
7 Basic Properties 24

TREES

7 Basic Properties

Definition 7.1: A connected graph G is called a tree if the removal of any
of its edges makes G disconnected.

A tree can be defined in a variety of ways as is shown in the following theorem:

Theorem 7.1: The following statements are equivalent:

1. G is a tree.

2. There exists a unique path between every two vertices of G.

3. G does not hold any closed paths and for n > 2 every additional edge
creates a closed path in G.

4. G is connected and contains no closed path.

5. G does not contain a closed path and e = n − 1.

6. G is connected and e = n − 1.

Proof: 1. ⇒ 2.) There exists at least one path between u and v as G is
connected. If there was a second path between u and v, any edge on this
path (not belonging to the first path) could be removed without making G
disconnected.
2. ⇒ 3.) G cannot contain a closed path that holds the vertices u and v
as this results in two paths between u and v. Let u′v′ 6∈ E(G), i.e., u′v′ is
an edge that is not a part of G, then adding u′v′ would create two paths
between u′ and v′.
3. ⇒ 4.) If G is not connected, we could take u and v such that they do
not reside in the same component. Adding the edge uv would not create a

7 Basic Properties 25

closed path.
4. ⇒ 5.) Apply induction on n (the case n = 1 is trivial). Let H = G− uv,
where uv is an arbitrary edge in G. u and v have to belong to a different
component of H (say, Hu and Hv), otherwise G would hold a closed path
containing u and v. For each of these components criteria 4. is met, thus
e = eHu

+ eHv
+ 1 = nHu

+ nHv
− 1 = n − 1.

5. ⇒ 6.) Assume G has k components (say, H1, H2, . . ., Hk). For each
component Hi we have eHi

= nHi
− 1, meaning that e =

∑

i eHi
=

∑

i(nHi
−

1) = n − k. Hence, k = 1.
6. ⇒ 1.) Removing any edge makes G disconnected, because a graph with
n vertices clearly needs at least n − 1 edges to be connected.

Q.E.D.

Definition 7.2: A tree T is called a subtree of the graph G if T ⊆ G. A
spanning tree T of G is defined as a maximum subtree of G.

It should be clear that any spanning tree of G contains all the vertices of
G. Moreover, for any edge e, there exists at least one spanning tree that
contains e [Proof: Take an arbitrary tree T and assume e 6∈ T . When we add
the edge e to T , the graph T + e holds a closed path. Removing any edge
e′ 6= e from this path provides us with a spanning tree T ′ that contains e].

Theorem 7.2 (Cayley (1889)): Let |V | = n, there are nn−2 spanning trees
on V , that is, Kn has nn−2 spanning trees.

Proof: Let v be any vertex in Kn and define X(k) as the number of spanning
trees where v has a degree equal to k. Assume k > 1 and n > 2 (the cases
n = 1, 2 are trivial). Let T be a spanning tree such that dT (v) = k.
(A) Choose an edge uu′ that is not incident to v (i.e., v 6= u, u′). T − uu′ is
disconnected and u and u′ belong to a different component. Without loss of
generality assume v belongs to the component of u. Then T ′ = T −uu′ + vu′

is a spanning tree. The number of couples (T, T ′) equals X(k − 1)(n− k) as
there where n − 1 − (k − 1) edges in T not incident to v.
(B) Let T̄ ′ be a spanning tree with dT̄ ′(v) = k. If we remove the i-th edge
vui incident to v (i = 1, . . . , k), we obtain a disconnected graph with two
components Ti and T̄ ′ − Ti, where Ti is said to hold ui. If we now connect
ui with any vertex v′ 6= v in T̄ ′ − Ti, we obtain a spanning tree T̄ with
dT̄ (v) = k − 1. There are X(k)(

∑

i(nT̄ ′
−Ti

− 1)) = X(k)(nk − (n− 1)− k) =
X(k)(n − 1)(k − 1) couples (T̄ , T̄ ′).

8 The Connector Problem 26

(C) Clearly, the number of couples (T, T ′) and (T̄ , T̄ ′) are identical. Thus,
X(k−1) = (n−1)(k−1)X(k)/(n−k). Replacing k by n−j gives X(n−j−
1)j/[(n− j − 1)(n− 1)] = X(n− j). Moreover, X(n− 1) = 1, therefore, it is
easy to show by induction on j that X(n − j) = (n − 1)j−1

(

n−2

j−1

)

. The total

number of spanning trees equals
∑n−1

j=1
X(n − j) =

∑n−1

j=1

(

n−2

j−1

)

(n − 1)j−1 =

((n − 1) + 1)n−2 = nn−2 by Newton’s binomial theorem.
Q.E.D.

Exercises 7.1: On spanning trees:

1. We state that two graphs G and G′ are isomorphic if there exists a
bijection α : V (G) → V (G′) such that uv ∈ E(G) ⇔ α(u)α(v) ∈
E(G′). Thus, α simply renames the vertices of G. Determine the
number of spanning trees in Kn up to isomorphisms for n = 1, . . . 7.

8 The Connector Problem

To build a network connecting n nodes (towns, computers, chips in a com-
puter) it is desirable to decrease the cost of construction of the links to the
minimum. This is the connector problem. In graph theoretical terms we
wish to find an optimal spanning subgraph of a weighted graph. Such an
optimal subgraph is clearly a spanning tree, for, otherwise a deletion of any
edge that is part of a cycle will reduce the total weight of the subgraph.
Let then Gα be a graph G together with a weight function α : E(G) → R+

(positive reals) on the edges. Kruskal’s algorithm (also known as the greedy
algorithm) provides a solution to the connector problem.

Algorithm 8.1 (Kruskal’s algorithm (1956)): For a connected and weighted
graph Gα of order n:

1. Let e1 be an edge of smallest weight, and set E1 = {e1}.

2. For each i = 2, 3, . . . , n − 1 in this order, choose an edge ei 6∈ Ei of
smallest possible weight such that ei does not produce a cycle when
added to G[Ei−1], and let Ei = Ei−1 ∪ {ei}. Notice, G[Ei] need not to
be connected.

The final outcome is T = (V (G), En−1) is a spanning tree with a minimal
weight.

8 The Connector Problem 27

Proof: By the construction, T = (V (G), En−1) is a spanning tree of G,
because it contains no cycles, it must be connected and has n−1 edges6. We
now show that T has the minimum total weight among the spanning trees of
G. Suppose T1 is any spanning tree of G. Let ek be the first edge produced by
the algorithm that is not in T1. If we add ek to T1, then a cycle C containing
ek is created. Also, C must contain an edge e that is not in T . When we
replace e by ek in T1, we still have a spanning tree, say T2. However, by the
construction, α(ek) ≤ α(e), and therefore α(T2) ≤ α(T1). Note that T2 has
more edges in common with T than T1. Repeating the above procedure, we
can transform T1 to T by replacing edges, one by one, such that the total
weight does not increase. We deduce that α(T) ≤ α(T1).

Q.E.D.

The outcome of Kruskal’s algorithm need not be unique. Indeed, there may
exist several optimal spanning trees (with the same weight, of course) for a
graph. The runtime of this algorithm equals O(e log e). Another algorithm
that can be used for the same purpose is Prim’s, it has a runtime complexity
of O(n2) [Prim’s algorithm can be implemented in O(e + n log n) time using
more advanced data structures (in particular, Fibonacci heaps), this will not
be worth the trouble unless you have extremely large, fairly sparse graphs].
Thus, Prim’s algorithm is faster on dense graphs, while Kruskal’s is faster on
sparse graphs. Prim’s algorithm was also invented earlier by Jarnick (1930).

Algorithm 8.2 (Prim’s algorithm (1957)): For a connected and weighted graph
Gα of order n with V (G) = {v1, . . . , vn}, define f(v1) = 0 and f(vi) = α(v1vi)
if v1vi ∈ E(G) and f(vi) = ∞ otherwise (i > 1):

1. Let E = ∅ and set U = {v1}.

2. Choose w ∈ V (G) − U with f(w) minimal.

3. Replace E by E∪{e}, where e is an edge incident to w and U for which
α(e) = f(w) and set U = U ∪ {w}. If U = V (G) stop.

6 At each step i = 2, . . . , n− 1 we can always find at least one edge that does not create
a cycle. Indeed, at step i, the graph (V (G), Ei−1 = {e1, . . . , ei−1) has n nodes and less
than n − 1 edges, thus, it contains at least two components. As G is connected there has
to exist a path P in G that connects these components. Any edge of this path can be
added without creating a cycle.

8 The Connector Problem 28

4. For each v 6∈ U for which wv ∈ E(G): f(v) = min{f(v), α(wv)}.
Return to Step 2.

The final outcome is T = (U, E) is a spanning tree of G with minimal weight.
Notice, f(v) equals the minimal weight of any edge connecting v with U (f(v)
equals ∞ if there is no such edge). Thus, at each iteration we simply add a
new edge e to T with a weight α(e) as small as possible.

Proof: Let Gα be a connected, weighted graph. By induction we show that
T = (U, E) is a spanning tree on the vertices of U during each iteration. At
step 1 we have nT = 1, eT = 0, hence, it is a spanning tree on {v1}. At every
other iteration we augment nT and eT by one, meaning nT = eT + 1 and T
is connected.
Let T1 be any spanning tree for G. Let e be the first edge not belonging to
T1 that was added when T = (U, E) was constructed. Then one endpoint of
e was in U and the other was not. Since T1 is a spanning tree of G, there is
a path in T1 joining the two endpoints of e. As one travels along the path,
one must encounter an edge f joining a vertex in U to one that is not in U .
Now, at the iteration when e was added to E, f could also have been added
and it would be added instead of e if α(f) < α(e). Since f was not added,
we conclude that α(f) ≥ α(e). Let T2 = T1 + e − f , then α(T2) ≤ α(T1).
Repeating the above procedure, we can transform T1 to T by replacing edges,
one by one, such that the total weight does not increase. We deduce that
α(T) ≤ α(T1). Q.E.D.

Many other algorithms exist to solve this problem, e.g., Boruvka’s algorithm
(1926) with runtime O(e log n). A faster algorithm due to Karger, Klein and
Tarjan runs in O(n) time.

Exercises 8.1: On Kruskal’s and Prim’s Algorithm:

1. Apply Kruskal’s Algorithm to the graph G depicted in Figure 8.

2. Apply Prim’s Algorithm to the graph G depicted in Figure 8.

Minimum weight spanning trees are useful in a variety of disciplines. For
instance, minimum spanning trees are useful in constructing networks, by
describing the way to connect a set of sites using the smallest total amount
of wire. Much of the work on minimum spanning (and related Steiner) trees

8 The Connector Problem 29

N2 N3

N4

N5N6N7

N8

N1

1

1

2

3

4

4

5 7 6

7

6

8

8

Fig. 8: Apply Kruskal’s and Prim’s algorithm on the graph G

has been conducted by the phone company. They also provide a reasonable
way for clustering points in space into natural groups. When the cities are
points in the Euclidean plane, the minimum spanning tree provides a good
heuristic for traveling salesman problems. The optimum traveling salesman
tour is at most twice the length of the minimum spanning tree.

