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Abstract We study the performance of a family of cache replacement algorithms.
The cache is decomposed into lists. Some of these lists can be virtual in the sense
that only meta-data are stored in those lists. An item enters the cache via the first list
and jumps to the next list whenever a hit on it occurs. The classical policies FIFO,
RANDOM, CLIMB, and its hybrids are obtained as special cases. We present explicit
expressions for the cache content distribution and miss probability under the IRM
model. We develop an algorithm with a time complexity that is polynomial in the
cache size and linear in the number of items to compute the exact miss probability.
We introduce lower and upper bounds on the latter that can be computed in a time
that is linear in the cache size times the number of items. We introduce a mean-field
model to approximate the transient behavior of the miss probability and prove that
this model becomes exact as the cache size and number of items go to infinity. We
show that the set of ODEs associated to the mean-field model has a unique fixed point
that can be used to approximate the miss probability in case the exact computation
is too time consuming. Using this approximation, we provide guidelines on how to
select a replacement algorithm within the family considered such that a good trade-
off is achieved between the cache reactivity and its steady-state hit probability. We
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simulate these cache replacement algorithms on traces of real data and show that they
can outperform LRU. Finally, we also disprove the well-known conjecture that the
CLIMB algorithm is the optimal finite-memory replacement algorithm under the IRM
model.

Keywords Cache replacement policies - Independent reference model - Storage
management - Self-organizing lists - Miss ratio
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1 Introduction

Caches are omnipresent in modern day computer systems to improve system per-
formance. A plethora of cache replacement algorithms has been studied by various
authors over the past few decades. Nevertheless, explicit expressions for the cache
content distribution and miss probability under the well-known Independent Refer-
ence Model (IRM) are only available for a limited number of replacement algorithms
such as FIFO, RANDOM, LRU, CLIMB, and some simple hybrids thereof. Further,
these results are of little practical use due to the curse of dimensionality (except for
FIFO and RANDOM). As such many approximation methods have been proposed
for single caches [5,8,9,13,29] as well as for networks of caches [5,11,14,26,29,30].
While these approximations have often been shown to result in highly accurate pre-
dictions for the miss probability (under the IRM model), their theoretical support is
most often rather limited. Further, these prior studies typically focus on the long-term
(steady state) behavior only, while the transient behavior of the miss probability is
also of interest under more dynamic request patterns.

In this paper, we study two broad classes of cache replacement algorithms that both
organize the cache content in a number of lists (with a fixed size). Items enter the
cache via the first list and are promoted to the next list whenever a hit occurs, at the
expense of demoting another item. Some of these lists can be virfual, meaning that
only meta-data are stored for the items in those lists. The difference between the two
classes of replacement algorithms exists in the manner in which the demoted item is
selected. These two classes of cache replacement algorithms contain the well-known
RANDOM, FIFO, and CLIMB algorithm as well as some more advanced algorithms
introduced in [2] as special cases.

The main contributions of the paper are as follows:

1. We show that both classes of algorithms perform alike under the IRM model
by deriving an explicit expression for the steady-state cache content distribution
and miss probability that is valid in both classes. We subsequently exploit this
expression to devise fast algorithms to compute the exact overall and per item
miss probability, thereby avoiding the traditional curse of dimensionality. The
time complexity to compute the overall miss probability is linear in the number of
items and polynomial in the cache size (where the degree is equal to the number
of lists used). We also derive upper and lower bounds on the miss probability that
can be computed in a time that is linear in the cache size.
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2. We introduce a mean-field model (for one of the two classes of replacement
algorithms) that can be used to approximate the transient behavior of the miss
probability under the IRM model and show that this model becomes exact as the
number of items and cache size becomes infinitely large (under some mild condi-
tions). We prove that the set of ODEs that characterizes the mean-field model has
a unique fixed point and demonstrate that this point can be used to get a highly
accurate approximation of the miss probability whenever the exact computation
becomes too time consuming.

3. We provide a number of guidelines on how to select the number of lists and list
sizes by relying on various experiments using both the IRM model and trace-
based simulations. These experiments demonstrate that the algorithms considered
in this paper can outperform LRU. We also show that the well-known conjec-
ture [2, p. 135] that the CLIMB algorithm is the optimal finite-memory demand
replacement algorithm under the IRM model is false.

The paper is structured as follows. We describe related work in Sect. 2. In Sect. 3
we describe the two classes of replacement algorithms. We derive the exact steady-
state probabilities and miss probabilities as well as upper and lower bounds in Sect. 4.
We develop our mean-field approximation and show its validity in Sect. 5. Finally,
we provide empirical evidence on how the list sizes should be chosen in Sect. 6. We
conclude in Sect. 7.

2 Related work

Cache replacement algorithms have been analyzed by various authors, mostly under
the well-known IRM model. While this model is not very suitable in the context of
secondary memory management, it is argued by many authors to be a reasonable
model in a web caching context. For instance, as stated in [7], for some purposes, one
might model web accesses by a simple model that assumes independent references
following a Zipf-like distribution and no correlation between request frequency and
item size.

Explicit results under the IRM model for the cache content distribution and miss
probability have been derived for FIFO and LRU [2,24], RANDOM [17] and some
simple hybrids thereof [1,3]. LRU is shown to outperform FIFO in [34], while FIFO
and RANDOM perform identically [17]. These expressions, however, can only be
used directly to compute the miss probability of very small caches (for example, 20
items). For FIFO, an algorithm to compute the exact miss probability in O (mn) time
is given in [10], where n is the number of items and m the cache size.

A number of approximations have been proposed to analyze caches of reasonable
size (they are fast to compute and can be used for cache sizes of more than millions of
items). In [9], a fast iterative scheme is proposed for FIFO that coincides with the iter-
ative algorithm proposed in [29] for RANDOM. For LRU the author of [9] introduces
an O (mn) time approximation, which is of limited use since the introduction of what
is now called the Che-approximation [8], for which theoretical support is provided in
[13].
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Recently, the idea of the Che-approximation was generalized to capture a broader
class of replacement algorithms, under the IRM model, in case of a renewal model
[29] and for general MAP arrivals [15]. While [29] also considers replacement poli-
cies that make use of multiple lists: all but one of these lists are assumed to be virtual
lists that only store the meta-data and not the actual items. Further, the algorithms
are approximations, but no proof of accuracy is provided. The analysis of [15] com-
plements our paper and provides an approximation that is asymptotically exact (as
opposed to the one of [29]). Renewal models were also considered in [5,11,23] for
time-to-live caches which, in light of the Che-approximation, can be used to approx-
imate capacity-driven replacement polices. Another line of work is to consider that
the popularities of items vary over time. As shown in [32], this can be modeled by a
shot-noise model that describes the temporal locality between consecutive requests.
Che-like approximation for such models are developed in [27].

More practically oriented simulation-based studies have also been performed and
we do not attempt to provide an overview here. We would like to indicate that the
idea of using multiple lists has been explored before; for example, the 2Q and LIRS
policies both combat the poor performance of LRU on scan sequences and typical
database access patterns [21,22].

Considerable efforts have also been made to develop approximation methods to
analyze networks of caches [5,11,14,26,29,30]. Some of these methods are iterative
in nature and require the repeated solution of isolated caches [30]. Hence, studying
isolated caches is useful in the study of networks of caches.

Fluid limits for the miss probability have been derived for LRU [20], 2Q [19], and
RANDOM [33]. Our mean-field result is more general compared to [19,33]. These
papers consider a system with n classes of items and N items per class. The items
within a class are indistinguishable (they all have the same popularity). They show
that their approximation is correct as N goes to infinity. Our approach is more general
since we do not assume that items are clustered into a finite number of classes. Rather,
our bound in Theorem 6 depends directly on the popularity of the most popular objects
pi and not on the number of objects.

3 Replacements algorithms

In this section, we introduce two families of replacement algorithms that are obtained
by slightly modifying a family of replacement algorithms introduced in [2]. We denote
the members of these families as FIFO(m, v) and RAND(m, v), respectively, where
m = (mp,mo,...,my) is a tuple of integers with m; > 1 (fori = 1,...,h) and
v <h.

The FIFO(m, v) replacement algorithm: The FIFO(m, v) algorithm makes use of
h > v lists, labeled 1 to &. Only the items present in list v 4 1 to & are stored in the
cache, while for the items in lists 1 to v only meta-data are stored. As in [29], we say
that lists 1 to v are virtual lists. The length of list i is equal tom;, fori =1, ..., h, and
the total cache size is equal tom = Zfl:v 41 m;. Items enter the set of lists vialist I and
whenever requested while being part of list i they move up one list. More specifically,
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one of the following four events occurs when an item, say item k, is requested at some
point in time:

1. Item k was not in any of the lists (miss) — in this case item k is inserted in position
1 of list 1. The remaining items in list 1 move back one position, while the item
that was in the last position of list 1, that is, in position m1, is removed from the
cache.

2. Ttem k was in position j of listi < v (miss) — in this case item k moves to position
1 of listi + 1, all the items in list i + 1 move back one position, the item that was
in position m; 4 of list i 4+ 1 takes the former position of item k, that is, position
jin list .

3. Item k was in position j of list v < i < h (hit) — this case is identical to the
previous except that there is a hit.

4. Ttem k was part of list 2 (hit) — in this case no changes are made.

The RAND(m, v) replacement algorithm The RAND(m, v) algorithm operates in a
manner similar to the FIFO(m, v) algorithm, except for two changes. First, when the
requested item is not part of any list, it is inserted in a random position in list 1 (as
opposed to position 1) and the item that was in this randomly selected position is
removed from the cache. Second, when a request occurs for an item part of listi < h,
say in position j, the item is inserted in a random position in list i 4+ 1, while the
item that was in this randomly selected position moves to position j of list i. In other
words, only two items change position in case a hit in list i < /& occurs.

We will show that the FIFO(m, v) and RAND(m, v) algorithms have the same
steady-state distribution for the cache content under the IRM model, which is a gener-
alization of the well-known fact that FIFO and RANDOM perform alike under the IRM
model [17]. In fact, one can even show that the steady-state probabilities of FIFO(m, v)
remain the same if we do not update the lists when an item part of some lists is requested
unless the item is in the first position of some list i, fori = 1,...,h — 1.

A natural extension of these policies is to consider the two following variants: strict
FIFO(m, v) and LRU(m, v):

— strict FIFO(m, v): The only difference between FIFO(m,v) and strict FIFO(m, v)
is when a request occurs for an item that is in position j of a listi < h. As before,
item k moves to position 1 of list i 4 1 and all the items in list i + 1 move back
one position. The difference is that the item that was in position m; 41 of listi + 1
moves to position 1 of list i and the items that were in position 1 to j — 1 of list i
move back one position.

— LRU(m, v): The difference between LRU(m, v) and strict FIFO(m, v) is when a
hit occurs in position j of list 4. In this case, this item is moved to the first position
of list /2 and all the items in the positions 1 to j — 1 of list 2 move back one position.

The strict FIFO(m, 0) algorithm corresponds to the policy Af’n ,mp, .., my) of [2],
while the LRU(m, 0) algorithm is denoted as A’l’ (mp, ..., mq) in [2]. Note that the
lists in [2] are labeled in the opposite order. The FIFO(m, v) and the strict FIFO(m, v)
algorithms operate identically when m; = ... = my_; = 1. For this special case,
closed-form results for the steady-state probabilities for the FIFO(m, 0) algorithm
under the IRM model were also derived in [2].
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Although these algorithms are close to our definition of FIFO(m, v), simple closed-
form expressions for the cache content distribution and miss probabilities do not appear
to exist. In Sect. 6, we compare all these policies using trace-based simulation. We
demonstrate that the hit probabilities of strict FIFO(m, 0) and FIFO(m, 0) are close
to each other (unless m is close to m), while LRU(m, 0) outperforms these policies
only marginally (at the expense of slightly more work).

4 Steady-state probabilities

In this section, we compute the stationary measure of the policies FIFO(m, v) and
RAND((m, v) under the independent reference model (IRM). Under the IRM model
the sequence of request ids is a sequence of i.i.d. random variables. We denote by p;
the probability that the id of a requested item is i.

4.1 The product-form stationary measure

LetY; ;(¢), with (i, j) € Z(m) S(G, Dli=1,...,h,j=1,...,m;} betheid of the
item in position j of list 7 at time #, where we observe the set of lists whenever a request
arrives. Let C,, (m) consist of all the sequences (cy, . . ., ¢;;) of m distinct integers taken
from the set {1, ..., n}. Under the IRM model, the process Y = {(¥; ;(?), (i, j) €
Z(m)), t > 0} is clearly a Markov chain on the state space C, (m) for the FIFO(m, v)
and RAND(m, v) algorithms. Denote wa (¢), withe = (c1, .. ., ¢;), as the steady-state
probability of state ¢, where A = FIFO(m, v) or RAND(m, v) denotes the replacement
algorithm used. Note that the evolution of the Markov chain does not depend on the
parameter v.

To ease the notation denote Cyi-l as c(i, j) for (i, j) € Z(m), where we can
s=1

ms+j
think of ¢(i, j) as the id of the item in position j at list . The next theorem shows that
the steady-state probabilities of this Markov chain have a simple closed form for the

FIFO(m,v) or RAND(m,v) algorithm:

Theorem 1 The steady-state probabilities TRAND(m,v) (€) and TRIFO(m,v)(€), with ¢ €
C,(m), can be written as

TFIFO(m,v) (€) = TRAND(m,v)(€) = 7(€) £ —— Z (m) H Peii,j) | s (1

h i i
where Z(m) = ZCECn(m) [Ti (HT:] PC(i,j)) .

Proof The proof consists in verifying the balance equations. We start with the
RAND(m, v) algorithm. Denote ¢(; j)..(, j»y as the vector ¢ with ¢(i, j) and c(i’, j")
exchanged and ¢, ;, ) as the vector ¢ with entry c(i, j) replaced by k. We can express
the global balance equation of state ¢ as
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my,
1
TRAND(m.)(©) | 1 =D peanjy | = D ZnRAND(m o (€ (1,0 T
j=1 k#ct, ..., cm u=1 1

h—1 m; mjy

Pe(i+1,
+ z Z z TTRAND(m,v) (€(i,u) < (i+1,w)) — < w)

i=1 u=1w=1

as we exit state ¢ unless there is a hit on one of the entries in list /2, while we can enter
state ¢ because there is a miss (and some item is inserted in a random position in list 1)
or there is a request for an item in list i that moves up to a random position at list i + 1.
Implicitly plugging in (1) and noting that 7w (¢, u)<(i+1,0)) /T (€) = Pe(i.uy/ Peti+1,v)
and 7 (¢x— (1,u)) /7 (€) = pi/Pe(1,4) holds for (1), yields

mp —1 m;
1 - Z Pe(h.j) = Z Pk + Z Z Detiu)s
j=1 k#£C1,..rCm i=1 u=1

which clearly holds as X7, p; = 1.

For FIFO(m, v), let the vector cmissk) be identical to ¢ except that the entries
(cmissky (1, 1), ..., emissky (1, m1)) are equal to (c(1, 2), ..., c(1, my), k) and denote
Chit(;, j) as the vector ¢ except that (chie, jy(@ + 1, 1), ..., chitg, )@ + 1, mi11)) =
(c@+1,2),...,c( +1,my),c(i, j)) and cpie, ) (i, j) = c(@ + 1, 1).

TEIFOm,v)(€) | 1 — Z Deh,j) | = Z TTEIFO(m, v) (Cmiss(k)) Pe(1,1)
j=1 k#C1,.csCm
h—1 m;
+ Z Z TTEIFO(m, v) (Chit (i, j)) Pe(i+1,1) -
i=1 j=1

The result follows by noting that 7 (Cmissk))/7(€) = pi/pe,1y and w(Chici, j))/
7(¢) = Pe(i, j)/ Pe(i+1,1) holds for (1). O

Whenh =1,v=0andc = (c1,...,cn) We get

() = — (m) H Pe;-

These are the well-known steady-state probabilities for the FIFO and RANDOM algo-
rithms [17,24]. When & = m, meaning m;=1 for all i, the RAND(m, 0) algorithm
coincides with the so-called TRANSPOSITION rule or CLIMB algorithm [18,31]. In
this case, the above theorem reduces to

() = — (m) H Pl
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which are the steady-state probabilities of the CLIMB algorithm as reported in [2,
Sect. 4.2]. Theorem 1 also generalizes the results for the second family of replacement

algorithms studied in [1] which corresponds tom| = ... =my_1 =landv =0
1 m
min(j,h)
c)=—— : .
JT( ) Z(m) o cj

Due to Theorem 1 it is easy to check that the following corollary holds:

Corollary 1 For the RAND(m, v) replacement algorithm the Markov chain Y is
reversible, i.e.,

T(©P[Y(t+1) = |Y (1) = ¢] = 7()P[Y (t+1) = ¢|Y () = €],

forany ¢, ¢’ € C,(m).

Denote the hit probability of the RAND(m, v) and FIFO(m, v) algorithms as H (m, v)
andlet M (m, v) = 1 — H(m, v) be the miss probability under the IRM model. Clearly,
one can express the miss probability via the steady state probabilities:

h m;
Mmooy = > 1= > > pei | 7. @

ceCy(m) i=v+1 j=1

This formula is, however, not very useful to compute M (m, v), unless m is very small,
as the number of terms is exponential in m. In the next two sections, we indicate how
to compute the overall and per item miss probability in a more efficient manner.

4.2 Exact overall miss probability

In this section, we introduce Algorithm 1 that computes the steady-state miss probabil-
ity in a time that is polynomial in the cache size m, where the degree of the polynomial
is equal to A. This algorithm is a generalization of the methodology introduced in [10]
for the FIFO algorithm (which corresponds to the case with 2 = 1). It uses a dynamic
programming approach: to compute M (m, v), for v < h, we compute M (m’, v) for
all m’ < m (componentwise). In other words, the quantities M (m’, v) are obtained
as by-products of the computation of M (m, v). Obtaining these quantities is useful
when studying optimal list sizes. More precisely, define a first set of list sizes

k
kfh,ZmiSm},

i=1

Vhsm = {(mlmk)

and a second set of list sizes

VI = (g |k < ol < mi
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Our algorithm computes the miss probabilities M (m, v) for all m € thm in
O(nh*m"/h!) time and for m € V""" in O(nh? Hf‘zl(mi + 1)) time. In the
next section, we show how to compute the corresponding per item hit probabilities in
O 32 h2m" [ ht) and O (K2 T[T, (m; + 1)) time, respectively.

Let pi, ..., pn be a fixed but arbitrary ordering of the request probabilities and
r = (ri,...,rp) with r; integer for all i and r = >, r;. Let e; be the j-th row of the
size h identity matrix. Define E(0,k) = 1, E(r, k) = 0 if Zi r; > korr; <0 for
some j and

ri

h
E(r, k) = Z H

Peiij) | - 3)
ceC(ryi=1 \j=1

By noting that the probability that the requested item is in position j of list i is the
same for any j < m; and using (2), we can express M (m, v) via E(r, k):

Z z Pr+ Z Z Peijy | ()

M@m, v) =
ceC,(m) \ ké¢c i=1 j=I
_ Em+eq,n) + Z;’zlmiE(m+ei+1 —e;,n)
- E(m, n) '

Further, we have the following recursion for E(r, k) by noting that item k appears at
most once in ¢:

h
E(.k)=E@rk—1)+ > r;plEx—e; k—1). )
j=1

In principle, we can use this recursion with E(e;, 1) = p{ to compute the miss proba-
bilities. However, E (r, k) decreases quickly in >, r; and can easily cause underflows
even for m values below 100 (as in [10] for the FIFO replacement policy). To avoid
this problem, we define fori =1, ..., h:

E(r, k)

Fur by = —L00
0= e —a

(&)

forr = (ry,...,rp) withr; > Ofor j #iandr; > 1. Let F;(r, k) =0if >, r; > k
orr; < 0 forsome j orr; < 0. Note that as

Em+ey)—e,n) Em+et —e,n) E(m—e,n)
E(m, n) - E(m —e;, n) E(m, n)
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the miss probability M (m, v) equals

Fiii(m+e g —e,n)

v
M(m,v)=F1(m+e1,n)+Zmi Fo(m. 1)
l )

i=1

The next theorem establishes a recursive relationship for the Fj(r, k) values that
allows us to compute the miss probabilities without causing underflows.

Theorem 2 The miss probability, given by

Fiyym+e —e,n)
F;(m, n)

’

v
M(m, v) = Fi(m+ej,n)+ > m
i=1

and the quantities F;(r, k), fori =1,...,h, v = (r1,...,ry) withr; > 0 for j # i
and r; > 1, obey the following recursion
F,-(r—ej,k—l)

Fi(r,k — 1)+Z}E=1 ; -P;{ij‘i‘l?;iri
Fir. k) = Jj=1,j#i j(r—e; k—1)

(6)

h P}er Pf((rifl)l(rpl}
L+ 200 s Fi—e kD T Fa—eiD
and F;(e;, 1) = pi.

Proof By applying (4) on the numerator and denominator of (5) we get that F;(r, k)
can be written! as

Ewk—1)+X"_ plriE@—ej k—1)
Ec—e k—D+Y" ploj —1ioDEx —e —ej k= 1)

By dividing the numerator and denominator by E (r —e;, k — 1) (which is well defined
as r; > 0 and differs from zero as Zs re —1<k—1), wefind

. _ h i, E(r—ejk—1) i
Fe k) = Fi(r,k = 1)+ 205y iz PiTJ Ec—e k=D T Pili .

J i
h Pl P (ri—D1y >y
U+ 2ot Faa D T Re—e kD

The result follows by noting that E(r —e;, k — 1)/E(r — €;, k — 1) can be written as
Fi(r—ej,k—1)/Fj(r —e;,k—1)whenr; > 0. O

Denote Ry j, as the set {(r1,...,rp)|r; € {0,...,k},1 < Z?:l ri < k}. Algo-
rithm 1 indicates how to use the above theorem to compute the values of F;(r, k)
fori = 1,....,h k <nandr € Ry in Omh*|Ryy1.4]) time with [Ryy1.] =
o (m" / h!). In other words, we can determine the set of miss probabilities M (m, v)

' We use the notation that 1;;—;) equals 1 if i = j and 0 otherwise.
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Input: The vectors p and m
Output: M(m, v) form € Vhfm

1 fori,j=1t0hdo

2 | Fjei D) =1i=j)pis

3 end

4 for k = 1 ton do

5 for r € Ruyink,m+1),n do

fori =1tohdo

‘ compute Fj(r, k) via (6);

end

9 end

10 end

11 form = (my,...,my) € Vhim do

12 M@m,0) = Fi(m + e, n);

13 forv=1tok —1do

14 M@m,v) =M@m,v—1)+my

15 end

16 end

Algorithm 1: Overall miss probabilities M (m, v) for all m € Vhfm.

® N

Fyp1(mteyy|—ey,n)
Fy(m,n) ’

for m € Vhf'" in O(nh*m"/h!) time, where n is the number of items. Similarly,
one can compute the set of miss probabilities M (m, v) for any m € V""" in

O mh? [I, (m; + 1)) time.

For the CLIMB algorithm, we have m| = ... = mj;, = 1 and & = m, meaning the
miss probability can be computed in O (nm*2™) time, which is still exponential in s,
but clearly a significant gain over directly relying on (2).

4.3 Per item miss probabilities

In this section, we focus on the hit probability of item k, denoted as H *) (m, v), for
k=1,...,n. We first show how to express M® (m,v) =1-— H® (m, v) in terms of
F;(m, n—1). Recall that the items p1, ..., p, in the previous subsection were ordered
in an arbitrary, but fixed order. To express M &) (m, v) in terms of F;(m, n — 1), we
order the items such that item k, with request probability pg, is the last item. Thus,
we need to recompute the F;(m, n — 1) values for each item k and we denote these
values as Fl.(k) (m, n — 1). A direct application of this result would therefore lead to an
algorithm with a time complexity O (n?). We further indicate how to reduce this to an
algorithm in O (n%/?).

Theorem 3 The item k miss probability M® (m, v) is

v [’imi
T+2 _F_(k)(fn D
MO (m, v) = PR —
n i
T+ 20m F.(k)(lkn,nfl)

ilehzuﬂ m; < n, and M® (m, v) = 0 otherwise.
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Proof The hit probability of item £ is identical to the steady-state probability that item
k is in some listi > v

h m;
MOmvy=1- > > > 7(c).

i=v+1 j=I1ceC,(m),c(i,j)=k

Let E® (r, k) be defined as E(r, k) with the requirement that the items are ordered
such that item £ is in the last position. By (1), (3), and (4), we find

St P E®m = e n — 1)
E(m,n)
E®m,n—1)+3>!_ pim; EOm —¢;,n— 1)

= : R
E®m,n—-1)+ Z?:] pmi EOm—ej,n—1)

M®Pm,v)=1-—

If Z?=u+1 mi > n, E®m, n—1),and M® (m, v) = 0 (as all items fit in the cache),
otherwise E® (m, n — 1) differs from zero and the result follows from dividing the
numerator and denominator by E ®m,n —1). O

Note that py has to be the last item in the order when computing the Fl.(k) (r,n—1)
values based on Theorem 2, thus for each k we must use a different order. However, it is
also clear that if we only change the order of the last s items, the values of F;(r, n —s)
do not change.

To take advantage of this observation, we partition the set {1, ..., n} of items into
Jnsets Sy, ..., S /n each holding J/n items (for ease of presentation we assume that
n is a square). To compute the hitting probabilities of the item k& belonging to set
S;, we fix the order such that all the items not belonging to S; appear first (in an
arbitrary fixed order), followed by an arbitrary order of items of S; with k as the last
item. Thus, the computation of the F; (r, n — /n) values, with r; € {0, 1, ..., m} and
Zi ri < m, is identical for all the items belonging to S; and takes O(nhzmh/h!)
time, while computing the F;(m, n — 1) values from the F;(r, n — /n) values takes
O (/nh*>m" | h!) time for each item in § ;. These results in an overall time complexity

of
o () o (E) 0 (5

h! h! h!

which is a significant gain over O (n>h*m" / h!) if the number of items n is large.
For h = 1, we have H® (m, 0) = pym/(prm + Fl(k)(m, n — 1)) and the above
algorithm to compute the per item hit probabilities has a time complexity of O (mn>/?).
An efficient algorithm to compute the per item hit probabilities of the RANDOM and
FIFO scheme appears to be novel as [10] only considered the overall hit probabilities.

Theorem 4 For any m, under the algorithms FIFO(m, v) and RAND(m, v), pr > py
implies that M® (m, v) < MO, v), that is, more popular items have lower miss
probabilities.
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Proof The proof is a generalization of [37, Lemma 5] which established the same

result for the CLIMB algorithm, that is, whenm| = ... = my, = 1 and v = 0. Due to
1), M (k) (m) < MO @m) is equivalent to
Z pzmiE(e)(m—ei,n—l)— Z p,l(miE(k)(m—ei,n—l)<0,
i=v+1 i=v+1

If we order the first n — 1 entries in both cases such that items k and £ are in the last
two positions and we use Eq. (4), the above rewrites as

h

h
> pémi(ﬂm—ei,n —2)+ > pimj — Ly=j)E(m —e; — ¢, n —2))

i=v+1 j=1

h h
_ Z p}cm,-(E(m —e,n—2)+ sz(mj —1— ) )EmM —¢; —ej,n — 2))
i=v+1 j=1

h
= > (P — pmiE(m —¢;.n —2),
i=v+1

which is negative as px > py. O

4.4 Upper and lower bounds on the overall miss probability

In the previous subsections, we developed fast algorithms to compute the overall and
per item miss probabilities of the FIFO(m, v) and RAND(m, v) algorithms. In this
section, we present a lower and upper bound on the overall miss probability when
v = 0. Compared to Algorithm 1, which leads to an algorithm that is exponential in /,
these bounds can be computed in a O (mn) time (linear in the number of items times the
cache size). The upper bound coincides with the miss probability of the original FIFO
and RANDOM schemes. This means that using two or more lists always decreases
the steady-state miss probability compared to using only one list (i.e., RANDOM or
FIFO).

Theorem 5 The miss ratio M (m, 0) of the FIFO(m, 0) and RAND(m, 0) algorithm
is upper bounded by

M(@m, 0) < Fi((m + 1)er, n) = Mgro(m),
and lower bounded by
2 xeC(m) (HT:] Pi'j) (1= px))
erc,,<m) (HT:] Pfcl,-)

Fi(ej+mep, n) =

with m = Zf-'zl m;.
These bounds can be computed in O (mn) time.
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To establish the lower and upper bounds in Theorem 5, we rely on a lemma of [34]
based on the FKG inequality [12].

We order the items such that p; < po» < ... < p,.Forx,y € C,,(m) let u(x) =
Dx;Pxs -+ - Px,, > Oand definex <yifx; <y fori =1,...,m. A function f from
C, (m) to Risincreasing if x < y implies that f(x) < f(y), f is decreasing if (— f) is
increasing. Further, we state that f is permutation invariant if its value is independent
of the order of its arguments x1, ..., X,.

Lemma 1 (Lemma of [34]) Let g be decreasing and permutation invariant on C,,(m).
If f is increasing on Cy,(m), then

D u@fg® D oum = D p®f® D pygw).

xeCy (m) yeC, (m) xeCy(m) yeC, (m)

If f is decreasing on C,,(m), then

D n0f®ex) DL opy = D pfx D pye).

xeC, (m) yeC,(m) xeCy, (m) yeC,(m)

Proof of Theorem 5 We start with the upper bound. Define the function g on C,,(m)
as

g8X)=1—=px;, — Py — . — Dxp-

The function g is clearly decreasing and permutation invariant on C, (m). Let f(x) be
defined as

i—1

h m;
f&=]T(1T]reasn

i=1 \j=1

where x(i, j) = xzi;ll et Due to (1) and (2), we have

> u®FX)gX) = Z(m)M(m),

xeC, (m)
> u®fx) = Zm),
xeCy, (m)
while
D> 1wy = Zm)Mpro(m) = Z(m)Fi((m + e, n)
yeCp(m)
and
D ) = Z(m).
yeCp(m)

@ Springer



Queueing Syst (2016) 83:293-328 307

As f is increasing, the upper bound therefore follows from the first inequality of
Lemma 1.

For the lower bound define fi(x) = w(x)” > 0 and let x Ay = (min(x,
Y1), o, Min(Xp, ym)) andxvy = (max(xi, y1), ..., max(xm, ym)), then p(x)i(y) =
A(X AYy)(x Vy) and ft is permutation invariant on C, (m). As a result, the proof of
the lemma in [34] can be repeated to show that Lemma 1 remains valid if u is replaced
by /. The result now follows from the second inequality of Lemma 1 (with u replaced
by /1) by setting

h m; i—h

fo=[1(Iprin| -
i=1 \j=1

which is a decreasing function on C, (m), and noting that

Zyec,, (m) n(y)g(y)
Zyec,, (m) a(y)

= F1(e1 + mey, n).

Theorem 2 implies that

Fp(rpen, k — 1) + piry

F k) =
n(rpen, k) S
T F@—Denk—D

and

Fi(e; +rpep, k—1) + p,};l’h Fl(e%:((rr:e;’lk)e_hifil) + Pk

Fi(e; +rpep, k) = o
i Th
L+ F(rnep,k—1)

This shows that the quantities Fj, and F| can be computed by induction on k£ and m. O

4.5 CLIMB is not optimal

Theorem 5 shows that the RANDOM algorithm achieves the worst performance (i.e.,
the highest miss rate) for the class of RAND(m, 0) algorithms with >"; m; = m under
the IRM model. Hence, it is tempting to conjecture that separating a list into two
smaller lists improves the performance and that the CLIMB algorithm, that is, having
m lists of size 1, achieves the lowest miss rate within this class. In [2, p. 135] an
even stronger conjecture is presented that states that CLIMB is optimal under the IRM
model for all finite-memory demand replacement algorithms.

Table 1 shows that both conjectures are false. The popularity distribution is p =
(49, 49,49, 49,7, 1, 1)/205 and the cache has a size Zi m; = 6. Table 1 lists the
ten vectors m with Zi m; = 6 that achieve the lowest miss probability M (m, 0),
together with their corresponding M (m, 0) value. For comparison, we also show the
performance of RANDOM and LRU. This shows that CLIMB is not optimal. It further
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Table 1 CLIMB is not optimal for IRM model with v = 0: p = (49,49,49,49,7,1,1)/205andm =6

Policy m M (m, 0) Lower bound
Optimal RAND(1,1,4) 0.005284 0.004925
RAND(1,1,3,1) 0.005299 0.004884
RAND(1,1,2,2) 0.005317 0.004884
RAND(1,1,2,1,1) 0.005321 0.004879
RAND(1,1,1,3) 0.005338 0.004884
RAND(1,1,1,2,1) 0.005343 0.004879
RAND(1,1,1,1,2) 0.005347 0.004879
CLIMB RAND(1,1,1,1,1,1) 0.005348 0.004878
RAND(1,2,3) 0.005428 0.004925
RAND(1,2,2,1) 0.005439 0.004884
LRU LRU(6) 0.005880 -
RANDOM RAND(6) 0.015350 0.015350

indicates that when fixing the number of lists /2, the optimal choice for the length of each
list is not necessarily setting m| = ... = mjy—1 = 1: for instance, m = (1, 1, 3, 1) is
better than m = (1, 1, 1, 3). This demonstrates that another of the natural conjectures
formulated in [2, p. 135] is also false.

4.6 Adding virtual lists does not always improve performance

As we will demonstrate in Sect. 6, separating a list into smaller lists or adding virtual
lists that only store meta-data usually improve the hit rate under the IRM model.
The previous example (Table 1) shows that separating a list into smaller lists does
not always improve the performance. In Table 2, we also show that adding virtual
lists can also decrease performance. We make use of the same popularity distribution
p = (49,49,49,49,7, 1, 1)/205 and consider a cache of size >_; m; = 6. We compare
the RANDOM policy (and CLIMB) with RANDOM plus one virtual list of size 1,
one virtual list of size 2, and two virtual lists of size 1. In both cases, adding one
virtual list decreases the miss probability but increasing the size of the first virtual list
or adding a second virtual list increases the miss probability. Note that the increase of
miss probability is very small and really depends on this specific example.

4.7 Miss probability is not Schur-concave

A related question is whether the miss probability is a Schur-concave? function of the
popularity distribution p = (p1, ..., p,) for the class of algorithms RAND(m, v).
If the miss probability were Schur-concave, it would imply that putting more weight
on the most popular items decreases the miss probability. The authors of [35] proved

2 A function is Schur-concave if p majorizes p’, which implies that the miss probability is lower for p than
forp/.
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Table 2 Adding virtual lists

i Policy m M(m, v)
does not always improve
performance for the IRM model  p ANpOM RAND((4), v = 0), 0.14094006
with p = (49, 49, 49, 49, 7,
1,1)/205) and m = 4 RAND((1,4), v = 1) 0.11139402
RAND((2,4),v = 1) 0.12823856
RAND((1,1,4), v =2) 0.11389801
CLIMB RAND((1,1,1,1), v = 0), 0.08041107
RAND((1,1,1,1,1), v = 1) 0.06924691
RAND((2,1,1,1,1),v = 1) 0.07576347
RAND((1,1,1,1,1,1), v = 2) 0.07063632

that the miss probability of the RANDOM algorithm, i.e., when 4~ = 1 and v = 0, is
Schur-concave, which is almost immediate from [28, p. 80].

It is shown in the more recent paper [36] that the miss probability of the CLIMB
algorithm is not a Schur-concave function of p by providing a simple counter-example
with m = 3. We make use of the same example to demonstrate that a counter-example
also exists for RAND(m, 0) with 2 = 2. We consider the popularity distributions
p1 = (0.45,0.45,0.05, 0.05) and p, = (0.75, 0.15, 0.05, 0.05) (p(x;) is majorized
by p(x2)). For pi, the miss probability is M (1, 2) = 0.05835, while itis M (1,2) =
0.05994 for p,. This implies that M (1, 2) is not a Schur-concave function of p.

5 Mean-field approximation

In this section, we develop an ODE approximation for the RAND(m, v) policy. We
show that this approximation becomes exact as the number of items and the cache
size tend to infinity. This approximation allows us to study quickly and accurately
the transient behavior of the RAND(m, v) algorithm. We use it to compute the time
to fill an empty cache in Sect. 6. It can also be used to obtain a fast approximation
of the steady-state miss probability, when the cache size or the number of lists make
Algorithm 1 too time consuming.

5.1 Derivation of the equations and intuition

At a given time step ¢, item k is either part of some listi € {1,..., h} or is not in
any of the A lists. If an item is not in any of the £ lists, we say that it is part of list O.
Foranitemk € {1,...,n}and alisti € {0, ..., h}, we define the random variables
X i(t), where Xy ; (¢) equals 1 if the item k is part of list i at time ¢ and O otherwise.
The probability that item k is in list i at time 7 is E [ Xy; (1)].

Our mean-field approximation of the RAND(m, v) algorithm boils down to assum-
ing that the evolution of two items is independent of each other. We approximate
E [X ki (t)] by a deterministic quantity xy ; (¢). The initial conditions of the ODE are
x,i(0) = 1 if the item k is in the ith list of the cache at time + = 0 and O oth-
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Pk Pk Pk Pk
Ho(t) H; (t) Ha(t) Hp_1(t)
my ma m3 mp,

Fig. 1 Evolution of the list in which item k is. When pj is small and the m;s are large, the state of
one item becomes independent of the hit rate in each box and its behavior can be approximated by a
time-inhomogeneous continuous-time Markov chain. This is the mean-field approximation

erwise. Let (xg ;(t))k.; be the unique3 solution of the following set of ODEs, for
ke{l,....,n},ie{l, ..., h}:

. ki (1)
X i (1) = prxii—1(1) — ijxj,i—l(t) kn;'
j L
Xk,i+1(1)
+ 1{i<h}(z p,-x,-,,mn;f—l - pkxk,i(r)), ®)
X i+

J

where 1(; <5 is equal to 1 if i < & and O otherwise.

This equation can be understood as follows. Assume that item k is in list i €
{0,..., h — 1} at time ¢. With probability py, item k is requested and moves to list
i + 1. With probability H;_(¢) = Zj pjXji—1(t),anitem from listi — 1 is requested
and is exchanged with an item picked at random from list i. This item is item k with
probability 1/m;. Hence, with probability H;_1(t)/m;, item k moves to listi — 1. If
the list in which item k is and the variables H;(¢) were independent, the behavior of
item k would be described by a Markov chain whose transition matrix is represented
in Fig. 1.

If the probability pi is small and the list sizes m;, fori = 1, ..., h, are large,
this Markov chain is well approximated by a continuous-time Markov chain. If all
items evolve independently, this leads to our mean-field approximation given by Equa-
tion (8).

In the next section, we establish a bound—Theorem 6—that guarantees that, as
the cache size grows, the transient hit probability can indeed be described by the
ODE (8). This bound is valid regardless of the probability distribution (p;). A more
classical approach to obtain a convergence result would be to assume that items can
be clustered into a finite number of classes and to let the number of items per class
go to infinity. One could then use classical mean-field results to prove convergence
[4,6,25]. This is the approach taken in [33]. Our approach is to relax the assumption
of a finite number of classes with an infinite number of items per class. A drawback
of our approach is that we can no longer rely on classical mean-field results and a
new proof is therefore required. Yet, we believe that the cluster assumption is not a
natural assumption for many mean-field models. Our approach shows that it is possible

3 It should be clear that this ODE is Lipschitz-continuous and hence has a unique solution. Moreover, with
the initial conditions indicated, the solution of the ODE satisfies, for all time ¢, ZZ:] Xk i(t) = m; and

i) =1
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to obtain convergence results without assuming that clusters exist, which makes the
results more widely applicable. It could be generalized to other mean-field models for
which the cluster assumption is not realistic.

5.2 Proof of the validity of the approximation

Let H;(t) = ZZ: 1 PrXk,i (t) be the sum of the popularities of the items that are part of
the ith list of the cache at time ¢ and Hy(t) = 1 — Zlh: | H;(t) be the miss probability
at time t when v = 0. Let §; (1) = Zk PikXk.i (1), where xi ; (¢) is the unique solution
of ODE (8), with initial conditions xi ; (0) = Xk ; (0).

Theorem 6 For any T > 0, there exists a constant C > 0 that depends on T such
that, for any probability distribution over n items and list sizes my, ..., my, we have

1
E sup |H;(1)—=8;(@®)] | < C\/ max pi+ max —,
1€{0,...,t},i€{0,....h} I<k<l O<i<h m;

h
h =T 4 N
where e [/(?fi*l’ﬁ?fémfﬂ

In particular, Theorem 6 implies that the ODE approximation becomes exact as the
cache size goes to infinity and the probability of each item goes to 0. This result can
be seen as a generalization of [33] for two reasons. First, [33] only considers the
RANDOM policy, that is, RAND(m, v) with 4~ = 1. More importantly, [33] assumed
that there were a finite number of classes of items with an infinite number of items per
class. Our result is more general as we assume any distribution for p.

In fact, we believe that this result can also be extended to show that the ODE
approximation becomes exact as the caches size goes to infinity, even if the probability
of some items does not go to 0 (as it is the case for a Zipf distribution with & > 1).
Assume that item k has a probability py > 1/my,. In such a case, as shown in Fig. 1,
the item & will quickly enter list # by having been hit multiple times, but will only exit
list 2 with probability O (1/mp) < pix. We believe a result similar to Theorem 6 can
therefore be obtained by separating the behavior of the popular and non-popular items.

Proof Let a = maxy pr and b = max; 1/m;. Recall that X ;(¢) is equal to 1 if
item £ is in the ith list of the cache at time ¢ and O otherwise. For any & € Z*, and
i €{0,..., h}, wedefine H; o(t) = a' = >, (px)* X.i (1).

Let H be the set of infinite vectors (8; 4)ic(o,....h},ae(1,2,...} Where 8; ¢ = a
> 1 (pr)%x,; for some (xx ;) ; such that sup; ; [xx ;| < co. We equip H with the £
norm: ||kl = sup; , |h] and define H<; to be the set of A€ such that |4, <1.

We define the function f : H — H by, for all § € H:

1—«a

81“ 31'01
fi,a(8) = adi—y,a+1(1) — W

8i1(1)di1,a
+1j<n (M — a5i,a+1(l)) ) 9)

mi41
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where 1{; .5y equals 1 if i < & and O otherwise.
To prove the result, we rely on the following lemma, the proof of which is postponed
to Appendix. O

Lemma 2 Let (F;) be the filtration associated with the process (X ;(t))k.i, then
(1) f(H(t)) is the average variation of H (t):

E[H@+1)— H@®)|F]= f(H®@)). (10)
(ii) The second moment is bounded:
E[IHG+1) - HOIX |7 < 24

(iii) There exists a constant L independent of the pys and the m;s such that the function
[ is Lipschitz-continuous with constant L(a 4 b) on H<1, where a = maxj pi
and b = max; 1/m;.

(iv) If xx ;(t) is the unique solution of ODE (8), with initial conditions xj ; (0) =
X.,i(0), then the infinite vector § defined by 6; 4(t) = al— D (Pr) ¥ xk i (1) is
the unique solution of § = f(8), that is

1
8(t)=H(0) ~|—/ f(8(s))ds.
0

Let H denote the continuous function equalto H (t) whent € ZT and linear between
t and r + 1. A straightforward computation shows that, for all # € ZT,H(t) € H<i
and that H < is convex. Hence, for all # > 0, H@) e H<i.

Let M(¢) := Zi;(l) H(s+1)— H(s) — f(H(s)). We have

t—1

t
H(t)y=H©O)+ > f(H(s) + M) = H(O)Jr/0 JS(H(s])ds + M(r)

s=0

t t _
=H(0)+/0 J”(H(S))dsJrM(t)Jr/0 (f(H(sD) = f(H(s))ds. (1D)

Equation (9) implies that for & € H<i, | /(M) < 2(a + D). As a result, we get
|H(Ls)) — H(s)||, <2(a+b)(Ls] — s), which by Lemma 2(iii) implies that

t 1
/O | fHsD) — f(H($) | ds < tL(a+Db) /0 2(a + b)sds
= L(a + b)*1.

Combined with (11) and Lemma 2(iv), for ¢t < t, this shows that || H(t) — 8(t) “OO is
less than

t
/0 | fCE$)—FG)| o ds + Lia+b)*t + sup 1M (1) s
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which, by Lemma 2(iii) and Gronwall’s lemma, implies that sup, ., | H (1) — (1) |
is less than

(L(a + b))% + sup IIM(I)IIOO) exp(L(a + b)1). (12)
<t

Moreover, by Lemma 2(ii), we have E[|[M(7)|%] < 2a*t. By Lemma 2(i),
M (¢) is a martingale. Therefore, this implies that E [sup,g (IM (t)lloo] < a2t <
(a + b)\/ﬂ. Replacing t by T/(a + b), Eq. (12) is smaller than (LT (a + b) +
\/m\/ﬁ) exp(LT). By construction, a + b < 2, which implies that a + b <

V2+/a + b. Thus, setting C = V2(LT + JT) exp(LT) gives the result.

5.3 Steady-state behavior

Theorem 6 justifies the fact that the ODE is an approximation of the transient behavior
of the hit probability of the original system. We now use this approximation to obtain
a fixed-point equation for the steady-state hit probabilities. When /4 = 1 this equation
is identical to the one introduced in [9] for FIFO and used in [29] for the RANDOM
algorithm.

The next theorem shows that the mean-field approximation of our system, given by
the ODE (8), has a unique fixed point. As indicated by [4], having a unique fixed point
is not, in general, a sufficient condition to show that the steady state of the stochastic
system concentrates on this point. In our case, due to Corollary 1, the stochastic process
of RAND(m, v) is reversible and for reversible processes that converge to an ODE [6]
showed that the stationary measure of a reversible process concentrates on the fixed
point of the ODE. Although we cannot directly apply the result of [6] to our setting, we
expect that a similar argument can be used. As RAND(m, v) and FIFO(m, v) have the
same steady-state hit probability, this fixed point provides a very efficient numerical
method to compute the steady-state performance of both policies.

Theorem 7 The mean-field model (8) has a unique fixed point. For this fixed point,
the probability that item k is part of listi, fork = 1,...,nandi =0, ..., h, is given
by

i
Prli
Xki = .\
L+ 20 Pz
where z = (z1, ..., Z5) is the unique solution of the equation

n

Pizi
S, 0
i1 L+ 2051 Pz
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Proof Let (xi,i),; be a fixed point of the ODE (8) and let H; _ = Z?:] pjxji—1be
the corresponding hit probability in box i — 1. The fixed-point equations are

i
PkXk,i—1 — Xk,i+1 — pk_Xk’l') =0.
1

i+

H_, H
xk,i + ji<n
m; m

As these equations correspond to the fixed-point equation of the birth-and-death
process described in Fig. 1, we have

. ppmi ...m,x
ki = k,0-
Hy...Hi_

Letz; = [[5—gm 1/H;fori € {1,.... h}.Byusingthat >"/_; x; ; = 1, this implies
that x¢; = pizi/(1+ Z?:l p,{zj). By using that >} _, xx,; = m;, this yields

Zxk, —ZL (14)

k= 11+Z, 1 PLzj

We now show that Eq. (14) has a unique solution. For a vector z = (z1, ..., 2p) €
(R, we define D;(z), fori =1,..., h, by

n

bw=3 IS

sl oD Dy IR S A /z,+Z, | PLzil

The function D; (z) is increasing in z; and decreasing in z; for j # i.

For a vectorz = (z1,...,2z5),1 € {1,...,h},and y > 0, we denote by z_; (y) the
vector whose coordinates are all equal to those of z, except for the ith one, which is
equal to y. D;(z—;(y)) is increasing in y. Hence, the equation D;(z_;(y)) = m; has
a unique solution that we denote G;(z) (it should be clear that, by definition, G;(z)
does not depend on z;). Moreover, as D (z) is decreasing in z; for j # i, G;(z) is
increasing in z, for all j # i. This shows that G is increasing (componentwise) in z:
if, for all , z; < z;, then, for all i, G;(z) < G;(Z)).

We define the sequence z' by z° = (0, ...,0) and z't! = G(z) fort > 0. As G (z)
is componentwise increasing in z, the sequence z’ is increasing. Moreover, by using
thatz =z’ () and m; = D;(z" ,(z!™")), we have

Di(z') = D;i(z" ;(z})) < Di(@; (™) = m;,

where the inequality follows from the fact that zlf is increasing in ¢t and D;(z) is
increasing in z;. This shows that, for all 7,

n—Zm,fn—ZD(z)_Z !

11—!—2/ lpkz
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which implies that the sequence z’ is bounded. As this sequence is increasing, it
converges to a fixed point of G.

We now prove the uniqueness. Let A > 1. If we multiply all coordinates of z by A,
the D(Az) becomes

n [ n 1
D) = Pizik - Pici > Di(2)
! - h j - h j P
=t (14252 pezid) k=t (1A + 20520 pic

This implies that G;(Az) < AG;(z).

The function G satisfies the assumptions of a standard interference function /
of [38], which means that it is positive, monotone, and sub-homogeneous. By [38,
Theorem 2], this implies that the fixed point of G is unique and that the iterations
't = G(z') converge, regardless of z°. This result can be proven by showing that
x — G(exp(x)) is a contraction. O

5.4 Numerical algorithm and validation

The proof of Theorem 7 is based on the construction of an iterative scheme z/*! =
G(z') that converges to the unique fixed point given by Equation (13). This iteration
provides an efficient method to compute the fixed point, as it converges exponentially
fast to the fixed point and each iteration takes O (nh) time, i.e., is linear in the number
of items times the number of lists. This is clearly a significant improvement over the
O (nhm" / h!) time complexity of Algorithm 1, used to compute exact hit probabilities,
especially for large cache size and/or a large number of lists.

In Tables 3 and 4, we compare the steady-state miss probabilities given by the
mean-field approximation with the exact values given by Algorithm 1 when v = 0.

Table 3 Mean-field model

validation of the long run miss ¢ " "l "2 Exact Mean field
probability forv =Oand 2 =2 ¢ 300 2 98 0.3466 03470
with Zipf-like popularity
distributions 30 70 0.3608 0.3612
98 2 0.4239 0.4245
0.8 3000 20 980 0.3034 0.3035
300 700 0.3159 0.3160
980 20 0.3723 0.3724
1.1 300 2 98 0.1719 0.1722
30 70 0.1832 0.1835
98 2 0.2362 0.2367
1.1 3000 20 980 0.1110 0.1110
300 700 0.1183 0.1183
980 20 0.1531 0.1531
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Table 4 Mean-field model

validation of the long run miss m e "3 4 Exact Mean field
probability for v =0, =3, B ) 9 _ 03166 0.3169
and & = 4 with n = 300 and a ’ ’
Zipf-like popularity distribution 10 30 60 - 0.3296 0.3299
with o = 0.8 20 2 78 - 0.3273 0.3276

90 8 2 - 0.4094 0.4100

1 4 10 85 0.3039 0.3041

5 15 25 55 0.3136 0.3139

25 25 25 25 0.3345 0.3348

60 2 2 36 0.3514 0.3517

Table 5 Mean-field model validation of the long run miss probability for # = 10 lists with n = 1000 and
a Zipf-like popularity distribution based on 5 simulation runs

o mj v Simulation Mean field
0.5 30 0 50113 £.00011 50116
3 .57850 £ .00008 .57848
0.75 10 +40 - 1(;>5) 0 .32307 £ .00002 32310
6 41049 + .00005 41053
0.8 10i 0 .15836 £ .00003 15838
1 .16209 + .00003 16212
0.9 30 — (i — 5)2 0 .29437 £ .00003 .29439
2 31541 £ .00003 31546
1.1 8(11 —1i) 0 .09412 £ .00007 .09417
7 .35301 £ .00008 .35351
1.4 8+ 72+ 1y is odd) 0 .02504 £ .00001 .02504
4 .04057 £ .00001 .04057

The popularity distribution follows a Zipf-like distribution of parameter 0.8 or 1.1.
These tables contain the results for various values of m. We observe that, in all cases,
the approximation is within 1% of the exact value. This holds even when the lists are
small or with highly non-uniform distributions (Zipf with & > 1).

When the number of lists exceeds five, the execution time of Algorithm 1 becomes
prohibitive (it grows as m”). We therefore compare the mean-field model with values
obtained by simulation for # = 10 and v > 0 in Table 5. We show the results for
various popularity models (Zipf 0.5 to Zipf 1.4) and diverse lists sizes: all lists have the
same size (m; = 30), increasing sizes (m; = 10i orm = (10, ..., 10, 50, ..., 50)),
varying (m; = 30 — (i — 5)2), decreasing sizes (m;8(11 — i)), or alternating (m =
(80, 8, 80, 8...)). In all cases, the mean-field approximation was computed almost
instantaneously on a regular laptop while the time to obtain our simulation results was
several hours. The accuracy of the transient behavior of the ODE approximation is
discussed in Sect. 6.1.
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Fig. 2 Lower bounds for 4 = 2, 3, 5, 10, and oo and the miss rate M(m, 0) withm| = ... =mj_; =1

forh = 2,3, 5, and 10 as a function of the cache size m, with v = 0, n = 3000, and @ = 0.8

6 Numerical results and guidelines

In this section, we wish to formulate some guidelines on how to select the number
of lists and the list sizes m to my. We first focus on the IRM model and study the
trade-off between time to fill the cache and miss probability. We then explore traces
of real data.

6.1 IRM model and time to fill the cache
6.1.1 Influence of the number of lists

Figure 2 depicts the lower bounds established in Theorem 5 for various £ values as
a function of the cache size m when n = 3000 and p follows a Zipf-like distribution
with @ = 0.8, that is, p; = A/i*, where A is the normalizing constant. Furthermore,
we also plotted the miss probability M(m, 0) of the RAND(m, 0) algorithm when
my = ... = my—1 = 1. The main conclusions are, first, that having more lists
generally improves the performance®. Second, these lower bounds appear to be very
sharp under a Zipf-like workload (with « = 0.8 and n = 3000 items). Third, the
figure demonstrates that there is little room for further reducing the miss probability
by using more than # = 10 lists. Most of the gain can be obtained by implementing a
limited number of lists. This observation will be confirmed further on using trace-based
simulations.

In Fig. 3, we study the impact of the size m of the first list on the miss probability
when 2 = 2, m = 300, n = 1000 and the popularity distribution p follows a Zipf-like

4 However, adding too many lists can be detrimental for the performance for some very specific and skewed
popularity distribution (as shown in Sect. 4.5).
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Fig.3 Impact of parameter « of the Zipf-like distribution on the miss probability M (m1, m2), with v = 0,
n = 1000, and m = 300

distribution with o ranging from 0.5 to 1. As reported in [ 7], many traces correspond to
Zipf-like distribution with parameters & € [0.6, 0.9]. Our range of values « correspond
to a super-set of these values. The figure indicates that there is no need to make the
size m of the first list extremely small in order to have a miss probability that is close
to the lower bound. This is important as we will show next that small m | values make
it harder for items that suddenly become popular to enter the cache.

6.1.2 Influence of the first list size

To this end, we study the transient behavior of the hit probability under the IRM model
starting from an empty cache by making use of the mean-field model (with Hy(z) = 1).
We also validate the accuracy of the mean-field model to capture the transient regime
by plotting the corresponding simulation results (averaged over 5 or 25 runs to reduce
the noise). Figure 4 shows the transient behavior of the hit probability as a function
of the number of requests received under the IRM model with a Zipf-like popularity
distribution with palrametelrs5 o = 0.5 for h = 2 lists, m = 200, n = 1000, and
various values for the size of the first list m1. The figure indicates that the mean-field
model and the simulation-based results are in perfect agreement. Further, as expected,
it demonstrates that while decreasing m; improves the steady-state hit probability
(which is in agreement with Fig. 3), the time to reach the steady state increases as a
function of m1. Our conclusion is that the time to fill the cache depends mainly on the
size of the first list. Assigning a sufficient portion of the overall cache size to the first
list gives a significant increase in the hit probability while having a limited impact on
the cache reactivity.

5 The choice of & = 0.5 is arbitrary and similar results can be observed with larger «.
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Fig. 4 Evolution of the hit probability starting from an empty cache with v = 0, n = 1000, and o = 0.5.
Simulation is based on 25 runs

To obtain more insights on the time to fill the cache, let us focus on the case when
P is a uniform distribution. In this case, the mean-field approximation (8) simplifies to

() = xi-1(0) Xi—l(l)')Ci(l‘) 1 (x,-(t)x,»H(t) o (t)) |

n mi mit] n

When m| < n, items enter the first list at rate 1/n and leave it at rate 1/m ;. This
leads to x1(¢) =~ (m1/n)(1 —exp(—t/mq)): the time to fill the first list is proportional
to m1. When list i contains x ~ m items, these items jump to the next list at rate
x/n =~ mi/n.This suggests that the time to fill the lists 2 to & is of the order n (my /m 1+
m3/my + - - -+ my/mp—1). Hence, a natural choice is to set m| = my = --- = my,
which results in a total time to fill the cache of m| +n(m —my)/m;.

Although this analysis only works for a uniform distribution, we show in Fig. 5 that
the impact of the parameter « of the Zipf-like popularity distribution p on time to reach
the steady-state hit probability is limited. This figure shows the hit probability as a
function of the number of requests for n = 1000 items and m = (50, 150). Similarly,
we depict the transient hit probability when m| = 40 for & = 2, 3, and 4 lists in Fig. 6.
The main message of this figure is that the time to reach the steady-state hit probability
does not depend much on the list sizes m; to mj,. Hence, instead of working with just
two lists, one can improve the steady-state hit probability by relying on multiple lists
without affecting the reactivity of the cache when the size of each of the lists is at least
as large as the first one.

6.1.3 Influence of the presence of meta-data lists

Let us now study the impact of adding additional lists that only store meta-data to a
cache. For this purpose, consider the case where n = 1000, « = 0.5, and m; = 40 for
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Fig. 6 Evolution of the hit probability starting from empty cache with v = 0, n = 1000, and @ = 0.5.
Simulation is based on 25 runs

all i. Figure 7 demonstrates what happens to the time to fill the cache when 4 = 5+ v,
forv =0, ..., 3, meaning the cache can store 200 items in all cases and increasing
v by one adds another list of size 50 that contains meta-data only. This example
demonstrates that adding extra lists with meta-data to a cache typically improves the
long run hit probability under the IRM model and the additional gain obtained from
adding another list decreases as more lists are added. However, increasing v also
increases in the time needed to fill the cache. As such it seems best not to add too
many lists with meta-data, as this makes the cache replacement policy very inflexible
when faced with dynamic workloads.
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Simulation is based on 25 runs

In the previous example, all lists were of size 40. As storing only meta-data requires
less storage capacity than storing the actual items, one can easily make use of larger m
to m, values at limited cost. Figure 8 considers the same example as before withv = 1,
and studies the impact of m1, the size of the list with meta-data only. It illustrates that
increasing m typically increases the time to fill the cache while it reduces the long
run hit probability (by a very small fraction for small m| values).

Our conclusion is that the addition of meta-data lists leads to better performance but
slower reactivity. A good balance between the long run hit probability and the cache
responsiveness therefore appears to exist in setting the meta-data lists sizes equal to
the size of the lists that contain the items stored in the cache.

6.2 Trace-driven simulations

To validate the insights obtained by studying the IRM model, we perform trace-based
simulations using a publicly available YouTube trace that was collected at a campus
network during a 14-day period in 2008 [39, Trace T5]. This trace contains a total
of 611,968 requests for 303,331 different videos, meaning that, if we start with an
initially empty cache, the miss probability is at least 303, 331/611, 968 &~ 0.496 even
if the cache has infinite capacity. Further, about 65.9% of these videos were requested
only once during the trace, meaning the request pattern is quite different from the IRM
model. We selected this particular trace among the ones discussed in [39] as it is by
far the longest one.

We developed a simulation program for the FIFO(m, 0), RAND(m, 0), strict
FIFO(m, 0), and LRU(m, 0) algorithms discussed in Sect. 3, for the scenario where
the campus network relies on a single proxy cache. As only HTML-based control mes-
sages are available for trace TS, we have no information on the size of the requested
videos. We therefore assumed (for all the policies) that the cache size is expressed
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Fig. 8 Evolution of the hit probability starting from empty cache with n = 1000 and & = 0.5. There is
one meta-data list of size m € {20, ..., 640}. Simulation is based on 25 runs

in the number of videos m that can be stored in the proxy cache (the average size of
a video should be a few megabytes). This should not impact the results much if the
correlation between video popularity and video size is small.

In all figures of this section, we only report results for v = 0. The reason is
that, for this particular trace, the performance when v > 1 is worse. Indeed, for this
particular trace, only 200k items were requested twice, 160k three times, and 130k
four times. This shows that by having v = 1, 2, or 3, one cannot achieve a hit rate
above 0.3354, 0.2580, and 0.2122, as the first v + 1 requests for any video cause a
miss even if all the lists have infinite capacity. Just to state one number for v = 1:
the LRU(m, 1) algorithm with & = 6,v = 1,m; = oo, and m; = 1000 for i > 1,
achieves a hit rate of 0.2329 which is well below the hit rates reported further on for
v=0.

When comparing the different replacement policies, we varied the size of the first
list m and divided the remaining cache capacity equally among the remaining 7 — 1
lists. Figures 9, 10, and 11 depict the hit probability as a function of the cache capacity
assigned to list 2 to 4 when the total cache capacity is m = 5000 videos and we make
use of 1 = 2, 3 or 5 lists. The following insights are provided by these figures. While
the FIFO(m, 0) and RAND(m, 0) algorithm perform alike under the IRM model,
RAND((m, 0) results in a lower hit probability when using real data, as expected. The
strict FIFO(m, 0) and FIFO(m, 0) algorithms do, however, perform very similarly,
especially if enough capacity is assigned to lists 2 to 4. The LRU(m, 0) algorithm
does outperform FIFO(m, 0) when using two or three lists, but the gain becomes very
limited when using 2 = 5 lists. We also note that FIFO(m, 0) clearly outperforms a
pure LRU cache.

In all cases, the hit probability is maximal when about 30 to 60% of the cache
capacity is assigned to the first list. It quickly deteriorates as the size of the first list
becomes small. This observation is in line with the earlier observation that the time to
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fill the cache is larger for small values of m, that make it harder to insert new items
into the cache.

The increase in the hit probability as a function of the number of lists is most
pronounced when # is small, which is in agreement with earlier observations under
IRM. In fact, further increasing the number of lists beyond 10 causes a decrease in
the hit probability, mostly because the sizes of the lists 2 to 4 become small, making
it harder to insert new items in the cache.

Both strict FIFO(m, 0) and FIFO(m, 0) exhibit a jump in the hit probability as
soon as we add a second list, even if this list can only store a single item. For strict

@ Springer



324 Queueing Syst (2016) 83:293-328

0.33 T

0.32

o
@
%

D&

Hit Probability

o

)

©
T

—<— FIFO(m): 2 lists i
—&6— FIFO(m): 3 lists o
—*— FIFO(m): 5 lists
—&— LRU(m): 2 lists
—+— LRU(m): 3 lists
—— LRU(m): 5 lists

0.28

027 . . . .
0 1000 2000 3000 4000 5000

m—m1

Fig. 11 Trace-based hit probability of FIFO(m, 0) and LRU(m, 0) with m; = (m — m1)/(h — 1) for
i=2,...,hand > ; m; = 5000

FIFO(m, 0) this can be easily understood as the second list allows an item that is hit
repeatedly to move to the front of the cache. In particular, strict FIFO((m — 1, 1), 0)
behaves very similar to a pure LRU, which is known to outperform pure FIFO [34].
The same happens to a lesser extent for FIFO(m, 0), but items now move to a random
position in the first list when being demoted. Still, on average it allows popular items
that are in the back of the cache to move away from the back of the cache. RAND (m, 0)
does not exhibit such a behavior as being at the front or back in the first list makes no
difference.

7 Conclusion

In this paper we studied a family of cache replacement algorithms FIFO(m, v) and
RAND(m, v). We provided closed-form results for the steady-state probabilities under
the IRM model, as well as a polynomial algorithm to compute the steady-state miss
probabilities. We further developed a mean-field approximation that provides a fast and
accurate method for approximating the miss probabilities. We used this approximation
to study the transient behavior of the cache and to provide guidelines on how to tune
the number of lists and the list sizes. This suggests that the first few lists should be
large enough and have equal sizes. By using these insights, we verify on real traces
of cache requests that these policies perform well and can outperform other classical
heuristics such as FIFO or LRU. We also studied the use of virtual lists, suggested in
[29], that only store meta-data. We found that the number of virtual lists should be
limited (one or two) and that these virtual lists should be similar in size to the lists
containing the actual items. Our trace-based experiments also show that when many
items are requested a small number of times, having virtual lists is detrimental.

A direct extension of this work would be to consider a network of caches, by using
the model of [5,11]. We also aim at obtaining closed-form expression for the steady-
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state probabilities or the time to fill the cache when the distribution is Zipf(«) or develop
an approximation for studying the transient behavior of FIFO(m, v). Considering more
general request models than IRM like MAP arrival or shot-noise is also important.
For MAP arrivals, the steady-state results for LRU(m, v) obtained in [15] could be
generalized to the case of RAND(m, v) and FIFO(m, v).

Acknowledgments This work is partially supported by the EU Project QUANTICOL, 600708.

Appendix: Proof of Lemma 2

Leta € ZT andi € {1,..., h}. Two types of events can modify the value of H; 4 (¢):

— Ifattimet theitem k is requested and is in listi — 1, then it is exchanged with another
item j that is chosen uniformly at random from list i. This occurs with probability
Xi,i—1(®)X i (t) px/m; and modifies H; o (¢) to H; (t) +a 1-o (P — p?‘).

The average variation of H; , due to these events is

- Pk
ZXk,i—l(l)Xj,i(t)al ¢ (P/? - P?) —
k.j i

_ 1
=2 Xei1(0a' Pt Y X0 —
k j !

_ 1
+ D Xeia®pe Y a' “PiX O
k J

H;_1,1(t)H; (1)

1

=aH; 1,0+1(1) +

where the last line comes from the fact that Zj X;i(t) =m;and > px Xp,i—1(1)
= H;—1,1(0).

— If i < h and if at time ¢ the item k is in cache i and is hit, then it is exchanged
with another item j that is chosen uniformly at random from cache i + 1.
This occurs with probability Xy ;(#) X i+1(t) px/mi+1 and modifies H; (f) to
Hio(t) +a' ™ (=p{ + pf).

This second type of events leads to an average variation of aH;o+1(f) +
(Hi (O Hit1,4@)/miq1 ifi < h.

Summing the two terms implies (i): for all i, « we have
E[Hio(t+1) = HioOIF] = fia(H@).

Let us now show that the second moment of the variation of H is bounded. For all
k, j, we have 0 < pi, p; < a. This implies that a’=2« (p,‘f — p‘]’.‘)2 < a?. Therefore,
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by using the same two types of events as for the proof of (i), we have

E [SUP (Hi,a(t+1)_Hi,a(t))2 Ifz]

2
- Pk
= > X X0 supa® 2 (pf = pg)
i o nij
5
2
_ Pk
+ D Xei(OX i (0 supa® 2 (p = p) L
o o / My
2
Pk a” Pk
<D XX (0@ = + > Xp i (DX i1 () ——
i mi I, mi+1

= (Hi—1,1(t) + Hi 1 (1)) a*.

This shows that

E[IH+1) = HOIZ || = E [ sup(Hia(t + 1) = Hia ()|

i,
<E|D sup(Hio(t + 1) — Hia())*|F:
. o
1

< Z(Hi—l,l(t) + H; 1 (1))a* < 2a°.

1

The points (iii) and (iv) are easier as f is a sum of two terms: the first one is
Lipschitz-continuous with constant a and the second is a second-order polynomial
function of 4 divided by m;, which is therefore Lipschitz-continuous with constant
C/m; on all bounded sub-space of H. Moreover, by plugging (8) into (10), we find
that & is the solution of § = £ (8). o
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