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Abstract

This paper presents some extensions to the matrix geometric analysis method for perfor-
mance evaluation of communication systems modeled via discrete time queues. The paper
considers the case where the arrival streams generate periodic traffic with a period which
varies according to an underlying modulating Markov process. The proposed algorithms eval-
uate the rate matrices which appear in the definition of the equilibrium distribution. This
distribution is evaluated only at times which are multiples of the smallest common multiple of
all the periods. This is sufficient for the evaluation of CLR, delay characteristics, and many
other performance measures. Evaluating the equilibrium distribution only at this reduced set
of times provides a significant reduction in the computational complexity of the performance
evaluation for servers with periodic arrival streams, by reducing the required size of the state
space of the modulating Markov processes. The method is applicable to ATM systems with
periodicity’s caused by the higher layer protocols, by traffic shaping, by ABR or UBR control
mechanisms, etc.

Keywords : ATM, Traffic Management, Matrix Geometric Analysis, Discrete Time Queueing
System

1 Introduction

Performance analysis of ATM systems at the cell level is generally considered computationally
intractable, because of the burstiness of the arrival streams combined with the extremely small cell
loss ratios to be evaluated. A large body of the literature uses approximate analysis, calculating
only the asymptotic decay rate of the equilibrium distribution of the buffer occupation. This is
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also the asymptotic decay rate of the cell loss ratio as a function of the buffer size. This has led to
interesting applications to call acceptance control, estimation of effective bandwidth, etc. These
applications are based on the assumption that the coefficient in front of the asymptotic expansion
is close to 1. However, it has been shown [5] that in many interesting cases of practical interest
this coefficient can be orders of magnitude above or below 1, leading to severe overestimation or
underestimation of the cell loss ratio. This in turn leads to large errors in the call admissions
policy, which can compromise the economic viability or the reliability of the network operations.
Matrix geometric analysis -using the regular block structure of the transition matrices of the
Markov process- has been proposed [2] as a possible tool for calculating the equilibrium distri-
bution of the buffer occupation. A particular, but interesting example of this approach is used
in a model consisting of a superposition of Markov modulated Bernoulli processes [9, 1] entering
an infinite buffer serviced by a constant time server. In [11] this model has been extended to the
finite buffer case. This method gives accurate results, provided one can solve the iterative equa-
tions for the rate matrix in the matrix geometric method, together with the set of linear equations
representing the boundary conditions at the empty and full buffer boundaries, where the regular
block structure of the transition matrices is modified. The severe limitation of this method is the
growth in the size of the state of the modulating Markov process. This dimension is the product
of the sizes of the state spaces of each of the individual arrival streams. The complexity of the
problem inevitably grows exponentially with the number of arrival streams under consideration.
To alleviate this problem [12, 10] proposed a spectral decomposition method which has been
shown very effective in reducing the complexity of the calculation of the rate matrix. The rate
matrix is constructed via Kronecker products of blocks of smaller matrices. The calculation of
each of the components of these Kronecker products can be decomposed in simpler calculations
dealing with one block, referring to one arrival stream, at a time. Once per iteration, a single
algebraic equation has to be solved which expresses the interaction between the different arrival
streams.

Moreover there are arrival streams which in themselves have a very large modulating state space,
such as for example ON-OFF traffic with a periodic cell stream during an ON-period. Such
periodic streams occur very often as a result of the higher layer protocol(TCP/IP, video, ...)
generating the traffic to be carried by ATM. Shapers also introduce periodicity into the cell
streams arriving at an ATM buffer. Using a Markov modulated Bernoulli process as model for
these streams with periodicity inevitably leads to a state space of the order of the period of the
arrival stream, since the system state has to remember in what phase of the period it is. These
large state spaces (for large periods) can be avoided by considering the number of arriving cells
per time interval of length one period of the arrival stream.

Take as an example an ON-OFF source, with one arrival every T; slots during an ON-period. A
cell based Markov modulated model has a state space of size T} + 1, with a cell being generated in
state 1, no cell in all the other states. The modulating Markov process has a very special structure
since the T" ON-states simply occur in a fixed order, with occasional transitions between state
T and the OFF-state. Unfortunately this special structure does not automatically reduce the
complexity of the calculation of the rate matrix. The Markov modulated model becomes much
simpler if one only tries to calculate the number of cells generated per frame of size T slots.
Assume that the duration of ON and OFF periods are independent, each of the form K.T7, with
K a geometrically distributed random variable (with parameter poy for ON-periods, porr for
OFF-periods). If one counts the number of arrivals during successive intervals of length T}, then
the Markov modulated model is a simple two state model, with 1 arrival per period in state ON,
and 0 arrivals in the state OF F'. If the length of the ON and O F F periods were of the form K.T
with 7" a multiple of T}, then a similar model can be built with 7'/T} arrivals per ON-period. Of
course in practice the length of ON- and OFF-periods will not be nicely distributed as geometric



multiples of the periods T of the arrival stream. However in those cases where the average lengths
of the ON- and especially of the OFF-period are large compared to the period T, the above model
may represent a very good approximation, especially since it is intuitively clear that short ON-
and OFF-periods will not have an important contribution to cell losses.

Based on the above considerations this paper proposes a contribution to the calculation of the rate
matrices which appear in the equilibrium distribution as evaluated at times which are multiples
of the frame length T7. The proposed method reduces significantly the computational complexity
of the calculation of these rate matrices, allowing the matrix geometric evaluation of performance
measures for larger, more realistic models with periodic arrival streams of the type described
above. After presenting these models, we show that they lead to a computationally tractable ma-
trix geometric method for performance evaluation for ATM buffers with several periodic sources.
Rather than studying the buffer occupation at the end of each slot, we only try to calculate the
distribution of the buffer occupation @ just prior to the end of a fixed length frame. Again we
obtain a transition matrix with a block structure. But now, because of the frame structure, we
have up to U arrivals and up to L departures per frame, there are U blocks above the diago-
nal, and L blocks below the diagonal. Again, except at the empty and full buffer boundaries,
the blocks at the same distance from the diagonal are identical. This matrix geometric block
structure in the Kolmogorov equations can be exploited as shown later to efficiently obtain the
equilibrium distribution at times which are a multiple of the frame length T'1.

This paper illustrates the proposed method through its application in some examples of calculation
of cell loss ratios (CLR) for systems which combine a few periodic ON-OFF traffic sources with
many Markov modulated Bernoulli background sources. As a particular example, we will study
how the cell loss ratio depends on the number of cells per frame which a multiplexer removes
from a buffer for a particular priority class (e.g. in flow control for ABR traffic this number could
be a slowly varying flow control variable). This scheme can also be used to evaluate the ER
congestion control mechanism used to control the behaviour of the ABR traffic streams, where
this computation scheme lead to some useful reductions in the computation time. The results
on this application can be found in [3, 4]. Finally the method can also be applied - provided
the boundary equations are solved efficiently - to many interesting flow control strategies with
thresholds, such a packet discard strategies in UBR (or, to provide a totally different example,
for evaluating delays of cars in front of traffic lights in an urban traffic model).

The structure of the paper is as follows. Sections 2 and 3 describe the model class for which our
approach is applicable. In sections 4 and 5 we describe the proposed analysis tool for the infinite
and the finite buffer case. An easy and computationally efficient implementation of the method
is presented so that it can be applied easily by all users. Finally in section 6 some numerical
examples are given which illustrate our method. The probabilistic interpretations which justify
the proposed method are discussed in the appendix.

2 System Description and Model

Consider a buffer in an ATM system, with N arrival streams (or input sources). The arrival
process for each source is modeled as follows. Source 1 < n < N can be in either one of M,
different states, denoted as z,, ,,m = 1,..., M,,. We define the following variables

e 7, is the state of the n-th source during the ¢-th frame

e Ky is the number of cells generated by the n-th source during an interval of length T} ,
while this source is in state k € {1,..., M,}.

Note that we only require that the cells are generated in a periodic fashion during the frame, but
that we do not use the exact arrival times of the cells in the frame. This is sufficient for calculating



the rate matrices, since the detailed structure of the arrival times in a frame only become relevant
when the buffer is almost empty or almost full, i.e. when evaluating the boundary conditions of
the Kolmogorov equations. For calculating the rate matrices one only needs the values of Ty, ,, and
Kj, ,,. Note that the proposed solution is also valid if K} ,, is a random number with a distribution
which only depends on the state k& the source is in during the ¢-th frame. We now define the
frame length 7' such that 7" is a multiple of all periods T}, involved in the description of all
traffic streams. Notice that when a source n is in state k during a frame, then it will generate
Ky n. T[Ty, cells during this frame. Classical Markov modulated Bernoulli sources are included
in this model by taking T}, = 1 for some states k, with the corresponding K} , a Bernoulli
random number with parameter py ,, taking only the values 0 and 1.

As mentioned before for ON-OFF processes with periodic traffic during ON-periods, the assump-
tion that sources remain in the same state for a length of time which is a multiple of the frame
length T' represents an approximation to realistic source models, which will lead to errors in
the calculated cell loss ratios which one expects to be small on intuitive grounds. Moreover the
discussion on computational efficiency in section 4 indicates that one should not consider too
large a period. Together these observations indicate that it will often be necessary to make a
compromise by choosing a value T' for the frame size which is not a multiple of all the periods
appearing in all the traffic streams. Rather one should approximate periods that are too long by
assigning a distribution on the number of cells generated during a fraction of a period. Consider
as an example the case where a frame size T is chosen, and there is a source of low intensity
which generates cells periodically every 2.7 slots. Then one can approximate this behaviour by
assigning the number of arrivals 0 and 1 during a frame of size T' the probabilities 0.5 each. It is
easy to see how this can be generalized for more complicated periodicities. In the same way one
can approximate the fact that durations of ON- and OFF-periods are not exact multiples of the
frame length T' by including the probability of a few cells more or less arriving in a frame for each
modulating state. Of course one could also model this at the price of a small increase in size of
the state space (small in comparison with the size of the state space which would be needed for
a slot-based model), by introducing additional transition states expressing the possibility of two
different modulating states occurring in the same frame.

For the server we assume the following. During the ¢-th frame (of length T slots) a random
number S; < K cells will be transmitted by the server connected to the buffer. If all states are
periodic, source n can generate at most U, = mazy Ky ,. T[T}, cells per frame of length T'. At
most U = Y, U, cells can arrive per frame of length T slots, while at most L = K;— 3", Uppin(n)
cells will leave the buffer during the same interval, where the minimum number of cells U, (n)
which source n generates per frame may be strictly positive for some periodic sources. Clearly
the above modeling assumptions specify completely the transition matrix of the discrete time
Markov process (Qr.1, Zg ;- .-, 2 n). Here Q; represents the buffer length at time/slot .

3 The Model

In this section some extensions of the matrix geometric algorithm, presented in [11], are intro-
duced. Our aim is to find the equilibrium distribution of the Markov process represented by the



following transition matrix in the infinite buffer case:

Z?:ﬁ;ci C, Cy 0 0 0
2.0 Co - Cyaa Cu e 0 0
ploo) — : : : : - ; o (1)
C_r, Cryn - Crwv Coryvpr -+ Cy 0 -
0 Cr, - Crwa1 Cirw -+ Cya Cy

The submatrices C; have dimension dC'. In the finite buffer case the transition matrix is denoted
by P®) with dimension (B + 1)dC. The first B columns of submatrices of P(®) equal the first
B columns of P(>) and its last column is given by [0...0 Cy V., ,Ci ... YL, Cy]7.

4 The infinite buffer system

By grouping blocks of U x U matrices C; if U > L, or blocks of L X L matrices C; if L > U a
Quasi-Birth-and-Death (QBD) process is obtained, which can be solved by a classical algorithm
e.g. folding algorithm ([13]), the logarithmic reduction algorithm ([7]) and many others ([6, 2]).
Many of these algorithms use a well known rate matrix R (or the related G matrix). For the
specific model described in the preceding section(s) the computational complexity of the rate
matrix can be reduced considerably by using the internal structure of P(®). We consider the
system for U > L, without loss of generality. When U > L then the rate matrix R, corresponding
to the QBD, is also a block of U x U matrices R;; (1 <i,j < U) with dimension dC.

In [8] it is shown that in the case of a positive recurrent chain the matrices R;; are finite and
have a useful probabilistic interpretation:

e for any integer number n, (R;;)k is the expected number of visits to the state (n+U —i+7,1()
until the first return to the level n + U — ¢ or below, under the condition that the process
starts in state (n, k).

Let us now define R; = Ryy1-41. Thus for any integer number n, (R;) gives the expected
number of visits to the state (n + U,1) until the first return to state n + U — 1 or below, under
the condition that we started in state (n + U — 4, k). Using the probabilistic interpretation, we
can easily prove that R can be written as:

000 0 Ry \Y
I 00 0 Ry
070 0 Ry
E=10 01 0 Ry_s (2)
000 - I R

If m = (mp)n>0 is the steady state vector of p(e°) (with the dimension dC of C; equal to the one of
), it follows from the substitution of (2) in the matrix geometric method of [8] that the steady
state vector must satisfy:

Ty = Tp_1R1+ ...+ m_yRy,Yn > U. (3)



Substituting (2) in the equation which computes R in [8] proves that the rate matrices R; must
satisfy:

L I+1 k
Ri=Ci+RiCo+) ) 3 & |c..1<i<uU 4)
=1 k=1 iyt =i j=1

i<ig <min(U,L41) , iq,nip>1

One way of solving this set of matrix equations is to use an iterative scheme, starting with the

values of the rate matrices R; set to zero. To obtain the new values R(nH) ,Rgﬁl), we use

the method below:

L I+1 k
R"Y =+ R+ Y 3 [[EY|cu.1<i<u. (5
1=1 k=1 Qg+ i =14 j=1
i<iy <min(U,L+i) , iq,...,ip>1

The validity of this iterative scheme is proven in a probabilistic manner in proposition 2 of
Appendix A. In the following subsection we describe an efficient implementation of this iterative
scheme and compare its complexity with that of some other, well known algorithms for QBD
which do not use the internal structure of P in the same way as we do.

4.1 Implementation and Complexity of the Repetitive Scheme

In this section we present a fast method for obtaining the matrices Rl(nH) having found Rz(n), the
idea is the following. We start by creating a set of matrices X; as follows

X, = R

6
X;=R" + Y\ R" ©)

) .
]Xj 2§7§L

This step takes about (dC’)3 * L? flops. Next we define the matrices Y,V as

vV = R « X; (7)

7

with 1 < ¢ < L and the number of flops is negligible compared with the previous step. Having

done this we find the matrix Rg}”l) as follows
R(n+1 ZYU «C_+Cy + R§])C (8)

=1

(n 1)

1—

(n+1)

keeping the matrices X; as before, we now show how to obtain R, having found R;

VLY YY) = B, Y )+ (B s X R X)) )

and we find RET{I) as

L
RV =3V 5 O+ G + R Co (10)

7=1
which indeed results in a scheme of order (dC)?U L times the number of iterations. Comparing
this with the complexity of some well-known general purpose QBD algorithms we find that the
extra structure in P allows us to reduce the computational complexity as follows



1. the logarithmic reduction scheme of Latouche and Ramaswami has a complexity of % *
(dC)3 x U3 * I with I; the number of iterations for obtaining the matrix R,

2. the U-algorithm uses % * (dC)3 + U? % I flops where Iy is the number of iterations and
I] = log(Ig),

3. the new algorithm computes R in 3 * (dC)? « U x L * I3 flops with again I3 the number of
iterations,

clearly both schemes are outperformed by the new one in case the traffic has no bursty character
i.e. the number of iterations is small. For more bursty traffic the performance will depend on
the number of iterations I3 which can be shown smaller than or equal to I, (we get an equality if
U = L = 1) but is expected to be (much) larger than I;. Thus in case of bursty traffic the choice
between the different schemes depends on the exact values of U and L.

Perhaps it’s good to explain why Iy and I3 are different from each other although they are
based on the same formula. When the U-algorithm is used all the entries of the matrix R (of
dimension dC x U) are calculated using the classical formula (see [7]). In our case we compute
the first dC rows using this formula and then calculate the rest as a function of the first row. As
a consequence we get a different result for the other components of R™) . Let us demonstrate this
by means of an example.

Example Suppose that L = U = 2. Then R((:0) and R7(10) are both equal to zero, where the
subscripts refer to the classic and the new scheme. Using the formula of [7]

R=A,+ RA; +R2A2. (11)

Where Ay, Ay and Ay are the matrices corresponding to the QBD process that is found by
grouping the matrices C;. We find that

(1) _ CQ 0
R, ( e ) ) (12)
If we now look at Rg,,l) we find the same first column but a different second one
2
0 C C C,C
R(]) _ 2 _ 2 2V1 ] 13
n ( I C Cy Cy+ (CH)2 (13)

And thus as R,(;l) and R,(ll) are used to find RE;Q) and R£,2) we get different results after n steps
and thus a different rate of convergence. This is why a new probabilistic proof was necessary.

When looking at our application, the computation of the efficiency above does not yet take
into account the advantage of computing the equilibrium distribution for periodic sources on
frame level instead of on slot level.

Example Let us look at the complexity of the computation of matrix R for 2 on/off-sources.
If source 7 is “on”, this means that the source behaves as a periodic source, sending 1 cell per
T; slots. Source ¢ being “off” means that the source sends no cells. Let us consider a “periodic”
server, taking 1 cell from the buffer per T} slots.

For performance analysis on slot level, source i has thus 7T; states describing its on behaviour
and 1 state for the off behaviour, resulting in a total of T;+1 states. The server has T states. Since



we have to take into account in which state every source and the server remain, the dimension of
de matrices C; equals dC' = (T} + 1)(T» 4+ 1)Ts. L is the maximum number the buffer occupancy
can decrease (per slot): this happens if both source 1 and 2 are in the off-state (no arrivals) and if
the server takes 1 cell from the buffer, so L = 1. U is the maximum number the buffer occupancy
can increase (per slot): this happens if source 1 and 2 transmit a cell during the same slot and if
the server takes no cells from the buffer, so U = 2. As shown above, the complexity for computing
R equals 3 * (dC)? * U * L * I3, which gives after substitution 6 x (T} + 1)3 % (T, + 1)% + T2 « I,
where I; denotes the number of iterations on slot level.

For performance analysis on frame level, let us consider the worst case where the least common
multiple of T, T5 and Ty is their product. Thus the frame must be T17T57 slots long in order
to contain an integer number of the periods 17, T and Ts. The server is now described by 1
state and it takes 77Ty cells from the buffer per frame. Source i is described by 2 states: an
on-state and an off-state. If source 1 remains in the on-state it transmits 775 cells per frame
and if it remains in the off-state it transmits no cells at all (per frame). If source 2 remains in
the on-state it transmits 71,17 cells per frame and if it remains in the off-state it transmits no
cells at all (per frame). Again the dimension of the matrices C; is given by the product of the
dimensions of the transition matrices of the sources and the server, which equal respectively 2, 2
and 1, so dC = 4. For the computation of L, we have to consider the case where both sources
are in the off-state and since the server always removes 1175 cells from the buffer L = T1T5.
The buffer can only increase a maximum number of cells U (per frame) if both source are in
the on-state (arrival of TsT) 4+ TsTs cells) and since the server always takes 1175 cells from the
buffer U =TTy + T,Ty — T1T,. After substitution in the complexity expression, we find that the
complexity is now given by 192+ T x T x (TyTy 4+ T,To — T1Ty) * I, where I; denotes the number
of iterations on frame level.

If one compares the exponents of 77, T, and T in the complexity expressions for the slot level
case and for the frame level case, one can see that even in this worst case scenario performance
analysis on frame level is more efficient than on slot level. Even in a small example such as T} = 3,
T = 4 and T; = 5 the number of flops becomes 529921 for frames, while it takes 6000000 I
flops for a slot level calculation.

5 The finite buffer system

Let us now consider a buffer with a finite capacity , say B, and denote the stationary distribution
of P as m = [m...mp]. Notice that the last column of P now consists of sums, in such a way
that P is stochastic. Without loss of generality we assume that U > L. Throughout this section
we’'ll follow the lines of reasoning maintained in [11]. Let us assume that the steady state vector
7 can be written as:

T = ap + 6p,0<n < B

in such a way that
anp = an 1Ri+a, sRo+...4+a, yRy n>U, (14)
Bn=Bnt151+ Bni252+ ...+ BnyrS n< B— L. (15)

The dimensions of the vectors ay,, 8, and 7, are all equal to dC, the dimension of the matrices
C;, which is also the order of R; and S;. By definition we know that (7,),, obeys the steady-state
equations. And above we assumed that 7, = o, + §,. Thus the steady state equations hold if
they both hold for (o), and (8,),. Thus if

an =any1.Cp+ ... +ayCo+...+a, yCy U<n<B-1L, (16)
ﬁn :ﬁn+LC—L+---+,6n00+---+ﬂn7UCU U<n<B-L. (17)



This allows us to obtain a set of non-linear equations for the matrices R; and S; by substituting
(14) resp. (15) repeatedly in equation (16) resp. (17) until the only o, _,’s and (,,4,’s remaining
are those with 1 < u < U and 1 <[ < L. This results in a set of U + L non-linear equations by
matching the coefficients of these a’s and ’s. We have the following expression for S;

U I+1 k
SZ':C,Z'-FSZ‘CU-FZZ Z HSij C, 1<i<U. (18)
1=1 k=1 i Aeip =l j=1
iK1 <L, i enif>1

and the condition on R; is the same as in (4). We have already shown that there exists a solution
for (4) and because of symmetry reasons we are able to solve (18) in a similar manner.

Thus once we know the values of aq,...,ay_1 and Bp_r+1....,0, we can compute the
equilibrium distribution using (14) and (15). As in [11], the remaining steady state equations
yield a homogeneous set of linear equations but this time for ag,...,ay_1 and Bp_r41,...,0B:

T V
0 ... QU - e =0. 19
[ @ av-1 Bp-rL+1 ﬁB](U W) (19)

We will describe the structure of the matrices T and U in Appendix B, the other two are analogue.

6 Numerical results

Let us consider a single finite buffer in an ATM buffer system. Several sources (say N) are
sending ATM cells to this buffer and a single server takes cells from the buffer if the buffer is not
empty at a rate which can be less than or equal to 1 cell/slot. Although the method described
in the previous section can be used to find the equilibrium distribution for sources described by
general stochastic processes and for any server behaviour (as long as the transition matrix of
the resulting Markov process for the buffer occupancy can be written as P(B)), the method is
especially interesting for “periodic” on/off sources: i.e. source i transmits K; cells per frame of
T} slots if that source remains in the on-state; if source ¢ remains in the off-state, the source
sends no cell during a frame. Only at the end of a frame, source ¢ can change states according to
transition matrix @Q;:

o ponli) 1 pon(i)
@i~ ( L —posp(i)  possli) ) (20)

We also assume that the server is a deterministic server, taking K cells from the buffer per frame.
The transition matrix of the process describing the buffer occupancy then has indeed the same
structure as P(B), with L = Kg and U = Zi]\il K, — K,.

Figures 1 and 2 show results for N = 5 identical sources, the frame has length Ty = 10
slots, K; = 5, pop, = 0.91 and porp = 0.99. The average load is p = 2.5/K,. Figure 1 shows the
curves for the CLR: decreasing the server rate means actually increasing the average load because
of a decrease in available bandwidth in the network. This model describes how ABR traffic is
influenced by flow control when the load of other traffic (with higher priority) increases in the
network such that less bandwidth is left for the ABR traffic. Figure 2 shows the probability that
there are b cells in the buffer for a buffer with size B = 128. Notice that the oscillations are
caused by the periodicity of the sources. An extreme case is K; = 10, since the number of cells
arriving at or leaving the buffer is always a multiple of 5. Starting from an empty or full buffer,
there can only be 0, 5, 10, ... or 128, 123, 118, ... cells in the buffer, i.e. P(1) = 0. Starting from
a buffer which is not empty and not full, after a finite time the full buffer or the empty buffer



state is reached and thus the equilibrium distribution will still have only non-zero probabilities
at 0, 3, 5, 8, ... The effect of the oscillations can be decreased by adding some Bernoulli traffic in
the background, although it will not disappear entirely and adding Bernoulli traffic means that
more rate matrices have to be computed, because U will increase by 1.

7 Conclusions

This paper has presented an efficient algorithm for calculating the rate matrices of a matrix
geometric representation of the equilibrium distribution of the Markov process of a multiplexer
with periodic sources. The reduction in computational complexity is achieved by using the special
structure, resulting from the periodicity of the arrival streams, of the transition matrix of the
Markov processes. This mehod can make the matrix geometric method attractive for performance
evaluation for more realisitic models of ATM multiplexers with many periodic arrival streams. It
can thus help in dimensioning of buffers and in optimising parameter values for systems involving
shapers and flow controlled ABR and UBR traffic.

A Appendix A

Proposition 1:

If we define the matrices (Xi(n))]SZ'SU,nzg as:

Xi(O) =0 (21)
(n+1) (n) LE E
=1 k=1 ip4.. i =l+i j=1

i<iy <min(U,L41) |, iy,...,0,>1
then they form non-decreasing sequences in n, which converge to R;.

Proof:

Since Xi(o) =0 and Xi(]) = (; it is obvious that ngo) < Xi(]). Through induction it is easy
to show that then Xi(n) < XZ("H). Since R; > ngo) = 0. It follows again through induction that

Xi(") < R; for any n. This proves that

X; = lim X" <R, (23)
} n—oQ

It now remains to show that R; < X. Therefore we define the taboo probability mP((in})(k ) a8 the
probability that, starting in the state (¢,7) at time 0, the chain reaches (k,l) at time n without
returning to level m (or below) in between. We also define the matrix Ryi1_x(N, k) as

N
(RU—Flfk(Na H))j,y = Z l+(]P((l";L}~)k,j)(l+U+]+H,V) (24)

n=1

for k > 0,1 <5<dC,1<v<dC,1<Ek<U. It follows from the probabilistic interpretation of
R; that

R; = lim R;(N,0) (25)
N—o00

10



Based upon their definition, a recursive expression for the taboo probabilities can be constructed:

(1) _
Pk a1 = (Cot-k)jv (26)
and for n > 2:
(n) g
l+UP(l+k7 IH+U+1,v) Z Z l+UPl+k7 l+U+1+n,h)(C*F~)h,V (27)
h=1 k=0

Adding the equations (26) and (27) for n ranging from 1 to N and substituting U +1 — k by
yields in matrix-notation:

Ri(N,0) = C; + Z Ri( k) O, (28)

We now derive the an inequality for the matrices R;(N, k):

(Rut+1-k(N,K)),,

(n)
= D Pk uvieen

n=1
K+1 e N
= 2 > SR SIID DS | QA L4 b1 )+ U+1 g )
p:] 0<Kk1<...<Kkp=K hy,..., hp71:1 n=1ri+...+rp=n 7 1
kj—r;_1<U,kg=k—-U-1 ho=j,hp=v 1<r; <N
k+1 acC D N (r3)
Tj
= Z Z H Z l+U+'ij(z+U+1+nj,1,hj,l)(l+U+1+K,,‘,hj)
p:l 0<k)<...<Kp=K h],...,hp71:1 j:lrizl
ki—ki_1<U,kg=k—U-1 hO:j,hp:y ’
K+1 ac p N
= 2 > > Y vkl
+U (l+U+]+Iij,17ﬁj,hj,1)(l+U+],hj)
p:] 0<Kk1<...<kp=K hy,..., hp,1:1 j:] r]-:]

kj—r;_1<U,rkg=k—-U-1 ho=j,hp=v

In matrix-notation this is equivalent with:

Kk+1 p
Ryp-k(N.k) < ) > I Be;—r, - (N, 0) (29)
p:] 0<k]<...<Kp=K ]:1

ki—k; _1<U,kg=k—-U-1
Substitution of (29) in (28) yields:
Ri(N, 0) <C;+ R,(N — 1,0)0{]

I+1 k

L
+) > [[R,(N-10)|C, 1<i<U. (30)
=1 k=1 i1 i =l+i 7j=1
i<ip <min(U,L4i) |, iq,..0ijp>1
We now have that R;(1,0) = C; = X', such that R;(2,0) < X'?. By induction (30) yields that
R;(N,0) < XZ.(N) for N > 1. The sequence of matrices R;(N,0) is non-decreasing and tends to
R;, such that the preceding inequality implies that R; < X/ and therefore R; = X;.
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B Appendix B

In this section we show the construction of the matrices T and U which are part of the linear set
of equations in (19). An important remark about this appendix is that if we talk about the j-th
column (row) of a matrix, we’ll actually mean the columns (rows) (j — 1) *dC + 1 until j x dC,
thus we think in terms of matrices of order dC. Let us start with the matrix 7"

T=1-S5
where [ is the unity matrix of dimension dC times U and S has the following form:

Sip = (Z;;S:;,) Ck) + 11—y By - 1)C-v U>i>1

Si2 =Ci+ RyX,

Sip =C_ivo+ Ry -nyXi+lLywy=—ryBy (-29C-v U>i>1,i>2
Sij =Ry @-1)Xj-1+Sic1-1 U>i>2,7>3

3

S1j =Cj1+RuXj 723

where the values X; for 1 < j < P — 1 represent the matrices below:

i~W0-L) [ [ m k
Xi= X X X A |Cusn
m=0 k=1 i1+ 4ig=m |=1

AT ip>1

As can be seen from the formula above we need a smaller computational effort as the difference
between U and L increases. This concludes the construction of T'.

Before we can descibe the matrix U we’ll introduce two matrices Z and F', this to make the
structure of U more transparent:

St I 00 0 1
S 0 I 0 0 0
Sy 0 0 [ 0 0
Z = . . . . . aF = s
Sr-1 0 0 0 1 0
S, 0 0 0 0 0

where I denotes the unity matrix of dimension dC. With this in mind U equals the following
definition U = [Ul U2 e UU}:

U, = zB-2L+1 [ZLF _ZLF (ng,L ci) LR (ZE}L ci) L FC,L] :

Uj= 282U D[g0p - L4 1RC) = ZM4H2FC) 5 — .. = FC_ 1], 2 <.
The two remaining matrices V and W are very similar because of the symmetric nature of the
system.
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Figure 1: CLR as a function of the server rate K, for several buffer sizes; there are § identical
sources, Ty = 10, K; = 5, pon = 0.91 and p,rp = 0.99.
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Figure 2: The probability P(b) that there are b cells in the buffer as a function of b for several
server rates and for a buffer of size B = 128; there are & identical sources, Ty = 10, K; =5,
Pon = 0.91 and p,rr = 0.99.
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