification (and the distribution of the number of valid pages

per block) of the following garbage collection algorithms was analyzed in a
number of earlier studies:

• The FIFO GC algorithm [23, 30, 6] selects the blocks in a cyclic order.

• The greedy GC algorithm [15, 3, 6] selects the block containing the fewest
number of valid pages among all the blocks.

• The d-choices GC algorithm [25, 14, 26] selects the block with the fewest
number of valid pages out of a set of d randomly chosen blocks.

• The windowed GC algorithm [9] maintains a window containing the w least
recently selected blocks and selects the block with the fewest number of
valid pages in the current window.

Most of the above studies consider uniform random writes and focus on the case
where the number of blocks N tends to infinity. Under uniform random writes
the greedy algorithm is believed to be optimal, while the FIFO algorithm often
has the worst write amplification. Both the d-choices and the windowed algo-
rithm provide a trade-off between the simplicity of FIFO and the performance
of the greedy algorithm (note, the windowed algorithm corresponds to the FIFO
and greedy GC algorithm when the window size equals 1 and N , respectively).
The d-choices GC algorithm however provides a much better trade-off than the
windowed algorithm as small values of d suffice, e.g., d = 10, to achieve a write
amplification close to that of the greedy algorithm (see [25] for details).

Far fewer results are available in case of non-uniform random writes, in this
case some of the data, termed the hot data, is accessed more often, while the
remaining data is termed the cold data. The performance of the FIFO and
greedy algorithm in the presence of hot and cold data was analyzed in [6] for
a system using a single write frontier. These results indicated that the write
amplification worsens significantly as the hot data gets hotter, especially for
the FIFO GC algorithm. Similar results were provided in [26] for the d-choices
GC algorithm, where additionally the concept of the double write frontier was
described. With the double write frontier the write amplification was shown
to decrease as the hot data gets hotter and the greedy algorithm was shown
to be no longer optimal, instead there exists an optimal value for d. A simple
Rosenblum data model for the hot and cold data was used in [6, 26], though some
trace-based results for FIFO were also provided in [6]. Under the Rosenblum
model a fraction f of the logical address space corresponds to hot data and the
remaining fraction to cold data. The fraction of write operations to the hot data
is denoted as r. Note, in the Rosenblum model there is no spacial locality in
the workload and the temporal locality does not vary over time.
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2. System description and algorithms

2.1. System operation

As indicated in the introduction, we focus on a page-mapped FTL where
new data is sequentially written to a special block, called the write frontier
(WF). Suppose at some point in time that the first k pages of the WF are in the
valid/invalid state, while the remaining b− k pages are in the erase state. The
data of the next write operation is stored on page k+1 of the WF, while altering
its state from erase to valid. The data in the old location is invalidated and the
FTL mapping is updated. When the WF becomes full, meaning all its pages
are in the valid/invalid state, the GC algorithm creates a new WF. It does this
by selecting a block (in some algorithm dependent manner) and by erasing the
entire block after copying any valid data that was left on the block to memory.
Assume there were j valid pages in the selected block before the erase operation
took place. After the erase operation the j valid pages are written back to the
selected block using the first j pages and the next b − j externally requested
write operations can make use of the last b− j pages of the newly created WF.
It should be noted that in practice, the copy to memory is avoided by making
use of a clean block, but the performance with or without the clean block is
identical.

Note, whenever the GC algorithm selects a block containing j valid pages,
the SSD needs to perform one erase and b write operations in order to process
b− j externally requested write requests (i.e., requests issued by the operating
system). The ratio of the total number of writes to the total number of externally
requested writes is defined as the write amplification (WA). If we denote pj as
the probability that the GC algorithm selects a block with j valid pages, the
WA can be expressed as

WA =
b

b−
∑b

j=0 jpj
.

The write amplification is an important performance measure because it directly
impacts the speed of the drive (erase and write operations are much slower than
read operations [4]) as well as the lifespan of the SSD (as each block can only
be erased a limited number of times [8]).

The above discussion applies to an SSD that makes use of a single WF. The
double WF described in [26] makes use of 2 WFs: the WFI is used for internally
requested writes and the WFE is used for externally requested writes. Whenever
the GC algorithm is activated it attempts to create a WFE with all of its pages in
the erase state. It does this by first selecting a block (in some specific manner),
where we denote the number of valid pages in the selected block as j. If the
WFI has j or more pages in the erase state, the GC algorithm copies the j valid
pages of the selected block to the WFI (changing the state of j of its pages
from erase to valid) and erases the selected block, which becomes the new WFE
with all of its pages in the erase state. If the WFI does not contain enough
pages in the erase state, only some of the valid pages of the selected block are
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copied to the WFI, while the remaining pages are copied to memory and placed
back on the selected block after the erase operation took place. In the latter
case the newly selected block becomes the new WFI and the GC algorithm is
immediately activated again in order to create a new WFE. For the double WF
the write amplification is still defined as the ratio of the total number of writes
over the total number of externally requested writes (see [26] for more details).
It is worth noting that the idea of separating writes triggered by the operating
system and writes triggered by garbage collection has also been proposed in the
context of log structured file systems [16, Section 7].

SSDs also rely on over-provisioning, meaning a drive with N physical blocks
is perceived by the operating system as having a storage capacity of U < N
blocks. The spare factor Sf is defined as 1− U/N and ranges from 0.02 to 0.2
in real life SSDs. The advantage of over-provisioning is that a fraction Sf of
all the pages is guaranteed to be in the invalid/erase state, which increases the
odds for the GC algorithm to locate a block with a small number of valid pages
(which in turn reduces the WA). In fact, if the SSD has been operational for a
while and the TRIM command is not supported (as in older SSDs) or used, the
fraction of pages in the invalid/erase state is exactly equal to Sf . This is due
to the fact that while the pages corresponding to a file that is deleted by the
file system may change their state from valid to invalid, such a change does not
occur because file delete information is not by default passed down to the SSD,
unless explicitly done so by invoking the TRIM command. In this paper, as in
all prior studies, we assume that the TRIM command is not supported or used.
Also, the trace data used in Section 5 does not contain any information on the
TRIM command either and consists of reads and writes only.

2.2. The d-choices GC algorithm with asymmetry and memory

In this paper we introduce and analyze the d-left and d-memory GC algo-
rithm under both uniform random writes and trace-based workloads. The first
algorithm exploits asymmetry, while the latter uses memory.

2.2.1. d-left GC algorithm

The d-left GC algorithm partitions the set of N blocks into K partitions,
labeled 1 to K, such that the k-th partition contains Nk blocks, for K ≥ 1,
k = 1, . . . ,K and

∑
kNk = N . Further, the d-left GC algorithm chooses dk

blocks uniformly at random from the k-th partition, for k = 1, . . . ,K, with
d =

∑
k dk, and selects the block with the fewest number of valid pages among

the d chosen blocks. Ties between blocks belonging to different partitions are
broken by selecting the block belonging to the partition with the lowest partition
number, while ties between blocks belonging to the same partition are broken
uniformly at random.

The d-choices GC algorithm introduced in [25, 14] corresponds to the case
with K = 1, while for the numerical examples we will restrict ourselves to the
case where Nk = N/d and dk = 1, for k = 1, . . . ,K. The mean field model of
the next section however does not impose a restriction on the fractions Nk/N
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(or dk for that matter). Optimizing the fractions Nk/N probably allows us to
further reduce the write amplification by a small fraction.

2.2.2. d-memory GC algorithm

The d-memory GC algorithm operates as follows: it stores the id of c ≥ 1
blocks at all times, these c block ids are initially selected at random and their
corresponding blocks are called the c stored blocks. Whenever the d-memory
GC algorithm is activated, it chooses d blocks uniformly at random from the
N−c remaining blocks. Next, the GC algorithm selects the block with the least
number of valid pages among the d chosen and the c stored blocks. Finally,
the c ids of the blocks with least number of valid pages among the remaining
d + c − 1 blocks become the c stored block ids. In other words, the d-memory
GC algorithm stores the id of the 2nd to (c+1)st best blocks for possible future
use as they might also contains a limited number of valid pages.

3. Mean field models

In this section we generalize the mean field model introduced in [25] in two
different ways to study the d-left and d-memory GC algorithm. Under a uniform
random writes workload, meaning all pages are accessed equally often and there
is no temporal or spacial locality, it is not hard to see that the single and double
write frontier achieve the same write amplification1. As such we can focus on
the single write frontier case only.

3.1. d-left model

When K = 1 the model introduced in this section reduces to the one in [25]
for the d-choices GC algorithm. Let X̃N

n,k(t) ∈ {0, 1, . . . , b}, for n = 1, . . . , Nk

and k = 1, . . . ,K, be the number of valid pages on block number n of partition
k at time t, i.e., just prior to the time epoch where the d-left GC algorithm is
activated for the t-th time. Let S̃ = {(i, k)|i ∈ {0, . . . , b}, k ∈ {1, . . . ,K}} and
M̃N (t) be the occupancy measure of X̃N

n,k(t), that is, M̃N (t) = {M̃N
i,k(t)|(i, k) ∈

S̃} and

M̃N
i,k(t) =

1

N

Nk∑
n=1

1[X̃N
n,k(t) = i],

for (i, k) ∈ S̃ and where 1[A] = 1 if A is true and 0 otherwise.
Let ∆̃N = {~m ∈ R(b+1)K |mi,kN ∈ {0, . . . , Nk}, (i, k) ∈ S̃,

∑
i∈S mi,k =

Nk/N} and let p̃i,k(~m), for (i, k) ∈ S̃, be the probability that the d-left GC
algorithm selects a block with i valid pages that belongs to partition k provided

1In the presence of hot and cold data the single and double write frontier create blocks
with a different mixture of hot and cold data, which results in a different write amplification
as blocks with more hot data are invalidated more easily. Under uniform random writes, both
simply create full blocks with data that is equally often accessed. As such the GC algorithm
samples from the same distribution when selecting d blocks

7



that M̃N (t) = ~m with ~m ∈ ∆̃N . For the d-left GC algorithms introduced in
Section 2.2 we have the following expression for p̃i,k(~m):

p̃i,k(~m) =

k−1∏
s=1

 b∑
j=i+1

mj,s

ds
 ·


 b∑

j=i

mj,k

dk

−

 b∑
j=i+1

mj,k

dk
 ·
 K∏

s=k+1

 b∑
j=i

mj,s

ds
 ,

as in the first k − 1 partitions all the chosen blocks should hold at least i + 1
valid pages, the block with the least number of valid pages among the dk blocks
chosen in partition k has to contain exactly i valid pages and all the chosen
blocks in the remaining partitions must contain at least i valid pages.

Define the drift ~fNleft(~m) for ~m ∈ ∆N as the expected change to M̃N (t) in
one transition, that is,

~fNleft(~m) = E[M̃N (t+ 1)− M̃N (t)|M̃N (t) = ~m].

Let ~fNleft(~m) = {f̃Ni,k(~m)|(i, k) ∈ S̃} and define f̃i,k(~m) = limN→∞ f̃Ni,k(~m)/ε(N),
with ε(N) = 1/N , then analogously to [25, Section 5.1] one finds for i < b

f̃i,k(~m) =

 b∑
j=1

K∑
k=1

p̃b−j,k(~m)j

 (i+ 1)mi+1,k − imi,k

bρ
− p̃i,k(~m), (1)

while

f̃b,k(~m) =

b−1∑
j=0

p̃j,k(~m)−

 b∑
j=1

K∑
k=1

p̃b−j,k(~m)j

 bmb,k

bρ
. (2)

Intuitively, the expression for f̃i,k(~m), with i < b, can be understood as follows.

First, the sum
∑b

j=1

∑K
k=1 p̃b−j,k(~m)j represents the mean number of external

write requests that are performed in between two executions of the GC algorithm
(given that M(t) = ~m). Further, imi,k/(bρ) is the probability that such an
external request updates a valid page on a block of partition k containing i valid
pages, due to the uniform random writes and the fact that on average each block
holds bρ valid pages. Hence, with probability imi,k/(bρ) the number of blocks
containing i valid pages reduces by one, while with probability (i+1)mi+1,k/(bρ)
such a block is created by an external write request. Finally, the number of
blocks containing i valid pages also reduces by one in between two executions
of the GC algorithm, if the GC algorithm selects such a block (which happens
with probability p̃i,k(~m) if M(t) = ~m). The expression for f̃b,k(~m, j) can be
understood similarly by noting that an extra block in partition k with b valid
pages is created (in the WF) whenever the d-left GC algorithm selects a block
of partition k containing less than b valid pages.
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Define M̂N (τ) as the re-scaled process such that M̂N (t) = M̃N (btNc), for
t ≥ 0 and the deterministic process ~ν(t) = {νi,k(t)|(i, k) ∈ S̃} as the unique
solution of the ODE given by

d~ν(t)

dt
= ~fleft(~ν(t)), (3)

where ~fleft(~m) = {f̃i,k(~m)|(i, k) ∈ S̃} is defined by (1) and (2). It is not hard
to verify that the following theorem holds due to Corollary 1 in [2]:

Theorem 1. If M̃N (0) → ~m in probability as N tends to infinity, then
sup0≤t≤T ||M̂N (t) − ~ν(t)|| → 0 in probability, where ~ν(t) is the unique solution
of the ODE (3) with ~ν(0) = ~m.

Hence, for N large we can approximate M̃N (t) by ~ν(t/N) for any finite t. Fur-
ther, Corollary 2 in [2] shows that the convergence extends to the stationary
regime if the ODE has a global attractor in ∆̃ = {~m ∈ R(b+1)K |0 ≤ mi,k ≤
Nk/N, (i, k) ∈ S̃,

∑
i∈S mi,k = Nk/N}. Numerical experiments indicate that

there exists a global attractor, but we have no proof at this stage (except for
the d-choices GC algorithm with d = 1 or b = 2).

To determine the write amplification WA of the d-left GC algorithm, we use
Euler’s method to find a fixed point ~ζ of (3) with νi,k(0) = 1

K

(
b
i

)
ρi(1−ρ)b−i and

a step size h = 0.001 until ||~ν(t+ h)− ~ν(t)||1 < 10−10. For all the experiments
conducted convergences occurred within seconds (even for b = 64 and K = 20).
The ODE-based write amplification (WA) is subsequently computed as

WA =
b

b−
∑b

j=1 j
(∑K

K=1 p̃j,k(~ζ)
) .

3.2. d-memory model

When c = 0 the model introduced in this section reduces to the one in [25] for
the d-choices GC algorithm. We observe the system just prior to the time epochs
where the d-memory GC algorithm is executed and let XN

n (t) ∈ {0, 1, . . . , b},
for n = 1, . . . , N , be the number of valid pages on block number n at time t
for an SSD with N physical blocks. Let MN (t) = (MN

0 (t), . . . ,MN
b (t)) be the

occupancy measure of XN
n (t), that is,

MN
i (t) =

N∑
n=1

1[XN
n (t) = i],

for i = 0, . . . , b. Further, let ji(t) denote the number of valid pages in the i-
th stored block at time t, for i = 1, . . . , c, and let JN (t) represent the string
j1(t)j2(t) . . . jc(t) and denote f(JN (t)) = minc

i=1 ji(t). Clearly, in case of uni-
form random writes {(MN (t), JN (t)), t ≥ 1} is a Markov chain on the state

space ∆N × Sc, where ∆N = {~m ∈ Rb+1|miN ∈ {0, 1, . . . , N},
∑b

i=0mi =

1,
∑b

i=0 imi = ρb} and Sc = {J |J = j1j2 . . . jc, ji ∈ {0, . . . , b}, i = 1, . . . , c}, as
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the total fraction of valid pages equals ρ = 1 − Sf at all times. As this chain
cannot be analyzed directly for realistic values of N (e.g., N = 50, 000), we
focus on the system behavior as N tends to infinity using a mean field model,
the accuracy of which is validated via simulation in Section 3.3.

Define fNi (~m, j), for i = 0, . . . , b, as the drift of the fraction of blocks with i
valid pages provided that the least number of valid pages in one of the stored
blocks is j and the occupancy measure is given by ~m:

fNi (~m, j) = E[MN (t+ 1)−MN (t)|MN (t) = ~m, f(JN (t)) = j].

Further, let fi(~m, j) = limN→∞NfNi (~m, j). In order to determine the drift
fi(~m, j), define pi(~m, j) as the probability that the d-memory GC algorithm
selects a block with i valid pages provided that f(J(t)) = j and M(t) = ~m.
These probabilities can be expressed as

pi(~m, j) =

(
b∑

`=i

m`

)d

−

(
b∑

`=i+1

m`

)d

, (4)

for i < j, as all of the d chosen blocks should contain at least i valid pages, but
not all should contain more than i valid pages. Further,

pj(~m, j) =

 b∑
`=j

m`

d

, (5)

while for i > j we clearly have pi(~m, j) = 0 as at least one of the stored blocks
contains only j valid pages.

The reasoning in [25, Section 5.1] to determine the drift fi(~m) for the d-
choices GC algorithm without memory, can now be repeated to express fi(~m, j)
if we replace the probabilities pi(~m) in [25] by the probabilities pi(~m, j) and by
noting that pi(~m, j) = 0 for i > j. Hence based on [25], for i < b, we may
conclude

fi(~m, j) =

(
b∑

`=1

pb−`(~m, j)`

)
(i+ 1)mi+1 − imi

bρ
− pi(~m, j), (6)

while

fb(~m, j) = 1− pb(~m, j)−

(
b∑

`=1

pb−`(~m, j)`

)
bmb

bρ
. (7)

The expressions for f̃i,k(~m) can be understood intuitively using a similar argu-
ment as for (1) and (2), except that we now condition on having M(t) = ~m

and f(J(t)) = j, while
∑b

`=1 pb−`(~m, j)` represents the mean number of ex-
ternal write requests that are performed in between two executions of the GC
algorithm.
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To define the ODE that captures the evolution of the mean field model, note
that Sc is the state space of J(t). If we assume that M(t) = ~m for t ≥ 0 for
some ~m ∈ ∆ fixed, then J(t) forms a Markov chain with state space Sc. Denote
its transition matrix of size (b + 1)c as K(~m), as it depends on the occupancy
measure ~m. It is not hard to see that K(~m) contains a single recurrent class
(for d > 1) that consists of all the strings J = j1j2 . . . jc for which mji > 0 for
i = 1, . . . , c. Denote π(~m) = (πJ(~m))J∈Sc as the invariant vector of K(~m) (with
the entries of the possible transient states set to zero). Next, we define the set
of ODEs that captures the evolution of the mean field model as

d~µ(t)

dt
= ~F (~µ(t)), (8)

with

~F (~m) =

b∑
j=0

 ∑
J∈Sc,f(J)=j

πJ(~m)

 ~f(~m, j).

Hence, the ODE is expressed via the drifts ~f(~m, j) = (f0(~m, j), . . . , fb(~m, j)) and
the probabilities πj(~m) defined as πj(~m) =

∑
J∈Sc,f(J)=j πJ(~m), for j = 0, . . . , b.

Finally, define M̄N (τ) as the re-scaled process such that M̄N (t) =
MN (btNc). As in [25], it is not hard to verify that the following theorem
holds due to Corollary 1 in [2]:

Theorem 2. If MN (0) → ~m in probability as N tends to infinity, then
sup0≤t≤T ||M̄N (t) − ~µ(t)|| → 0 in probability, where ~µ(t) is the unique solu-
tion of the ODE (8) with ~µ(0) = ~m.

Hence, as for the d-left GC algorithm, we can approximate MN (t) by ~µ(t/N) for
any finite t for N large. To show that the convergence extends to the stationary
regime, it suffices to prove that the ODE has a global attractor. Unfortunately
proving the existence of a global attractor for the set of ODEs in (8) appears
hard, but numerical experiments suggest that such an attractor exists.

To determine the write amplification WA, we once more use Euler’s method
to find a fixed point ~η = (η0, . . . , ηb) of (8) and compute the write amplification
as

WA =
b

b−
∑b

j=0 πj(~η)
∑j

i=0 ipi(~η, j)
.

Note Euler’s method is an iterative method and when applied to (8) this implies
that we need to determine the steady state probabilities of the transition matrix
K(~m) for some ~m during each step (while the number of steps can be as large as
a few thousand). As K(~m) is of size (b+ 1)c, we cannot simply construct K(~m)
and solve the corresponding linear system to determine the necessary steady
state probabilities πj(~m) for realistic values of b and c, e.g., b = 64 and c = 10.
In the next subsection we show how we can reduce the problem of computing
the probabilities πj(~m), which is required during each step of Euler’s method,
to the computation of the steady state probabilities of b small Markov chains
(each having c+ 1 states).
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3.2.1. Computation of πj(~m)

To determine the probabilities πj(~m), let j ∈ {0, . . . , b − 1} be fixed and
denote Aj,k ⊂ Sc, for k = 0, . . . , c, as the subset of Sc containing all the strings
J ∈ Sc such that exactly k elements of J are larger than j. Clearly Aj,0, . . . , Aj,c

is a partition of Sc and we show that the Markov chain with transition matrix
K(~m) can be lumped with respect to this partition. In other words, the number
of stored blocks with more than j valid pages forms a (c+1)-state Markov chain
with state space {0, . . . , c} for any j ∈ {0, . . . , b−1} fixed. Denote its transition

matrix as P (j) and its transition probabilities as p
(j)
i,i′ with i, i′ ∈ {0, . . . , c}, then

p
(j)
i,i−k(~m) =



B
d,
∑j

`=0 m`

k+1 i < c;−1 ≤ k < i,

B
d,
∑j

`=0 m`

k+1 i = c; 1 ≤ k < c,∑1
s=0B

d,
∑j

`=0 m`
s i = c; k = 0,

1−
∑i

s=0B
d,
∑j

`=0 m`
s k = i,

0 otherwise

where Bn,p
j =

(
n
j

)
pj(1 − p)n−j . Indeed, if at least one stored block contains at

most j valid pages (i.e., if i < c), the number of stored blocks with more than
j valid pages increases by one during a single transition if none of the d chosen
blocks contains at most j valid pages. Similarly, if i < c, the state remains the
same if exactly one of the d chosen blocks contains at most j valid pages and it
decreases by k (for k < i) if k + 1 of the chosen blocks contain at most j valid
pages. The expressions for the cases with i = c and k < c can be understood
similarly. Finally, a transition to state 0 occurs as soon as more than i of the
chosen d blocks contain at most j valid pages.

Denote the steady state probability vector of the (c+ 1)-state Markov chain

with transition matrix P (j) as (θ
(j)
0 (~m), . . . , θ

(j)
c (~m)). These vectors can be

computed easily (in fact they can even be expressed explicitly in a recursive
manner as this chain is skip-free in one direction) and they obey the following
equalities:

j∑
`=0

π`(~m) =
∑

J∈Sc,f(J)≤j

πJ(~m) = 1− θ(j)c (~m),

as in any state i < c there is at least one stored block with at most j valid

pages. If we compute the steady state probabilities θ
(j)
c (~m), for j = 0, . . . , b−1,

by solving b Markov chains with c+ 1 states each, the above equality allows us
to express the probabilities πj(~m) as

πj(~m) = θ(j−1)c (~m)− θ(j)c (~m),

for j = 1, . . . , b − 1, while π0(~m) = 1 − θ(0)c (~m) and πb(~m) = θ
(b−1)
c (~m). To

conclude, we can compute the required probabilities πj(~m), for j = 0, . . . , b,
by solving b Markov chains of size c + 1 only, instead of trying to solve the
(b+ 1)c-state Markov chain characterized by K(~m). This allows us to generate

12



b Sf d ODE simul. (95% conf.)
64 0.07 5 7.4042 7.4040 ± 0.0010
64 0.14 12 3.6569 3.6570 ± 0.0002
64 0.21 8 2.5933 2.5932 ± 0.0001
32 0.08 10 5.7228 5.7229 ± 0.0004
32 0.13 3 4.5260 4.5262 ± 0.0007
32 0.18 20 2.7861 2.7860 ± 0.0001
16 0.06 14 6.1242 6.1246 ± 0.0005
16 0.13 7 3.6185 3.6187 ± 0.0004
16 0.20 4 2.7597 2.7596 ± 0.0004

Table 1: Comparison of ODE-based write amplification and simulation experiments (25 runs)
for the d-left GC algorithm with N/d = 5, 000 blocks. Relative errors are less than 0.05%

b Sf d c ODE simul. (95% conf.) nruns
64 0.08 5 2 6.2461 6.2468 ±0.0006 100
64 0.12 6 24 4.2408 4.2405 ±0.0005 50
64 0.17 8 8 3.0596 3.0595 ±0.0003 25
32 0.07 6 5 6.4146 6.4147 ±0.0007 100
32 0.11 20 3 4.2113 4.2114 ±0.0006 50
32 0.16 15 19 3.0668 3.0664 ±0.0004 25
16 0.06 10 1 6.1340 6.1346 ±0.0010 100
16 0.10 4 10 4.5355 4.5344 ±0.0011 50
16 0.15 2 3 3.9448 3.9447 ±0.0017 25

Table 2: Comparison of ODE-based write amplification and simulation experiments for the
d-memory GC algorithm with N = 50, 000 blocks. Relative errors are less than 0.05%.

numerical results in a matter of seconds with very low memory requirements
even for systems with b = 64 pages per block that rely on c = 50 memory
locations.

3.3. Validation

To validate both mean field models for uniform random writes we conducted
simulation experiments that basically simulate the Markov chains {M̃N (t), t ≥
1} and {(MN (t), JN (t)), t ≥ 1}. Hence, the only difference with the mean field
model is therefore the system size N , which was set equal to 50, 000 for the
d-memory GC algorithm and 5, 000 times d for the d-left GC algorithm in the
simulation setup. For b = 64 and 4 KB pages this corresponds to an SSD with
a total storage capacity of 12.8 GB and 1.28 times d GB, respectively.

The number of runs used in the simulation setup to compute the 95% con-
fidence intervals was 25 for the d-left GC algorithm and varied between 25 and
100 depending on the spare factor Sf for the d-memory GC algorithm (see Ta-
ble 2). Each run had a length of 250, 000 for the d-memory GC algorithm and
of 150, 000 times d for the d-left GC algorithm . The warm-up period was set
equal to 1/3th of the total length. The results in Table 1 and Table 2 show

13



0 0.05 0.1 0.15 0.2
10

−5

10
−4

10
−3

Spare Factor S
f

R
e

la
ti
v
e

 W
ri
te

 A
m

p
lif

ic
a

ti
o

n
 R

e
d

u
c
ti
o

n

b = 32

b = 16

b = 8

b = 2

b = 4

0 0.05 0.1 0.15 0.2
10

−4

10
−3

10
−2

Spare Factor S
f

R
e

la
ti
v
e

 W
ri
te

 A
m

p
lif

ic
a

ti
o

n
 R

e
d

u
c
ti
o

n

b = 2

b = 4

b = 8

b = 16

b = 32

Figure 1: Relative reduction in the write amplification by the d-left GC algorithm for d = 2
(left) and d = 10 (right). All gains are below 1%.

a good agreement between the model and the simulation results with relative
errors below 0.05% for some arbitrary combinations of b, c, d and Sf .

4. Uniform random writes: numerical results

4.1. d-left GC algorithm

In this section we rely on the mean field model of Section 3.1 to study the
impact of having asymmetry in case of uniform random writes. More specifically,
in Figure 1 we compare the write amplification of the d-left and d-choices GC
algorithm for d = 2 and d = 10. In fact, in all the numerical experiments the
d-left algorithm reduced the write amplification of the d-choices algorithm and
as such we have plotted the relative reduction in the write amplification. The
results show that the gain is very limited, i.e., below 1%, and is quite sensitive
to the number of pages b per block, the spare factor Sf = 1−ρ and the number
of choices d. Similar results were also obtained for other d values.

Although there is little practical interest in a system with very small b values,
e.g., b = 4, we included such results as they reveal a pattern in the impact of b.
The fact that these curves become quite irregular as d becomes larger seems to
be related to the fact that the write amplification of the d-choices GC algorithm
approaches the write amplification of the greedy GC algorithm under uniform
random writes (see [25]) and the write amplification of the latter GC algorithm
is not smooth in Sf [3].

Figure 2 shows the distribution of the number of valid pages per block for
b = 16, Sf = 0.1 and d = 4 for the d-choices and d-left GC algorithm. It
indicates that the partitions with a higher label number are more likely to
contain less valid pages. This can be easily understood by noting that blocks
repeatedly become full (when selected by the GC algorithm) and subsequently
lose valid pages until they are selected again. As the blocks belonging to the
lower partition numbers are selected in case of a tie, the blocks in the higher
partitions have more time to loose valid pages. In comparison with the d-choices
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Figure 2: Distribution of the number of valid pages for d = 4, b = 16 and Sf = 0.1.

algorithm the blocks belonging to partition 3 and 4 are about 7 and 23% more
likely to contain a small number of valid pages (in this example), respectively,
while partitions 1 and 2 are somewhat less likely to contain a small number of
valid pages. This asymmetry turns out to give the d-left GC algorithm a very
minor edge on the d-choices GC algorithm.

4.2. d-memory GC algorithm

In this section we rely on the mean field model of Section 3.2 to look at the
impact of introducing memory on the write amplification under uniform random
writes. In the first experiment we increase c while all the other parameters, in-
cluding d, remain fixed. The write amplification should reduce as c increases and
one may expect that the write amplification approaches the write amplification
of the greedy algorithm as c becomes large, because setting c = N corresponds
to the greedy GC algorithm. This might in fact be the case if we were to define
c as a function of N and let N tend to infinity. We should however keep in mind
that in our setup c remains fixed as N tends to infinity and therefore the write
amplification does not necessarily reduce to the one of the greedy GC algorithm
as c tends to infinity.

The results in Figure 3(left), where b = 64, Sf = 0.1 and d = 5, 10 and
20, confirm that the write amplification decreases as c increases, but the rate
of decrease very quickly diminishes as c increases and seems to stagnate rather
quickly. The write amplification of the greedy algorithm equals 4.8213 for b = 64
and Sf = 0.1, which seems to suggest that the write amplification does not
converge to the one of the greedy algorithm as c tends to infinity (with d fixed).
Figure 3(right) seems to confirm this as it suggests that the distribution of
the least number of valid pages in a stored block converges to a distribution
that is clearly different from the distribution of the number of valid pages in
a block selected by the greedy algorithm (computed via [3]). In conclusion,
adding a very limited amount of memory to reduce the write amplification is
quite effective, e.g., c ≤ 5, but the additional benefit of adding larger amounts of
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Figure 4: Reduction in the write amplification (%) of the d-choices algorithm with memory
when c > 0 compared to the case with c = 0, for c+ d = 10 (left) and c+ d = 20 (right).

memory is far less significant. Similar results were obtained for other parameter
settings.

In the second experiment we intend to see whether it is best to reselect d
new blocks uniformly at random each time the GC algorithm is executed or
whether to reselect only d − c of the blocks and to store the ids of the c best
blocks in memory. In other words, we fix b, Sf and c + d, while we increase c.
Figure 4 depicts the relative gain of the d-choices algorithm with memory when
c > 0 compared to the case with c = 0. The left plot shows that setting c = 1
is optimal for c+ d = 10, except for b = 16 and spare factors around 0.05. The
gains compared to setting d = 10 are quite limited and typically lie between 1
and 3 percent. More substantial gains are observed when we perform a similar
experiment using trace-based data in Section 5.2. For c + d = 20 we observe
similar results, meaning moderate gains are obtained if we do not always reselect
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d new blocks uniformly at random. The oscillations observed in the curves in
Figure 4 are related to the fact that the write amplification of the d-choices GC
algorithm approaches the amplification of the greedy GC algorithm as d tends
to infinity and this latter write amplification is not a smooth function of Sf .
The oscillations also become more pronounced as d increases.

5. Trace-based workloads

5.1. Simulation setup

When conducting (time-consuming) trace-based simulation experiments we
have relied on a number of real-world I/O traces:

• rsrch0 [22]: an I/O trace collected at a server supporting research projects
at Microsoft Research.

• prxy0 [22]: an I/O trace containing requests of a Firewall/web proxy
server at Microsoft Research.

• online [27]: an I/O trace of a coursework management workload on Moo-
dle at a university.

• webmail [27]: an I/O trace of webmail traffic on a university department
mail server.

In order to use these traces in an SSD setting with 4 KB pages the traces were
processed as follows. We first aligned the offset of each request to a multiple of 4
KB (all the offsets in the traces are multiples of 512 bytes). Requests with sizes
above 4 KB (if present) were subsequently split into several (sequential) requests
such that all requests have a size of at most 4 KB. Some statistics on the trace
files after this processing was done are listed in Table 3 and Table 4. Table 3
lists the percentage of the requests that are write requests (%Writes), it lists
the number of requests (#Requests), and the percentage of the accessed logical
block address (LBA) space that is only accessed by read requests (%LBA RO).
The data locality, presented in Table 4, is expressed as follows: the y% most
frequently accessed pages represent v% percent of the total accessed LBA space
(including both writes and reads) if v appears in the column labeled y%, e.g.,
for the webmail trace the 60% most frequently accessed pages represent about
5.23% percent of the total accessed LBA space. Table 3 also shows that all these
traces are write dominant, although in some cases (i.e., the webmail and online
trace) a fairly large portion of the accessed LBA space is accessed only by read
requests.

The SSD used in the trace-driven simulation experiments is composed of
bU = bbx/bc logical pages, where x is equal to the number of logical pages
accessed during the trace. In other words, we have remapped the accessed
logical block addresses into this smaller range (instead of using the span of the
trace to determine the SSD volume size). The number of physical blocks N is
determined by U by means of the spare factor Sf , i.e., U = N(1 − Sf ). Thus,
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I/O trace %Writes #Requests %LBA RO
rsrch0 [22] 88.87 3,253,639 19.02
prxy0 [22] 96.36 22,136,692 19.53
online [27] 73.88 5,700,499 64.87
webmail [27] 81.86 7,795,815 55.19

Table 3: Data set statistics. %Writes: percentage of writes, #Requests: number of request
and %LBA RO: the size of the LBA space that is only read.

I/O trace
Data Locality

20% 40% 60% 80%
rsrch0 [22] 0.01 0.09 7.15 19.17
prxy0 [22] 0.06 0.12 0.79 5.20
online [27] 1.30 7.76 14.30 30.79
webmail [27] 0.10 0.44 5.23 16.16

Table 4: Data set statistics: LBA locality.

a fraction (1 − Sf ) of the pages is in the valid state at all times during the
simulation, while all of the logical pages are accessed at least once during the
simulation (except for at most b − 1 pages), but data is only written to some
of the pages. The data is initially placed in an unfragmented manner on the
drive such that the first U physical blocks contain all the valid pages and the
remaining N − U blocks contain only pages in the erase state.

The initial state of the drive has, in some cases, an important impact on the
results in this type of simulation setup. To understand this it is important to
note that in some traces up to 50% of the logical address space is accessed by
read operations only. If b pages that are only read during the simulation happen
to reside on the same physical block at the start of the simulation, they will still
reside there at the end of the simulation. Thus, if a substantial fraction of the
blocks is full of valid data that is only read, say a fraction F , the spare space
(of size Sf ) is fragmented over a smaller part of the physical address space and
the effective spare factor is more like Sf/(1− F ); hence we expect to see lower
values for the write amplification as F increases. As the initialization method
used in our experiments starts with unfragmented data located at the first U
blocks of the disk, we will observe lower values for the write amplification for
larger %LBA RO values, i.e., for the online and webmail trace.

Finally, to make the simulation runs sufficiently large we also adopted the
replay method used in prior SSD work [14, 21]. By replaying a trace, we simply
mean that the I/O pattern of the trace is repeated a number of times without
change such that the overall trace length exceeds 50, 000, 000 requests. This
implies that pages are updated several times during a single run, unless the
page is only read during the original trace. The results in Figure 5 are based
on 5 to 12 runs (depending on the trace) such that the 95% confidence intervals
are sufficiently small. The results in Tables 5, 6 and 7 are based on 10 runs.
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Sf Single WF Double WF
d-choices d-left (gain) d-choices d-left (gain)

rsrch0 trace

0.14 2.843 2.843 (0.00%) 1.785 1.781 (0.23%)
0.10 3.739 3.738 (0.05%) 2.095 2.080 (0.72%)
0.06 5.601 5.602 (-0.02%) 2.826 2.785 (1.47%)

prxy0 trace

0.14 3.330 3.329 (0.03%) 1.363 1.355 (0.59%)
0.10 4.258 4.257 (0.03%) 1.623 1.608 (0.94%)
0.06 6.105 6.108 (-0.05%) 2.273 2.246 (1.21%)

online trace

0.14 1.513 1.513 (-0.01%) 1.429 1.410 (1.36%)
0.10 1.907 1.907 (-0.02%) 1.761 1.728 (1.86%)
0.06 2.830 2.833 (-0.11%) 2.506 2.465 (1.63%)

webmail trace

0.14 1.859 1.860 (-0.07%) 1.430 1.410 (1.43%)
0.10 2.414 2.413 (0.03%) 1.729 1.683 (2.67%)
0.06 3.600 3.601 (-0.02%) 2.441 2.336 (4.30%)

Table 5: Write amplification of d-left and d-choices GC algorithm for trace-based workloads
using both a single or double write frontier, with b = 64 pages per block and K = d = 10.

5.2. Numerical results

5.2.1. d-left GC algorithm

For the trace-based experiments we partitioned the drive in K = 10 parts
such that block number n belongs to partition k if n = k mod K, for n =
1, . . . , N and k = 1, . . . ,K. In this manner all the partitions contain a similar
fraction of the spare space at the start of the simulation run. The number of
choices in each partition was set equal to 1, i.e., dk = 1 for k = 1, . . . ,K.

The simulation results for each of the four traces with a single and double
write frontier are presented in Table 5 for Sf = 0.06, 0.10 and 0.14 and b = 64.
The results for the single WF indicate that incorporating asymmetry seems to
have little to no impact on the write amplification. This is very much in line
with the findings of the mean field model for uniform random writes. In fact,
the simulation results of the d-left and d-choices GC algorithms are so close that
it is impossible to state that asymmetry always results in a very minor gain (as
indicated by the mean field model in case of uniform random writes).

For the double WF the results are clearer: incorporating asymmetry always
results in a gain and the gain is more pronounced compared to the uniform
random write setting (see Section 4.1). The gain is however still below 2%
except for the webmail trace with a relatively small spare factor.

5.2.2. d-memory GC algorithm

We start by repeating one of the experiments of Section 4.2 where we fixed
b = 64 and c+ d = 10 and compared the write amplification for different values
of c. The results for Sf = 0.06, 0.10 and 0.14 in case of a single write frontier
are presented in Table 6, while Table 7 contains the results for the double write
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Sf c = 0 c = 1 (gain) c = 2 (gain) c = 3 (gain)

rsrch0 trace

0.14 2.843 2.790 (1.86%) 2.803 (1.38%) 2.834 (0.32%)
0.10 3.739 3.649 (2.40%) 3.663 (2.03%) 3.709 (0.82%)
0.06 5.601 5.446 (2.77%) 5.470 (2.35%) 5.550 (0.92%)

prxy0 trace

0.14 3.330 3.316 (0.42%) 3.325 (0.14%) 3.343 (-0.40%)
0.10 4.258 4.227 (0.48%) 4.249 (0.22%) 4.275 (-0.41%)
0.06 6.105 6.062 (0.70%) 6.086 (0.32%) 6.138 (-0.54%)

online trace

0.14 1.513 1.387 (8.30%) 1.394 (7.90%) 1.441 (4.78%)
0.10 1.907 1.753 (8.09%) 1.772 (7.06%) 1.850 (3.00%)
0.06 2.830 2.600 (8.12%) 2.655 (6.19%) 2.809 (0.76%)

webmail trace

0.14 1.859 1.781 (4.20%) 1.795 (3.46%) 1.836 (1.25%)
0.10 2.414 2.307 (4.43%) 2.327 (3.59%) 2.387 (1.12%)
0.06 3.600 3.412 (5.24%) 3.452 (4.11%) 3.554 (1.27%)

Table 6: Impact of memory on the write amplification using trace based simulations with
b = 64 and c+ d = 10: Single write frontier.

frontier as introduced in [26]. A first observation is that the write amplification
is reduced quite drastically if we replace the single by the double write frontier.
This shows that the double write frontier not only significantly reduces the write
amplification in case of a simple Rosenblum workload model as demonstrated
in [26] (which contains no spacial locality and the temporal locality does not
vary over time), but is equally effective in case of real life workloads.

A second observation is that the largest reduction in the write amplification,
in case of the single write frontier, is obtained when c = 1 (when compared to
setting c = 0). A similar observation was made in Figure 4 for c+ d = 10 under
uniform random workloads, where the gain was between 1% and 1.5% for b = 64.
For real life workloads the gain is much more pronounced, with gains up to 8%.
For the double write frontier the gains are even more substantial (up to 13%)
and setting c = 2 is best in some cases, though the additional gain compared to
having c = 1 is rather limited in such cases. Given the above results, we focus
on SSDs that rely on the double write frontier in the remainder of this section.

The greedy GC algorithm is no longer optimal in case of non-uniform work-
loads [26]. In fact, the results in [26] showed that under the Rosenblum model,
there exists an optimal parameter d for the d-choices GC algorithm (i.e., a choice
for d that minimizes the write amplification). We have also analyzed the exis-
tence of an optimal value for d for the d-memory GC algorithm for each of the
four traces discussed in Section 5.1 and for various choices of c. We only present
the results for the rsrch0 and webmail trace, as the results for the prxy0 and
online trace are quite similar.

Figure 5 plots the write amplification of the rsrch0 and webmail trace as
a function of the number of choices d for various c values with Sf = 0.1 and
b = 64. Looking at the rsrch0 results, we see that for c fixed the curves appear
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Sf c = 0 c = 1 (gain) c = 2 (gain) c = 3 (gain)

rsrch0 trace

0.14 1.785 1.690 (5.32%) 1.696 (5.00%) 1.723 (3.48%)
0.10 2.095 1.929 (7.90%) 1.942 (7.31%) 1.993 (4.85%)
0.06 2.826 2.538 (10.2%) 2.578 (8.78%) 2.725 (3.60%)

prxy0 trace

0.14 1.363 1.232 (9.59%) 1.228 (9.88%) 1.258 (7.68%)
0.10 1.623 1.439 (11.3%) 1.454 (10.5%) 1.551 (4.45%)
0.06 2.273 2.064 (9.20%) 2.187 (3.80%) 2.443(-7.47%)

online trace

0.14 1.429 1.267 (11.4%) 1.259 (11.9%) 1.301 (8.97%)
0.10 1.761 1.554 (11.7%) 1.556 (11.6%) 1.640 (6.88%)
0.06 2.506 2.237 (10.7%) 2.305 (8.01%) 2.497 (0.35%)

webmail trace

0.14 1.430 1.273 (11.0%) 1.259 (12.0%) 1.284 (10.2%)
0.10 1.729 1.507 (12.8%) 1.501 (13.2%) 1.580 (8.60%)
0.06 2.441 2.158 (11.6%) 2.243 (8.09%) 2.479 (-1.57%)

Table 7: Impact of memory on the write amplification using trace based simulations with
b = 64 and c+ d = 10: Double write frontier.

convex and there exists an optimal value for d, located at 56, 37, 34 and 37 for
c = 0, 1, 2 and 3, respectively. Further, the lowest write amplification is realized
by setting c = 1 and d = 37, meaning the optimal d-choices GC algorithm
without memory is outperformed by the one with memory, though the gain is
very limited. For the webmail trace we observe similar results for c = 0, 2, 4 and
6, but the optimal c and d value is larger (i.e., the optimal d is between 100 and
150) and the differences are even less substantial.

These results may seem to indicate that having memory is of little value
after all as the optimal d with no memory performs quite similar to the optimal
c and d combination. One should however keep in mind that the optimal d value
is clearly case specific and hard to determine in practice (and may change over
time). A more practical approach may therefore exist in using a fixed d, e.g.,
d = 10 or 20. In such a case adding a limited amount of memory can make
a significant difference as shown before. Another thing to note is that having
some memory often allows the use of a smaller value of d without increasing the
write amplification.

Figure 5 also illustrates that adding more memory, i.e., increasing c, while
keeping d fixed, does not always result in a reduction of the write amplification.
This is in contrast to the results presented in Figure 3 which corresponded to
the synthetic uniform random writes model (under which the performance of
the single and double write frontier is identical). In other words, in the presence
of hot and cold data there exists an optimal amount of memory when trying to
minimize the write amplification by means of the d-memory GC algorithm. De-
termining this value in practice is again hard and therefore using a limited fixed
amount of memory, e.g., c = 1 or 2 for d = 10, seems like a good compromise
given the results in this section.
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Figure 5: Write amplification as a function of d for various c values and Sf = 0.1 and b = 64
for the rsrch0 (left) and webmail trace (right).

6. Conclusions

In this paper we introduced the d-choices GC algorithm with asymmetry
and memory and analyzed its impact on the write amplification using both syn-
thetic and trace-based workloads. The synthetic workloads consisted of uniform
random writes and the resulting write amplification was analyzed via two mean
field models, where the main challenge for the system with memory existed in
determining the fixed point of the resulting set of ODEs in an efficient manner.
The trace-based workloads were analyzed by simulation and considered both
SSDs using a single and a double write frontier.

Numerical results for the d-choices GC algorithm with asymmetry indicated
that the reduction in the write amplification is typically below 2% in case of the
double write frontier, while negligible in case the system operates using a single
write frontier.

For the d-choices GC algorithm with memory there exists an optimal com-
bination of c, the number stored memory ids, and d, the number of random
choices, in the presence of hot and cold data. However these optimal combina-
tions are hard to determine and very case specific. As such a more practical
approach exists in working with a fixed c and d such that one obtains an overall
good performance. In such a case selecting a small c value can reduce the write
amplification by 10% or more in case of real workloads compared to having no
memory at all. Further, adding memory to the d-choices GC algorithm allows
one to use smaller d values without increasing the write amplification.
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