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ABSTRACT
CSMA/CA networks have often been analyzed using a styl-
ized model that is fully characterized by a vector of back-off
rates and a conflict graph. We present an explicit formula

for the unique vector of back-off rates ~ν(~θ) needed to achieve

any achievable throughput vector ~θ provided that the net-
work has a chordal conflict graph. These back-off rates are
such that the back-off rate of a node only depends on its own
target throughput and the target throughput of its neigh-
bors and can be determined in a distributed manner. We also
introduce a distributed chordal approximation algorithm for
general conflict graphs which is shown (using numerical ex-
amples) to be more accurate than the Bethe approximation.

1. INTRODUCTION
An often studied model for CSMA/CA networks is the

so-called ideal model [2, 4, 5, 6, 8, 9, 11, 12]. The ideal
CSMA/CA model considers a network with a fixed set of n
nodes and is fully characterized by a fixed conflict graph G
and a fixed vector of back-off rates ~ν = (ν1, . . . , νn). The
conflict graph G identifies the pairs of nodes that interfere
with each other, while the vector (ν1, . . . , νn) determines
the mean time that the nodes have to sense the channel idle
before they are allowed to start a transmission.

One of the key assumptions of the ideal CSMA/CA model
is that sensing is instantaneous, which implies that colli-
sions cannot occur (as the probability that two nodes start
transmitting at exactly the same time is zero). Another im-
portant assumption is that each of the n nodes always has
packets ready for transmission, that is, the network is as-
sumed to be saturated. Further perfect sensing and packet
transmission is assumed.

While the product form solution for the steady state prob-
abilities of the ideal CSMA/CA model has been established
long ago [2] and the set Γ of achievable throughput vectors
~θ = (θ1, . . . , θn) has been identified in [6], very few explicit
results are available on how to set the back-off rates ~ν to
achieve a given vector ~θ ∈ Γ (where Γ clearly depends on the
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conflict graph G). In [9] an explicit formula was presented to
achieve fairness in a line network where each node interferes
with its β left and right nodes. More recently, by relying on
some existing results in statistical physics, explicit formulas
for the back-off vector needed to achieve a given throughput
vector were presented in case the conflict graph is a tree [12].
The existence of a unique vector of back-off rates for each
achievable throughput vector was proven in [8].

In this paper1 we identify a set of conflict graphs G for
which simple explicit expressions can be obtained for the
vector of back-off rates ~ν that achieves a given throughput

vector ~θ ∈ Γ. We show that an explicit expression can be
obtained for any chordal conflict graph, thereby generaliz-
ing existing results for line networks and networks that have
a tree as a conflict graph. These explicit expressions are
such that the back-off rate νi of node i only depends on its
own target throughput θi and the target throughput of its
neighbors in the conflict graph G. Further we present a dis-
tributed chordal approximation for general conflict graphs
that is more accurate than the Bethe approximation [12].

2. MODEL DESCRIPTION
Consider a network consisting of n nodes that is fully char-

acterized by a vector of back-off rates (ν1, . . . , νn) and an
undirected conflict graph G = (V (G), E(G)), with V (G) =
{1, . . . , n}. A node is either active or inactive at any point
in time. The conflict graph G specifies which pairs of nodes
cannot be simultaneously active, that is, nodes i and j can-
not be active simultaneously if and only if (i, j) ∈ E(G).
When a node becomes active, it remains active for some time
before becoming inactive again. An inactive node can only
become active if none of its neighbors in G are active. When
a node becomes inactive it starts a back-off period. As soon
as one of the neighbors of an inactive node in G becomes
active, the back-off period of the inactive node is frozen and
resumes when all of its neighbors are inactive again. A node
becomes active when its back-off period ends.

If the duration of the active period is exponential (with
mean 1) and the back-off period is exponentially distributed
with mean 1/νi for node i, it is well-known [2] that this
network evolves as a reversible Markov chain on the state
space

Ω = {(z1, . . . , zn) ∈ {0, 1}n|zizj = 0 if (i, j) ∈ E(G)},

where node i is active in state (z1, . . . , zn) if and only if zi =
1. The steady state probabilities π(~z), with ~z = (z1, . . . , zn)

1A full version of this paper is available at [10].
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Figure 1: Example of a chordal graph G with n = 11
nodes (left) and one of its clique trees (right). This
graph contains 6 maximal cliques K1 = {1, 2},K2 =
{3, 4, 5, 6, 7},K3 = {2, 3, 7, 8},K4 = {7, 8, 10},K5 = {8, 9}
and K6 = {7, 8, 11}.

of this Markov chain are given by

π(~z) =
1

Zn

n∏
i=1

νzii ,

where Zn =
∑
~z∈Ω

∏n
i=1 ν

zi
i is the normalizing constant.

The throughput θi of node i equals θi =
∑
~z∈Ω,zi=1 π(~z),

for i = 1, . . . , n. In [6] the set Γ of achievable throughput

vectors ~θ = (θ1, . . . , θn) was shown to equal the interior of

the convex hull of Ω and for each achievable vector ~θ ∈ Γ
there exists a unique vector ~ν = (ν1, . . . , νn) of back-off rates

that achieves ~θ [8].

3. MAIN RESULT
In this section we present an explicit formula for the back-

off rates needed to achieve any achievable target throughput
vector when the conflict graph G is chordal. A chordal graph
G = (V (G), E(G)) is one in which all cycles consisting of
more than 3 nodes have a chord. A chord of a cycle is an
edge joining two nonconsecutive nodes of the cycle. A graph
is chordal if and only if it has a perfect elimination ordering
[1], which is an ordering of the nodes of the graph such that,
for each v ∈ V (G), v and the neighbors of v that occur after
v in the order form a clique.

Let KG = {K1, . . . ,Km} be the set of maximal cliques of
G. A clique tree T = (KG, E) is a tree in which the nodes
correspond to the maximal cliques and the edges are such
that the subgraph of T induced by the maximal cliques that
contain the node v is a subtree of T for any v ∈ V . An
example of a chordal graph G and possible clique tree T is
given in Figure 1. One can show that a graph G is chordal if
and only if it has at least one clique tree (see Theorem 3.1 in
[1]). A clique tree T of a chordal graph can be constructed
in linear time and contains at most V (G) nodes.

Theorem 1. Consider a network with a chordal conflict

graph G. Let ~θ = (θ1, . . . , θn) be a positive vector with T =
maxj∈KG

∑
s∈Kj θs < 1. The throughput of node i, for i =

1, . . . , n, in a network with conflict graph G matches θi if
and only if the back-off rates are set as

νi(~θ) = θi

∏
(K,K′)∈E,i∈K∩K′

(
1−

∑
s∈K∩K′ θs

)∏
K∈KG,i∈K

(
1−

∑
s∈K θs

) , (1)

for i = 1, . . . , n, where T = (KG, E) is any clique tree of G.

Input: A chordal conflict graph G

Output: Back-off rates ν1(~θ), . . . , νn(~θ)
1 Determine a perfect elimination ordering of G
2 for i = 1 to n do
3 Let α(i) be the node in position i in this order;
4 end
5 for i = 1 to n do
6 Let Mα(i) = Nα(i) ∩ {α(i+ 1), . . . , α(n)};
7 end

8 να(n)(~θ) = θα(n)/(1− θα(n));
9 for i = n− 1 down to 1 do

10 να(i)(~θ) = θα(i)/(1− θα(i) −
∑
s∈Mα(i)

θs);

11 for j ∈Mα(i) do

12 νj(~θ) = νj(~θ)
1−

∑
s∈Mα(i)

θs

1−θα(i)−
∑
s∈Mα(i)

θs
;

13 end

14 end
Algorithm 1: Algorithm to determine the unique

back-off rates for any ~θ ∈ Γ in a network with a
chordal conflict graph G.

The next property shows that the back-off rates as spec-
ified by (1) can be computed using Algorithm 1. The first
step of this algorithm exists in determining a perfect elimi-
nation ordering of G, which can be achieved in O(|V (G)|+
|E(G)|) time using the maximum cardinality search (MCS)
algorithm [7]. The MCS algorithm determines the perfect
elimination ordering by picking α(n) at random and subse-
quently determines α(i) by selecting the node with the most
neighbors in {α(i+ 1), . . . , α(n)}, breaking ties arbitrarily.

Proposition 1. The back-off rates νi(~θ) as computed by
Algorithm 1 are equal to (1) irrespective of the perfect elim-
ination ordering used.

The back-off rates νi(~θ) can also be determined in a fully
distributed manner with limited message passing. More
specifically, it suffices for node i to discover its set of neigh-
bors Ni in the conflict graph G, their target throughputs
{θj |j ∈ Ni} as well as the set of neighbors Nj for each
j ∈ Ni. With this information node i can construct the sub-
graph G[N+

i ] of the conflict graph G induced by i and its

neighbors. To obtain its back-off rate νi(~θ) node i executes
Algorithm 1 on the graph G[N+

i ] and sets its own back-off
rate accordingly.

Proposition 2. The back-off rate for node i ∈ V given
by executing Algorithm 1 on the conflict graph G is identical
to the rate obtained for node i when executing Algorithm 1
on the subgraph G[N+

i ] of G induced by the nodes in Ni ∪ i.

4. CHORDAL APPROXIMATION
In this section we present a chordal approximation for the

rates νi(~θ) for a general conflict graph G that is exact when
the conflict graph is chordal. To study the accuracy of the
proposed approximation we considered a class of conflict
graphs obtained by placing a set of n nodes in a random
manner in the unit square and assumed that node i and j
are in conflict when the Euclidean distance between node i
and j was below some threshold (see Figure 2).



Figure 2: Non-chordal conflict graph with n = 100
nodes and 485 edges.

Input: A general conflict graph G = (V,E)

Output: A maximal chordal subgraph G̃ = (V, Ẽ) and
peo α

1 for v ∈ V do
2 C(v) = ∅;
3 end

4 k = |V |; Ẽ = ∅;
5 Select any v0 ∈ V ; set Sk = {v0}; α(k) = v0;
6 for u ∈ V \ Sk with (u, v0) ∈ E do
7 if C(u) ⊆ C(v0) then

8 C(u) = C(u) ∪ {v0};Ẽ = Ẽ ∪ (u, v0);
9 end

10 end
11 Let v0 ∈ V \ Sk with |C(v0)| ≥ |C(v)| for v ∈ V \ Sk;
12 Set α(k − 1) = v0; Sk−1 = Sk ∪ {v0}; k = k − 1;
13 if k > 1 then
14 Go to line 6;
15 end

Algorithm 2: MAXCHORD algorithm of [3].

The idea behind the proposed distributed chordal approxi-
mation exists in letting node i determine its back-off rate by
computing a maximal chordal subgraph Gi of G[N+

i ] and
computing its back-off rate using Algorithm 1 on Gi. To
determine the subgraph Gi node i runs the MAXCHORD
algorithm of [3] on G[N+

i ] with v0 = i in line 5 (see Algo-
rithm 2). We refer to this approximation as the local chordal
subgraph approximation. When the graph G is chordal this
distributed algorithm corresponds to the distributed algo-
rithm of Section 3 and is therefore exact.

Note the Bethe approximation of [12] corresponds to us-
ing the subtree consisting of the edges (i, j) with j ∈ Ni,
instead of the maximal chordal subgraph Gi and applying
Algorithm 1 on this subtree. As such the local chordal sub-
graph approximation takes more conflicts into account when
determining the back-off rates and it is expected to be more
accurate than the Bethe approximation. This was confirmed
using numerical experiments, with Figure 3 showing one par-
ticular example when using both approximations on the con-
flict graph of Figure 2 and setting the target throughput of
each node equal to 0.04.
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2 (by simulation) when the target throughput θi =
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