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ABSTRACT
We consider an asynchronous all optical packet switch (OPS)
where each link consists of N wavelength channels and a
pool of C ≤ N full range tunable wavelength converters.
Under the assumption of Poisson arrivals with rate λ (per
wavelength channel) and exponential packet lengths, we de-
termine a simple closed-form expression for the limit of the
loss probabilities Ploss(N) as N tends to infinity (while the
load and conversion ratio σ = C/N remains fixed). More
specifically, for σ ≤ λ2 the loss probability tends to (λ2 −
σ)/λ(1+λ), while for σ > λ2 the loss tends to zero. We also
prove an insensitivity result when the exponential packet
lengths are replaced by certain classes of phase-type distri-
butions.

A key feature of the dynamical system (i.e., set of ODEs)
that describes the limit behavior of this OPS switch, is that
its right-hand side is discontinuous. To prove the conver-
gence, we therefore had to generalize some existing result to
the setting of piece-wise smooth dynamical systems.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques;
G.3 [Probability and Statistics]: Queueing Theory

General Terms
Performance, Theory

Keywords
Fluid limit, optical packet switch, wavelength conversion

1. INTRODUCTION
All optical packet switches (OPS) differ from traditional

switches in that they avoid the need to perform any opto-
electronic translations, as such they are a good candidate for
future ultra-fast communications. As opposed to electronic
switches where packets can be buffered (in RAM memory)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICSŠ12, June 11–15, 2012, London, England, UK.
Copyright 2012 ACM 978-1-4503-1097-0/12/06 ...$10.00.

for an arbitrary amount of time to avoid congestion, there
exists no form of optical memory with the same capabilities
for OPS switches. The lack of optical buffers may there-
fore be regarded as one of the main challenges faced when
designing an OPS switch.

Congestion in OPS switches, which occurs whenever mul-
tiple packets want to make simultaneous use of the same
wavelength on an output port, can be addressed by (a com-
bination of) the following three methods: deflection routing,
fiber delay line (FDL) buffers and tunable wavelength con-
verters (TWCs). In case of deflection routing, part of the
congested traffic is simply routed to another output port (us-
ing the same wavelength), causing additional load in the net-
work, unordered arrival of packets at the destination nodes,
and extra delays. As such it is not regarded as a viable so-
lution except for low load scenarios [24]. FDL buffers [8,20]
provide some form of buffering, as they allow delays of op-
tical signals by an amount of time chosen from a predefined
(finite) set. TWCs on the other hand try to avoid conges-
tion by converting an optical signal from one (congested)
wavelength to another (available) wavelength. Switch archi-
tectures that rely solely on TWCs may be regarded as the
simplest and more popular solutions for contention resolu-
tion in OPS networks [2].

An OPS switch using TWCs can operate either in a syn-
chronous or asynchronous fashion, and uses either a shared
per node (SPN) or shared per link (SPL) architecture. In
a synchronous switch, time is slotted and packets arrive at
slot boundaries, while the packet lengths are multiples of the
fixed slot length. The synchronous operation may simplify
the design of the switching matrix, but requires strict packet
synchronization and alignment [1]. Asynchronous networks
are often considered as a more natural choice for IP net-
works due to its variable length data packets [2]. An SPN
architecture implies that there is a single pool of TWCs that
is shared among all the output ports/links, while in case of
SPL, each output port/link has its own set of TWCs. The
shared use of the TWCs in an SPN architecture may re-
sult in a multiplexing gain, but also adds complexity to the
switching matrix.

The TWCs may provide limited- or full-range wavelength
conversion. A TWC is called a full-range converter, if it
can convert an incoming packet from any incoming wave-
length to any output wavelength. If the output wavelength
range is limited (typically to a number of adjacent wave-
lengths), a TWC is referred to as a limited-range TWC. Fi-
nally, an OPS switch is said to support either partial or full
conversion. Full conversion implies that there are as many



TWCs as there are output wavelengths, while partial con-
version means that there are fewer TWCs (which is typically
the case for economical reasons). When the switch uses an
SPL architecture, where N represents the number of out-
put wavelengths and C the number of TWCs per port/link,
the ratio σ = C/N is termed the conversion ratio (where
0 < σ < 1).

Our contribution.
In this paper we study the loss probability of an asyn-

chronous switch with shared per link, full-range converters
that supports partial wavelength conversion. We derive a
closed-form expression for the packet loss probability when
the number of wavelengths N becomes large in case of Pois-
son arrivals with rate λ < 1 and exponential packet lengths
with rate µ = 1. More specifically, we prove that the loss
probability tends to zero as N tends to infinity, as long as
the conversion ratio σ ≥ λ2. Further, if σ < λ2, the loss
probability converges to (λ2 − σ)/λ(1 + λ) as N tends to
infinity. This result is established as follows:

1. We introduce a set of ordinary differential equations
(ODEs) that describe the evolution of the fluid limit
of the system. One of the main characteristics of this
set of ODEs is that the right-hand side is discontinuous
(and therefore clearly not Lipschitz as required when
relying on the work of Kurtz [11,16]).

2. We reformulate the set of ODEs as a differential inclu-
sion and prove that it has a unique solution for any
initial value.

3. We show that all the trajectories of the unique solution
are regular, as such the results presented in [6] imply
that the sample paths of length t for the finite system
converge to the trajectory of the fluid limit.

4. We prove that the unique solution of the differential
inclusion has a unique fixed point.

5. The unique fixed point is shown to be a global attrac-
tor.

6. We show that the support of the steady state mea-
sures of the finite systems converges to the unique fixed
point.

In fact, to establish 6. a more general result for piece-wise
smooth (PWS) dynamical systems is proven that can be
used for other problem settings, as such the paper also con-
tains a methodological contribution.

Further, the same results are also established for phase-
type distributed packet lengths, except that the unique fixed
point was proven to be a global attractor for a limited range
of the conversion ratio σ only. These results indicate that
the loss probability becomes insensitive to the packet length
distribution as the number of wavelengths N grows.

Related work.
There have been various performance studies of all optical

switches (see [1,2,19,22,23]), of which the two most related
studies are [1,19]. The switch architecture considered in [1] is
identical to the one in this paper, i.e., it considers an asyn-
chronous switch with shared per link full-range converters
that supports partial wavelength conversion. A numerical

approach to compute the blocking probability was presented
for both Poisson and MAP arrivals [18] (which is a class of
arrival processes that contains the Markov modulated Pois-
son process [13] as a special case), while the packet lengths
were assumed to be exponential. The sensitivity with re-
spect to the packet length distribution was investigated by
means of simulation only as the numerical approach pre-
sented does not scale well in case of more general packet
lengths, e.g., phase-type [17]. Simulation results for deter-
ministic and order-2 hyperexponential distributions, indi-
cated that the blocking probability is nearly insensitive to
the packet length distribution in case of Poisson arrivals.

In this paper we focus on the system with Poisson arrivals
only and determine the loss probability in closed-form when
the number of wavelengths N tends to infinity. We fur-
ther prove that the switch performance does indeed become
insensitive to the packet length distribution as N tends to
infinity in case of order-2 hyperexponential distributions (for
most of the σ values).

The study presented in [19] is also strongly related to the
current paper, as it analyzes a similar synchronous switch.
The arrival process considered is a discrete-time MAP ar-
rival process and the packet lengths are multiples of the slot
length and have a general distribution with finite support
(which is a subclass of the discrete-time phase-type distri-
butions). The authors also study the switch behavior as
the number of wavelengths N becomes large and rely on
the framework developed in [7]. More specifically, the limit-
ing system is described by a set of difference equations that
were solved numerically and for which a unique fixed point
was shown to exist in case the arrival process is a superpo-
sition of N Bernoulli processes with parameter p (one for
each wavelength on the output port). However, no proof
was provided that this fixed point is a global attractor or
that the limit of the steady state distributions for the finite
systems can be expressed through this fixed point. Under
the assumption that both these results can be proven, the
authors showed that the loss rate decreases to zero if and
only if σ ≥ ρ2(1−1/E[L]), where ρ = pE[L] and E[L] is the
mean packet length expressed in slots. If we decrease the
slot length to zero, meaning ρ remains fixed and E[L] tends
to infinity, the Bernoulli process with parameter p becomes
Poisson with rate λ = p and the formula reduces to σ ≥ ρ2,
which is in agreement with the result presented in this paper
as E[L] was set equal to 1.

Finally, we note that, based on simulation experiments,
insensitivity of the loss probability with respect to the packet
length distribution for OPS switches with a large number of
wavelengths was also conjectured in [23].

2. ANALYTICAL MODEL
This section discusses the analytical model used to assess

the loss probability in an asynchronous OPS switch with
an SPL architecture with full-range TWCs. Due to the SPL
architecture, we can focus on the behavior of a single, tagged
output port/link. This link contains N wavelengths and
has its own pool of C < N TWCs, where σ = C/N is the
conversion ratio. We assume that packets destined for the
tagged link arrive according to a Poisson process with rate
λN . More specifically, for all w ∈ {1, . . . , N}, we assume
that the packets destined for the tagged output port that
arrive on wavelength w form a Poisson process with rate



λ < 1. For the packet lengths we consider both exponential
as well as phase-type (PH) distributed packet lengths.

An order m phase-type distribution is characterized by
a stochastic 1 × m vector α (with entries α1, . . . , αm) and
an m × m sub-generator matrix T . Let Xij represent the
(i, j)-th element of a matrix X, then Tij ≥ 0 for i 6= j
and Tii < 0. Further, let e denote a column vector with
all its entries equal to one, then T ∗ = −Te ≥ 0. Let Z
be a phase-type random variable with representation (α, T ),
then P [Z > t] = α exp(Tt)e and E[Z] = α(−T )−1e. In
other words, Z can be regarded as the time until absorption
in a continuous time Markov chain with m + 1 states and
rate matrix Q given by

Q =

[
T T ∗

0 0

]
,

where the initial state is sampled according to the probabil-
ity vector α. The exponential distribution with mean 1/µ is
obtained by setting m = 1, α = 1 and T = −µ. Notice, any
order m > 1 PH distribution with T ∗ = µe also represents
the exponential distribution with mean 1/µ (in a redundant
manner). Throughout the paper we set the mean packet
length 1/µ = α(−T )−1e equal to one.

Given the above assumptions on the arrival process and
packet lengths, it is clear that we can analyze the switch per-
formance by means of the following 2m dimensional Markov
chain {(W (N)(t), C(N)(t))}t≥0, where

W (N)(t) = (W
(N)
1 (t), . . . ,W (N)

m (t))

and

C(N)(t) = (C
(N)
1 (t), . . . , C(N)

m (t)).

Let W
(N)
i (t) denote the number of wavelengths in use on the

tagged link that do not require a TWC, while the phase of
the packet that is being transmitted is i at time t. Similarly,

C
(N)
i (t) represents the number of wavelengths in use that

make use of a TWC, while the phase of the packet that is
being transmitted is i at time t.

For exponential packet lengths this Markov chain becomes
2 dimensional and the following events can take place. The
transmission of a packet may end on one of the wavelengths
in use, causing W (N)(t) or C(N)(t) to decrease by one. These

events occur at rate W (N)(t) and C(N)(t), respectively. Ar-
rivals occur at each channel and they form a Poisson input
process with rate λ. If an arrival does not require a TWC
(because its incoming wavelength is still available at the out-

put link), then W (N)(t) is increased by one. This happens

at rate λ(N −W (N)(t)−C(N)(t)). On the other hand, if an
arrival happens on a busy wavelength, then it is redirected
to a TWC, provided that there are wavelengths available,
W (N)(t) +C(N)(t) < N , and that there is a TWC available,

C(N)(t) < C = σN . This kind of arrival increases C(N)(t)

by one, and it occurs with rate λ(W (N)(t)+C(N)(t)), so that
the total arrival rate (if channels and TWC are available) is
Nλ.

We can determine the steady state of the above 2 dimen-
sional Markov chain by means of efficient numerical tech-
niques [1, 15] for systems with as many as a few hundred
wavelengths. Further, even replacing the Poisson arrivals by
MAP arrivals as in [1] requires little extra effort. For (non-
redundant) phase-type distributions of order 2 (or higher)
these numerical techniques are only effective to analyze sys-

tems with a small number of wavelengths (which explains
why [1] relied on simulation experiments to investigate the
sensitivity of the packet length distribution).

Our objective is to derive a closed-form expression for the
loss probability when the number of wavelengths N becomes
large. Thus, we are interested in the limit behavior of the
loss probability Ploss(N), when N goes to infinity. To this

end we study the scaled process {(W (N)(t), C(N)(t))/N}t≥0

as N goes to infinity. Although it is not hard to show that
the set of Markov chains {(W (N)(t)/N,C(N)(t)/N)}t≥0, for
N ≥ 1, form a set of density dependent Markov processes
as defined by Kurtz [11], it will become apparent that the
right-hand side of the set of ordinary differential equations
(ODEs) is in our case discontinuous (hence, not Lipschitz).
This implies that we cannot rely on the results in [4, 11] to
guarantee convergence and interchangeability of the limits.

3. EXPONENTIAL PACKET LENGTHS
In this section we consider exponential packet lengths with

mean 1. Thus, {(W (N)(t), C(N)(t))}t≥0 is a 2 dimensional

Markov chain, where W (N)(t) is the number of the wave-
lengths in use at time t that do not make use of a TWC,
while C(N)(t) the number of the wavelengths in use that also

occupy a TWC. Let w(t) = W (N)(t)/N be the fraction of
wavelengths in use that do not make use of a TWC at time
t and c(t) = C(N)(t)/N the fraction of wavelengths in use
at time t that uses a TWC (i.e., c(t)/σ is the fraction of
busy TWCs) and let N go to infinity. Given the possible
events discussed in Section 2, we obtain the following set of
differential equations in case of exponential packet lengths

d

dt
w(t) = λ(1− w(t)− c(t))− w(t),

d

dt
c(t) = λ(w(t) + c(t))1

[w(t)+c(t)<1 and c(t)<σ]
− c(t),

(1)

where 1A = 1 if A is true and 1A = 0 otherwise. If we de-
note this system of ODEs as d

dt
(w(t), c(t)) = F (w(t), c(t)),

then F is clearly not Lipschitz on S = {(w, c)|0 ≤ w, c ≤
1, w+c ≤ 1, c ≤ σ} due to the presence of the indicator func-
tion 1

[w(t)+c(t)<1 and c(t)<σ]
. This implies that we cannot

rely on the convergence results of Kurtz and Benäım [4,11].
Moreover, the Picard-Lindelöf theorem [21] no longer guar-
antees that a unique solution for (w(t), c(t)) exists given an
arbitrary (w(0), c(0)) ∈ S.

To deal with the presence of this indicator function, we
will replace the above system of discontinuous ODEs by the
differential inclusion [9]

d

dt
(w(t), c(t)) = F̄ (w(t), c(t)),

where F̄ (w, c) is a set-valued function defined as

F̄ (w, c) =

{
{F (w, c)} w + c 6= 1 and c 6= σ,
co(f1(w, c), f2(w, c)) w + c = 1 or c = σ,

(2)
where co denotes the convex closure of a set and

f1(w, c) = (λ− λc− (1 + λ)w, λw − (1− λ)c),

f2(w, c) = (λ− λc− (1 + λ)w,−c).
(3)



Note, the row vector f1(w(t), c(t)) and f2(w(t), c(t)) denotes
the rate of change of (w(t), c(t)) if we replace the indicator
function in (1) by one and zero, respectively.

3.1 Solutions, fixed points and global attrac-
tion

In this section we prove the following theorem. We start
by looking at the solution of the set of ODEs without the
indicator function and discuss its influence afterwards.

Theorem 1. The differential inclusion d
dt

(w(t), c(t)) =

F̄ (w(t), c(t)) defined by (2) has a unique (Filippov1) solution
(w(t), c(t)) for any initial value (w(0), c(0)) ∈ S. There
exists a unique fixed point π in S given by

(
λ(1− σ)

1 + λ
, σ)

for σ ≤ λ2 and

(λ(1− λ), λ2)

for σ > λ2. Further, π is a global attractor, i.e., all the
trajectories starting from (w(0), c(0)) ∈ S converge towards
π.

No boundaries.
We start by considering the set of ODEs (1) without the

indicator function 1
[w(t)+c(t)<1 and c(t)<σ]

. This equation

can be written in matrix form as

d

dt
(w(t), c(t)) = (w(t), c(t))

[
−(1 + λ) λ
−λ λ− 1

]
︸ ︷︷ ︸

matrix A

+(λ, 0).

As a result, the unique solution of the initial value problem
defined by the above set of ODEs can be written as

(w(t), c(t)) = (λ, 0)(−A)−1(I − etA) + (w(0), c(0))etA.

As −1 is an eigenvalue of A with multiplicity 2, the matrix
exponential etA becomes zero as t goes to infinity. This
implies that all the trajectories converge to

(λ(1− λ), λ2) = (λ, 0)(−A)−1.

Further, using

etA = e−t
[
1− λt −λt
λt 1 + λt

]
,

we find that

w(t) = λ(1− λ)− e−t (λ(1− λ(1 + t)))

+ e−t ((1− λt)w(0)− λtc(0)) ,

c(t) = λ2 − e−t
(
λ2(1 + t)− λtw(0)− (1 + λt)c(0)

)
.

(4)

1A Filippov solution is an absolutely continuous function,
therefore almost everywhere differentiable, in contrast with
solutions of ODE with Lipschitz continuous right-hand side,
which are of class at least C1.

Boundary behavior.
To examine the behavior of the differential inclusion at

the boundaries {(w, c)|w + c = 1} and {(w, c)|c = σ}, we
use the following methodology outlined in [6,9]. Let R1 and
R2 be two regions separated by a smooth boundaryH. More
specifically, H = {(w, c)|h(w, c) = 0}, with h a function with
continuous second order derivatives such that

R1 = {(w, c)|h(w, c) < 0},

and

R2 = {(w, c)|h(w, c) > 0}.

Further, the normal vector n(w, c) should be well-defined on
H and is assumed to point into R1. Denote the limit of F̄ in
(w, c) ∈ H as f1(w, c) (f2(w, c)) if (w, c) is approached from
within R1 (R2).

According to [6, 9], the behavior of a solution of the dif-
ferential inclusion that starts from (w, c) ∈ H is determined
by the values of the scalar products

f1(w, c)n(w, c) and f2(w, c)n(w, c),

where n(w, c) was denoted as a column vector. If both are
positive (negative), a transversal crossing is said to occur,
that is, the solution will move into R1 (R2). Thus, if a tra-
jectory hits H in such a point (w, c) (from within R2), the
trajectory crosses H. If f1(w, c)n(w, c) (or f2(w, c)n(w, c))
is zero, we have a tangential crossing along f2(w, c) (or
f1(w, c)). Finally, if f1(w, c)n(w, c) < 0 and f2(w, c)n(w, c)
> 0, we get a (stable) sliding motion along H, meaning the
solution follows the surface H (as long as these conditions
remain valid). The precise trajectory of the sliding motion
is discussed further on. We also note that the differential
inclusion is known to have a unique solution if we start
in (w, c) ∈ H provided that either f1(w, c)n(w, c) < 0 or
f2(w, c)n(w, c) > 0 for all (w, c) ∈ H [12].

Assume we start from (w(0), c(0)) ∈ S = {(w, c)|0 ≤
w, c ≤ 1, w + c ≤ 1, c ≤ σ}. The boundary ∂S of S is the
union of four line segments: L1 = {(w, c)|w = 0, 0 ≤ c ≤ σ},
L2 = {(w, c)|0 ≤ w ≤ 1, c = 0}, L3 = {(w, c)|w + c = 1, 0 ≤
c ≤ σ} and L4 = {(w, c)|0 ≤ w ≤ 1− σ, c = σ}. F is contin-
uous on L1 and L2 and it is easy to see that the drift points
towards the interior of S. The line L3 is part of the smooth
surfaceH defined by setting h(w, c) = 1−w−c and f1 and f2
as in (3). Clearly, the transposed normal vector nT (w, c) =
(−1,−1)/

√
2 and therefore f1(w, c)n(w, c) = (1−λ)/

√
2 > 0

and f2(w, c)n(w, c) = (w + c)/
√

2 = 1/
√

2 > 0 for (w, c) ∈
H. In other words, if we start on the line segment L3, we
immediately move into S and never hit this boundary again.

The behavior at the boundary c = σ is somewhat more
involved. First define H by letting h(w, c) = σ − c and f1
and f2 as in (3). The transposed normal vector nT (w, c) =
(0,−1), meaning f1(w, c)n(w, c) = −λw + (1 − λ)σ and
f2(w, c)n(w, c) = σ > 0. Notice, the latter expression guar-
antees the uniqueness of the solution. Thus, if w ≤ (1 −
λ)σ/λ we get a crossing into R1, otherwise we get a sliding
motion along the line H = {(w, c)|c = σ}. Notice, if σ > λ,
then w < (1− λ)σ/λ holds for all w < 1− σ, meaning there
is no sliding motion on L4 either.

Limit behavior of trajectories.
We will distinguish two cases: σ ≤ λ2 and λ2 < σ ≤ 1.

In the first case, we can partition the line segment L4 =
{(w, c)|c = σ, 0 < w < 1 − σ} into two disjoint pieces



L4,1 = {(w, c)|c = σ, 0 < w ≤ (1 − λ)σ/λ} and L4,2 =
{(w, c)|c = σ, (1 − λ)σ/λ < w < 1}. The above discussion
indicated that if we start on L4,1, we cross into S. Further,
as f1(w, c)n(w, c) ≥ 0 on L4,1, we can never hit L4,1 from
the interior of S. Next, recall that the drift close to the
three other boundaries points inwards and that all the tra-
jectories starting in the interior of S move towards the fixed
point (λ(1− λ), λ2), which is located outside of the interior
of S if σ ≤ λ2. Thus, the line segment L4,2 is eventually hit
by all the trajectories starting in S.

When L4,2 is hit, a sliding motion starts. As explained
in [6,9], the evolution of the sliding motion is determined by
the differential equation d

dt
(w(t), c(t)) = g(w(t), c(t)), where

g(w, c) is the linear combination of f1(w, c) and f2(w, c) such
that g(w, c) is tangential to H. In other words, on L4,2 we
have

g(w, c) = (λ− λσ − (1 + λ)w, 0).

Thus, if we hit L4,2 below w∗ = λ(1 − σ)/(1 + λ), we slide
upwards, otherwise we slide downwards. Note that (w∗, σ)
is part of L4,2 if and only if σ < λ2 (it lies on the boundary
between L4,1 and L4,2 if σ = λ2). Further, if we start in
(w(0), σ) ∈ L4,2 then

w(t) =
λ(1− σ)

1 + λ
(1− exp(−(1 + λ)t)) + exp(−(1 + λ)t)w(0).

In conclusion, if σ ≤ λ2 we hit L4,2 after a finite amount of
time and start an infinite slide towards

(
λ(1− σ)

1 + λ
, σ),

which is therefore a global attractor of the differential inclu-
sion starting from any (w(0), c(0)) ∈ S.

When λ2 < σ ≤ 1, the fixed point (λ(1 − λ), λ2) of the
system without the indicator function, lies in the interior of
S. As before we can partition the line L4 into L4,1 and L4,2,
where L4,1 cannot be reached from the interior of S. The
line L4,2 can still be hit from the interior of S and a sliding
motion starts when it is hit. Further, the motion is still
described by the function g defined before and is downwards
as (w∗, σ) lies in the interior of L4,1. Therefore, the slide
will end (after a finite amount of time) at ((1−λ)σ/λ, σ) by
a tangential crossing into S. Now, if we set (w(0), c(0)) =
((1−λ)σ/λ, σ) in the system without boundaries, (4) implies
that

c(t) = λ2 + e−t(σ − λ2)(1 + t).

Hence, the value of c(t) decreases towards λ2 and the line
L4,2 is therefore hit at most once. The point

(λ(1− λ), λ2),

is therefore a global attractor of the differential inclusion
starting from any (w(0), c(0)) ∈ S.

3.2 Limit results
Our next objective is to prove the following theorem:

Theorem 2. For N ≥ 1, consider the sequence of Markov
chains (W (N)(t), C(N)(t)), and let π be the unique fixed point
defined in Theorem 1, then

lim
N→∞

lim
t→∞

‖(W (N)(t)/N,C(N)(t)/N)−π‖ = 0 in probability.
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Figure 1: Comparison of loss probability Ploss(N) for
N = 40, 80 and 160 wavelengths per link with the fluid
limit

We will prove a more general result for piece-wise smooth
(PWS) dynamical systems in Section 5, which will be valid
for any PWS that satisfies the four required assumptions
H0 to H3 introduced in Section 5. Given the results in the
previous section, it is clear that H1 to H3 are satisfied in
case of exponential packet lengths and therefore Theorem 5
applies.

As the loss probability can be determined as 1 minus the
ratio between the output and input rate of the switch, the
previous theorem indicates that the loss probability behaves
as follows:

Corollary 1. Under Poisson arrivals with rate λ < 1
(per wavelength) and exponential packet lengths with mean 1,
the limit of the loss probability Ploss(N) in an asynchronous
OPS switch with an SPL architecture, full range TWCs and
a conversion ratio σ equals

lim
N→∞

Ploss(N) =
λ− πe
λ

= 0,

for σ > λ2 and

lim
N→∞

Ploss(N) =
λ− πe
λ

=
λ2 − σ
λ(1 + λ)

,

for 0 ≤ σ ≤ λ2.

In other words, if σ exceeds λ2, the loss probability decreases
to zero as in the Erlang loss model (which corresponds to
the case where σ = 1) and in the limit a fraction 1 − λ2/σ
of the TWCs remains idle. When σ ≤ λ2, all the TWC are
occupied and the remaining fraction (1− σ) of wavelengths
act as a set of independent M/M/1/1 queues, meaning each
is occupied with probability λ/(1 + λ). If we provision a
conversion ratio of σ = ηλ2, with η ≤ 1, one finds that the
loss rate becomes (1− η)λ/(1 + λ). In other words, when a
link is equipped with a pool of TWCs with σ = ηλ2, the loss
probability diminishes by a factor (1−η) when compared to
a switch without TWCs (i.e., when σ = 0).

In Figure 1 we compare the loss probability Ploss(N) for
N = 40, 80 and 160 with the fluid limit for three different
loads λ = 0.5, 0.7 and 0.9 (where the numerical approach
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Figure 2: Comparison of ratio Ploss(N)/Ploss(∞) for
N = 160 wavelengths per link with the fluid limit for
different loads λ

of [15] was used to obtain the loss for finite N). Commercial
DWDM systems with as many as 160 wavelengths are cur-
rently on the market (by the Infinera Corporation), though
they still rely on opto-electronic translations to store pack-
ets in electronic RAM memory. These results confirm the
convergence to the fluid limit. We also note that the conver-
gence is slower for σ values close to λ2. Figure 2 indicates
that the accuracy tends to improve with the load λ for σ/λ2

fixed. As σ/λ2 approaches one, the ratio Ploss(N)/Ploss(∞)
tends to infinity as Ploss(∞) tends to zero.

Notice that the slower convergence near λ2 can be possi-
bly connected to the fact that for σ = λ2 the limit system
undergoes a boundary equilibrium bifurcation [10], in which
the limit loss probability (as a function of σ) has a discon-
tinuity in the derivative, absent in the curves for Ploss(N),
for finite N (cf. Figure 1).

4. PHASE-TYPE PACKET LENGTHS
In this section we consider the same optical switch, but

assume that the packet lengths are distributed according to
a phase-type distribution with an order m representation
(α, T ). Recall that the matrix T is an m × m subgenera-
tor, this implies that there exists a τ1 < 0, such that τ1
is an eigenvalue of T and for any other eigenvalue τi of T ,
for i = 2, . . . ,m, the real part Re(τi) ≤ τ1. We also as-
sume that the mean packet length 1/µ, which can be com-
puted as α(−T )−1e, is equal to 1. For technical reasons
that will become apparent further on, we will assume that
T ∗ = −Te > 0 in all its entries. This is for instance the case
for hyperexponential distributions, but not for an Erlang-k
distribution with k > 1. However, it should be clear that
any phase-type distribution for which Te is zero in some of
its entries can be approximated arbitrarily close by one for
which −Te > 0. For further use let T ∗i be the i-th entry of
the column vector T ∗.

We denote wi(t) as the fraction of wavelengths in use that
are in phase i and that do not require a converter and ci(t)
as the fraction of wavelengths in use requiring a converter
that are in phase i, for i = 1, . . . ,m. We also denote w(t) =
(w1(t), . . . , wm(t)) and c(t) = (c1(t), . . . , cm(t)). The set of

ODEs given by (1) is now replaced by

d

dt
wi(t) = λ(1− w(t)e− c(t)e)αi +

∑
j 6=i

wj(t)Tji

−
∑
j 6=i

wi(t)Tij − wi(t)T ∗i ,

d

dt
ci(t) = λ(w(t)e+ c(t)e)αi1[w(t)e+c(t)e<1 and c(t)e<σ]

+
∑
j 6=i

cj(t)Tji −
∑
j 6=i

ci(t)Tij − ci(t)T ∗i , (5)

for i = 1, . . . ,m, where T ∗ = −Te. These equations can be
further simplified by noting that Tii = −

∑
j 6=i Tij − T

∗
i .

The set-valued function F̄ (w1, . . . , wm, c1, . . . , cm) needed
for the differential inclusion is given by

F̄ (w, c) =

{
{F (w, c)} we+ ce 6= 1 and ce 6= σ,
co(f1(w, c), f2(w, c)) we+ ce = 1 or ce = σ,

(6)
where w = (w1, . . . , wm) and c = (c1, . . . , cm),

f1(w, c) = (λα+w(T−λeα)−cλeα,wλeα+c(T+λeα)) (7)

and

f2(w, c) = (λα+ w(T − λeα)− cλeα, cT ). (8)

4.1 Solutions, fixed points and global attrac-
tion

We start by proving the theorem below for phase-type
distributed packet lengths. The issue of whether the unique
fixed point is also a global attractor is addressed in Appendix
A, where we prove several results for certain subclasses of
the set of phase-type distributions and certain ranges of the
conversion ratio σ. A general proof for the complete class
of phase-type distributions (with T ∗ > 0) and all possible σ
values is currently still lacking.

Theorem 3. The differential inclusion d
dt

(w(t), c(t)) =
F̄ (w(t), c(t)) defined by (2) for phase-type distributed packet
lengths with representation (α, T ) and T ∗ > 0, has a unique
solution (w(t), c(t)) for any initial value (w(0), c(0)) ∈ S.
Further, there exists a unique fixed point π in S given by

(
λ(1− σ)

1 + λ
θ, σθ)

for σ ≤ λ2 and

(λ(1− λ)θ, λ2θ)

for σ > λ2, where θ is the stochastic row vector given by
θ = α(−T )−1.

No boundaries.
Consider the set of ODEs (5) after removing the indica-

tor function 1
[w(t)e+c(t)e<1 and c(t)e<σ]

. This equation can

clearly be written in matrix form as

d

dt
(w(t), c(t)) = (w(t), c(t))

[
T − λeα λeα
−λeα T + λeα

]
︸ ︷︷ ︸

matrix A

+(λα, 0),

where we used the fact that Tii = −
∑
j 6=i Tij − T ∗i . As

a result, the unique solution of the initial value problem



defined by the above set of ODEs can be written as

(w(t), c(t)) = (λα, 0)(−A)−1(I − etA) + (w(0), c(0))etA.

As

det(A− τI) = det

([
T − τI λeα
T − τI T + λeα− τI

])
= det

([
T − τI λeα

0 T − τI

])
,

we see that if τ is an eigenvalue of T with multiplicity n,
then τ is also an eigenvalue of A with multiplicity 2n. As
the real part of all the eigenvalues of T is negative, so is
the real part of all the eigenvalues of A and therefore the
matrix exponential etA becomes zero as t goes to infinity.
This implies that all the trajectories converge to

(λ(1− λ)θ, λ2θ) = (λα, 0)(−A)−1,

where θ = α(−T )−1 is a stochastic vector such that θ(T +
T ∗α) = 0 (θ is stochastic as the mean service time α(−T )−1e
equals one). The i-th entry of θ represents the probability
that a wavelength is in phase i provided that it is in use, as
it is the invariant vector of the rate matrix T + T ∗α. Note,
the above fixed point lies in the interior of S if and only if
σ < λ2 (as in the exponential case).

Boundary behavior.
Assume we start from (w(0), c(0)) ∈ S = {(w, c)|0 ≤

wi, ci ≤ 1, i = 1, . . . ,m,we + ce ≤ 1, ce ≤ σ}. The bound-
ary ∂S of S is the union of the surfaces: {(w, c)|wi = 0},
{(w, c)|ci = 0}, for i = 1, . . . ,m, {(w, c)|we + ce = 1} and
{(w, c)|ce = σ}. F is continuous on the first 2m surfaces
and it is easy to see that the drift points towards the inte-
rior of S. The surface {(w, c)|we + ce = 1} can be defined
as a smooth surface H by letting h(w, c) = 1− we− ce and
f1 and f2 as in (7) and (8). Clearly, the transposed normal
vector nT (w, c) = (−eT ,−eT )/

√
2m and therefore

f1(w, c)n(w, c) = ((w + c)T ∗ − λ)/
√

2m

and

f2(w, c)n(w, c) = (w + c)T ∗/
√

2m

for (w, c) ∈ H. By the assumption that T ∗ > 0, we see
that f2(w, c)n(w, c) > 0, which guarantees the uniqueness
of the solution if we start on the surface H. The value of
(w + c)T ∗ − λ can become negative if at least one of the
entries of T ∗ is less than λ, that is, if the rate of completion
in some phase i is less than λ. In this case H contains
a region where a sliding motion occurs, while otherwise a
(transversal) crossing occurs in each point (w, c) ∈ H.

To understand the behavior during the sliding motion on
H, we note that any convex combination ηf1(w, c) + (1 −
η)f2(w, c), with we+ ce = 1, is of the form (wT, cT + ηλα).
Such a combination is tangential toH if wTe+cTe+ηλαe =
0, meaning g(w, c) is obtained by setting 0 ≤ η = (w +
c)T ∗/λ ≤ 1 (during the slide). The sliding motion is there-
fore described by

d

dt
(w(t), c(t)) = (w(t), c(t))

[
T T ∗α
0 T + T ∗α

]
.

Hence, if the sliding motion lasts indefinitely, (w(t), c(t))
converges towards (0, θ). However θT ∗ = −θ(Te) = αe = 1,
which indicates that (0 + θ)T ∗−λ = 1−λ > 0. This means

that (0, θ) is a point of transversal crossing and the sliding
motion must therefore end at some point where (w+c)T ∗ =
λ, which results in a tangential crossing (along f2(w, c)).
We should note that we may hit the surface {(w, c)|ce = σ}
before this crossing takes place (if σ < 1). In the latter
case, it is worth noting that no sliding motion occurs on the
intersection of these two surfaces due to the assumption that
T ∗ > 0 (which guarantees that we+ce immediately becomes
less than one when ce becomes σ).

We now proceed with the boundary behavior at {(w, c)|
ce = σ}. We set h(w, c) = σ − ce and f1 and f2 as in
(7) and (8). The transposed normal vector nT (w, c) =
(0,−eT )/

√
m, meaning

f1(w, c)n(w, c) = (−λ(we)− λσ + cT ∗)/
√
m

and

f2(w, c)n(w, c) = cT ∗/
√
m > 0,

due to the assumption that T ∗ > 0. Note, the latter expres-
sion once again guarantees the uniqueness of the solution.
If cT ∗ < λ(we + σ) we get a sliding motion, otherwise a
(transversal) crossing intoR1 occurs. To understand the be-
havior of the sliding motion we note that any convex combi-
nation ηf1(w, c)+(1−η)f2(w, c), with ce = σ, is of the form
(λ(1−σ)α+w(T −λeα), cT +ηλ(we+σ)α). Such a combi-
nation is tangential toH if cTe+ηλ(we+σ)αe = 0, meaning
g(w, c) is obtained by setting 0 ≤ η = cT ∗/(λ(we+ σ)) ≤ 1
(during the slide). The sliding motion is therefore described
by

d

dt
(w(t), c(t)) =

(w(t), c(t))

[
T − λeα 0

0 T + T ∗α

]
+ (λ(1− σ)α, 0).

Thus, if the slide lasts indefinitely, (w(t), c(t)) converges to

(−λ(1− σ)α(T − λeα)−1, σθ).

The vector α(T −λeα)−1 can be further simplified using the
Sherman-Morrison formula, which states that (A+uvT )−1 =
A−1 − (A−1uvTA−1)/(1 + vTA−1u), where u is a column
vector and vT a row vector of the appropriate size. That is,
by setting A = T , u = (−λe) and vT = α and using the fact
that α(−T )−1e = 1, we find that−α(T−λeα)−1 = θ/(1+λ).
Thus, if the slide lasts indefinitely, (w(t), c(t)) converges to

(
λ(1− σ)

1 + λ
θ, σθ).

One easily checks that the condition f1(w, c)n(w, c) = cT ∗−
λ(we + σ) ≤ 0 holds in this fixed point if and only if σ ≤
λ2. In other words, this point lies in the region (or on the
boundary) of the area where the sliding motion occurs if and
only if σ ≤ λ2 (as in the exponential case).

4.2 Limit results
In this section we identify some cases where the loss prob-

ability can be proven to become insensitive to the packet
length distribution. Given the results in Sections 4.1 and
5, the final step exists in proving that the unique fixed
point π is a global attractor. Various results for different
ranges of σ and sub-classes of the class of phase-type distri-
butions are presented in Appendix A. More specifically, the
results in Appendix A show that the unique fixed point is
a global attractor if σ > λ/mini T

∗
i or σ < λ2/(maxi T

∗
i )2



for any phase-type distribution with T ∗ > 0. For any hy-
perexponential distribution, σ > λ2/mini T

∗
i or σ < λ2(1−

λ)/(maxi T
∗
i −λ) suffices, while for order-2 hyperexponential

distributions having σ > λ2 is also sufficient.
In this section we will focus on the set of hyperexponential

distributions of order-2 only, meaning with probability α1

the packet length is exponential with parameter µ1 and with
probability 1−α2 it is exponential with parameter µ2. Note,
as the mean packet length is one, we may assume without
loss of generality that µ1 ≤ 1 ≤ µ2. Due to Theorems 3, 8,
10 and 5; as well as the equality θT ∗ = α(−T )−1(−T )e = 1,
we obtain the following generalization of Corollary 1:

Corollary 2. Under Poisson arrivals with rate λ < 1
(per wavelength) and order-2 hyperexponential packet dura-
tions with mean 1, the limit of the loss probability Ploss(N)
in an asynchronous OPS switch with an SPL architecture,
full range TWCs and a conversion ratio σ equals

lim
N→∞

Ploss(N) =

λ− π
(
T ∗

T ∗

)
λ

= 0,

for σ > λ2 and

lim
N→∞

Ploss(N) =

λ− π
(
T ∗

T ∗

)
λ

=
λ2 − σ
λ(1 + λ)

,

for 0 ≤ σ < λ2(1− λ)/(µ2 − λ).

Note, as µ2 > 1 for non-exponential distributions, insensi-
tivity remains an open issue for σ ∈ [λ2(1−λ)/(µ2−λ), λ2].
Extensive numerical experiments seem to indicate that π is
also a global attractor when σ is part of this region, but we
did not manage to come up with a formal proof thus far.

Hyperexponential distributions of order 2 are often used
when fitting the first two moments of a distribution as they
can match both the mean 1/µ and squared coefficient of
variation (SCV ) for any SCV ≥ 1. The set of order-2 hy-
perexponential distributions was also used in [1] to inves-
tigate the impact of the packet length distribution on the
loss probability. Simulation experiments in case of Poisson
arrivals indicated that for general σ the loss probability of
an OPS with N = 32 wavelengths per link is sensitive to
the packet length distribution as opposed to the extreme
cases σ = 0 or 1. In other words, the loss probability for
non-exponential packet lengths deviates from the one with
exponential packet lengths especially under low load and a
moderate number of TWCs. However, the difference is not
substantial and the authors state that one can still make use
of exponential packet length distributions for approximating
the behavior of non-exponential packet lengths. Corollary 2
shows that these simulation results are not a coincidence.
The system may not be insensitive for finite N , but it be-
comes insensitive as N tends to infinity.

5. STEADY STATE LIMIT OF PIECE-WISE
SMOOTH DYNAMICAL SYSTEMS

The purpose of this section is to prove a theorem for the
steady state limit behavior of a sequence X(N)(t) of CTMCs
converging to the solution of a piecewise smooth dynamical
system (PWS), for any finite time horizon. A PWS is char-
acterized by an ODE of the form d

dt
x(t) = F (x(t)) with

F : E → Rn and E ⊂ Rn. Further, there exist a finite
number of domains Ri, i = 1, . . . , s, such that F can be
extended to a smooth (or at least Lipschitz) function on the
closure R̄i and Ē ⊆ ∪R̄i. Note, F may be discontinuous on
the union of the boundaries of Ri.

Similarly to the ODE limit case, we will prove that, if the
PWS has a unique globally attracting equilibrium, then the
steady state behavior of the sequence of CTMCs will be a
point mass concentrated in such an equilibrium. In case the
sequence of CTMC models a constant population in terms
of the occupancy measure, then the theorem will provide
the equilibrium distribution of each CTMC being in each
state for large N . In order to prove this theorem, we need
to introduce a few concepts and some additional regularity
hypothesis on the PWS.

We now fix the notation and introduce the main hypoth-
esis on the sequence of CTMCs.

H0: X(N)(t) is a sequence of CTMC on normalized pop-
ulation counts, i.e., with increments of order Θ( 1

N
)

and exit rate bounded by a Θ(N) constant. If the
total population remains equal to N for all t ≥ 0,
then X(N)(t) is the occupancy measure. Furthermore,

X(N)(t) has density dependent rates, so that the drift

F (N)(x) is independent of N and equal to F (x).

Let S(N) be the state space of the N -th CTMC, and let
E ⊂ Rn be the closure of the union of all domains S(N):
E = cl(

⋃
N∈N S

(N)). Let the discontinuous vector field F be
such that no trajectory starting in E can ever leave E.

H1: The PWS dx(t)
dt

= F (x(t)) has a unique solution for
any initial point x0 ∈ E.

The hypothesis H1 implies that solutions of the PWS are
defined in E for all t ≥ 0. This property, combined with
uniqueness, makes it possible to define a notion of (forward)
flow also for the PWS: let φt(x), t ≥ 0, be the point reached
at time t by the PWS starting at x at time 0. Furthermore,
we can show the following:

Lemma 1. If H0 and H1 holds, then φt(x) : E → E is
continuous for every t > 0.

Proof. The proof relies on properties of a generaliza-
tion of the notion of flow for differential inclusions [3], of
which PWS are a proper subclass. Let F : E → P(E)
be a set valued map, where P(E) is the power set of E,
associating a convex and compact set F (x) of E with any
point x ∈ E. Furthermore, assume that F is upper semi-
continuous, i.e., for each open neighborhood V of F (x), there
exists an open neighborhood U of x such that F (U) ⊆ V .
Notice that if F (x) = {y} is a singleton, the definition of
upper semi-continuity reduces to the standard definition of
continuity. A differential inclusion is an equation of the form
dx(t)
dt
∈ F (x(t)), whose solutions are absolute continuous

functions satisfying point-wise the inclusion. If F is upper
semi-continuous, then solutions exist for any initial point.
Hence, we can define the semi-flow of the differential inclu-
sion, which is a set-valued map φT (x0) = {x(T ) | x(0) =

x0, x(t) solution of dx(t)
dt
∈ F (x(t))}. It turns out that, if F

is upper semi-continuous, then so is φT , provided solutions
are defined up to time T [3].

Given a PWS system, it is easy to convert it to a differ-
ential inclusion, along the lines of (2). For a more precise



statement, see [3, 9]. Therefore, we can conclude that the
flow of our PWS system is an upper semi-continuous func-
tion, hence a posteriori continuous, as H1 implies that φT is
a point-value function.

We now require an additional hypothesis, related to the
behavior of the PWS at the discontinuity surfaces, which is
required to apply the convergence theorem of [6].

H2: The trajectories x(t) of the PWS dx(t)
dt

= F (x(t)) are
regular, i.e., they satisfy:

1. for each initial state x0 ∈ E, the number of dis-
continuous events, i.e., changes of vector field like
transversal crossing and points in which sliding
motion starts or terminates, is bounded.

2. sliding motion happens only on single discontinu-
ity surfaces Hi, with both vector fields having a
non-null normal component to Hi. It never hap-
pens on the intersection of more than one discon-
tinuity surface. It can end either when the normal
component of one vector field becomes zero (first
order exit conditions), or when trajectories inter-
sect another discontinuity surface. In this case,
we can have transversal crossing confined to dis-
continuity surfaces.

Hypothesis H2 is needed as it allows us to properly define
a Filippov solution for the PWS. In fact, sliding motion hap-
pening on k > 1 surfaces cannot be defined by the Filippov
approach, as there are 2k coefficients needed to construct
the sliding vector field, but only k + 1 equations to con-
strain them. However, solutions of the PWS may still be
defined in the context of differential inclusions (and conver-
gence proved [14]), but they may be difficult to compute and
not necessarily unique.

Given that the flow function φt(x) is well defined in each
point x and continuous, hence a fortiori measurable, we can
define a concept of invariant measure for φt(x) similarly to
ODE flows: a probability measure µ on E is invariant for φ if
and only if µ(A) = µ(φ−1

t (A)∩E) for each Borel measurable
set A ⊆ E. The intersection with E is needed because flows
pointing inwards E at its boundary will leave E if we reverse
time. Notice that the flow of a PWS may not be time-
reversible: if we invert time for stable sliding motion, we
obtain an unstable sliding motion, for which trajectories are
not uniquely defined.

We recall now some notions about sequences of measures
that will be needed in the following. We refer the reader
to [5] for any additional detail.

A sequence of probability measures µ(N) on E converges
weakly to a probability measure µ if and only if, for all
bounded continuous functions g : E → R,∫

E

g(x)µ(N)(dx)→
∫
E

g(x)µ(dx).

The weak convergence provides the space of probability mea-
sures on E with a topology, called the weak topology.

A sequence of measures is tight if and only if, for each
ε > 0 there exists a compact set Kε such that, for each
N ≥ 0, µN (Kε) > 1 − ε. If E ⊆ Rn (so that it is a Polish
space), then each sequence of measures on E is tight if and
only if it is relatively compact, i.e., if and only if it has a
subsequence converging to a probability measure µ. Notice

that this is trivially the case whenever E is a bounded subset
of Rn.

We will now state the key lemma that provides conver-
gence of invariant measures. It is essentially a straightfor-
ward adaption of Corollary 3.2 of [4]. Before that, we recall
the following limit theorem:

Theorem 4 (see [6, 14]). Let X(N)(t) be the sequence
of CTMCs and φt(x0) be the trajectory of the PWS starting

at x0, and assume that X(N)(0) converges to x0 in proba-
bility. If the PWS satisfies H0 to H2, then, for any T > 0,
supt≤T ‖X(N)(t)− φt(x0)‖ → 0 in probability.

As a corollary, it obviously holds that P{‖X(N)(T )−φT (x0)‖
> ε} → 0 for any fixed time T .

Lemma 2. Let µ(N) be an invariant measure of X(N)(t),
and assume E is bounded. Furthermore, assume that the
flow φt(x) of the PWS defined by X(N)(t) satisfies H1 and

H2. Then, any limit measure µ of the sequence µ(N) is an
invariant measure of φt(x).

Proof. The proof proceeds as in [4]. First, note that

as E is bounded, the sequence of invariant measures µ(N)

is tight, hence relatively compact, so that the set of limits
points of µ(N) is not empty (that is, there exists a measure

µ such that a subsequence of µ(N) converges weakly to µ).
Let µ be one such limit point. By possibly passing to a
subsequence of µ(N), we can assume that µ is the limit of
µ(N).

Let g be any bounded continuous function on E. As E is
bounded, g is uniformly continuous on E. Now, due to the
invariance of µ(N), for each T > 0 we have:∫

E

Ex[g(X(N)(T ))]µ(N)(dx) =

∫
E

g(x)µ(N)(dx). (9)

Now, as g is uniformly continuous in E, for each δ > 0 there
is an η > 0 such that, if ‖u− v‖ < η then ‖g(u)− g(v)‖ < δ
for each u, v ∈ E. Recalling that φT (E) ⊆ E, it holds that

‖Ex[g(X(N)(T ))− g(φT (x))]‖ =

‖Ex[(g(X(N)(T ))− g(φT (x)))1‖X(N)(T )−φT (x)‖≤η]

P{‖X(N)(T )− φT (x)‖ ≤ η}+

Ex[(g(X(N)(T ))− g(φT (x)))1‖X(N)(T )−φT (x)‖>η]

P{‖X(N)(T )− φT (x)‖ > η}‖
≤ δ + 2‖g‖P{‖X(N)(T )− φT (x)‖ > η}.

Therefore,∥∥∥∥∫
E

Ex[g(X(N)(T ))]µ(N)(dx)−
∫
E

g(φT (x))µ(N)(dx)

∥∥∥∥
≤
∫
E

∥∥∥Ex[g(X(N)(T ))− g(φT (x))]
∥∥∥µ(N)(dx)

≤ δ + 2‖g‖
∫
E

P{‖X(N)(T )− φT (x)‖ > η}µ(N)(dx).

Exploiting the fact that µ is the limit of µ(N), and by The-
orem 4 and (9), we have that∥∥∥∥∫

E

g(φT (x))µ(dx)−
∫
E

g(x)µ(dx)

∥∥∥∥ ≤ δ,
which, by the arbitrariness of δ and g, proves the lemma. To
see why this is the case, observe that if IA(x) is the indicator



function of a (measurable) set A ⊆ E, then IA(G(x)) is the
indicator function of G−1(A). If we could use IA in place
of g in the previous inequality, we would have concluded.
To show this, fix an open set A and approximate IA by the
sequence of continuous functions gε = min{1, d(x,Ac)/ε}.
As gε converges monotonically to IA, by the monotone con-
vergence theorem [5]

∫
E
gε(x)→

∫
E
IA(x), hence invariance

holds for open sets. Furthermore, it can then be extended to
all measurable sets by a straightforward application of the
π-λ theorem [5].

Notice that in the previous proof, we used continuity of φ
only implicitly, to ensure that g ◦φT is integrable. However,
the previous proof can be easily extended to unbounded do-
mains E, just requiring tightness of the sequence of measures
µ(N). This allows to restrict the integral on a compact set K,
introducing only a small error. In this case, however, con-
tinuity of φT has a crucial role, to ensure that the image of
any compact set is compact, so that the uniform continuity
argument can be applied on compact neighbors of φT (K).

Now we are almost ready to state the limit theorem about
steady states. We just need an additional hypothesis on the
PWS flow:

H3: The PWS system has a unique globally attracting fixed
point, hence for all x ∈ E, limt→∞ φt(x) = x∗.

Hypothesis H3 immediately implies the following

Proposition 1. A PWS satisfying H0 to H3 has a unique
invariant measure µ = δx∗ , equal to the Dirac delta measure
on the global equilibrium x∗.

Proof. Due to H3, for any ball Bε(x
∗) of radius ε cen-

tered in x∗, there is a t > 0 such that φt(E) ⊆ Bε(x
∗),

hence φ−1
t (Bε(x

∗)) ∩ E = E. If µ is an invariant measure,
it therefore satisfies µ(Bε(x

∗)) = 1 for any ε > 0. But the
only measure with this property is δx∗ .

We can now state the following result, which is a general-
ization of Theorem 2:

Theorem 5. Let X(N)(t) be a sequence of irreducible CT-

MCs satisfying hypothesis H0, and let µ(N) be their unique
invariant measure. Let F be the drift of the sequence, defin-
ing a PWS on E with flow φt(x) satisfying H1 to H3, and

let x∗ be its globally attracting fixed point. Let X(N)(0) →
x0 ∈ E in probability, then

lim
N→∞

lim
t→∞

‖X(N)(t)− x∗‖ = 0 in probability.

Proof. Consider the sequence of CTMC invariant mea-
sures µ(N) and let µ be a limit point. By Lemma 2 and
Proposition 1, µ = δx∗ . Therefore, the set of limit points of
µ(N) contains a single point, hence the whole sequence µ(N)

converges weakly to δx∗ . Therefore, limt→∞X
(N)(t) con-

verges in distribution, for N going to infinity, to x∗. But as
x∗ is deterministic, it converges also in probability [5].
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APPENDIX
A. PHASE-TYPE PACKET LENGTHS AND

GLOBAL ATTRACTION
In this Appendix we prove that the unique fixed point π

introduced in Theorem 3 is a global attractor for certain
subclasses of the set of phase-type distributions and certain
ranges of σ. We consider two cases: π lies in the interior of S,
that is, σ > λ2, and π is part of the boundary {(w, c)|ce =
σ}, i.e., σ ≤ λ2. For the phase-type distribution (α, T ),
recall that we assumed that T ∗ > 0. Further, mini T

∗
i ≤

1 ≤ maxi T
∗
i with equalities only for representations of the

exponential distribution (because the mean packet length is
defined as one).

A.1 Case 1: σ > λ2

In this section we establish three results: one for general
phase-type distributions, one for hyperexponential (HE) dis-
tributions and finally one for order-2 HE distributions. Note,
the first result is trivial if λ ≥ mini T

∗
i .

Theorem 6. For σ > λ/mini T
∗
i , the fixed point π =

(λ(1−λ)θ, λ2θ) is a global attractor of the set of ODEs given
by (5) for any phase-type distribution with T ∗ > 0.

Proof. From Section 4.1, we know that the sliding mo-
tion on the surface {(w, c)|we + ce = 1} only occurs on the
region that bounds S if one of the entries of T ∗ is less than λ.
Thus, the motion on the part of {(w, c)|we + ce = 1} that
bounds S is transversal. Further, a sliding motion on the
surface of {(w, c)|ce = σ} only occurs if cT ∗ ≤ λ(we+ σ) ≤
λ. As ce = σ, cT ∗ ≥ σ(mini T

∗
i ) which implies that a slid-

ing motion cannot occur if σ > λ/mini T
∗
i . In other words,

the boundary of S cannot be reached from the interior and
if we start on the boundary we immediately move into the
interior of S. Therefore, all trajectories starting in S will
converge to ((1− λ)λθ, λ2θ).

For a HE distribution T is diagonal and α > 0. Further,
let µi = −Tii and assume without loss of generality that
µ1 < µ2 < . . . < µm.

Define the function V (w, c) from R2m to R such that

V (w(t), c(t)) = (w(t) + c(t))v,

where v is a right-eigenvector of T such that αv > 0, Tv =
τv with τ < 0 a real eigenvalue of T . Notice, as T is a
sub-generator, such an eigenvalue always exists (e.g., τ1).

Lemma 3. For any phase-type distribution with T ∗ > 0
and any ε > 0, there exists a t0 > 0 such that

V (w(t), c(t)) < λθv,

for all t > t0.

Proof. In the interior of S, we find that

d

dt
V (w(t), c(t)) = (w(t)+c(t))Tv+λαv = τ(w(t)+c(t))v+λαv.

Thus, if (w(t) + c(t))v > λθv = −λαv/τ , we see that

d

dt
V (w(t), c(t)) < −λαv + λαv = 0.

Similarly, (w(t)+c(t))v < λθv implies that d
dt
V (w(t), c(t)) >

0. Hence, (w(t)+c(t))v converges towards λθv in the interior
of S. During the sliding motion on {(w, c)|we+ ce = 1} we
find that

d

dt
V (w(t), c(t)) = τ(w(t) + c(t))v + (w(t) + c(t))T ∗αv.

Thus, if (w(t) + c(t))v > λθv = −λαv/τ we have

d

dt
V (w(t), c(t)) < ((w(t) + c(t))T ∗ − λ)αv.

As (w(t) + c(t))T ∗ − λ < 0 is required during the sliding
motion, we find that (w(t) + c(t))v decreases towards λθv
during the sliding motion. Note, when (w(t) + c(t))v < λθv,
the above equation only indicates that d

dt
V (w(t), c(t)) >

((w(t) + c(t))T ∗ − λ)αv, which is a negative number, so
(w(t) + c(t))v can also decrease. Finally, for the sliding mo-
tion on {(w, c)|ce = σ}, one readily checks that

d

dt
V (w(t), c(t)) =

τ(w(t) + c(t))v + (c(t)T ∗ − λ(w(t)e+ σ))αv + λαv,

which yields

d

dt
V (w(t), c(t)) < (c(t)T ∗ − λ(w(t)e+ σ))αv < 0,

during the sliding motion provided that (w(t)+c(t))v > λθv.
In conclusion, when V (w(t), c(t))−λθv > 0, for (w(t), c(t)) ∈
S, it will decrease towards zero.

In case of HE distributions we can set v = ei (a vector
of zeros with a one in position i) and τ = Tii, for any i =
1, . . . ,m.

Corollary 3. For any hyperexponential distribution and
any ε > 0, there exists a t0 > 0 such that

wi(t) + ci(t) < λθi + ε/m,

for all t > t0 and i ∈ {1, . . . ,m}. Hence, w(t)e+c(t)e < λ+ε
for t > t0.

Theorem 7. For σ > λ2/mini T
∗
i , the fixed point π =

(λ(1−λ)θ, λ2θ) is a global attractor of the set of ODEs given
by (5) for any hyperexponential distribution.



Proof. If we set ε < 1 − λ in Corollary 3, we find that
w(t)e + c(t)e < 1 after time t0, meaning we cannot hit the
surface {(w, c)|we + ce = 1} after time t0. On the surface
{(w, c)|ce = σ} the value of c(t)T ∗ is still lower bounded
by σ(mini T

∗
i ) = σµ1, but now for t > t0, λ(w(t)e + σ) can

upper bounded by λ(λ + ε). Thus, for any σ > λ2/µ1, we
can set ε < σµ1/λ − λ to guarantee that no sliding motion
on {(w, c)|ce = σ} can occur after time t0.

Theorem 8. For σ > λ2, the fixed point π = (λ(1 −
λ)θ, λ2θ) is a global attractor of the set of ODEs given by
(5) for any order-2 hyperexponential distribution.

Proof. The drift of ci(t) in the interior of S can be writ-
ten as

d

dt
ci(t) = −µici(t) + λ(w(t) + c(t))eαi.

If ci(t) = λ2θi + δ = λ2αi/µi + δ, for δ > 0, then Corollary
3 implies

d

dt
ci(t) < −δ + λεαi,

after time t0. Hence, for ci(t) > λ2θi, ci(t) decreases after
time t0 (in the interior of S).

Further, during the slide on {(w, c)|ce = σ}, the drift

d

dt
ci(t) = −µici(t) +

(
m∑
i=1

ci(t)µi

)
αi.

For HE distributions of order 2 (with µ1 < µ2), we have
α2 = 1 − α1 and c2(t) = σ − c1(t) during the slide, which
implies

d

dt
c1(t) = σµ2α1 − c1(t)(α2µ1 + α1µ2),

d

dt
c2(t) = σµ1α2 − c2(t)(α1µ2 + α2µ1).

As α1/µ1 + α2/µ2 = 1 and θ1 = α1/µ1, we find that if ci(t)
differs from σθi, ci(t) approaches σθi during the slide on
{(w, c)|ce = σ} (for any t).

Hence, for σ > λ2 and any ε2 > 0, there exists a t1 > t0
such that c1(t) is upper bounded by σθ1 +ε2 for t > t1. This
indicates that c(t)T ∗ can be lower bounded by σ+ δ for any
δ > 0 after time t1. Repeating the arguments in Theorem
7 with this improved lower bound on c(t)T ∗ for order-2 HE
distributions, suffices to complete the proof.

A.2 Case 2: σ ≤ λ2

In this section we establish a result for any phase-type
distribution as well as one for the class of HE distributions.

Theorem 9. For σ < λ2/(maxi T
∗
i )2, the fixed point π =

(λ(1−σ)θ/(1+λ), σθ) is a global attractor of the set of ODEs
given by (5) for any phase-type distribution with T ∗ > 0.

Proof. During the slide on {(w, c)|ce = σ}, we observe
that

d

dt
w(t)e = −w(t)T ∗ − λw(t)e+ λ(1− σ).

As w(t)T ∗ ≤ w(t)e(maxi T
∗
i ),

d

dt
w(t)e ≥ −w(t)e(λ+ max

i
T ∗i ) + λ(1− σ).

The derivative of w(t)e is therefore positive if w(t)e < λ(1−
σ)/(λ + maxi T

∗
i ). For the motion in the interior of S, we

see that

d

dt
w(t)e = −w(t)T ∗ − λw(t)e+ λ(1− c(t)e),

where c(t)e < σ. Hence, by the same argument the deriva-
tive of w(t)e is also positive in the interior of S if w(t)e <
λ(1−σ)/(λ+maxi T

∗
i ). On the surface {(w, c)|we+ce = 1},

we have w(t)e ≥ (1 − σ) > λ(1 − σ)/(λ + maxi T
∗
i ). This

allows us to conclude that for any ε > 0, there exists a t̄
such that for all t > t̄

w(t)e >
λ(1− σ)

λ+ maxi T ∗i
− ε.

When combined with the inequality c(t)T ∗ ≤ σmaxi T
∗
i ,

this indicates that c(t)T ∗ ≥ λ(w(t)e + σ) cannot hold after
time t̄ if

σ(max
i
T ∗i ) < λ(

λ(1− σ)

λ+ maxi T ∗i
− ε+ σ)

⇔ σ <

(
λ

maxi T ∗i

)2

(1− ε(λ+ max
i
T ∗i )/λ).

Thus, with a properly chosen ε, we may conclude that any
sliding motion on the surface {(w, c)|ce = σ} that starts
after time t̄ will last indefinitely for σ < (λ/maxi T

∗
i )2.

Theorem 10. For σ < λ2(1−λ)/(maxi T
∗
i −λ), the fixed

point π = (λ(1− σ)θ/(1 + λ), σθ) is a global attractor of the
set of ODEs given by (5) for any hyperexponential distribu-
tion.

Proof. The drift of wi(t) in the interior of S can be
written as

d

dt
wi(t) = −µiwi(t)− λ(w(t) + c(t))eαi + λαi.

Hence, if wi(t) = λ(1− λ)θi − δ, for some δ > 0, then

d

dt
wi(t) > δ − λεαi,

after time t0, due to Corollary 3. Meaning, if wi(t) < λ(1−
λ)θi, then wi(t) increases after time t0 (in the interior of S).
For the drift of wi(t) during the slide on {(w, c)|ce = σ}, we
observe that

d

dt
wi(t) = −µiwi(t)− λw(t)eαi + λ(1− σ)αi.

Hence, after time t0 we get

d

dt
wi(t) > −µiwi(t) + λ(1− λ)αi − λεαi,

by noting that w(t)e < λ−σ+ε. Thus, if wi(t) < λ(1−λ)θi,
wi(t) will increase after time t0. This allow us to conclude
that for any ε2 > 0 there exists a t2 > t0, such that w(t)e is
lower bounded by λ(1−λ)−ε2. The expression λ(w(t)e+σ) is
therefore lower bounded by λ2(1−λ) +λσ−λε2. As c(t)T ∗

is upper bounded by σmaxi T
∗
i , we find that the unique

fixed point is a global attractor for any HE distribution with
σ < λ2(1− λ)/(maxi T

∗
i − λ).


