
The Impact of Buffer Finiteness on the Loss

Rate in a Priority Queueing System

J. Van Velthoven, B. Van Houdt⋆ and C. Blondia

University of Antwerp
Dept. Mathematics and Computer Science

PATS Research Group

Abstract. This paper discusses five different ways to approximate the
loss rate in a fundamental two class priority system, where each class
has its own finite capacity buffer, as well as an exact approach. We iden-
tify the type of error one can expect by assuming that one, or both
buffers are of infinite size. Furthermore, we investigate whether asymp-
totic based results can achieve the same level of accuracy as those based
on the actual steady state probabilities. Three novel priority queueing
models are introduced and efficient algorithms, relying on matrix ana-
lytic methods, are developed within this context. A comparative study
based on numerical examples is also included.

Keywords: Buffer finiteness, priority queues, loss rate, matrix analytic methods,
generating functions.

1 Introduction

The study of priority queues has a long history and is often motivated by their
common occurrence in communication networks [16, 17, 3, 4, 8], where they can
be used to model Random Access Memory (RAM) buffers and in service part
logistics [14, 15]. One of the key performance measures of such a buffer is the
loss rate induced by their finite capacity as this strongly affects the network per-
formance. From an analytical point of view, dealing with finite capacity queues
is often more troublesome compared to infinite size buffers. Therefore, it is a
common practice to analyze the infinite capacity system first and afterward to
apply a heuristic method to obtain an estimate of the loss probability for the
finite capacity problem (e.g., the probability of having more than C customers
in the infinite case is frequently used as an approximation to the loss rate in a
finite capacity C setting [6]).

Although this approach has been shown to be fruitful for many queueing
systems, more recent results may question such an approach when applied to the
(low priority) loss rate in priority queueing system. More specifically, in [2, 10, 16,
17] it is shown that the tail behavior of the low priority buffer occupation might

⋆ B. Van Houdt is a post-doctoral fellow of the FWO-Flanders.

be nongeometric when both the low and high priority buffer is of infinite capacity.
Earlier results (e.g., [5]), however, have shown that one typically has geometric
tails when the high priority buffer capacity is finite (and arbitrarily large). One
does not expect a substantial difference between having an infinite or a very
large finite buffer for the high priority traffic (i.e., any simulation run attains
some finite maximum queue length). As such, the correspondence between the
infinite and finite capacity C system should grow as C increases. However, the
tail behavior of both systems, for any finite C, follows a very different regime,
implying that blindly trusting upon asymptotic results may lead to substantial
errors. The opposite modeling approach, where infinite size queueing systems
are studied by truncation to accomplish a numerical evaluation, also exists [3,
4], further motivating our interest in this subject.

The objective of this paper lies in identifying the approaches that may cause
poor estimates. To achieve this goal, we will analyze a fundamental discrete-
time queueing system with two priority classes, where each priority class has its
own waiting room. To study the impact of the buffer finiteness, we introduce
three novel discrete time queueing models with batch arrivals: one to analyze
the system where both queues (low and high priority) are finite and two models
that evaluate the systems where either one of the buffers is finite. The arrival
process considered allows correlation between the number of arrivals of each
priority class. There is, however, no correlation between the number of arrivals
during consecutive time slots. We further assume a deterministic service time of
one time slot for all packets. Although this model is a rather restrictive one, it
allows us to isolate the impact of assuming one (or two) infinite size buffers on
the accuracy of the loss rate obtained.

A variety of matrix analytic techniques are exploited to assess the (estimated)
loss rate for each of the three models with at least one finite capacity buffer. Es-
pecially useful is the observation that the system with two finite capacity buffers
can be captured by the paradigm developed in [7] for an M/G/1-type Markov
chain with some regenerative structure, as well as the explicit knowledge of the
G matrix appearing in the M/G/1-type Markov chain for the finite capacity
high priority buffer. For the setup where both queues are of infinite size we can
rely on existing results involving generating functions [17] to obtain numerical
results. In case the low priority traffic has an infinite size capacity buffer, we
develop two estimates for the loss rate: one based on a numerical evaluation of
the steady state probabilities and another that uses an asymptotic description
of the tail behavior. This leads to a total of six different approaches to gather
the loss rate of a system with two finite buffers (including five approximations).

Notice, although the methods developed in [3] are closely related to the model
with an infinite high and finite low capacity buffer, they do not apply directly as
batch arrivals are not considered in [3]. Finally, some of the solution techniques
can be adapted such that they still apply to a more general setting (i.e., more
general service times).

2 System Characteristics

We consider a discrete-time single-server multi-class queueing system with a
priority scheduling discipline. We consider a system with two priority classes,
denoted as the high (class-1) and the low (class-2) priority class. The arrival
process is chosen as in [10, 16, 17] and is characterized by the probabilities

a(i1, i2)
∆
= Prob[a1 = i1, a2 = i2], (1)

where aj denotes the number of arriving packets of class-j during a time slot.
The corresponding joint probability generating function is given by

A(z1, z2)
∆
= E [za1

1 za2

2] =

∞
∑

i1=0

∞
∑

i2=0

a(i1, i2)z
i1
1 z

i2
2 . (2)

Notice that the number of arrivals from different classes in one slot can be
correlated. There is however no correlation between the number of arrivals dur-
ing consecutive time slots. For further use, let a1(i) =

∑

∞

i2=0 a(i, i2), a2(i) =
∑

∞

i1=0 a(i1, i), a
∗

1(i) =
∑

∞

k=i a1(k) and a∗2(i) =
∑

∞

k=i a2(k). The class-i arrival

rate λi equals
∑

∞

k=1 a
∗

i (k).

We assume a deterministic service time of one time slot for all the packets.
Although this assumption is rather strong, it allows us to isolate the impact
of assuming one (or two) infinite size buffers on the accuracy of the loss rate
obtained. There are two buffers, one for the high and one for the low priority
traffic. If an arriving packet finds the server busy, it joins the appropriate buffer.
The class-1 packets have priority over these of class-2 and within each class the
service discipline is assumed to be First Come First Served. Therefore, when a
packet completes its service, the class-1 packet with the longest waiting time will
be served. If there are no high priority packets available, the oldest low priority
packet is selected for service.

In the next sections, we discuss four different cases, where the buffer size of
the two buffers is either finite or infinite. For each situation, we determine the
steady state probabilities of the system contents distribution, which can, among
others be used to calculate loss probability of the class-2 packets. In each of
these models, all events such as arrivals, service completions and packet losses
are assumed to occur at instants immediately after the discrete time epochs. We
further assume that departures occur before arrivals.

3 Finite High Priority Buffer

Let us first discuss the above-mentioned queueing system provided that the
class-1 buffer is finite, with a capacity H, and the class-2 buffer is infinite. We
can model this system using an M/G/1-type Markov chain represented by the

following transition matrix:

P =















B0 B1 B2 B3 . . .
A0 A1 A2 A3 . . .
0 A0 A1 A2 . . .
0 0 A0 A1 . . .
...

...
...

...
. . .















. (3)

We denote the states of this Markov chain as 〈i, j〉, where the level i ≥ 0 denotes
the number of low priority packets in the queueing system and j = 0, . . . ,H + 1
reflects the number of high priority packets. An expression for the (H + 2) ×
(H + 2) matrices Ai (i = 0, 1, . . .) is given first. A transition to a lower level can
only occur, if there are no high priority packets present in the system, otherwise
such a packet is served, preventing any low priority packet from leaving the
system. As a consequence only the first row of the matrix A0 contains non-zero
probabilities. A second condition in order to have a transition to a lower level is
that no low priority packets arrive during the current time slot. Hence,

A0 = e1(a(0, 0), a(1, 0), a(2, 0), . . . , a∗(H + 1, 0)), (4)

where a∗(i, j) =
∑

∞

k=i a(k, j) and e1 is a column vector with all its entries equal
to zero, except for the first which equals one. The transitions from state 〈i, j〉
to state 〈i+ k, j′〉 are covered by the matrix Ak+1, for i ≥ 1 and k ≥ 0. We
distinguish two cases: j = 0 and j > 0. In the first case, a low priority packet
is in service; hence, k + 1 low priority packets need to arrive in order to get a
transition to level i+ k. In the latter case, a class-1 packet occupies the server.
A transition to level i+ k thus occurs if k class-2 packets arrive. This yields,

Ak+1 =















a(0, k + 1) a(1, k + 1) a(2, k + 1) . . . a∗(H + 1, k + 1)
a(0, k) a(1, k) a(2, k) . . . a∗(H + 1, k)

0 a(0, k) a(1, k) . . . a∗(H, k)
...

. . .
. . .

. . .
...

0 . . . 0 a(0, k) a∗(1, k)















. (5)

Finally, the matrix Bk contains the probabilities of having a transition from
level zero to level k. Level zero corresponds to having zero class-2 packets in the
system, implying that k low priority packets must arrive to enter a level k state,
for k ≥ 0,

Bk =















a(0, k) a(1, k) a(2, k) . . . a∗(H + 1, k)
a(0, k) a(1, k) a(2, k) . . . a∗(H + 1, k)

0 a(0, k) a(1, k) . . . a∗(H, k)
...

. . .
. . .

. . .
...

0 . . . 0 a(0, k) a∗(1, k)















. (6)

To calculate the steady state vector x = (x0, x1, x2, . . .), with xk a 1 × (H + 2)
vector for k ≥ 0, of P , i.e., the joint system contents distribution, Ramaswami’s

formula [13, 12, 11] can be used. This formula requires x0 and a (stochastic) ma-
trix G, being the smallest nonnegative solution of G =

∑

∞

k=0AkG
k, as its input.

The (j, k)-th entry of this matrix represents the probability that, starting from
state 〈i+ 1, j〉, the Markov chain visits the set of states {〈i, 0〉 , . . . , 〈i,H + 1〉}
the first time by entering the state 〈i, k〉. Finding G is often by far the bottleneck
when computing the invariant vector of an M/G/1-type MC. However, in this
setup, a transition to a lower level can only occur when there are no high priority
packets in the system and there is no arrival of low priority traffic at the current
time instant. As a consequence, all the rows of G are identical and can be given
explicitly by the vector α = (a(0, 0), a(1, 0), a(2, 0), . . . , a∗(H + 1, 0)) /a∗(0, 0).
Notice that Gk = G = eα for k > 0 and g = α, where g is the unique solution of
gG = g, with ge = 1 and e a column vector of ones. Combining [12, Chapter 3]
and the structure of the Ak and Bk matrices with these properties, the following
algorithm to compute x can be devised:

Algorithm 3.1: [H/∞]

1. Input: the probabilities a(i1, i2) for 0 ≤ i1 and 0 ≤ i2, concerning the arrival
process and the capacity H of the buffer for the high priority traffic.

2. Determine the matrices Ak and Bk (k ≥ 0) using Eqn. (4), (5) and (6).
3. Calculate ρ = πβ, where π is the vector representing the stationary distrib-

ution of the stochastic matrix A =
∑

∞

k=0Ak and β = (1 + λ2)e− e1.
4. Next, set κ̃1 = ψ2+(B1 + a∗2(2)eα) (I−A1−a

∗

2(1)eα +a2(1)e1α)−1ψ1, where
I is the identity matrix of the appropriate dimension. The vectors ψ1 and
ψ2 are given by the following expressions:

ψ1 = (I −A0 −A1) (I − eα) (I −A+ (e− β)α)
−1
e

+(1 − ρ)−1a2(0)e1,

ψ2 = (B −B0 −B1) (I − eα) (I −A+ (e− β)α)
−1
e

+(1 − ρ)−1(λ2 − ρ+ a2(0))e,

where B =
∑

∞

k=0Bk.
5. The vector x0 containing the steady state probabilities that there are no

low priority packets in the system, is given by x0 = (κκ̃1)
−1κ with κ the

invariant probability vector of K = B0 + (I −B0)eα.
6. Finally, the following recursion is used to calculate the remaining vectors xi

of the steady state distribution:

xi =



x0B̄i +

i−1
∑

j=1

xjĀi+1−j





(

I − Ā1

)

−1
, i > 0. (7)

In this expression we have Āk = Ak + (a∗2(k)e − a2(k)e1)α and B̄k = Bk+
a∗2(k + 1)eα, for k ≥ 0.

Notice, the matrices Ak, Bk, Āk, B̄k, etc. are fully characterized by their first
(or first two) rows; hence, there is no need to store more than one (two) rows
for each of these matrices.

In this section, we assumed an infinite size low priority buffer. In practice,
buffers are finite and some low priority losses can occur. To estimate the loss
probability of the class-2 packets, given the maximum capacity L of the corre-
sponding buffer, we can use the following standard approach in queueing1. This
approach approximates the packet loss in a finite size L buffer, by the expected
value of max(0,number of packets waiting −L) in an infinite size system:

Ploss ≈

∞
∑

k=L+1

(k − L)xke− xL+1(0), (8)

where xL+1 = (xL+1(0), xL+1(1), . . . , xL+1(H)). The accuracy of this estimate
is studied in Section 7. Apart from computing the steady state vector x =
(x0, x1, x2, . . .) in an exact manner via Algorithm 3.1, we can also rely on a
theorem by Falkenberg [5, Theorem 3.5], that describes the tail behavior of
an M/G/1-type MC, to approximate xk for k large. This theorem states that
the tail will typically decay geometrically, with parameter τ . This parameter is
the solution τ > 1 to ξ

(
∑

∞

k=0Akz
k
)

= z, with ξ(X) representing the Perron-
Frobenius eigenvalue of the matrixX, and can be computed by a simple bisection
algorithm. By plugging the approximated xk values in (8), we find an alternative
estimate for the class-2 loss probability. We will refer to this approach as the
H/∞t approach (as opposed to the H/∞ approach of Algorithm 3.1).

4 Finite Low Priority Buffer

Consider the same system as in Section 3, but with an infinite buffer for the high
priority traffic and a finite one of size L for the low priority traffic. As before, we
start by setting up an M/G/1-type Markov chain to describe the system. The
transition matrix of this Markov chain is given by

P =















B0 B1 B2 B3 . . .
C0 A1 A2 A3 . . .
0 A0 A1 A2 . . .
0 0 A0 A1 . . .
...

...
...

...
. . .















, (9)

with Ak (k ≥ 0) an (L + 1) × (L + 1) matrix, Bk (k > 0) an (L + 2) × (L + 1)
matrix, B0 an (L+ 2)× (L+ 2) matrix and C0 an (L+ 1)× (L+ 2) matrix. The
different dimensions originate from the fact that there can be L+ 1 low priority
packets in the system only if there are no packets of high priority present. Within
a level, the states of this Markov chain correspond to the number of low priority
packets; thus, level zero contains one additional state. Arguments similar to the

1 High priority buffers are usually dimensioned such that hardly any losses occur,
therefore, we focus on the low priority packets.

one presented in Section 3 yield the following expressions:

Ak =











a(k, 0) a(k, 1) . . . ā(k, L)
0 a(k, 0) . . . ā(k, L− 1)
...

. . .
. . .

...
0 . . . 0 ā(k, 0)











, k ≥ 0, (10)

B0 =















a(0, 0) a(0, 1) a(0, 2) . . . ā(0, L+ 1)
a(0, 0) a(0, 1) a(0, 2) . . . ā(0, L+ 1)

0 a(0, 0) a(0, 1) . . . ā(0, L)
...

. . .
. . .

. . .
...

0 . . . 0 a(0, 0) ā(0, 1)















, (11)

Bk =















a(k, 0) a(k, 1) . . . ā(k, L)
a(k, 0) a(k, 1) . . . ā(k, L)

0 a(k, 0) . . . ā(k, L− 1)
...

. . .
. . .

...
0 . . . 0 ā(k, 0)















, k > 0 (12)

and

C0 =











a(0, 0) a(0, 1) a(0, 2) . . . ā(0, L+ 1)
0 a(0, 0) a(0, 1) . . . ā(0, L)
...

. . .
. . .

. . .
...

0 . . . 0 a(0, 0) ā(0, 1)











, (13)

where ā(i, j) =
∑

∞

k=j a(i, k). Given these expressions, we only need to find x0

and the matrix G before we can apply Ramaswami’s formula to compute x =
(x0, x1, . . .). For this setup, there is no explicit expression for G. However, various
iterative algorithms can be used to compute G. A low memory implementation
can be achieved using the following basic scheme: G0 = I,Gn =

∑

∞

k=0AkG
k
n−1.

The time needed to execute one iteration can be reduced by observing that only
the first row has to be calculated for the entire matrix to be known. That is,
the matrix Gn is a triangular matrix with the following structure (due to the
probabilistic interpretation of G) :

Gn =













G(0) G(1) . . . G(L)

0 G(0)
. . . G∗(L− 1)

...
. . .

. . .
...

0 . . . 0 G∗(0)













,

where G∗(i) =
∑L

k=iG(k). Hence, the steady state vector of the stochastic
matrix G is given by g = (0, 0, . . . , 1). Similarly, as A =

∑

k Ak is also triangular,
its invariant vector π = (0, 0, . . . , 1) as well. Furthermore, the matrices Ak, Bk

and C0(k ≥ 0) can be represented by their first row and both Ake and Bke
equal a1(k)e (for k ≥ 0). This leads to the following simplifications: β = λ1e,

ρ = λ1, ψ1 = ψ2 = a1(0)(1 − λ1)
−1e and κ̃1 = (1 − λ1)

−1e. These expression
can be obtained from [12, Chapter 3] by noticing that (I − A+ (e− β)g)−1e =
∑

∞

k=0(A − (e − β)g)ke =
∑

∞

k=0 λ
k
1e = (1 − λ1)

−1e. Therefore, the following
algorithm can be used to compute x = (x0, x1, x2, . . .):

Algorithm 4.1: [∞/L]

1. Input: the probabilities a(i1, i2) for 0 ≤ i1 and 0 ≤ i2, concerning the arrival
process and the capacity L of the buffer for the class-2 traffic.

2. Determine the matrices Ak, Bk (k ≥ 0) and C0 using the Eqn. (10), (11),
(12) and (13).

3. Set x0 = (κκ̃1)
−1κ = (1 − λ1)κ with κ the invariant probability vector of

the matrix K:

K = B0 +

(

∞
∑

k=1

BkG
k−1

)(

I −
∞
∑

k=1

AkG
k−1

)

−1

C0.

4. Finally, we can use the following iteration to calculate the other vectors of
the steady state distribution:

xi =



x0B̄i +

i−1
∑

j=1

xjĀi+1−j





(

I − Ā1

)

−1
, i > 0, (14)

where Āk =
∑

∞

i=k AiG
i−k and B̄k =

∑

∞

i=k BiG
i−k, for k ≥ 0.

As Ak, Bk and G are fully characterized by their first row, so are the Āk

and B̄k matrices, allowing a significant reduction in the computing time and
storage space needed to implement Ramaswami’s formula (i.e., (14)). Having
found the steady state probabilities, xj(k) denotes the steady state probability
of having j high and k low priority packets in the system. Define ā∗(i, j) =
∑

∞

k=i

∑

∞

l=j a(k, l).
Let us now take a look at the calculation of the loss rate of class-2 packets.

Low priority packets are lost when the buffer has reached its maximum capacity
upon their arrival. This happens in the following two cases:

– The system contains j = 0, 1 class-1 packets, i class-2 packets (for 0 ≤ i ≤
L+ 1− j) and (a) at least one high and L+ 1− [i− ̄]+ low priority packets
arrive (where [x]+ = max(0, x) and ̄ = j + 1 mod 2) or (b) no high and at
least L+ 2 − [i− ̄]+ low priority packets arrive. Notice, [i− ̄]+ represents
the number of class-2 packets left behind by the possible departure and
seen by the new arrivals. The expected number of losses due to these cases
corresponds to

1
∑

j=0

L+1−j
∑

i=0

xj(i)





∞
∑

k=L+1−[i−̄]+

ā∗(1, k) +
∞
∑

k=L+2−[i−̄]+

ā(0, k)



 .

– There are j (j > 1) class-1, i (0 ≤ i ≤ L) class-2 packets and more than
L − i low priority packets arrive. The expected number of losses caused by
these cases equals

∑

∞

j=2

∑L
i=0 xj(i)

(
∑

∞

k=L+1−i ā
∗

2(k)
)

.

The loss rate of the class-2 traffic can now be calculated by taking the sum of
these two expressions. We expect that this approach provides us with a more
accurate estimation than the one presented in the previous section, keeping in
mind that the high priority queue is typically dimensioned sufficiently large such
that hardly any losses occur. In Section 7 we will give some numerical examples
in which both approaches are compared.

5 Two Finite Buffers

This section focuses on the system with both a finite, size L low and finite, size
H high priority traffic buffer. In practice, all buffers are finite, thus the results
obtained in this section are the most relevant. The system state, captured by
the number of low and high priority customers in the queue, can be described
by a Markov chain with the following transition matrix P :

P =























B0 B1 . . . BL−1 DL CL

A0 A1 . . . AL−1 DL−1 CL−1

0 A0
. . . AL−2 DL−2 CL−2

...
. . .

. . .
...

...
...

...
. . .

. . . A0 D0 C0

0 0 F E























. (15)

As in Section 3, the states are labeled as 〈i, j〉, with i and j reflecting the
number of low and high priority customers, respectively. Notice that the states
〈L+ 1, j〉 can only be reached if j = 0. Otherwise, a high priority customer
will occupy the server, leaving only L buffer places available for the low priority
traffic. As a consequence Ci (0 ≤ i ≤ L) are column vectors, F is a row vector,
and E is a scalar.

In many applications, the dimension of the buffer for the class-1 traffic is
significantly smaller than the class-2 buffer. Keeping this in mind, choosing the
representation above allows us to work with relatively smaller matrices then
would be the case when the order of both variables would be switched. Moreover,
this choice also causes P to have a useful regenerative structure. The expressions
for the matrices Ak and Bk (0 ≤ k < L) are identical to those given in Section
3 and as a consequence the matrix G = eα, being the smallest nonnegative
solution to G =

∑

∞

i=0AiG
i, is again known explicitly.

Let us now determine the expressions for the matrices Ck,Dk, E and F . First,
the matrix Ck (0 ≤ k ≤ L) contains the probabilities of having a transition to
level L+ 1, which can only occur when there are no high priority packets in the

system during the next time slot. Meaning, Ck is a column vector, the first two
entries of which only differ form zero:

CL =















ā(0, L+ 1)
ā(0, L+ 1)

0
...
0















and Ck =















ā(0, k + 2)
ā(0, k + 1)

0
...
0















, 0 ≤ k < L. (16)

A similar argument can be used to find

E = ā(0, 1) (17)

The transitions to level L are described by Dk (0 ≤ k ≤ L) and F , and can be
written as:

DL =















a(0, L) ā(1, L) ā(2, L) . . . ā∗(H + 1, L)
a(0, L) ā(1, L) ā(2, L) . . . ā∗(H + 1, L)

0 ā(0, L) ā(1, L) . . . ā∗(H,L)
...

. . .
. . .

. . .
...

0 . . . 0 ā(0, L) ā∗(1, L)















, (18)

Dk =















a(0, k + 1) ā(1, k + 1) ā(2, k + 1) . . . ā∗(H + 1, k + 1)
a(0, k) ā(1, k) ā(2, k) . . . ā∗(H + 1, k)

0 ā(0, k) ā(1, k) . . . ā∗(H, k)
...

. . .
. . .

. . .
...

0 . . . 0 ā(0, k) ā∗(1, k)















(19)

and
F = (a(0, 0), ā(1, 0), ā(2, 0), . . . , ā∗(H + 1, 0)) , (20)

Now that we have derived an expression for the building blocks of the transition
matrix P , we are in a position to calculate its steady state distribution x =
(x0, x1, . . . , xL+1). P is a downward skip-free finite transition matrix with a
special regenerative structure, in [7, Theorem 4.1] Ishizaki introduced an efficient
algorithm (similar to Ramaswami’s formula) to compute the steady state vector
of such a matrix P . Applying this algorithm to our setting and using the same
notations as in Section 3, we can calculate the steady state probabilities by
means of the following set of equations:

Algorithm 5.1: [H/L]

1. Input: the probabilities a(i1, i2) for 0 ≤ i1 and 0 ≤ i2, concerning the arrival
process and both buffer capacities L and H.

2. Determine the matrices Ak, Bk (0 ≤ k ≤ L−1), Ck, Dk (0 ≤ k ≤ L), E and
F using Eqns. (4–6) and (16–20).

3. Let x0 be the stochastic solution of x0 = x0K, where K = B0 + (I −B0)eα.

4. Set xi =
(

x0B̄i +
∑i−1

k=1 xkĀi−k+1

)

(

I − Ā1

)

−1
for i = 1, . . . , L − 1, where

the matrices Āk and B̄k were defined in step 6 of Algorithm 3.1.

5. Let xL =
(

∑L−1
k=0 xk(DL−k + CL−kF

∗)
)

(I − D̄0)
−1, where F ∗ = F/(Fe)

and D̄0 = D0 + C0F
∗.

6. Compute xL+1 =
(

∑L
i=0 xiCL−i

)

(1 −E)
−1

.

7. Normalize x = (x0, x1, . . . , xL+1) such that
∑L+1

i=0 xie = 1.

Observe that we compute (x0, . . . , xL−1) in exactly the same way as in Sec-
tion 3, except that x0 is not normalized. Normalization occurs after computing
xL and xL+1. Thus, obtaining results for the system with two finite buffers is
almost computationally equivalent to solving the finite/infinite system. This is
exceptional as finite buffer systems typically demand more computational power.
Using these steady state probabilities, the loss probability of the class-2 packets
can be calculated in the same way as in Section 4.

6 Two Infinite Buffers

To analyze the system where both buffers are of infinite size, we can rely on
some existing results in the literature. From [17], it follows that the probability
generating function Q2(z) of the number of class-2 packets waiting in the queue
can be written as

Q2(z) = (1 − λ)
(z − 1)(Y (z) − 1)

(z − Y (z))(A(1, z) − 1)
, (21)

where Y (z) is implicitly defined by Y (z) = A(Y (z), z). From Rouché’s theorem,
it can be seen that there is exactly one solution for Y (z), with |Y (z)| ≤ 1 for
|z| < 1. There are two approaches to retrieve an estimate for the class-2 loss
probability from (21). The first involves a numerical inversion of the generating
function to obtain an approximation for the distribution of the number of class-2
packets present in the buffer. The inversion is realized using a discrete Fourier
transform method (DFT), where a damping parameter 0 < r < 1 is used [1]. We
make use of a damping parameter such that when evaluatingQ2(z) at rωs

N , where
ωs

N for s = 0, . . . , N − 1 are the N -th roots of unity, Y (z) is uniquely defined by
Rouché’s theorem as |rωs

N | < 1. This leads to the following algorithm:

Algorithm 6.1: [∞/∞]

1. Input: the probabilities a(i1, i2) for 0 ≤ i1 and 0 ≤ i2, concerning the arrival
process.

2. Evaluate Q2(z) at rωs
N , where ωs

N for s = 0, . . . , N −1 are the N -th roots of
unity (where N is a power of 2 sufficiently large). This entails that we have
to determine the unique solution of Y (z) = A(Y (z), z), with |Y (z)| < 1, for
each z = rωs

N .

3. Compute qk, for k = 0, . . . , N − 1, via the inverse DFT. The values qk can
be used as an approximation to the probability of having k buffered class-2
packets.

In [9], it is argued that as long as enough numerical precision is used, the de-
sired probabilities can be obtained to any given accuracy. Therefore, it is advised
to use a software package that supports high numerical precision when imple-
menting this algorithm (e.g., Maple or Mathematica). The class-2 loss probability
can be estimated as Ploss ≈

∑

∞

k=L+1(k − L)qk.
A second approach is to rely on the tail behavior of (21) to get an alternate

approximation q′k for the probability of having k class-2 packets buffered. A de-
scription of the tail behavior of interest can be found easily from [17, Eqn. (21)].
The key in generating numerical results from these expressions is the computa-
tion of the real numbers zT > 1 and zB > 1: these numbers are the solutions to
A(z, z) = z and A(1)(Y (z), z) = 1 (where A(1)(z1, z2) is the first partial deriva-
tive of A(z1, z2)), respectively. As A(z, z) is a convex function with A(1, 1) = 1

and dA(z,z)
dz

∣

∣

∣

z=1
< 1 (otherwise the system would be unstable), we can apply a

simple bisection algorithm to find zT . For zB we can use the following algorithm:

Algorithm 6.2: [∞/∞t]

1. Set z2:min = 1 and z2:max = 2. Determine z1 > 1 via a bisection algo-
rithm such that A(1)(z1, z2:max) = 1. As long as A(z1, z2:max) is less than z1,
increase z2:min and z2:max by one.

2. Let z2:new = (z2:min +z2:max)/2. Determine z1 > 1 via a bisection algorithm
such that A(1)(z1, z2:new) = 1. If z1 < A(z1, z2:new), assign z2:new to z2:max,
else z2:min = z2:new. Repeat step 2 until z2:max − z2:min < 10−14.

For details on how to compute an approximation q′k given zT and zB we refer to
[17].

7 Numerical Examples

In this section we will compare the discussed approaches to estimate the loss
probability of the low priority traffic. Let us first describe the arrival process
under consideration. The number of arrivals during one time slot is bounded by
N and is generated by a Bernoulli process with rate λT /N , where an arriving
packet belongs to class-j (j = 1, 2), with a probability λj/λT (with λ1+λ2 = λT).
This arrival process is characterized by the joint probability generating function

A(z1, z2) =



1 +

2
∑

j=1

λj

N
(zj − 1)





N

. (22)

It was also used in [16] where a non-blocking output-queueing switch with N
inlets and N outlets was given as a possible application.

0.1 0.15 0.2 0.25 0.3 0.35 0.4
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

λ
2

P
lo

ss

∞/∞
t

∞/∞
H/∞
H/∞

t

∞/L
H/L

(a) λ1 = 0.4, H = 25, L = 20

5 10 15 20
10

−10

10
−8

10
−6

10
−4

10
−2

L

P
lo

ss

∞/∞
t

∞/∞
H/∞
H/∞

t

∞/L
H/L

(b) λ1 = 0.4, λ2 = 0.2, H = 25

Fig. 1. Comparison of the loss rate of low priority packets for each of the six approaches

More specifically, we assume the maximum number of simultaneously arriving
packets to be 16. The probability that a class-1 packet arrives is fixed throughout
this section at λ1 = 0.4, while the buffer for the high priority traffic has a
size H = 25 packets. By dimensioning the high priority buffer like this, the
probability that a class-1 packet is dropped due to buffer overflow is in the order
of 10−20. Figure 1(a) represents, for each of the discussed approaches, the loss
rate of the class-2 packets where the corresponding buffer has a size L = 20
packets and λ2 = 0.1, . . . , 0.4.

The exact results obtained via the system with two finite buffers, is denoted
by the full line. It can be seen that the ∞/L results are very accurate, meaning
there is no harm in assuming an infinite size high priority buffer. The other four
approximation approaches give rise to higher loss probabilities. This difference is
caused by the heuristic calculation used to estimate the loss probability. When-
ever an infinite buffer is used for the low priority traffic, the estimate for the
loss probability is based on the probability that the number of packets in the
buffer exceeds L. In general, this causes an overestimation as packets that would
be dropped earlier by the finite capacity system may still reside in the infinite
buffer setup when the next arrival(s) occur.

In case both queues are assumed to be infinite, we observe some poor results
around λ2 = 0.21 for the ∞/∞t approach, which relies on the asymptotic tail
behavior of the class-2 queue. This is caused by the fact that the tail transition
point is situated at pt = 0.208060765: for λ2 ≤ pt the tail is nongeometric,
whereas for λ2 > pt, we have a geometric tail. When λ2 < pt, the asymptotic
regime is dominated by a branch point, whereas for λ2 > pt there exists a
dominant pole. When we approach the transition point, the domination becomes
less severe and significant errors occur as shown in this example. The loss rate
obtained for λ2 = pt is quite accurate as indicated by the star on the plot.

Figure 1(b) illustrates the influence of the buffer capacity for the low priority
traffic on the loss probability of this traffic in the case where λ2 = 0.2. As

0.05 0.1 0.15 0.2 0.25 0.3
2

3

4

5

6

7

8

λ
2

τ
| z

T

λ
1
=0.4 , H=25 , L=20

∞/∞
t

H/∞
t

Fig. 2. Comparison of the coefficient for the tail approaches

could be expected, the loss probability of the class-2 packets decreases when
this buffer becomes larger. If we compare the different approaches, we notice the
same behavior as in Figure 1(a). Because taking λ2 = 0.2 brings us relatively
close to the transition point, a significant error is introduced by assuming both
queues infinite and relying on the tail behavior. That is, the loss probability
obtained by this approach overestimates the actual loss rate by a factor of 100
to 1000. If, for example, we would use the ∞/∞t approximation to dimension
the class-2 buffer such that the loss probability is less than 10−5, we would need
a buffer of 14 packets, whereas a buffer of only 8 packets suffices if we consider
the H/L approach.

In Figure 2 we compare the two approaches based on the tail behavior of the
low priority queue. In fact, the full line represents the geometric decay parame-
ter in function of the arrival rate λ2 of the low priority traffic. The dotted line
represents the parameter zT , described in algorithm 6.2. On the figure, the tran-
sition point is indicated by the vertical line. As mentioned before, on the left of
this line the tail for the class-2 queue obtained by algorithm 6.2 is nongeometric,
whereas on the right of the transition point the tails are geometric. It can be
noticed that the values indicated by the two curves, converge to the same value
as λ2 reaches the transition point.

8 Conclusions

In this paper we have studied the influence of buffer finiteness on the low prior-
ity loss probability in a queueing system with two priority classes. Three novel
discrete time queueing models with at least one finite capacity buffer were intro-
duced, together with efficient solution techniques that rely on matrix analytic
methods. Six different approaches to estimate the low priority loss rate were
discussed and compared.

The most accurate approximation results were generated by the approach in
which only the high priority traffic is considered as infinite. Moreover, given that

the size of the high priority buffer is chosen sufficiently large, the distinction with
exact results is negligible. When the low priority queue was assumed to be infi-
nite, we observed an overestimated loss rate. Relying on the actual steady state
probabilities or the asymptotic tail behavior seemed to make little difference if
the high priority queue was finite. However, in case both queues are infinite very
inaccurate loss probability were observed when we made use of the asymptotic
tail behavior, especially in the area near the transition point.

References

1. J. Abate and W. Whitt. The Fourier-series method for inverting transforms of
probability distributions. Queueing Systems, 10:5–88, 1992.

2. J. Abate and W. Whitt. Asymptotics for M/G/1 low-priority waiting-time tail
probabilities. Queueing Systems, 25:173–233, 1997.

3. A.S. Alfa. Matrix-geometric solution of discrete time MAP/PH/1 priority queue.
Naval Research Logistics, 45:23–50, 1998.

4. A.S. Alfa, B. Liu, and Q.M. HE. Discrete-time analysis of MAP/PH/1 multiclass
general preemptive priority queue. Naval Research Logistics, 50:662–682, 2003.

5. E. Falkenberg. On the asymptotic behaviour of the stationary distribution of
Markov chains of M/G/1-type. Stochastic Models, 10(1):75–97, 1994.

6. A. György and T. Borsos. Estimates on the packet loss ratio via queue tail prob-
abilities. In IEEE Globecom, San Antonio, TX, USA, Nov 2001.

7. F. Ishizaki. Numerical method for discrete-time finite-buffer queues with some
regenerative structure. Stochastic Models, 18(1):25–39, 2002.

8. K.P. Sapna Isotupa and David A. Stanford. An infinite-phase quasi-birth-and-
death model for the non-preemptive priority M/PH/1 queue. Stochastic Models,
18(3):387–424, 2002.

9. N.K. Kim and M.L. Chaudry. Numerical inversion of generating functions: a com-
putational experience. Manuscript, 2005.

10. K. Laevens and H. Bruneel. Discrete-time multiserver queues with priorities. Per-
formance Evaluation, 33(4):249–275, 1998.

11. B. Meini. An improved FFT-based version of Ramaswami’s formula. Stochastic
Models, 13:223–238, 1997.

12. M.F. Neuts. Structured Stochastic Matrices of M/G/1 type and their applications.
Marcel Dekker, Inc., New York and Basel, 1989.

13. V. Ramaswami. A stable recursion for the steady state vector in Markov chains of
M/G/1 type. Commun. Statist.-Stochastic Models, 4:183–188, 1988.

14. A. Sleptchenko, A. van Harten, and M.C. van der Heijden. An exact analysis of
the multi-class M/M/k priority queue with partial blocking. Stochastic Models,
19(4):527–548, 2003.

15. A. Sleptchenko, A. van Harten, and M.C. van der Heijden. An exact solution
for the state probabilities of the multi-class, multi-server queue with preemptive
priorities. Queueing Systems, 50(1):81–107, 2005.

16. J. Walraevens, B. Steyaert, and H. Bruneel. Performance analysis of a single-
server ATM queue with a priority scheduling. Computers & Operations Research,
30(12):1807–1829, 2003.

17. J. Walraevens, B. Steyaert, and H. Bruneel. A packet switch with a priority schedul-
ing discipline: Performance analysis. Telecommunication Systems, 28(1):53–77,
2005.

