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Abstract

Garbage collection has a profound impact on the write
amplification in flash-based SSDs, which in turn may
significantly reduce its life span. The unequal wear of
data blocks further contributes to this reduced life span.
In this paper we study two performance measures: the
SSD endurance which assesses the life span of an SSD
and the PE fairness which is a measure for the degree of
unequal wear.

We demonstrate, using a mean field model and simu-
lation, how these measures are affected by the garbage
collection algorithm, spare factor, etc. Numerical results
indicate that under uniform random writes there is no
need to implement a wear leveling technique. For hot
and cold data we see that design choices that lower the
PE fairness may still result in a higher SSD endurance,
which suggests that one should not emphasize too much
on equaling the wear.

1 Introduction

Two of the main difficulties faced by flash-based SSD de-
signers are the inability to perform erase operations on a
page level and the limited number of program-erase (PE)
cycles that a block can tolerate [5]. While the former is
addressed using out-of-place writes, the latter has led to
the introduction of various wear leveling techniques to
extend the life span of the drive [8]. There has been a
lot of work on assessing the write amplification caused
by out-of-place writes (e.g., [2, 4, 10, 11]), but far fewer
studies exist that focus on the life span of an SSD.

In this paper we introduce two performance measures
called the PE fairness and SSD endurance and study how
they are affected by various system parameters as well
as by the garbage collection (GC) algorithm. The PE
fairness indicates to what extent blocks undergo the same
number of PE cycles during the life span of the drive.
The SSD endurance measures the number of full drive

writes that can be performed before any block reaches
its maximum number of PE cycles. The SSD endurance
is thus a combination of the write amplification and PE
fairness.

2 System description

In this paper we focus on an SSD with a page-mapped
FTL that contains N physical blocks each holding
b pages with a spare factor S f (that is, with over-
provisioning factor 1/(1− S f )). We assume the SSD
operates using two special blocks, called write frontiers
(WFs), to support out-of-place writes: a WF for writes
requested by the host, termed the external WF (WFE),
and a WF for writes performed by GC, termed the in-
ternal WF (WFI). The objective of supporting these two
WFs is to achieve a form of data separation without the
need to implement a hot/cold data identification tech-
nique.

The GC algorithm is invoked whenever the WFE be-
comes full. Assume that the last b− j∗ pages of the WFI
are in the erase state when the GC algorithm is invoked,
while the first j∗ are in the valid/invalid state. Further
assume the victim block selected by the GC algorithm
contains j valid pages. Consider the following 2 cases:

1. If j ≤ b− j∗, the j valid pages of the victim block
are simply copied to the WFI leaving the last b−
j∗− j pages in the erase state. After copying the j
valid pages to the WFI, the victim block is erased
and becomes the new WFE. Hence, the next b host
writes make use of the WFE before the GC algo-
rithm is invoked again.

2. If j > b− j∗, b− j∗ of the j valid pages are copied
to the WFI. The remaining j− (b− j∗) valid pages
are copied to RAM and back to the victim block
after the victim block has been erased. In this case,
the victim block becomes the new WFI and the GC
algorithm is immediately invoked again.



We mainly focus on the set of d-choices GC algo-
rithms [10, 11, 12], where d ≥ 1 is an integer. Under
d-choices GC the victim block is selected as follows:
d blocks are chosen uniformly at random and the one
containing the least number of valid pages among the d
chosen blocks becomes the victim block (ties are broken
arbitrarily). When d = 1 we obtain the Random GC al-
gorithm, while setting d equal to the number of blocks
on the SSD results in the Greedy GC algorithm [2, 6, 4].
Under uniform random writes the Greedy GC is known
to minimize the write amplification [13], while in case of
hot/cold data there exists an optimal finite d when mini-
mizing the write amplification [11].

Note the d-choices GC algorithm does not exploit any
information that may be maintained by a potential wear
leveling mechanism. Hence, the system under consider-
ation does not rely on any form of wear leveling. One of
the questions we do intend to answer is how much room
there is left for any wear leveling mechanism to further
improve the endurance of the system.

3 Performance measures

In this section we introduce the two main performance
measures studied in this paper, for completeness we re-
visit the well-known write amplification (WA) first. The
WA is equal to the ratio between the total number of
writes performed on the drive divided by the number of
writes requested by the host system. To be mathemati-
cally precise, let X j be the random variable denoting the
number of valid pages on the victim block selected dur-
ing the j-th GC call, then the write amplification up to
the time of the n-th GC call can be expressed as

WA(n) =
bn

∑
n
j=1 ∑

b
i=0(b− i)P[X j = i]

,

as selecting a victim block with i valid pages leaves room
for b− i writes by the host. Note when talking about the
WA one typically refers to limn→∞ WA(n).

To define the first performance measure, called the PE
fairness (PE f ), let Wmax represent the maximum number
of PE cycles that a block can tolerate (for simplicity we
assume this is a fixed number). The PE fairness is de-
fined as the mean number of PE cycles performed on a
block before any block reaches Wmax PE cycles divided
by Wmax. More formally, let Yk denote a random variable
representing the number of times the GC algorithm is in-
voked before any block is erased for the k-th time, then
the PE fairness is given by

PE f (Wmax) = ∑
n≥1

P[YWmax = n]
n/N
Wmax

=
E[YWmax ]

WmaxN
,

as after n GC calls the mean number of PE cycles per-
formed on a block part of a set of N blocks equals n/N.

If the PE fairness is close to one, it is clear that there
is little to no use in implementing a wear leveling tech-
nique. We believe this is an easier to interpret measure
for the fairness than Jain’s fairness index proposed in [7].

The second measure of interest, termed the SSD en-
durance (SSDe), is a measure for the expected total num-
ber of host writes performed before any block reaches the
predefined maximum number Wmax of PE cycles. Hence,

SSDe(Wmax) =
E[∑

YWmax
j=1 ∑

b
i=0(b− i)P[X j = i]]

bN
.

Note the unit used to express the SSD endurance is the
total number of Full Drive Writes (FDWs). The SSD
endurance is roughly equal to Wmax times the PE fairness
divided by the WA. While it is attractive to have a PE
fairness close to one, the main reason for striving for high
fairness exists in prolonging the life span of the drive,
which is captured by the SSD endurance. Hence, having
a PE fairness close to one is nice, but in the end only the
SSD endurance truly matters. Finally, we note that this
definition of the endurance is the same as the one used
in [1] for USB flash drives, which does not take NAND
data refresh operations into account that may be needed
to guarantee data retention [3].

4 Uniform random writes

In order to study the impact of a number of system pa-
rameters on the PE fairness and SSD endurance when
subject to uniform random writes, we can extend the
mean field model of [10] that analyzed the write amplifi-
cation only. The generalization exists in setting up drift
equations for mi,w which represents the fraction of the
total number of blocks holding i valid pages on which
exactly w erase operations have been performed.

Let pi,w(~m) be the probability that the GC algorithm
selects a block with i valid pages that has been erased w
times. For instance, if we use the d-choices GC algo-
rithm which does not take the number of PE cycles that
occurred into account, we have that pi,w(~m) equals

mi,w

mi

( b

∑
`=i

∑
w≥0

m`,w

)d

−

(
b

∑
`=i+1

∑
w≥0

m`,w

)d


for mi = ∑w≥0 mi,w > 0 and pi,w(~m) = 0 for mi = 0. Let
pi(~m) = ∑w≥0 pi,w(~m).

Without going into detail, the set of ODEs for the
generalized mean field model is given by d

dt mi,w(t) =
fi,w(~m(t)), where fi,w(~m) equals

(i+1)mi+1,w− imi,w

bρ

(
b

∑
j=1

pb− j(~m) j

)
− pi,w(~m). (1)
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Figure 1: The distribution of the number of PE cycles performed on a block under uniform random writes at time
t = 1000.

for i < b and fb,w(~m) equals

b

∑
i=0

pi,w−1(~m)−
bmb,w

bρ

(
b

∑
j=1

pb− j(~m) j

)
− pb,w(~m), (2)

where pi,−1(~m) is defined as 0. While the mean field
model introduced in [10] considers a system using a sin-
gle WF, it is not hard to see that the performance of such
a system is identical to the 2 WF setting of Section 2 in
case of uniform random writes.

Using simulation experiments we found that this
model produces highly accurate results for the PE fair-
ness and SSD endurance for systems consisting of sev-
eral thousand blocks (similar to [10] for the WA), but we
do not present these results here due to a lack of space.

Distribution of PE cycles: By relying on (1) and (2)
we can determine the distribution of the number of PE
cycles after Nt GC calls by numerically solving the ODE
up to time t starting with ∑

b
i=0 mi,0(0)= 1. The results are

depicted in Figure 1 and clearly indicate that the distri-
bution of the number of PE cycles becomes less variable
as the number of choices d increases, as the spare fac-
tor S f increases and as the number of pages per block b
increases. Thus, the Random GC algorithm (i.e., d = 1)
performs the worst and the Greedy GC algorithm (i.e., d
large) performs best both in terms of the write amplifica-
tion and PE fairness. Note when we state that the Greedy
algorithm has the best PE fairness, we mean within the
class of d-choices GC algorithms as FIFO clearly has the
best possible overall PE fairness.

When d = 1 it is easy to check that mw(t) =

∑
b
i=0 mi,w(t) = twe−t/w!. Hence, the distribution of the

number of PE cycles on a block after Nt GC calls con-
verges to a Poisson distribution with parameter t as N
tends to infinity (as expected).

PE fairness: To determine the PE fairness via the
set of ODEs specified by (1) and (2), we numeri-
cally solve the ODE starting with ∑

b
i=0 mi,0(0) = 1 up

to time tmax, where tmax is the smallest t such that
∑w≥Wmax ∑

b
i=0 mi,w(t) > 1/N. The PE fairness is found

as tmax/Wmax.
Figure 2 shows the PE fairness as a function of the

maximum number of PE cycles Wmax that a single block
can tolerate. It indicates that increasing the number of
choices d, number of pages per block b or the spare factor
S f results in an increase in the PE fairness. Also note that
under uniform random writes one often observes a PE
fairness above 0.95, even when the maximum number
of PE cycles is as low as 1000. In other words, by the
time that any block reaches 1000 PE cycles the average
number of PE cycles that an arbitrary block has endured
is above 950. This implies that under uniform random
writes there is hardly any room left to improve the PE
fairness by implementing some form of wear leveling.

SSD endurance: Figure 3 depicts the SSD endurance
in terms of the maximum number of PE cycles Wmax
that a single block can tolerate. The SSD endurance im-
proves as the number of choices d or the spare factor S f
increases, which is in line with the previous results as
larger d and S f values improve the PE fairness and result
in a lower write amplification. With respect to the im-
pact of the number of pages b per block, we observe that
lower b values result in a higher SSD endurance. The
reason is that larger b values cause a higher write am-
plification, which outweighs the improvement in the PE
fairness. Note that while the PE fairness is often above
0.9 the number of FDWs is well below Wmax due to the
(unavoidable) high WA under uniform random writes.

Figure 3 also depicts the SSD endurance of the FIFO
GC algorithm. While the FIFO GC has the best PE fair-
ness, its SSD endurance is below that of the Greedy al-
gorithm (i.e., d-choices with d large) due to its somewhat
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Figure 2: PE fairness under uniform random writes (N = 104).
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Figure 3: SSD endurance under uniform random writes (N = 104).

higher WA.

5 Workloads with hot and cold data

In order to be able to study the impact of data hotness in
a structured manner, we focus on synthetic workloads of
the Rosenblum type [9]. More specifically, we assume
we have two types of logical pages: hot and cold pages.
A fraction f of the logical pages is hot and a write request
updates a hot (cold) page with probability r (1− r).

Although it is possible to extend the mean field model
in [11] in a manner similar to the uniform random writes
case, the computation times needed to numerically solve
the set of ODEs becomes problematic and we therefore
rely on simulations only. All presented simulation results
are for a drive consisting of N = 10,000 blocks and are
averaged over 50 runs.

Before discussing the results, note that (partially) sep-
arating hot and cold data has both a positive and negative
impact on the SSD endurance. It is well known that data
separation results in a lower WA (e.g., [4, 11, 12]), but at
the same time the PE fairness may worsen as the blocks
holding (mostly) hot data may be subject to more PE cy-
cles than blocks containing (mostly) cold data. Hence
the main question is which of these two opposing forces

dominates and to what extent does this depend on the GC
algorithm.

PE fairness: Figure 4 depicts the impact of d and S f on
the PE fairness in the presence of hot and cold data. Fig-
ures 2a, 4a and 4b confirm that increasing data hotness
leads to a lower PE fairness. The values for the PE fair-
ness also indicate that in case of hot and cold data some
form of wear leveling may help to prolong the SSD life
span. These figures also show that while large d values
gave rise to a better PE fairness under uniform random
writes, the reverse happens in case of hot and cold data.
This can be understood by noting that when the GC al-
gorithm selects a new WFE, small d values often result
in the selection of a block that previously stored (mostly)
cold data. The WFE on the other hand will mainly con-
tain hot data when full (on average the WFE contains rb
hot and (1− r)b cold pages). Hence, for d small the hot
data is less likely to use the same set of blocks for a long
period of time leading to a better PE fairness.

Figures 2b and 4c indicate that the impact of the spare
factor S f also changes when we introduce data hotness:
with hot and cold data smaller spare factors result in a
better PE fairness. This is probably due to the fact that
the GC algorithm is less effective in selecting a victim
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Figure 4: PE fairness under hot and cold data for b = 32 pages per block (N = 104)
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Figure 5: SSD endurance under hot and cold data for b = 32 pages per block and spare factor S f = 0.1 (N = 104)

block that previously stored mostly hot data when the
spare factor is small.

SSD endurance: While it is desirable to have a PE
fairness close to one, the main reason for striving for an
equal wear lies in improving the SSD endurance. Fig-
ure 5 shows the SSD endurance for various d values and
hotness values. We first note that while setting d small
(e.g., d ≤ 3) resulted in a higher PE fairness, this is typ-
ically not a good choice for the SSD endurance as the
WA for very small d is much higher than for large d and
this outweighs the better PE fairness. Further, as with the
WA (see [11]) there is an optimal finite choice for d for
the SSD endurance in case of hot and cold data. For in-
stance, for the case presented in Figure 5a setting d = 13
(not shown) minimizes the WA.

More importantly, while Figure 4 showed that the PE
fairness reduces significantly when the hot data becomes
hotter, Figure 5c clearly indicates that making the hot
data hotter is typically beneficial for the SSD endurance.
This observation suggests that selecting a GC algorithm
that minimizes the WA may lead to a much more pro-
found improvement in the SSD endurance compared to
selecting a GC algorithm that puts too much emphasis
on the PE fairness, that is, on achieving a more or less
equal wear on all blocks.

We do note that as the WA approaches one (it is 1.575
for f = 0.01 in Figure 5c) the PE fairness becomes the
dominating factor in the SSD endurance. Thus, GC al-
gorithms that do take the wear into account will further
increase the SSD endurance as long as the WA is kept
equally low.

6 Conclusions and future work

In this paper we introduced the PE fairness and SSD en-
durance performance measures and studied how these are
affected by the GC algorithm, the spare factor, etc. We
indicated that under uniform random writes the Greedy
GC algorithm has a near optimal SSD endurance as it is
known to be optimal with respect to the WA and has a
PE fairness close to one. In case of hot and cold data the
PE fairness may be well below one, however a lower PE
fairness may still result in a higher SSD endurance as the
WA tends to have a more profound impact on the SSD
endurance.

For future work we intend to look at the impact of data
separation techniques on the results presented in this pa-
per. Further, while wear leveling techniques clearly im-
prove the PE fairness, the question remains whether they
can significantly improve the SSD endurance as wear
leveling typically comes at the cost of an increased WA.
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