
Queueing Systems manuscript No.
(will be inserted by the editor)

A Mean Field Model for a Class of Garbage Collection
Algorithms in Flash-based Solid State Drives

Benny Van Houdt

Abstract Garbage collection (GC) algorithms play a key role in reducing the
write amplification in flash-based solid state drives, where the write ampli-
fication affects the lifespan and speed of the drive. This paper introduces a
mean field model to assess the write amplification and the distribution of the
number of valid pages per block for a class C of GC algorithms. Apart from
the Random GC algorithm, class C includes two novel GC algorithms: the d-
Choices GC algorithm, that selects d blocks uniformly at random and erases
the block containing the least number of valid pages among the d selected
blocks, and the Random++ GC algorithm, that repeatedly selects another
block uniformly at random until it finds a block with a lower than average
number of valid blocks.

Using simulation experiments we show that the proposed mean field model
is highly accurate in predicting the write amplification (for drives with N =
50, 000 blocks). We further show that the d-Choices GC algorithm has a
write amplification close to that of the Greedy GC algorithm even for small
d values, e.g., d = 10, and offers a more attractive trade-off between its sim-
plicity and its performance than the Windowed GC algorithm introduced
and analyzed in earlier studies. The Random++ algorithm is shown to be
less effective as it is even inferior to the FIFO algorithm when the number of
pages b per block is large (e.g., for b ≥ 64).

1 Introduction

A mean field model for a class of garbage collection (GC) algorithms in flash-
based solid state drives (SSDs) is introduced in this paper given that the
workload on the drive consists of uniform random writes. Before introducing

B. Van Houdt
Department of Mathematics and Computer Science,
University of Antwerp - iMinds, Belgium
E-mail: benny.vanhoudt@ua.ac.be

2 Benny Van Houdt

the specifics of SSDs it is interesting to note that the evolution of such drives
can be reformulated in terms of a balls and bins system consisting of ρbN
balls and N bins that can each hold up to b balls, where N ≥ 1 and b ≥ 1 are
integers and ρ ∈ (0, 1) is a real number such that ρbN is an integer. At time
epoch t, for t ∈ {0, 1, . . .}, a bin is selected by the so-called GC algorithm. If
the selected bin at time t contains j balls (where 0 ≤ j ≤ b), a single ball is
selected uniformly at random b − j times among all the bins and moved to
the selected bin between time t and t + 1. As will become apparent further
on, our interest lies in finding the distribution of the number of balls in an
arbitrary and the selected bin at time t as t tends to infinity. The class of GC
algorithms considered in this paper essentially demands that the probability
of selecting a specific bin should (in a smooth manner) only depend on the
number of balls in the bin and on the fraction of bins that contain exactly j
balls, for 0 ≤ j ≤ b, see Section 4 for an exact definition. Examples of such GC
algorithms include the Random GC algorithm, which selects a bin uniformly
at random, the Random++ GC algorithm, which corresponds to selecting a
bin uniformly at random among the bins containing at most bρbc balls, and
the d-Choices GC algorithm, which chooses d bins uniformly at random and
selects the bin containing the least number of balls among the d selected bins.

To understand the analogy between the SSD operation and the above-
mentioned balls and bins system we start by discussing the SSD structure.
Data on a NAND flash-based solid state drive (SSD) is organized in N blocks
that each contain a fixed number of b pages, where a page is the smallest
writable unit and b is a power of 2 in practice, e.g., b = 64. The size of a single
page is typically 2 to 4 Kbyte and there can be as many as 128 pages per block.
In order to write data on a page, it must first be in an erase state. Individual
pages cannot be erased, only entire blocks can be erased. As it would be very
time consuming to update pages by completely rewriting a block, out-of-place
writes are performed on an SSD. Hence, when a page is updated, it is typically
stored on a new location on the drive and page holding the old data is marked
as invalid, while the page containing the new data is marked as valid. In other
words, a single page can be in three different states: erase, valid or invalid and
a ball in the balls and bins system corresponds to a page in the valid state,
while the bins corresponds to the blocks on the SSD.

Ideally we only wish to perform erase operations on blocks that contain
invalid pages only. However, the GC algorithm, responsible for selecting the
block to be erased, will often select blocks that contain some valid pages (in
fact, depending on the GC algorithm blocks containing invalid pages only may
not exist). This implies that these valid pages need to be temporarily stored
in memory before the block erase can take place, even though no external
write operation is requested for these pages. These additional internal write
operations give rise to what is known as the write amplification, it is the ratio
of the total number of writes to the number of externally requested writes.
Hence, the distribution of the number of balls in the selected bin determines
the number of internally required writes and therefore determines the amount
of write amplification.

A mean field model for a class of GC algorithms in flash-based SSDs 3

The write amplification not only slows down the operation of the SSD,
but it also affects its lifespan. More specifically, flash memory decays and
becomes unstable after a certain number of write-erase cycles (e.g., as few as
10000 in some consumer SSDs [6, 9]), thus the higher the write amplification
of an SSD the shorter its lifespan. To limit the write amplification, the total
storage capacity (number of physical pages) on an SSD exceeds the user-visible
capacity (number of logical pages), as this guarantees that a fraction of the
pages is in the erase or invalid state. A commonly used measure for the amount
of over-provisioning is the spare factor Sf , defined as one minus the ratio of
the user-visible to the total storage capacity. In our balls and bins system
ρ = 1 − Sf , meaning ρbN pages are in the valid state at all times, while
(1−ρ)bN pages are either in the erase or invalid state. As will become apparent
in Section 2, the externally requested writes will correspond to the balls being
moved to the selected bin.

In this paper we introduce a mean field model to assess the write amplifi-
cation and the distribution of the number of valid pages per block for a class C
of GC algorithms under uniform random writes by relying on the framework
introduced in [4]. We show that the mean field model is in perfect agreement
with simulation experiments and compare the performance of the d-Choices
and Random++ GC algorithm with the Greedy [5, 7], FIFO [7, 16] and
Windowed [10] algorithm. We observe that the d-Choices GC algorithm
can achieve a write amplification close to that of the Greedy GC algorithm
even for small d values, e.g., d = 10, and offers a more attractive trade-off
between its simplicity and its performance than the Windowed GC algo-
rithm. The Random++ algorithm on the other hand is inferior to the FIFO
algorithm when the number of pages b is large, e.g., for b ≥ 64.

The flash translation layer, responsible for mapping the logical pages to
physical page numbers, considered in this and the above mentioned papers
is a page-level map, meaning data can be written on any page and a direct
map that translates the logical to physical page numbers is maintained in
memory. A block-level map reduces the memory consumption, but increases
the write amplification as logical pages can still be mapped to any block, but
only to one page within this block (determined by the logical page number).
Consumer SSDs typically rely on some form of hybrid mapping [11], where
some of the blocks are block-mapped and others are page-mapped to reduce the
write amplification of random writes. When a hybrid mapping is used, merge
operations that create new page-mapped blocks also need to be performed by
the GC algorithm.

The d-Choices algorithm has been studied extensively in a classic balls
and bins, hashing and load balancing setting (e.g., [2, 15, 18]) and was also
proposed as a GC algorithm for solid-state drives in [12], a paper that is being
published concurrently. The latter paper also proposes a mean field model for
uniform workloads, but the system operation differs significantly from ours,
as the write operations do not appear to rely on a log-structure (while in
our system all writes make use of the so-called write frontier, see Section 2).

4 Benny Van Houdt

Further, the spare factor does not appear to be a model parameter in case of
the uniform workload model in [12], while it plays a key role in our model.

The paper is structured as follows. Section 2 states the main problem, while
Section 3 gives an overview of the related work. The class of GC algorithms C
studied in this paper is introduced in Section 4 and the corresponding mean
field model is presented in Section 5. Analytical and numerical results for the
Random, Random++ and d-Choices GC algorithm are presented in Section
6 and 7, respectively. Conclusions are drawn and future work is discussed in
Section 8.

2 Problem statement

Consider a flash-based SSD consisting of N (physical) blocks that are each
contain b pages. At any point in time there is a special block called the write
frontier. Pages will be written sequentially to the write frontier, until it is full.
Assume at some point in time that the first f < b pages of the write frontier
are in the valid or invalid state, while the last b−f are in the erase state and a
write operation takes place on a logical page that is physically stored on page
k of block number n1. This operation writes the new content to page f + 1
of the write frontier, changes the state of page f + 1 from erase to valid, and
afterwards invalidates page k on block number n1. Note, it is possible (though
unlikely) that block number n1 is in fact the write frontier itself (if k ≤ f)
and the write operation thus invalidates one of the first f pages of the write
frontier.

When the write frontier becomes full, meaning the last of its pages in the
erase state becomes valid, the GC algorithm creates a new write frontier as
follows: it first selects a new block, say block number n2, copies all the valid
pages of block n2 to the random-access memory (RAM), erases block number
n2 and copies the valid pages back from RAM to block n2

1. In our balls and
bins system time epoch t corresponds to the t-th time that the GC algorithm
is executed and the write frontier corresponds to the selected bin. The write
operations in between two executions of the GC algorithm invalidate a page in
some block and validate a block in the write frontier, as such they correspond
to moving a ball from some bin n1 to the selected bin.

If the GC algorithm selected a block containing j < b valid pages, b − j
additional writes can be performed before the execution of the GC algorithm.
This implies that b internal write operations took place in between two exe-
cutions of the GC algorithm, while only b − j external write operations were
performed. In this case the write amplification is defined as b/(b−j). In general,
the write amplification of an SSD composed of N blocks is defined as

AN = lim
t→∞

b

b−
∑b
j=1 jpj(t)

,

1 In practice one avoids the need to copy the valid pages to RAM by making use of a
single free block [7]

A mean field model for a class of GC algorithms in flash-based SSDs 5

where pj(t) is the probability that the GC algorithm selects a block with j
valid pages at time t, provided that the limit exists.

Denote the user-visible storage capacity as U blocks, i.e., bU pages, mean-
ing the device utilization ρ = U/N and the spare factor Sf = 1−U/N = 1−ρ.
The objective of this paper is to analyze the write amplification and the dis-
tribution of the number of valid pages in a block for a class of GC algorithms
under uniform random writes. Under uniform random writes there is no spa-
cial or temporal locality, meaning the logical page number of a write request
follows a uniform random distribution and is independent of all other write
requests. We further assume that exactly bU pages are marked as valid at all
times. Unless the operating system and SSD both support a command similar
to the ATA TRIM command, the latter assumption corresponds to assuming
that the SSD contains exactly bU valid pages at time 0. The ATA TRIM com-
mand allows the file system to inform the SSD that it can mark some pages
as invalid when a file is deleted. Without it the number of pages in the valid
state remains equal to bU at all times and also becomes equal to bU after a
while if the SSD was initially empty.

The above implies that the probability that an external write operation
“updates” a page stored on a block with exactly i valid pages is proportional to
i/bU times the number of blocks containing exactly i pages. Note that the balls
in our balls and bins system are selected uniformly at random as we consider an
SSD drive with a uniform random write workload. Read and sequential write
operations result in a far lower write amplification, hence the performance of
the GC algorithm under random writes is the most significant [14].

It is possible to extend the analysis presented in this paper to the hot/cold
data model of Rosenblum [17]. In this model a fraction f of the complete
address space corresponds to hot data and the remaining fraction to cold data.
The fraction of write operations to the hot data is denoted as r. Typical case
studies assume that f ≤ 0.2 and r ≥ 0.8, meaning more than 80% of the writes
are to less than 20% of the data [7].

We do not consider the issue of wear leveling in our problem setting. Wear
leveling mechanisms try to prolongate the lifetime of the SSD by making sure
that the number of write-erase cycles on a block does not vary too much.
Some static wear leveling algorithms simply swap entire blocks (basically to
move cold data to more worn out blocks), for instance by swapping the least
and most worn out block or by swapping the free block with a randomly
selected block as in Ban’s algorithm [3]. When this type of swapping is used,
the distribution of the number of valid pages is not affected by the wear leveling
algorithm.

3 Related Work

Most of the analytic studies on GC algorithms have focused on the following
three algorithms:

6 Benny Van Houdt

1. The Greedy GC algorithm selects a block that contains the least number
of valid pages among all the blocks.

2. The FIFO GC algorithm selects the least-recently-written block, that is,
the blocks are selected in a circular manner.

3. The Windowed GC algorithm makes use of a window of size w ∈ {1, . . . , N}.
It selects the block with the least number of valid pages among the set of
the w least-recently-written blocks.

A highly accurate approximation for the write amplification of the Greedy
algorithm under uniform random writes in a system where the number of
blocks N and pages per block b is large, was introduced in [13,16] and can be
expressed as

AN ≈ 1

1 + ρW (−e−1/ρ/ρ)
,

where W (·) is LambertW function (i.e., the inverse of f(x) = xex). This
formula was also rediscovered in [19] and a less accurate approximation was
also proposed in [1]. The above expression for A is also highly accurate for
the write amplification of the FIFO algorithm [7] for large N , meaning the
write amplification of the FIFO algorithm is independent of the block size b
and coincides with the Greedy algorithm if b is large. The distribution of the
number of valid pages per block and the write amplification of the Greedy
algorithm for arbitrary b values (and large N) was analyzed in [5] and [7]. An
analytic model for the write amplification of the Windowed GC algorithm
was introduced in [10], but tends to result in an optimistic estimate of the
write amplification [5, 7]. The write amplification of the FIFO and Greedy
GC algorithm with hot/cold data was also analyzed in [7], though the FIFO
GC algorithm is not very suitable in the presence of hot and cold data as it
also selects all the blocks containing lots of cold data.

4 A class of GC algorithms

In this paper we introduce a mean field model to assess the write amplification
and distribution of the number of valid pages in a block for a class C of GC
algorithms defined as follows. A GC algorithm belongs to class C if and only
if the following two conditions hold:

C1: Let mi be the fraction of blocks containing exactly i valid pages and denote
m = (m0, . . . ,mb), then there should exist a set of probabilities pj(m)
where pj(m) reflects the probability that a block containing exactly j valid
pages is selected by the GC algorithm. In other words, whether block n, for
any n, is selected by the GC algorithm should only depend on the number
of valid pages j on block n and the fraction of blocks mi containing exactly
i valid blocks, for i = 0, . . . , b.

C2: For j = 0, . . . , b, the probabilities pj(m) should be smooth in m with

m ∈ ∆ = {m ∈ Rb+1|0 ≤ mi ≤ 1,
∑b
i=0mi = 1,

∑b
i=1 imi = bρ}.

A mean field model for a class of GC algorithms in flash-based SSDs 7

The following algorithms belong to class C, where to the best of our knowledge
the Random++ and d-Choices GC algorithm have not been proposed before
as a GC algorithm:

1. The Random GC algorithm simply selects a block uniformly at random,
hence pj(m) = mj . The Random+ algorithm operates in the same man-
ner, except that it repeatedly selects another block as long as the selected
block contains b valid pages (as it is useless to erase a full block). We
therefore have pj(m) = mj/(1−mb), which is well defined in ∆ for ρ < 1.

2. The Random++ GC algorithm repeatedly selects another block uniformly
at random until it finds a block with at most bbρc valid pages, hence

pj(m) =
mj1[j ≤ bbρc]∑bbρc

`=0 m`

, (1)

where 1[A] = 1 if A is true and 0 otherwise, which is also well-defined in
∆.

3. The d-Choices GC algorithm selects d ≥ 2 blocks uniformly at random
and erases a block containing the least number of valid pages among the
d selected blocks. As all the selected pages must contain at least j valid
pages, but not j + 1, we have

pj(m) =

 b∑
`=j

m`

d

−

 b∑
`=j+1

m`

d

. (2)

The write amplification of the Random GC algorithm is clearly equal to
1/(1− ρ) as a block contains bρ valid pages on average. In this paper we will
provide an explicit expression for the distribution of the number of valid pages
in a block under the Random algorithm as N , the number of blocks, tends
to infinity. The write amplification of the Random+ algorithm is less obvious
to analyze and we will prove that it converges to A = b

b−ρ(b−1) as N tends to

infinity. We will also provide closed form expressions for the write amplification
and distribution of the number of valid pages in a block for the Random++
algorithm as N tends to infinity, while for the d-Choices algorithm we propose
a fast numerical method to determine these performance measures using a
set of ODEs. For the latter two results some open issues remain in order to
formally prove that the obtained write amplification coincides with the limit
of AN as N tends to infinity (see Section 5.2). Similar to the Random+(+)
algorithm we can also define a d-Choices+(+) algorithm, however as soon
as d exceeds 10 it is not very likely that the block with the least number of
valid pages contains more than bbρc valid pages; hence, the difference with the
performance of the d-Choices algorithm is rather limited.

8 Benny Van Houdt

5 Mean field model

5.1 Model definition

We define a discrete-time system by observing the system state at the time
epochs just prior to the operation of the GC algorithm. Hence, in between two
observations the following steps take place:

S1: The GC algorithm selects a block as the new write frontier, say block
number i, and copies the j valid pages of block number i to RAM.

S2: Block number i is erased and the j valid pages are copied back from RAM
to the first j pages of the new write frontier, leaving the remaining b − j
pages in the erase state.

S3: The pages of the next b− j random writes are invalidated and written to
the remaining b− j pages of the write frontier.

To analyze the performance of a GC algorithm belonging to class C, we rely
on the interacting objects framework introduced in [4]. Assume the device
consists of N blocks, labeled 1 to N , that each store b pages (the state of
which is erase, valid or invalid).

Let XN
n (t) ∈ S = {0, 1, . . . , b}, for n = 1, . . . , N , be the number of valid

pages on block number n at time t (i.e., when the GC algorithm runs for the
t-th time). Let MN (t) be the occupancy measure of XN

n (t), that is, MN (t) =
(MN

0 (t),MN
1 (t), . . . ,MN

b (t)) and

MN
i (t) =

1

N

N∑
n=1

1[XN
n (t) = i],

for i = 0, . . . , b. Define

PNi,i′(m) = P[XN
n (t+ 1) = i′|XN

n (t) = i,MN (t) = m],

for i 6= i′ ∈ S, that is, it contains the probability that the number of valid
pages on block number n changes from i to i′ during a single transition given
the occupancy measure.

Define the set ∆N = {m ∈ Rb+1|miN ∈ {0, 1, . . . , N}, i ∈ S,
∑
i∈Smi =

1,
∑
i∈S imi = bρ} and let pj(m), for j ∈ S, be the probability that the GC

selects a block with j valid pages at time t provided that MN (t) = m with
m ∈ ∆N . To simplify the notation we also define the binomial probabilities
Bj(n, p) =

(
n
j

)
pj(1− p)n−j .

To determine PNi,i′(m), we note that the number of valid pages of block
number n only changes if the block is selected during step S1 or if at least
one of the random write operations in during step S3 involves block number
n. Hence, the number of valid pages of at most b+ 1 blocks changes during a

A mean field model for a class of GC algorithms in flash-based SSDs 9

single transition. As explained below, this results in

PNi,i′(m) =
pi(m)

miN
B0(b− i, i/bρN)1[i′ = b]+

1[i′ = i− 1]

 b∑
j=1,j 6=b−i

pb−j(m)B1(j, i/bρN)+

pi(m)

(
1− 1

miN

)
B1(b− i, i/bρN)

]
+ o(1/N), (3)

for i 6= i′ ∈ S and mi > 0. Note, pi(m)/(miN) is the probability that the
GC algorithm selects block n provided that it contains i valid pages, while
i/(bρN) is the probability that block number n is involved in a random write
operation provided that it contains i valid pages. In other words, the first term
corresponds to the case where block n is selected by the GC algorithm, while
none of the b− i writes involve block n, which implies that block n contains b
valid pages at time t+ 1. The second and third term corresponds to the case
where the GC algorithm does not select block number n, while exactly one of
the random write operations in step S3 invalidates one of the i pages of block
number n and therefore decreases its number of valid pages by one. Finally,
all the other cases, where either (a) block n is involved in two or more write
operations or (b) where block number n is selected by the GC algorithm and
is involved in at least one random write operation, are covered by the o(1/N)
term as they are of the form 1/Nk with k ≥ 2.

When mi = 0 we can define PNi,i′(m) as in (3) except that the terms pi(m)
mi

need to be replaced by the partial derivative ∂pi(m)/∂mi, which is properly
defined as pj(m) is smooth in ∆.

Define the drift fN (m) for m ∈ ∆N as the expected change to MN in one
transition, that is,

fN (m) = E[MN (t+ 1)−MN (t)|MN (t) = m]

=
∑

i 6=i′∈S

miPNi,i′(m)(ei′ − ei), (4)

where ei is the (i+ 1)-th row of the identity matrix of size b+ 1. Let fN (m) =
(fN0 (m), . . . , fNb (m)), then combining (3) and (4) yields

fNb (m) =

b−1∑
i=0

pi(m)

N
B0(b− i, i/bρN)

−mb

b∑
j=1

pb−j(m)B1(j, 1/ρN) + o(1/N), (5)

which is also valid for mi = 0. The first term corresponds to the case where
i < b and i′ = b, while for the second term i = b and i′ = b− 1. For i < b, (3)

10 Benny Van Houdt

and (4) result in

fNi (m) = −pi(m)

N
B0(b− i, i/bρN)

+mi+1

b∑
j=1,j 6=b−(i+1)

pb−j(m)B1(j, (i+ 1)/bρN)

+ pi+1(m)

(
mi+1 −

1

N

)
B1(b− (i+ 1), (i+ 1)/bρN)

−mi

b∑
j=1,j 6=b−i

pb−j(m)B1(j, i/bρN)

− pi(m)

(
mi −

1

N

)
B1(b− i, i/bρN) + o(1/N), (6)

which is also valid for mi = 0.
Next, define the intensity function ε(N) = 1/N and let

Pi,i′(m) = lim
N→∞

PNi,i′(m)

ε(N)

=
pi(m)

mi
1[i′ = b] +

 b∑
j=1

pb−j(m)j

 i

bρ
1[i′ = i− 1], (7)

for mi > 0 due to (3). For mi = 0 it is again sufficient to replace pi(m)
mi

by
∂pi(m)/∂mi.

Similarly define f(m) = (f0(m), . . . , fb(m)) such that for i ∈ S, fi(m) =

limN→∞
fNi (m)
ε(N) , then due to (5) and by noting that

∑b−1
i=0 pi(m) = 1− pb(m),

we find

fb(m) = (1− pb(m))−

 b∑
j=1

pb−j(m)j

 bmb

bρ
, (8)

while for i < b, (6) yields

fi(m) =
(i+ 1)mi+1 − imi

bρ

 b∑
j=1

pb−j(m)j

− pi(m). (9)

Finally, as in [4] define M̄N (τ) as the re-scaled process such that M̄N (t) =
MN (btNc), for t ≥ 0. Similarly, define X̄N

n (t) as the re-scaled version of XN
n (t).

Further, define the deterministic process µ(t) = (µ0(t), . . . , µb(t)), the evolu-
tion of which is given by the following ODE:

dµ(t)

dt
= f(µ(t)), (10)

where f(m) = (f0(m), . . . , fb(m)) is defined by (8) and (9).

A mean field model for a class of GC algorithms in flash-based SSDs 11

5.2 Convergence result

From the previous section, {(XN
1 (t), . . . , XN

N (t)), t ∈ N} is clearly a Markov
chain on the state space ∆N . A key feature of this Markov chain is that the
state changes of XN

n , for n = 1, . . . , N , are given by the probabilities PNi,i′(m),

meaning the evolution of XN
n depends on XN

k , with k 6= n, only through the
occupancy measure MN (t).

The mean field interaction model in [4] considers a more general class of
Markov chains {(XN

1 (t), . . . , XN
N (t), RN (t)), t ∈ N} with state space ∆N ×

{1, . . . , J}. RN (t) is the state of the so-called resource at time t and the evo-
lution of XN

n depends on the occupancy measure MN (t) and the state RN (t).
Further, the model is said to use no resource if J = 1, meaning RN (t) is a
single state Markov chain.

The convergence results presented in [4] hold if five conditions, called Con-
ditions H1 to H5, are satisfied. Conditions H1 and H4 are related to the
resource and hold trivially for J = 1. ConditionH2 demands that there exists a
function ε(N), with limN→∞ ε(N) = 0, and the limits f(m) = limN→∞ fN (m)/ε(N),
given by (8) and (9) in our model, are properly defined. In fact the stronger
condition H2a, which demands that Pi,i′(m) = limN→∞ PNi,i′(m)/ε(N) is well
defined, holds in our case as it is given by (7).

Given that H2a holds, condition H3 demands that the coefficient of vari-
ation of the number of objects that change their state in a single transition
is bounded for large N . As at most b + 1 objects can change their state in a
single transition condition H3 is satisfied. Finally, condition H5 demands that
fN (m), given by (5) and (6) in our model, is a smooth function of m and 1/N .
This condition is met as fN (m) is a polynomial function of 1/N (this is also
true for the o(1/N) term) and pj(m) is smooth in ∆. The following theorem
therefore follows from Corollary 1 in [4].

Theorem 1 If MN (0)→m in probability as N tends to infinity, then
sup0≤τ≤T ||M̄N (t)−µ(t)|| → 0 in probability, where µ(t) is the unique solution
of the ODE (10) with µ(0) = m.

In other words, for N large and finite t, we can approximate MN (t) by
µ(t/N), which is the unique solution of the ODE (10) with µ(0) = MN (0).
As we are interested in the stationary regime of MN (t), the question remains
whether the convergence extends to the stationary regime. Corollary 2 in [4]
shows that it suffices to show that the ODE given by (10) has a unique fixed
point that is also a global attractor.

For the Random(+) GC algorithm, we provide an explicit expression for
the unique fixed point of the ODE given by (10) and prove global attraction.
For the Random++ algorithm we have an explicit expression for the unique
fixed point (but no proof of global attraction), while for the d-Choices algo-
rithm, we have no closed form results for the fixed point and only a proof of
a unique global attractor for b = 2. Instead we numerically determine a fixed
point of (10) and show by means of simulation that it is highly accurate in
predicting the write amplification of the d-Choices GC algorithm.

12 Benny Van Houdt

6 Analytic results

In this section we study the set of ODEs given by (10) in more detail for some
GC algorithms belonging to class C.

6.1 The Random(+) GC algorithm

In this subsection we consider the Random GC algorithm. In this particular
case pj(m) = mj and

b∑
j=1

mb−jj = b−
b∑
j=0

mb−j(b− j) = (1− ρ)b,

for m ∈ ∆. As a result (8) reduces to

fb(m) = (1−mb)−
1− ρ
ρ

bmb, (11)

while for i < b, (9) yields

fi(m) =
1− ρ
ρ

[(i+ 1)mi+1 − imi]−mi, (12)

From (11) it follows that µb = ρ/(ρ + (1 − ρ)b) for any fixed point µ =
(µ0, . . . , µb), while (12) implies that µi = µi+1(1 − ρ)(i + 1)/(ρ + (1 − ρ)i)
holds, for i = 0, . . . , b − 1. Hence, we may conclude that (10) has a unique
fixed point given by

µi =
ρ

ρ+ (1− ρ)i

b∏
j=i+1

(1− ρ)j

ρ+ (1− ρ)j
, (13)

for i = 0, . . . , b. To prove global attraction of the unique fixed point µ, we note
that (10) can be written as

dµ(t)

dt
= eb+

µ(t)

−1
1−ρ
ρ −(1 + 1−ρ

ρ)

. . .
. . .

(1−ρ)b
ρ −(1 + (1−ρ)b

ρ)

︸ ︷︷ ︸

matrix Q

. (14)

Hence, the unique solution µ(t) is given by

µ(t) = eb(−Q)−1(I − etQ) + µ(0)etQ,

and limt→∞ µ(t) = eb(−Q)−1 = µ, for any µ(0) ∈ ∆, as the diagonal entries
of the bidiagonal matrix Q are negative and therefore limt→∞ etQ = 0.

A mean field model for a class of GC algorithms in flash-based SSDs 13

Theorem 2 Let µNi be the steady state probability that an arbitrary block
contains i valid pages when the Random GC algorithm is used in a system
composed of N blocks of size b and spare factor Sf then

lim
N→∞

µNi = µi =
ρ

ρ+ (1− ρ)i

b∏
j=i+1

(1− ρ)j

ρ+ (1− ρ)j
, (15)

for i = 0, . . . , b, where ρ = 1 − Sf . Further, let wi =
∑b
k=i µk, then w0 = 1

and

wi = 1−
b∏
j=i

(1− ρ)j

ρ+ (1− ρ)j
, (16)

for i = 1, . . . , b. Finally,
∑b
i=1 wi = bρ.

Proof As noted in Section 5.2, the limit in (15) now follows from Corollary 2
of [4]. To establish the relationship for wi, for i = 1, . . . , b, we first note that
µi can also be written as

µi =

(∏i−1
j=1(ρ+ (1− ρ)j)

)
ρ1[i>0]

(∏b
j=i+1(1− ρ)j

)
∏b
j=1(ρ+ (1− ρ)j)

,

which also confirms that
∑b
i=0 µi = 1. Hence, for i = 1, . . . , b,

wi =

∏b
j=i(ρ+ (1− ρ)j)−

∏b
j=i(1− ρ)j∏b

j=i(ρ+ (1− ρ)j)
.

Finally, using (16), we note that
∑b
i=1 wi = bρ if and only if

b∑
i=1

i−1∏
j=1

(ρ+ (1− ρ)j)

 b∏
j=i

(1− ρ)j

 =

(1− ρ)b

b∏
j=1

(ρ+ (1− ρ)j),

which can be proven easily by induction on b (starting with b = 1).

Theorem 2 confirms that the write amplification A = limN→∞AN = b/(b−∑b
i=1 wi) = 1/(1 − ρ), as noted in Section 4. The write amplification is thus

independent of the block size b and the number of blocks N when the Random
GC algorithm is used. The distribution of the number of valid pages within
a block does however depend on both b and N . Theorem 2 provides a closed
form expression for this distribution as N tends to infinity. To the best of our
knowledge this concerns a new result that also enables us to determine the
write amplification of the Random+ algorithm.

14 Benny Van Houdt

6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

Number of Valid Pages

P
ro

b
a
b
ili

ty

Binomial

Random (d=1)

Figure 1 Distribution of the number of valid pages within a block for Sf = (1− ρ) = 0.14
and b = 16, compared to the binomial distribution with parameters (b, ρ).

2 4 8 16 32 64 128 256 512 1024 Inf
0

2

4

6

8

10

12

14

16

18

20

22

Number of Pages per Block b

W
ri
te

 A
m

p
lif

ic
a

ti
o

n
 A

S
f
 = 0.05

S
f
 = 0.10

S
f
 = 0.15

S
f
 = 0.20

S
f
 = 0.25

Figure 2 The write amplification A of the Random+ GC algorithm as a function of the
block size b for different spare factors Sf = 1− ρ.

Figure 1 depicts the distribution of the number of valid pages within a
block for b = 16 and ρ = 0.86 compared to the Binomial distribution with
parameters (b, ρ). The figure shows that the distribution of the number of
valid pages is not close to Binomial as is sometimes assumed when analyzing
GC algorithms. Thus, pages belonging to different blocks become independent
for large N (due to the decoupling), but this is not the case for pages part of
the same block as this would result in a Binomial distribution.

We end this section by considering the write amplification A of the Ran-
dom+ algorithm, which operates similar to the Random GC algorithm, except
that it repeatedly selects another block at random if the selected block con-
tains b valid pages. The distribution of the number of valid pages per block
is clearly identical for the Random and Random+ algorithm (this can also
be seen from (8) and (9)). The expression for the write amplification however

changes from A = b/(b−
∑b
i=0 iµi) = 1/(1− ρ) for the Random algorithm to

A =
b

b−
∑b−1
i=0 i

µi
1−µb

=
b

b− bρ−bµb
1−µb

,

for the Random+ algorithm, which results in the following Corollary.

A mean field model for a class of GC algorithms in flash-based SSDs 15

Corollary 1 Let AN be the write amplification of the Random+ algorithm
in a system composed of N blocks of size b and spare factor Sf = 1− ρ then

lim
N→∞

AN =
b

b− ρ(b− 1)
.

It shows that A is no longer independent of the block size b and that as b
tends to infinity the Random and Random+ algorithm perform alike (as
expected). We also note that the write amplification of the Random+ al-
gorithm is bounded above by b irrespective of the spare factor Sf . Figure 2
depicts the write amplification A of the Random+ algorithm as a function of
b for different values of ρ = 1− Sf .

6.2 The d-Choices GC algorithm

In this subsection we consider the d-Choices GC algorithm with d > 1. Using
(2) we can write

b∑
j=1

pb−j(m)j = b−
b∑
j=1

 b∑
k=j

mk

d

. (17)

Let µ(t) = (µ0(t), . . . , µb(t)) be the unique solution of (10) with initial condi-

tion µ(0). Define wi(t) =
∑b
k=i µk(t), for i = 0, . . . , b, and wb+1(t) = 0. Then,

by means of (8) and (9), we find w0(t) = 1 and

dwi(t)

dt
= 1− wi(t)d −

b− b∑
j=1

wj(t)
d

 i(wi(t)− wi+1(t))

bρ
, (18)

for i = 1, . . . , b.
Unless d = 1 (see Section 6.1), the set of equations given by (18) does not

appear to have a simple closed form solution for its fixed point (for d = b = 2 we
managed to obtain a closed form expression that already looks very involved).
It is also unclear whether (10) has a global attractor in ∆, meaning we have
no formal proof that the convergence to the mean field over finite time scales
extends to the stationary regime for d > 1. When b = 2 the space ∆ is one
dimensional as w1(t) + w2(t) = 2ρ and we can prove that a global attractor
exists in ∆ for any d (see Appendix A). Numerical experiments seem to suggest
that a unique global attractor also exists for b > 2 and that the L1-distance
to the fixed point decreases along all the trajectories, as illustrated in Figure
3 for b = 3, d = 4 and ρ = 0.75.

To generate numerical results for the write amplification A and distribution
of the number of valid pages for arbitrary b and ρ, we numerically solve the
ODE given by (18) with µi(0) =

(
b
i

)
ρi(1− ρ)b−i using Euler’s method with a

step size h = 0.001 until ||w(t + h) − w(t)||1 < 10−13. For all the numerical
experiments reported in this paper convergence occurred in a fraction of a

16 Benny Van Houdt

0.75 0.8 0.85 0.9 0.95 1
0.75

0.8

0.85

0.9

0.95

1

w
1
(t)

w
2
(t

)

b = 3, d = 4, ρ = 0.75

w
1
(t)+w

2
(t)+w

3
(t)=3ρ

Figure 3 For b = 3 and d = 4 there is a unique global attractor in ∆ for ρ = 0.75.

d Sf ODE (18) simul. (95% conf.)
2 0.07 9.6354 9.6355 ±0.0016
4 0.07 7.7182 7.7181 ±0.0007
8 0.07 7.0044 7.0044 ±0.0004
2 0.14 4.9645 4.9651 ±0.0011
4 0.14 4.0672 4.0673 ±0.0008
8 0.14 3.7366 3.7366 ±0.0005
2 0.21 3.3732 3.3730 ±0.0006
4 0.21 2.8024 2.8026 ±0.0004
8 0.21 2.5936 2.5935 ±0.0002

Table 1 Comparison of ODE-based results and simulation experiments for a system with
N = 50, 000 blocks and b = 64 pages per block.

second. Tables 1 and 2 show a perfect agreement between the simulation results
and the ODE-based prediction for a system consisting of N = 50, 000 blocks2

containing b = 64 and b = 16 pages, respectively. Depending on whether the
page size is 4 or 8 Kilobyte, this results in a 12.8 or 25.6 Gigabyte system
for b = 64. The simulation results in Tables 1 and 2 were based on 10 (for
Sf = 0.21 and 0.14) and 50 (for Sf = 0.07) runs each with a length of 3tN ,
where t is the smallest multiple of h such that ||w(t + h) − w(t)||1 < 10−13.
Initially the bρN valid pages were distributed randomly over the Nb available
pages and the length of the warm-up period was tN . As indicated in Tables
1 and 2 in each of the experiments the width of the 95% confidence intervals
was smaller than 0.1%.

Remark The set of ODEs given by (18) has a simple intuitive explanation. As
1 − wi(t)d is the probability that the GC algorithm selects a block with less
than i valid pages, it represents the rate at which blocks with i or more pages
are created. Similarly, the rate at which blocks with i pages disappear is equal
to i(wi(t) − wi+1(t))/bρ, the probability that one of the write operations in

step S3 involves a block with exactly i valid pages, times b−
∑b
j=1 wj(t)

d, the
mean number of writes between two executions of the GC algorithm.

2 Similar results were obtained for a system consisting of N = 5, 000 blocks.

A mean field model for a class of GC algorithms in flash-based SSDs 17

d Sf ODE (18) simul. (95% conf.)
2 0.07 8.9083 8.9078 ±0.0014
4 0.07 6.6296 6.6292 ±0.0010
8 0.07 5.7766 5.7766 ±0.0009
2 0.14 4.7339 4.7345 ±0.0020
4 0.14 3.7388 3.7383 ±0.0008
8 0.14 3.3612 3.3612 ±0.0007
2 0.21 3.2639 3.2636 ±0.0009
4 0.21 2.6480 2.6482 ±0.0004
8 0.21 2.4148 2.4149 ±0.0004

Table 2 Comparison of ODE-based results and simulation experiments for a system with
N = 50, 000 blocks and b = 16 pages per block.

If we let d tend to infinity in (18) the drift fi(w(t)) = dwi(t)
dt of the system

satisfies the following equation:

fi(w(t)) = 1[wi(t) < 1]− b∑
j=1

1[wj(t) < 1]

 i(wi(t)− wi+1(t))

bρ
. (19)

As this drift function f is not smooth, we cannot rely on the framework pre-
sented in [4] for the Greedy algorithm. Instead, we can use the methodology
developed in [8] to construct a differential inclusion (DI) from (19) as follows,
such that the stochastic system converges to the solutions of the DI.

Let y = (1, . . . , 1, yk+1, . . . , yb), with 1 > yk+1 ≥ . . . ≥ yb ≥ 0. Define a set
of vectors u0(y), . . . ,uk(y) ∈ Rb such that

us(y) = lim
ys+1,...,yk→1−

f((1, . . . , 1︸ ︷︷ ︸
s

, ys+1, . . . , yk, yk+1, . . . , yb)),

for s = 0, . . . , k. Due to (19), we find

us(y) = (0, . . . , 0︸ ︷︷ ︸
s

, 1, . . . , 1)−

(b− s)
bρ

(0, . . . , 0︸ ︷︷ ︸
k−1

, k(1− yk+1), (k + 1)(yk+1 − yk+2), . . . , b(yb − yb+1)).

The set-valued function F(y) that characterizes the DI is then defined as the
convex hull of u0(y), . . . ,uk(y). Thus, for any solution w(t) of the DI, with
w(t) = (1, . . . , 1, wk(t)+1(t), . . . , wb(t)) and k(t) = max{i : wi(t) = 1}, there

exists an α1(t), . . . , αk(t)+1(t) ≥ 0, with
∑k(t)+1
i=1 αi(t) = 1, such that

dwi(t)

dt
=

k(t)+1∑
j=1

αj(t)(uj−1(w(t)))i,

18 Benny Van Houdt

that is,

dwi(t)

dt
= (20)

∑i
j=1 αj(t) i < k(t),

(1− αk(t)+1(t))− k(t)
bρ (1− wk(t)+1(t))

·
(
b− k(t) +

∑k(t)
j=1(k(t)− j + 1)αj(t)

)
i = k(t),

1− i
bρ (wi(t)− wi+1(t))

·
(
b− k(t) +

∑k(t)
j=1(k(t)− j + 1)αj(t)

)
i > k(t).

Let w = (1, . . . , 1, wk+1, . . . , wb) be a fixed point of the DI with wk+1 < 1
and α1, . . . , αk+1 the corresponding convex combination of u0(w), . . . ,uk(w).
Further denote xi = wi − wi+1, for i = 0, . . . , b, then (20) implies that α1 =
. . . , αk−1 = 0 and

αk = (b− k + αk)
k

bρ
xk,

1 = (b− k + αk)
i

bρ
xi,

for i > k, which yields xk = αk
b
kxb and xi = b

ixb, for i > k (while xi = 0 for

i < k). By noting that
∑b
i=1 ixi = bρ, we therefore have

xb =
ρ

b− k + αk
,

while
∑b
i=0 xi = 1 implies

αk =
k

bρ− k

[
b− k − bρ

(
1

k + 1
+ . . .+

1

b

)]
.

Finally, k is found as

k = min

{
i : b− i− bρ

(
1

i+ 1
+ . . .+

1

b

)
> 0

}
,

as αk ∈ (0, 1]. It is readily verified that the fixed point of the DI corresponds to
the closed form expressions presented in [5] for the Greedy GC algorithm. It
is also worth noting that αk represents the probability that the GC algorithm
selects a block containing exactly k− 1 valid pages (note, the probability that
an arbitrary block contains exactly k − 1 valid pages is zero as xk−1 = 0),
while αk+1 = 1− αk represents the probability that the GC algorithm selects
a block containing exactly k valid pages.

A mean field model for a class of GC algorithms in flash-based SSDs 19

6.3 The Random++ GC algorithm

An expression for the probabilities pj(m) for the Random++ algorithm is
given in (1), when combined with (8) and (9), this implies that any fixed point
µ = (µ0, . . . , µb) must fulfill the following set of equations

1 =

 b∑
j=1

pb−j(µ)j

 µb
ρ
, (21)

iµi = (i+ 1)µi+1, (22)

for i = bbρc+ 1, . . . , b− 1 and

pi(µ) =
(i+ 1)µi+1 − iµi

bρ

 b∑
j=1

pb−j(µ)j

 , (23)

for i = 0, . . . , bbρc. The following theorem shows that this set of equations has
a unique solution in ∆.

Theorem 3 The set of ODEs given by (8) and (9) for the Random++ GC
algorithm, i.e., with pj(m) given by (1), has a unique fixed point in ∆ given
by

µi =
(i+ 1)µi+1

i+ ρ/(1− ρ− µb(bSρ,b − b+ bbρc))
, (24)

for i = 0, . . . , bbρc, with Sρ,b =
∑b
j=bbρc+1 1/j,

µi = bµb/i, (25)

for i = bbρc+ 1, . . . , b− 1, while

µb =
−bρ +

√
b2ρ − 4aρcρ

2aρ
,

with aρ = b− bbρc − bSρ,b, bρ = ρSρ,b + 1− ρ and cρ = −ρ/b for ρ < 1− 1/b
and µb = ρ/(ρ+ (1− ρ)b) for ρ ≥ 1− 1/b. Further,

A
def
=

b∑b
j=1 pb−j(µ)j

=
1

1− ρ−µb(b−bbρc)
1−µbbSρ,b

. (26)

Proof We start by noting that for µ ∈ ∆
b∑
j=1

pb−j(µ)j = b−
b∑
j=1

pj(µ)j =

b−
∑bbρc
j=1 jµj

1−
∑
j>bbρc µj

= b−
bρ−

∑
j>bbρc jµj

1−
∑
j>bbρc µj

.

20 Benny Van Houdt

Sf Theorem 3 simul. (95% conf.)
0.20 2.9614 2.9611 ±0.0005
0.17 3.4209 3.4209 ±0.0004
0.14 4.0663 4.0663 ±0.0005
0.11 5.0371 5.0377 ±0.0007
0.08 6.6599 6.6601 ±0.0006
0.05 9.9172 9.9166 ±0.0010

Table 3 Comparison of closed form results and simulation experiments for a system with
N = 50, 000 blocks and b = 32 pages per block.

Due to (22), we have

∑
j>bbρc

jµj = bµb(b− bbρc),

∑
j>bbρc

µj = bµbSρ,b. (27)

This implies

b∑
j=1

pb−j(µ)j = b

(
1− ρ− µb(b− bbρc)

1− µbbSρ,b

)
,

which establishes (26), while (24) can now be derived from (23) and (25) is
immediate from (22). The quadratic equation f(y) = aρy

2+bρy+cρ = 0 for µb
now follows from (21). Provided that the function f(y) has real roots, they are
both positive as aρ, cρ ≤ 0 and bρ > 0, while µb ≤ 1/(ρSρ,b) as

∑
j>bbρc µj ≤ 1.

Further,

f(0) < 0, and f(1/(ρSρ,b)) =
b− bbρc − bρSρ,b

(bSρ,b)2
.

Hence, f(1/(ρSρ,b)) ≥ 0 if and only if b − bbρc − bρSρ,b ≥ 0. This latter
inequality holds as g(ρ) = b − bbρc − bρSρ,b is equal to 1 − ρ for ρ > 1 − 1/b
and g(ρ) increases as ρ decreases.

Provided that the unique fixed point is a global attractor, Theorem 3 im-
plies that the write amplification AN in a system consisting of N blocks con-
verges to (26) as N tends to infinity. By means of (27) we also find that the
mean number of attempts needed to locate a block with at most bbρc valid
blocks can be expressed as 1/(1− µbbSρ,b).

Table 3 compares the closed form expression for A given by Theorem 3
with simulation experiments on a system consisting of N = 50, 000 blocks and
b = 32 pages per block. The length of a single simulation run and warm-up
period was determined in a similar manner as in Section 6.2, while 10 runs
were performed for Sf > 0.1 and 50 for Sf < 0.1. The results show a perfect
agreement between the closed form results and simulation.

A mean field model for a class of GC algorithms in flash-based SSDs 21

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

10

12

14

16

18

20

Spare Factor S
f

W
ri
te

 A
m

p
lif

ic
a
ti
o
n
 A

Random

d = 2

d = 4

d = 8

Greedy

Figure 4 Write amplification A as a function of the spare factor Sf for the Random,
Greedy and d-Choices algorithm for d = 2, 4 and 8 and b = 32 pages per block.

1 2 4 8 16 32 64 Inf
2

4

6

8

10

12

14

Number of choices d

W
ri
te

 A
m

p
lif

ic
a

ti
o

n
 A

FIFO

Greedy

b = 8

b = 16

b = 32

b = 64

Figure 5 Write amplification A as a function of the number of choices d for the d-Choices
algorithm with a spare factor Sf = 0.07.

7 Numerical results

In this section we present some numerical results for the d-Choices and Ran-
dom++ algorithm and compare their performance with the Greedy, FIFO
and Windowed algorithm.

7.1 The d-Choices GC algorithm

We will show that the d-Choices algorithm can approximate the write ampli-
fication of the Greedy algorithm even for small d values, e.g., d = 10, while
maintaining the simplicity of the Random or FIFO algorithm. Further, we
will show that the d-Choices algorithm is far more effective than the Win-
dowed algorithm, that is, the d-Choices algorithm with d small, e.g., d = 10,
has a lower the write amplification A than the Windowed algorithm with a
fairly large window size, e.g., w = 500.

Figure 4 depicts the write amplification A as a function of the spare factor
Sf = 1− ρ for the Random, Greedy and d-Choices GC algorithm for d =
2, 4 and 8 and b = 32 pages per block. The results for the write amplification

22 Benny Van Houdt

9 10 11 12 13 14 15 16
0

0.05

0.1

0.15

0.2

0.25

Number of Valid Pages (on an arbitrary block)

P
ro

b
a
b
ili

ty

d = 1

d = 4

d = 16

d = 64

Greedy

Figure 6 Distribution of the number of valid pages on an arbitrary block for the greedy
and d-choices algorithm with d = 1, 4, 16 and 64, with Sf = 0.14 and b = 16.

(and number of valid blocks) under the Greedy GC algorithm are based
on [5]. The results confirm that a small value of d suffices to approximate the
write amplification A of the Greedy algorithm, especially for larger spare
factors Sf . Although the Greedy algorithm has a lower write amplification
A, it requires state information (essentially b + 1 bins that contain N items
in total) that needs to be updated after each write operation. The d-Choices
GC algorithm maintains no state information and is only activated when a
new block needs to be selected (and cleared).

In Figure 5 we also show the impact of the number of pages b per block on
the write amplification A when the spare factor Sf = 0.07. It confirms that
small d values suffice for the d-Choices algorithm to approximate the write
amplification of the Greedy algorithm for different block sizes b. The FIFO
algorithm, the write amplification of which does not depend on b, performs
worse, especially for small b (i.e., older SSD devices) as the write amplification
of the d-Choices and Greedy algorithm decreases with b (as expected).

When b = 1, meaning Nρ blocks contain one valid page and N(1− ρ) one
invalid page at all times, the d-Choices GC algorithm has a write amplifi-
cation A = 1/(1 − ρd) as with probability 1 − ρd the selected block contains
an invalid page. In fact for any b ≥ 1, it is not hard to show that the write
amplification of the d-choices algorithm is lower bounded by 1/(1−ρd). This
can be shown by noting that the write amplification A(t) at time t is equal to

b/(b −
∑b
i=1 wi(t)

d) and
∑b
i=1 w

d
i , for d ≥ 1, is minimized in ∆ when wi = ρ

for i = 1, . . . , b. We can also upper bound the write amplification A by

b

b− bbρc − (bρ− bbρc)d
,

by noting that
∑b
i=1 w

d
i , for d ≥ 1, is maximized in ∆ when wi = 1 for

i = 1, . . . , k, wk+1 = bρ − k and wi = 0 for i = k + 2, . . . , b with k = bbρc.
Note, when ρ is a multiple of 1/b this upper bound simplifies to 1/(1− ρ), the
write amplification of the Random algorithm, otherwise the upper bound is
below 1/(1− ρ) for d > 1.

A mean field model for a class of GC algorithms in flash-based SSDs 23

8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Valid Pages (on a selected block)

P
ro

b
a

b
ili

ty

d = 1

d = 4

d = 16

d = 64

Greedy

Figure 7 Distribution of the number of valid pages on a selected block for the greedy and
d-choices algorithm with d = 1, 4, 16 and 64, with Sf = 0.14 and b = 16.

The previous results indicated that the write amplification of the Greedy
and d-Choices algorithm becomes similar as d increases. Figures 6 and 7
indicate that the same holds for the number of valid pages in a block on an
arbitrary and a block selected by the GC algorithm, respectively, for a system
with b = 16 pages per block and a spare factor Sf = 0.14. Note, for the
Greedy algorithm the probability that an arbitrary block contains at most
10 valid pages is zero, while the number of valid pages on a selected block is
bimodal and is always 10 or 11 in our example. Hence, at times a negligible
fraction of the blocks contains exactly 10 pages and these blocks are always
selected by the Greedy GC algorithm [5,7]. For the d-Choices algorithm we
observe something similar: the probability of having 10 valid pages in a block
tends to zero as d increases, while the probability of selecting such a block
remains significant. This can be understood by noting that even though such
blocks become rare as d grows, larger d values also increase the probability
that a rare block (containing the least number of valid pages) is selected by
the GC algorithm.

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

Spare Factor S
f

W
ri
te

 A
m

p
l.
 A

 /
 W

ri
te

 A
m

p
l.
 G

re
e

d
y

FIFO (w=1)
Windowed (w=50)

Windowed (w=500)

d−Choices (d=10)
d−Choices (d=20)

Figure 8 Relative write amplification Windowed versus d-Choices algorithm for b = 64
blocks per page.

24 Benny Van Houdt

The Windowed GC algorithm was introduced in [10] as a trade-off be-
tween the low complexity of the FIFO algorithm and the good performance of
the Greedy algorithm. The idea is to consider only the w oldest blocks when
searching for the block with the least number of valid pages, where setting
w = 1 and N results in the FIFO and Greedy GC algorithm, respectively.
Larger w values reduce the write amplification, but increase the time com-
plexity of the GC algorithm. Figure 8 shows how much the write amplification
increases when the Windowed (with w = 50 and 500) or d-Choices (with
d = 10 or 20) algorithm is used instead of the Greedy algorithm in a system
with b = 64 pages per block. Note, the curves in this figure are not smooth as
the write amplification of the Greedy algorithm is not smooth in those Sf
values for which the bimodal distribution of the number of valid pages on a
selected block becomes unimodal.

Figure 8 indicates that for spare factors Sf ≤ 0.2 setting d as small as 10
suffices to beat the Windowed algorithm with a window size of w = 500,
where the gain becomes more pronounced as Sf decreases. Further, setting
d = 20 results in a write amplification that is less than 2% above the write
amplification of the Greedy algorithm, while the write amplification of the
Windowed algorithm is still much closer to the FIFO algorithm even with
a window size w = 500. This can be understood by remarking that blocks
with a relatively high number of valid pages tend to stay within the window
for a considerable amount of time. Such a drawback does not occur with the
d-Choices algorithm as the set of d blocks is always reselected at random.

The fact that the Windowed GC algorithm is not very effective in re-
ducing the write amplification for w small was also noted in [7]. The results
in Figure 8 for the windowed access algorithm were obtained by simulation
on a system with N = 50, 000 blocks, using 10 runs of length 106 each. This
resulted in confidence intervals with a width below 0.1%. Note, analytical re-
sults for the Windowed GC algorithm were also presented in [10], but these
were based on the assumption that the number of valid pages per block within
the window has a binomial distribution, which tends to result in an optimistic
estimate for the write amplification [5, 7].

7.2 The Random++ algorithm

In this section, we compare the write amplification of the Random++ al-
gorithm with the FIFO and Greedy GC algorithm. We will show that the
Random++ algorithm performs worse than the FIFO algorithm when the
number of pages in a block is large, e.g., b ≥ 64, while the reverse is mostly
true for small block sizes, e.g., b ≤ 16. We will also show that the Random++
algorithm typically requires less than three attempts to locate a block with at
most bbρc valid pages.

Figure 9 depicts the write amplification A of the FIFO, Greedy and
Random++ GC algorithm as a function of the spare factors Sf = 1−ρ for b =
64 pages per block. It shows that the Random++ algorithm is outperformed

A mean field model for a class of GC algorithms in flash-based SSDs 25

0.05 0.1 0.15 0.2
2

3

4

5

6

7

8

9

10

11

Spare Factor S
f

W
ri
te

 A
m

p
lif

ic
a

ti
o

n
 A

b = 64

FIFO

Greedy

Random++

Figure 9 The write amplification A of the FIFO, Greedy and Random++ GC algorithm
as a function of the spare factors Sf = 1− ρ for b = 64 pages per block.

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

M
e

a
n

 N
u

m
b

e
r

o
f

A
tt

e
m

p
ts

Spare Factor S
f

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
3

4

5

6

7

8

9

10

11

W
ri
te

 A
m

p
lif

ic
a

ti
o

n
 A

Mean Number of Attempts

Write Amplification

Figure 10 The write amplification A and mean number of attempts to find a block with at
most bbρc valid blocks for the Random++ GC algorithm as a function of the spare factors
Sf = 1− ρ for b = 64 pages per block.

by the FIFO algorithm for Sf ∈ [0.05, 0.2], especially when the spare factor
becomes large. We also note that the curve of the Random++ algorithm
contains jumps whenever the spare factor Sf = 1 − ρ is a multiple of 1/b.
When Sf becomes a multiple of 1/b when increasing Sf , the maximum number
of allowed valid pages in the block selected by the Random++ algorithm
decreases by one. This causes an immediate decrease in the write amplification.
At the same time we can also expect a sudden rise in the mean number of
attempts needed by the Random++ GC algorithm to locate such a block as
demonstrated in Figure 10. This figure also indicates that the mean number of
attempts is between 2 and 3 for all Sf ∈ [0.05, 0.2] for b = 64 pages per block.

Similar experiments, not depicted here, indicate that the Random++ GC
algorithm does outperform the FIFO algorithm for Sf ∈ [0.05, 0.2] when there
are only b = 8 pages in a block. Whether the FIFO or Random++ algorithm
achieves the lowest write amplification for b = 16 and 32 pages per block,
depends in a complicated manner on the spare factor Sf (due to the jumps in
the Random++ curve). We end by remarking that the write amplification A
of the Random++ algorithm is well below that of the Random algorithm,

26 Benny Van Houdt

the write amplification of which equals 1/(1−ρ), even for larger b values, e.g.,
b = 64.

8 Conclusions and future work

In this paper we introduced a mean field model to analyze the write amplifi-
cation of a class C of garbage collection (GC) algorithms in flash-based solid
state drives under uniform random writes. Algorithms belonging to class C in-
clude the Random(+), Random++ and d-Choices GC algorithms, where
the latter two were analyzed for the first time. Closed form results for the write
amplification and the distribution of the number of valid pages in a block were
obtained for the Random(+) and Random++ algorithm, while a fast nu-
merical ODE-based method was proposed for the d-Choices algorithm. The
results were shown to be highly accurate using simulation experiments.

The d-Choices algorithm was shown to be very effective in reducing the
write amplification, while the Random++ algorithm was less effective. More
specifically, we showed that the d-Choices GC algorithm has a write ampli-
fication close to that of the Greedy GC algorithm even for small d values,
e.g., d = 10, and offers a more attractive trade-off than the Windowed GC
algorithm between its simplicity and its performance.

We are currently extending the mean field model for uniform random writes
introduced in this paper, to the hot/cold data model of Rosenblum [17]. Pre-
liminary results (not shown here) indicate that the write amplification of the
d-Choices GC algorithm gets closer to the write amplification of the Greedy
algorithm as the hot data gets hotter (i.e., as f decreases or r increases). In
other words, even smaller d values suffice to get close to the performance of
the Greedy GC algorithm.

We are also planning to extend the model to study the impact of data
separation techniques for hot/cold data and of the TRIM command on the
write amplification. The latter will make the model also more applicable to
the setting of log-structured file systems where data is often deleted.

References

1. R. Agarwal and M. Marrow. A closed-form expression for write amplification in NAND
flash. In IEEE GLOBECOM Workshops (GC Wkshps), pages 1846–1850, 2010.

2. Y. Azar, A.Z. Broder, A.R. Karlin, and E. Upfal. Balanced allocations. In SIAM Journal
on Computing, pages 593–602, 1994.

3. A. Ban. Wear leveling of static areas in flash memory. US patent 6,732,221. Filed June
1, 2001; Issued May 4, 2004; Assigned to M-Systems., 2004.

4. M. Benäım and J. Le Boudec. A class of mean field interaction models for computer and
communication systems. Performance Evaluation, 65(11-12):823–838, 2008.

5. W. Bux and I. Iliadis. Performance of greedy garbage collection in flash-based solid-state
drives. Perform. Eval., 67(11):1172–1186, November 2010.

6. F. Chen, D.A. Koufaty, and X. Zhang. Understanding intrinsic characteristics and system
implications of flash memory based solid state drives. ACM SIGMETRICS Perform. Eval.
Rev., 37(1):181–192, 2009.

A mean field model for a class of GC algorithms in flash-based SSDs 27

7. P. Desnoyers. Analytic modeling of SSD write performance. In Proceedings of Interna-
tional Systems and Storage Conference (SYSTOR 2012), 2012.

8. N. Gast and B. Gaujal. Markov chains with discontinuous drifts have differential inclusion
limits. Perform. Eval., 69(12):623–642, 2012.

9. L. M. Grupp, J. D. Davis, and S. Swanson. The bleak future of NAND flash memory. In
Proc. of USENIX Conference on File and Storage Technologies, 2012.

10. X. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka. Write amplification analysis in
flash-based solid state drives. In Proceedings of SYSTOR 2009: The Israeli Experimental
Systems Conference, SYSTOR ’09, pages 10:1–10:9, New York, NY, USA, 2009.

11. J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee. A superblock-based flash translation layer for
NAND flash memory. In Proceedings of the 6th ACM & IEEE International conference
on Embedded software, EMSOFT ’06, pages 161–170, New York, NY, USA, 2006.

12. Y. Li, P.P.C. Lee, and J.C.S. Lui. Stochastic modeling of large-scale solid-state storage
systems: Analysis, design tradeoffs and optimization. ACM SIGMETRICS Perform. Eval.
Rev., 41(1), 2013.

13. J. Menon. A performance comparison of RAID-5 and log-structured arrays. In Pro-
ceedings of the 4th IEEE International Symposium on High Performance Distributed
Computing, HPDC ’95, pages 167–178, Washington, DC, USA, 1995.

14. C. Min, K. Kim, H. Cho, S. Lee, and Y. I. Eom. SFS: Random write considered harmful
in solid state drives. In Proc. of USENIX Conference on File and Storage Technologies,
pages 139–155, 2012.

15. M. Mitzenmacher, A. Richa, and R. Sitaraman. The power of two random choices: a
survey of techniques and results. Handbook of Randomized Computing, 1, 2001.

16. J.T. Robinson. Analysis of steady-state segment storage utilizations in a log-structured
file system with least-utilized segment cleaning. SIGOPS Oper. Syst. Rev., 30(4):29–32,
October 1996.

17. M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-structured
file system. ACM Trans. Comput. Syst., 10(1):26–52, February 1992.

18. N.D. Vvedenskaya, R.L. Dobrushin, and F.I. Karpelevich. Queueing system with selec-
tion of the shortest of two queues: an asymptotic approach. Problemy Peredachi Infor-
matsii, 32:15–27, 1996.

19. L. Xiang and B. Kurkoski. An improved analytical expression for write amplification
in NAND flash. In International Conference on Computing, Networking, and Communi-
cations (ICNC), pages 497–501, 2012.

A Uniqueness for b = 2

When b = 2, the space ∆ is one dimensional and the evolution of w2(t) is given by

dw2(t)

dt
= 1− w2(t)d −

(
2− w2(t)d − (2ρ− w2(t))d

) w2(t)

ρ
,

due to (18) as w1(t) = 2ρ−w2(t). Note, as 1 ≥ w1(t) ≥ w2(t) ≥ 0, w2(t) ∈ [min(0, 2ρ−1), ρ].
Define g(w) = 1 − wd − (b − wd − (2ρ − w)d)w/ρ, then g(min(0, 2ρ − 1)) > 0 and g(ρ) =
−(1− ρd) < 0. Further,

g′(w) = −dwd−1 −
(

2− wd − (2ρ− w)d
) 1

ρ
+

d
(
wd−1 − (2ρ− w)d−1

) w
ρ
,

meaning g′(w) < 0 for w ∈ [min(0, 2ρ− 1), ρ]. Hence, there is a unique fixed point in ∆ that
is necessarily a global attractor.

