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Linking priority queues and tree-like processes
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Abstract

This paper links the analysis of a general class of priority queues with three service classes with tree-like processes. This
is realized by demonstrating that the operation of a 3-class priority queue can be mimicked by means of an alternate system
that is composed of a single stack and queue. Some insights on how to reduce the evolution of this alternate system to a
tree-like process are provided, allowing an efficient solution of the priority system through matrix analytic methods.
� 2005 Elsevier GmbH. All rights reserved.
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1. Introduction

It is a great pleasure to write a contribution for this spe-
cial issue dedicated to Paul Kuehn on the occasion of his
65th birthday. I (the second author) met Paul in the late
eighties when we were involved in a project of the Euro-
pean research programme RACE, entitled “Technology for
ATD”, also known as the ATM project. As workpackage
leader, he knew how to motivate all researchers involved.
His long experience in performance modelling ensured that
all important design decisions were taken based on quanti-
tative arguements that were obtained from analytical models
or simulations.

An important issue in this project was the design of
traffic management mechanisms that allow to differentiate
various services (i.e. QoS support). In this context the in-
troduction of priorities, be it in time (to differentiate with
respect to delay) or in space (to differentiate with respect
to loss probability) seems to be inevitable. Paul Kuehn has
made crucial contributions in many areas of performance
modeling, in particular also in the area of priority systems.
The notion of conditional cycle time introduced in his paper

∗ Corresponding author. Tel.: +32 3 2653903.
E-mail address: chris.blondia@ua.ac.be (C. Blondia).

1434-8411/$ - see front matter � 2005 Elsevier GmbH. All rights reserved.
doi:10.1016/j.aeue.2005.11.009

on multiqueue systems with nonexhaustive cyclic service
[1], is not only applicable for polling systems, but offers a
new approach to the solution of priority systems.

Numerous methods to solve priority systems in an ef-
ficient way have been proposed. In this paper we discuss
an interesting link between the analysis of priority queues
with three classes of service and tree-like processes. The
key observation of our approach lies in reformulating the
traditional three queue problem into a combined queue and
stack problem. Some indications that the behavior of the
reformulated problem can often be captured by a Markov
chain with a tree structured state space [2,3] are provided.
Such Markov chains – that neither fit within the GI/M/1 or
M/G/1 paradigm – can be reduced to binary tree-like pro-
cesses [4,5], which are a special case of a tree structured
QBD Markov chain [6]. Typical performance measures cap-
tured by this methodology include the queue length distri-
bution and loss rate.

The arrival process to model the incoming jobs may be as
general as the Markov arrival process with marked jobs, i.e.
the MMAP[3] process [7,8]. The MMAP[3] is a set of ar-
rival processes that allows correlated inter-arrival times and
correlation between the classes of consecutive jobs. More-
over, the input traffic does not need to consist of three inde-
pendent streams (one for each priority class). Furthermore,
we allow that the amount of time needed to execute a job
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depends on its class, while the processing time of consec-
utive jobs of the same class is independent and identically
distributed (iid). Processing times are typically phase-type
distributed random variables. Thus, in general, one cannot
simply lump the priority one and two traffic into a single
class as this would create correlation into the service times
of the lumped job class.

In a forthcoming paper we will demonstrate our approach
in detail on a discrete-time preemptive priority queueing
system without batch arrivals. As is apparent from this paper,
the technique also applies to the continuous time setting or
to nonpreemptive systems. The methodology is exact if the
waiting rooms for the priority 1 and 3 jobs are both finite
while the waiting room for the priority 2 jobs has an infinite
capacity. The infinite nature of the priority 2 queue does not
jeopardize the practical relevance of our model as priority
queues are mainly effective if sufficient jobs have the lowest
priority. Therefore, hardly any priority 1 or 2 jobs will leave
the system without receiving full service; hence, whether
the priority 2 queue is infinite or finite and sufficiently large
makes little difference.

The study of priority queues has a long history that started
in the 1950s (according to Miller [9]) and a plethora of appli-
cations in both communication and manufacturing systems
has benefited from its development. Starting from the ele-
mentary M/M/1 priority queue, the complexity and general-
ity of the models under study has grown ever since. Various,
more recent studies have focused on priority queues with
Markovian input traffic and phase-type (or general) service
requirements [10–15].

In [10,11] Alfa et al. studied priority queues with C�2
classes, MMAP[C] input and phase-type services by setting
up a QBD Markov chain [16] that generalizes Miller’s result
[17]. Although the queues considered in [10,11] are infinite,
a similar approach can be used to solve the system when
some of the queues are finite. In case of 3 service classes
and a finite capacity queue of size K for each of the class-1
and class-3 jobs, the resulting QBD has size O(K2) block
matrices (the structure of which can be exploited to compute
the rate matrix R). Our approach has the advantage that the
blocks characterizing the binary tree-like process are of size
O(K) only.

Takine and Hasegawa [14] analyzed the preemptive pri-
ority queue with C�2 service classes, C independent MAP
arrival streams and state-dependent service times, using the
workload process of the queue. They generalize the model
presented by Machihara in [12] that relied on the diagonal-
ization of some matrices. In our setting we do not require
independent MAP arrivals streams and focus on the queue
length distributions, while the approach in [14] can deal with
more general service requirements and is especially effective
to compute the waiting time distributions. Takine [13,15]
also studied the nonpreemptive priority MAP/G/1 queue and
derived various formulas for the generating function of the
queue length and Laplace–Stieltjes transform of the wait-
ing time for each job class. The remainder of the paper is

organized as follows. The stack and queue model reformu-
lation of the 3-class priority queue is given in Section 2.
Section 3 gives some guidelines on how to construct a tree-
like process to analyze the stack and queue problem and dis-
cusses the nature of the arrival and service process needed.

2. Analogy of the 3-class priority queue and a
combined stack and queue model

Consider a preemptive priority queueing system with three
service classes consisting of a single server and three waiting
rooms, one for each service class. Assume that class-1 jobs
have the highest priority, followed by the class-2 jobs and
finally the class-3 jobs. The processing times of consecutive
jobs belonging to the same class are iid. Let the capacity of
both1 the class-1 and class-3 waiting rooms be finite and
of size K > 0, while the class-2 waiting room is considered
infinite in size. Jobs that find their corresponding waiting
rooms full, leave the system without being executed. A class-
3 job that is pushed out of the service facility will (re)occupy
the leading position in the class-3 waiting room, possibly
pushing out the youngest waiting class-3 job. We refer to this
traditional model as the three queue model (3Q). We now
replace the class-2 and class-3 waiting rooms by a single,
infinite size stack, to obtain a new model termed the stack
& queue (S&Q) model. We will show that the state of the
3Q model is uniquely identified by the current state of the
S&Q model.

The evolution of the S&Q model goes as follows. An
example to further clarify the relationship between the two
systems is depicted in Fig. 1. During the description of the
S&Q model, we will refer to this figure and indicate the time
instants at which such an event occurs. As long as there is at
least one class-1 job in the system (meaning a class-1 job is
being processed), we use the queue to store priority 1 jobs
(time 1–3, 6–9 and 15), while all arriving class-2 or class-
3 jobs are simply pushed on the stack (time 2, 3 and 8). If
there are no other class-1 jobs in the system when a priority
1 job arrives, it will occupy the server. The possible class-2
or class-3 job that was in service will be pushed on the stack
together with the entire contents of the queue, making the
queue available again for class-1 jobs (time 1, 6 and 15).
Hence, as far as the class-1 jobs are concerned there is no
difference between the 3Q model or the S&Q model. During
periods when there is no class-1 traffic present, we utilize the
queue for other means (time 0, 4–5, 10–14 and 16–18). Note
the number of priority 3 jobs on the stack might become
larger than K, the capacity of its waiting room in the 3Q
model, as we simply push all class-3 arrivals on the stack
when a class-1 job is in service (time 5–13). Further on, it
will become apparent that the number of class-3 jobs waiting
for service in the 3Q model is identical to the minimum of K

1 There is no need to select the same capacity K > 0 for the class-1
and class-3 waiting rooms. It only simplifies the presentation of the model.
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Fig. 1. System dynamics during a busy period for the 3Q and S&Q system.

and the number of waiting class-3 jobs in the S&Q model.
There is no need to keep track of the correct number of class-
3 jobs at all times, it suffices that the number is identical to
the one of the 3Q system when the server becomes available
for the class-3 jobs. Thus, the number of class-3 job losses
is identical in both models, however, the times at which the
these losses occur need not coincide.

Assume that a class-1 job is completed and there are no
other class-1 jobs ready to start service, that is, the server is
now available for class-2 or class-3 traffic (time 4, 10 and
16). Moreover, the queue used to store the class-1 jobs is
now empty and can be utilized for other purposes as long as
there is no class-1 traffic in the system. In such a case we
start looking for a class-2 job in the stack, by popping jobs
from the stack until we encounter a class-2 job. This class-
2 job is placed in the service facility. As the service times
within a class are iid, the identity of and order in which
the jobs of a specific class are served is irrelevant, as long
as an interrupted job is continued when the server becomes
available again to this job’s priority class. This is realized
by assuming that the class-2 jobs mutually switch positions
in the stack such that the oldest ones are on top.

The class-3 jobs that are removed from the stack while
searching the stack for a class-2 job, are stored in the queue
(time 4, 10, 14 and 16). Thus, as long as there are no class-1
jobs, we use the queue (temporarily) to store class-3 jobs. If
the queue is full (with class-3 jobs) when popping a class-3
job from the stack, the job leaves the system without being
performed (time 10 and 14). As with the class-2 jobs, we as-
sume that the class-3 jobs also mutually exchange positions
such that the youngest jobs get dropped first, while the el-
der receive service before the younger ones (that is why the
lost jobs in the 3Q model immediately move to the lowest

class-3 positions on the stack at time 5 and 8 in the S&Q
model). If a class-2 job is completed (and there is no class-
1 arrival) we start to pop jobs from the stack in search of
another class-2 job (time 14). If no such job is encountered,
meaning that the stack is empty and all class-3 jobs are now
present in the queue, we start executing the priority 3 jobs.

Finally, if a class-2 job arrives while a class-3 job is being
performed, it will interrupt its service and the class-3 job
returns to the queue. Hence, we do not push the entire con-
tents of the queue on the stack in such case. Class-3 arrivals
that occur while a class-2 or class-3 job is being executed
are always directly stored in the queue (time 5), or lost if the
queue is full, while class-2 arrivals are pushed onto the stack
in such cases. The execution of class-3 jobs can only start
when the stack is empty (time 0, 14 and 16–18), therefore,
the number of lost jobs during a busy period is identical in
both the 3Q and S&Q system.

3. Analyzing the S&Q model via tree-like
processes

In this section we present some guidelines on how to
model the S&Q model using a tree-like process. From the
discussion in the previous section it should be clear that the
analogy between the 3Q and S&Q model applies to both con-
tinuous and discrete time systems, as well as preemptive and
nonpreemptive priority queues. To assess the performance
of the S&Q model via a tree-like process some restrictions
on the arrival and service time process seem necessary.

The job arrival process may be as general as the MMAP[3]
process with m phases. It is characterized by a set of four
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matrices D0, D1, D2 and D3. The (i, j)th entry of D0
represents the probability that the phase changes from i
(at time t) to j (at time t + 1), while no arrivals occur (at
time t). Similarly, Di gives the probability for the same
event, but with a class-i job arrival (at time t), for i = 1, 2
and 3. Define � as the stochastic vector that satisfies
�(D0 + D1 + D2 + D3) = �. The arrival rate of the class-i
jobs �i can be computed as �i = �Diem (where em is a
column vector of size m with all its entries equal to one).
To make the model tractable the processing time of a class-i
job has to follow a phase-type distribution (�i , Ti), where
the jth entry of the stochastic 1 × mi vector �i provides the
probability that a class-i job starts its service in phase j. The
(j, j ′)th entry of Ti , on the other hand, is the probability
that such a job continues its service in phase j ′ at the next
time instant provided that it is in phase j at the current time
instant. The mean processing time of a class-i job equals
�i = �i (I − Ti)

−1emi
.

Tree-like processes are very useful to analyze systems
with an underlying stack structure. A tree-like process is a
bivariate Markov chain {(Xt , Nt ), t �0} in which the values
of Xt are represented by nodes of a (d+1)ary tree, for d �0,
and where Nt takes integer values between 1 and h. The root
node of the (d+1)ary tree is denoted as ∅ and the remaining
nodes are denoted as strings of integers, where each integer
takes a value between 0 and d. For instance, the kth child of
the root node is represented by k, the lth child of the node k
by kl, and so on. We use the ‘+’ to denote the concatenation
on the right and ‘−’ to represent the deletion from the right.
For example, if J = k1k2 . . . kn, then J + k = k1k2 . . . knk.
Let f (J, 1), for J �= ∅, denote the rightmost element of the
string J, then J − f (J, 1) represents the parent node of J.

The following restrictions need to apply for a Markov
chain (Xt , Nt ) to be a tree-like process. At each step the
chain can only make a transition to its parent (i.e. Xt+1 =
Xt − f (Xt , 1), for Xt �= ∅), to itself (Xt+1 = Xt ), or to
one of its own children (Xt+1 = Xt + s for some 0�s�d).
Moreover, the chain’s state at time t + 1 is determined
as follows:

P [(Xt+1, Nt+1) = (J ′, j)|(Xt , Nt ) = (J, i)]

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f i,j J ′ = J = ∅,

bi,j J ′ = J �= ∅,

d
i,j
k J �= ∅, f (J, 1) = k, J ′ = J − f (J, 1),

u
i,j
s J ′ = J + s, s = 0, . . . , d,

0 otherwise.

(1)

Note the transition probability between two nodes depends
only on the spacial relationship between the two nodes and
not on their specific values. Various numerical methods exist
to examine the stability of a tree-like process and to deter-
mine its stationary behavior [4].

For the S&Q model we set d equal to 1 and let Xt represent
the contents of the stack, that is, a class-2 job is represented
by a 0, while a class-3 job is represented by a 1. The auxiliary
variable Nt will keep track of the queue length, the state of

the arrival process, as well as of the necessary information
of the service process to make the system Markovian. For
instance, if the job arrival process is a MMAP[3] and the
class-i service times are geometric with a mean pi , it suffices
to define Nt = (St , Mt , Qt ). Mt denotes the phase of the
MMAP[3] job arrival process at time t. While St = i, for
i = 1, 2 and 3, if a class-i job is executed at time t and
St = 0 if there are no jobs in the system. Define Qt as
the queue contents at time n (where Qt takes values in the
range 0 to K).

The process {(Xt , Nt ), t �0} is however not yet a tree-
like process as its transitions are a lot more general than
those presented in Eq. (1). For instance, on some occasions
we need to push the entire contents of the queue on the
stack at once, or we may need to pop a series of class-3 jobs
from the stack to retrieve a class-2 job. Nevertheless, we can
often reduce the Markov chain {(Xt , Nt ), t �0} to a tree-like
process. The technique proposed to construct an expanded
Markov chain {(Xt ,Nt ), t �0} is similar to Ramaswami’s
[18] to reduce a classic M/G/1-type Markov chain to a QBD
Markov chain or to the approach taken in Van Houdt et al.
[19] to construct a tree structured QBD. The key idea behind
this expanded Markov chain is that whenever a transition
occurs that adds or removes a string of length r to the stack,
we split this transition into r +1 transitions that each add or
remove one integer to the node variable. Whenever we need
to add or remove such a string, it will consist entirely of ones
(class-3 jobs), except for its first element that might equal 0
(a class-2 job). This property makes it possible to create an
expanded Markov chain {(Xt ,Nt ), t �0}, where the range
of its auxiliary variable Nt is only marginally larger than
that of Nt . Details of this procedure will be provided in a
forthcoming paper.

4. Conclusion

In this paper we have presented a link between the anal-
ysis of a general class of priority queues with three service
classes and tree-like processes. A detailed discussion on how
to transform the priority model to a S&Q problem was in-
cluded. We also provided future guidelines on how to exploit
this transformation to set up a tree-like process that enables
us to assess performance measures of priority queues.
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