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PLANAR GRAPHS

5 Characterizing Planar Graphs

Definition 5.1: Two graphs G and H are homeomorphic if one can be ob-
tained from the other by insertion or deletion of vertices of degree two or a
sequence of such operations.
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Fig. 3: Defining interior and exterior bridges

Definition 5.2: Interior and exterior bridges: By example, consider Figure
3 that depicts a planar embedding of the graph G. A simple circuit C = xywz

is denoted by the prominent lines. The pieces (a), (b), (c) and (d) are relative
to C: If a piece has two or more points of contact with C it is a bridge. In
this case, (d) is an interior bridge and (a), (b) and (c) are exterior bridges.
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Before we prove the celebrated Kuratowski theorem, one should notice the
following. Since any planar graph can be embedded on a sphere, any area
can be nominated the infinite area. Meaning that for any edge xy of a planar
graph G, we can draw G in such a way that xy bounds the infinite area.

Theorem 5.1 (Kuratowski (1930)): A graph is non planar if and only if it
contains a subgraph homeomorphic to K5 or K3,3.

Proof: (⇐) K5 and K3,3 are non planar, so if G contains a subgraph home-
omorphic to K5or K3,3 it too must be non planar.
(⇒) Assume that the theorem is not true. Consider the set of counter ex-
amples with the smallest number of edges E. Let G be a member of this set
with the least number of vertices. Denote E(G) = N , clearly G is non planar
and does not contain a subgraph homeomorphic to K5 or K3,3. For such a
graph G the following statements hold:
(1) G is connected. Assume that G is disconnected, in which case it must
consist of components c1, c2, . . . , ck (k ≥ 2). Subsequently, E(ci) for each
i = 1, . . . , k must be less than N (the case where E(ci) = 0 for all ci but one
is covered by the fact that the order of G is minimal). Since G does not con-
tain a subgraph homeomorphic to K5 or K3,3, neither do ci (i = 1, 2, . . . , k)
and hence c1, c2, . . . , ck are planar. If the components are planar then G too
must be planar. Hence, by contradiction, G must be connected.
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Fig. 4: G holds a cut vertex v
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(2) G does not contain a cut vertex, meaning we cannot disconnect G by
removing a single vertex v. Assume that G contains a cut vertex v and let
G∗ be G with a separation at v (see Figure 4). Since G∗ is disconnected, it
must consist of components ci (i = 1, 2, . . . , n). Each ci does not contain a
subgraph homeomorphic to K5 or K3,3, since G does not contain such a sub-
graph. Therefore, since E(ci) < N (i = 1, 2, . . . , n), each ci is planar. Now,
v can be moved, in each case, to be incident to the exterior area. In this way
the components can be rejoined to give a planar G and so, by contradiction,
G does not contain a cut vertex.
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Fig. 5: G′ holds a circuit through x and y

(3) Let e(x, y) be the edge from x to y. Let G′ be G with e(x, y) omitted.
G′ contains a simple circuit through x and y. Indeed, since G contains no
cut vertex (due to (2)), G′ is connected (otherwise x would be a cut vertex).
Now, assume that such a circuit does not exist, in which case a vertex, T

say, exists of the form shown in Figure 5(a), see Menger’s Theorem. Under
separation X and Y are formed as shown in Figure 5(b) by adding an edge
e(x, T ) and an edge e(y, T ). Since G contains a subgraph homeomorphic
to X (because T is connected to y and e(x, y) was part of G) and another
homeomorphic to Y , X and Y do not contain subgraphs homeomorphic to
K5 or K3,3. Moreover, E(X) < N and E(Y ) < N , so X and Y are planar.
X and Y can be transformed such that e(y, T ) and e(x, T ) lie incident to the
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exterior area and be brought together as shown in Figure 5(c). Now, deleting
e(x, T ) and e(y, T ) and adding e(x, y) must therefore give a plane represen-
tation of G. So, by contradiction, G must contain simple circuit from x to y.

We have now deduced: (i) G′ = G − e(x, y) is connected and contains a
simple circuit C through x and y, (ii) G′ contains no subgraph homeomor-
phic to K5 or K3,3, and (iii) Since E(G) = N and E(G′) = N−1, G′ is planar.

Let G′

p be a planar embedding of G′ and let C be a circuit through x and
y such that it encloses as many areas as possible. Denote the path from x

to y inclusive by [x, y] and the path from x to y non inclusive by (x, y). No
exterior bridge can have more than one point of contact with C in [x, y] or
[y, x], or else a circuit C could be found that encloses at least one more area.
Now, consider the interior and exterior bridges of G′

p with respect to C so
that G will be non planar. There must be at least one exterior (E) and one
interior (I) bridge or else G would be planar (by drawing e(x, y) as an interior
resp. exterior bridge). E must have contact points i and j with C, such that
i ∈ (x, y) and j ∈ (y, x), and I must have at least 2 contact points a and b

with C such that a ∈ (x, y) and b ∈ (y, x) (such a bridge I exists as e(x, y)
could otherwise be drawn as an interior bridge). The 4 possibilities which
meet this criteria are given by Figure 6 (case (C) and (D) are equivalent).

The graph drawn in scenario A has a subgraph homeomorphic to K3,3 (i.e.,
{i, b, x}, {j, a, y}). In the other 4 scenarios the interior bridge I can still be
drawn as an exterior bridge. We have chosen this interior bridge I such that
it cannot be drawn as an exterior bridge without violating the planarity of
G′

p (indeed, if all interior bridges could be drawn on the outside then draw-
ing e(x, y) as an interior bridge would make G planar), thus there is either
another exterior bridge E ′ that prevents this, which implies that we end up
in scenario A, with E ′ playing the role of E (because all exterior bridges have
1 contact point on (x, y) and 1 on (y, x)). Or I has at least one more contact
point c that prevents us from drawing I as an outside bridge. Let us discuss
these 4 scenarios one at a time.

In scenario C we need to add c on (j, i). However adding c on (x, i) would
result in scenario A (where c plays the role of a); hence, we add c on (j, x]
(see Figure 7C). We know prove that this graph contains a subgraph home-
omorphic to K3,3. The bridge I contains a vertex v such that there are 3
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Fig. 6: 5 possible scenarios

vertex-distinct paths from v to a, b and c 4. As a result, {a, b, c} and {v, j, y}
form the vertices of a subgraph of G which is homeomorphic to K3,3. Simi-
larly, in scenario D we need to add c on [y, j) and {a, b, c} and {v, j, x} form
the vertices of a subgraph of G which is homeomorphic to K3,3 (see Figure
7D). Also, in scenario E, c needs to coincide with x, otherwise if c was part
of (j, x) or (x, i) and we end up in scenario A. As a result, {a, b, x} and
{v, y, i} form the vertices of a subgraph of G which is homeomorphic to K3,3

(see Figure 7E).

In scenario B, we need to add two contact points c and d (otherwise we could
still draw I on the outside), one on (j, i) and one on (i, j). If either c or d

do not coincide with x or y, we end up in scenario C or D. Thus, c has to
coincide with x and d with y. We distinguish 2 cases: (i) there exists a vertex
v in I such that there are 4 vertex-distinct paths from v to a, b, c and d (see
Figure 7B2). In this case v, a, b, c and d form the vertices of a subgraph of G

which is homeomorphic to K5. (ii) if there is no such vertex v, then 2 vertices
w1 and w2 exist5 such that there are 5 vertex-distinct paths: one from w1 to

4 Indeed, let P be a path from a to b on I and w a vertex on this path, then setting v

equal to the first common vertex of P and a path P ′ from c to w in I − {a, b} suffices.
5 Indeed, there exists a v such that there are vertex-distinct paths from v to a, b and c
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Fig. 7: 5 remaining cases

w2, two from w1 to a and c, and two from w2 to b and d (see Figure 7B1). As
a result, {w1, b, d} and {a, c, w2} form the vertices of a subgraph of G which
is homeomorphic to K3,3. Q.E.D.

Exercises 5.1: On the Kuratowski Theorem:

1. Check whether the Petersen graph is planar.

2. Determine the number of non planar graphs G with 6 vertices.

6 Maximal Planar Graphs

Definition 6.1: A maximal planar graph G is a planar graph to which no
new edge can be added without violating the planarity of G. A triangulation
is a planar graph G in which every area (region) is bounded by three edges.

Theorem 6.1: The following statements are equivalent for a graph G with
nG vertices and eG edges:

(in I). Now, there is also a path from d to c and G′ is planar. Thus, thus the path from d

to c has to connect to the path from a to b at some point. Without loss of generality we
assume that this happens below v.
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1. G is maximal planar.

2. G is a triangulation.

3. eG = 3nG − 6 and G is planar.

Proof: (1 ⇒ 2) Suppose there is a planar representation of G that contains
an area A bounded by 4 or more edges. Two vertices x and y incident to A

exist such that xy 6∈ E(G), otherwise we could add a vertex in the interior
of A to obtain a planar representation of K5. Drawing the edge xy in the
interior of A does not violate the planarity of G.
(2 ⇒ 3) G is a triangulation, therefore, 3f = 2e. Applying Euler’s equality
for planar graphs we find 3n − e = 6.
(3 ⇒ 1) Earlier in the course, we saw that e ≤ 3n − 6 for any planar graph
G. Adding an edge thus violates the planarity of G.

Q.E.D.

Exercises 6.1: On Maximum Planarity:

1. Draw all regular maximum planar graphs, i.e., δ(G) = ∆(G).

Exercises 6.2: On Outer Planarity: A graph is called outer planar if it can
be embedded in the plane such that all vertices lie on the boundary of the
unbounded area.

1. Let G be outer planar, then prove that e ≤ 2n − 3.

2. Show that χ(G) ≤ 3 if G is outer planar.

3. Prove that a graph is outer planar if and only if it contains no subgraph
homeomorphic with K4 or K3,2.


