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GRAPH CONNECTIVITY

9 Elementary Properties

DEFINITION 9.1: A graph G is said to be connected if for every pair of vertices
there is a path joining them. The maximal connected subgraphs are called
components.

DEFINITION 9.2: The connectivity number x(G) is defined as the minimum
number of vertices whose removal from G results in a disconnected graph or
in the trivial graph (=a single vertex). A graph G is said to be k-connected
if K(G) > k.

Clearly, if G is k-connected then |V(G)| > k + 1 and for n,m > 2, k(K,,) =
n—1, k(Cy) =2, k(P,) =1 and k(K ,,) = min(m,n).

DEFINITION 9.3: The connectivity number A(G) is defined as the minimum
number of edges whose removal from G results in a disconnected graph or in
the trivial graph (=a single vertex). A graph G is said to be k-edge-connected
if \(G) > k.

THEOREM 9.1 (Whitney): Let G be an arbitrary graph, then x(G) < A(G) <
§(G).

Proof: Let v be a vertex with d(v) = §(G), then removing all edges incident
to v disconnects v from the other vertices of G. Therefore, \(G) < §(G).
If A(G) =0 or 1, then xK(G) = A(G). On the other hand, if A(G) = k >
2, let ziy1, Toyo, . .., xxyr are be the edges whose removal causes G to be
disconnected (where some of the x;, resp. ¥; , vertices might be identical).
Denote V; and V5, as the components of this disconnected graph. Then, either
V) contains a vertex v different from xq, xs, ..., zy, meaning that removing
x1,...,x causes v to be disconnected from V,. Or, Vi = {xy, ..., x;}, where
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|Vi| < k (some x;’s might be identical). Now, in this case, z; has at most k
neighbors (being |Vi|—11in Vj and k— (|V4]| —1) in V3). Moreover, A\(G) = k,
thus, d(z1) = k and the removal of the k neighbors of x; cause G to be
disconnected. QED.

Let G be a graph of order n > k+ 1 > 2. If G is not k-connected
then there are two disjoint sets of vertices V; and V5, with |Vi| = ny > 1,
|[Vo| = ng > 1 and ny + ne + k — 1 = n such that the vertices of V; have a
degree of at most n; —1+k — 1,47 =1,2. (Indeed, the k — 1 vertices that are
not in |Vj| U |V5| separate the sets V; and V5).

COROLLARY 9.1 (Bondy (1969)): Let G be a graph with vertices xq,xo, ...,
T, d(z1) < d(z9) < ... < d(z,). Suppose for some k, 0 < k < n, that
d(z;) >j+k—1forj=1,2,...,n—1—d(x,_g+1), then G is k-connected.

Proof: Suppose that G is not k-connected. Then 3V}, V5 C V(G) such that
VinVo=0,|Vi| =nq, [Va| =ng, ny +ny=n—k+1and d(z) <n; + k — 2
for z € V;. Now, X = {zj|j > n—k+ 1} is a set of k elements all with
a degree larger than or equal to d(x, ri1). Hence, there is at least one
x € X N (V1 UV;). Without loss of generality, say in X N V5.

Thus, ny > d(zy_g1)+1—(k—1) = d(zp_s1)—k+2and ny = n—k+1-—ny <
n—1—d(z,—gt1). Take x; € Vi such that j is maximal (5 > ny), then
ni+k—1<d(z,,) <d(z;) <n +k—2 (by construction). QED

Thus, if G is a graph with vertices x1, zo, ..., x,, with d(z1) < ... < d(z,) =
A(G) and d(z;) > j for j =1,...,n — A(G) — 1, then G is connected. The

reverse is, obviously, not true.

COROLLARY 9.2 (Chartrand and Harary (1968)): Let G # K, be a graph of
order n, then xk(G) > 20(G) +2 — n.

Proof: Let k = 26(G) + 2 — n. It suffices to show d(z;) > j+ k — 1,
for j =1,...,n—1—6(G) (because d(x,_r+1) > d(G)). This is certainly
true if d(z;) > n—1—-0(G)+k—1foralj=1,...,n—1—06(G) and
n—1-6(G)+k—-1=4G). QED.

EXERCISES 9.1: On graph connectivity:
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1. Give 4 graphs Gy, Go, G3 and G4 such that 0 < k(G1) = A(G1) = 6(Gy),
0 < HJ(GQ) < )\(Gg) = 5(02), 0 < H(Gg) = )\(Gg) < 5(03), and
0< KJ(G4) < )\(G4) < 5(G4)

2. Give a graph G such that k(G) = 26(G) +2—n > 0.

3. Determine the minimum e(n) such that all graphs with n vertices and
e(n) edges are connected (= 1-connected).

4. Let G be a graph with n vertices and e edges, show x(G) < A(G) <
[2e/n].

5. Let G be a graph with 6(G) > [n/2], then G connected. Moreover,
A(G) = §(G) [Hint: Prove that any component C; of G, after removing
A(G) < 0(G) edges, contains at least 6(G) + 1 vertices.|.

6. Let G be any 3-regular graph, i.e., §(G) = A(G) = 3, then k(G) =
A(G). Draw a 4-regular planar graph G such that x(G) # A(G).

THEOREM 9.2: Given the integers n,d, k and A, there is a graph G of order
n such that 0(G) = §,k(G) = k, and A\(G) = A if and only if one of the

following conditions is satisfied:
1. 0<k<A<6 < |n/2],
2.1<204+2—n<k<A=0<n-1,
3. k=A=0=n—1

Of course, if kK(G) = 0, then so is A\(G).

Proof: Let G be any graph of order n with §(G) = 6,k(G) = &, and
AMG) = A Then, (a) 6(G) < |n/2], that is, condition 1 is true, or (b)
|n/2] <6(G) < n—1, meaning that 20 > 2|n/2] >n—1,0r204+2—n > 1.
Thus, by Corollary 1.2 and Exercise 1.1.5 we have condition 2. Or (c) if
0(G)=n—1, then G = K,, and x(G) = \(G) =6(G) =n — 1.

Thus we have to show that if condition 1,2 or 3 is satisfied then there is a
graph G with appropriate constants n, k, A, d. Suppose that condition 1 holds.
Let G1 = K5+1, GQ = Kn—6—17 Ury .oy Us+1 € Gl and Vly - -, U541 c G2 (HO—
tice, K511 C G9). Next, set G = G1UG, and add the edges ujvy, . . ., u,v, and
Uk 1101, - - -, uzv1 to G. Then, k(G) = k, by removing the vertices vy, ..., vy,
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A(G) = A, by removing the edges between G; and Go, and 6(G) = 4, by
considering the vertex usy 1. Suppose that condition 2 holds. Let G; = K,
Gy = K,, G5 = K, and Gy = G1 + (G2 U G3), where a = |(n — k)/2] and
b=|(n—1-k)/2] (notice, a+b=n—r—1)". To construct G, add a vertex
v to G and joint it to the vertices of Gy and to § — K vertices of G5 (this is
possible because 20 + 2 — n < x implies that § — k < b). Then, k(G) = &,
by removing the vertices of Gy, A(G) = A, by removing the edges to v, and
Q) 0, by considering the vertex v. Finally, if condition 3, holds, set

G = K. Q.E.D.

10 Menger’s Theorem

DEFINITION 10.1: The local connectivity x(x,y) of two non-adjacent vertices
is the minimum number of vertices separating x from y. If x and y are
adjacent vertices, their local connectivity is defined as ky(x,y) + 1 where
H = G — xy. Similarly, we define the local edge-connectivity A(x,y).

Clearly, k(G) = min{x(x,y)|z,y € G,z # y}. The aim of this section is to
discuss the fundamental connections between x(x,y) and the set of xy paths.
Two paths in a graph G are said to be independent if every common vertex
is an endvertex of both paths. A set of independent zy paths is a set of paths
any two of which are independent. Obviously, if there are k independent xy
paths then k(z,y) > k. Menger’s Theorem states that the converse is true.
We prove the theorem by means of an elegant proof by Dirac (1969).

THEOREM 10.1 (Menger (1926)): Let z,y € G,z # y. There exists a set of
k(z,y) independent paths between = and y and this set is maximal.

Proof: We use induction on m = n + e, the sum of the number of vertices
and edges in G. We show that if S = {wy,ws,...,wx} is a minimum set
(that is, a subset of the smallest size) that separates x and y, then G has at
least k independent paths between x and y. The case for k = 1 is clear, and
this takes care of the small values of m, required for the induction.

(1) Assume that = and y have a common neighbor z € I'(x) N '(y). Then
necessarily z € S. In the smaller graph G — 2z the set S — z is a minimum

" G+ H is used here to reflect the graph obtained by GUH and adding an edge between
every vertex ¢ € G and y € H



10 Menger's Theorem 34

set that separates x and y, and so the induction hypothesis yields that there
are k — 1 independent paths between x and y in G — z. Together with the
path zzy, there are k independent paths in G as required.

(2) Assume that I'(x) NT'(y) = 0 and denote by H, and H, as the connected
components of G — S for z and y, respectively.

(2a) Suppose that the separating set S ¢ I'(x) and S ¢ I'(y). Let z be a
new vertex, and define G, to be the graph with the vertices V(H, U S U z)
having the edges of G[H, US| together with the edges zw; for alli = 1,... k.
The graph G, is connected and it is smaller than G. Indeed, in order for S
to be a minimum separating set, all w; vertices have to be adjacent to some
vertex in H,. This shows that e(G,) < e(G) and, moreover, assumption (2a)
rules out the case H, = y, therefore n(G,) < n(G) in the present case. If
T is any set that separates x and z in G, then T" will separate x from all
w; € S—(T'NS) in G. This means that 7" separates x and y in G. Since k is
the size of a minimum separating set, |7'| = k. We noted that G, is smaller
than G, and thus by the induction hypothesis, there are k independent paths
from x to z in GG,. This is possible only if there exist k independent paths
from x to w;, for i = 1,... k, in H,. Using a symmetric argument one finds
k independent paths from y to w; in H,. Combining these paths proves the
theorem.

(2b) Suppose that all separating sets S are a subset of I'(z) or I'(y). Let P
be the shortest path from x to y in G, then P contains at least 4 vertices,
we refer to the second and third node as u and v. Define G,, as G — uv (that
is, remove the edge between u and v). If the smallest set T' that separates
x from y in G,, has a size k, then by induction, we are done. Suppose that
|T| < k, then z and y are still connected in G — T and every path from x
to y in G — T necessarily travels along the edge uwv. Therefore, u,v & T.
Also, T,, = T Uwu and T, = T U v are both minimum separating sets in G
(of size k). Thus, T, C I'(z) or T, C I'(y) (by (2b)). Now, P is the shortest
path, so v & I'(x), hence, T,, C I'(y). Moreover, u € I'(z), thus 7, C I'(z).
Combining these two results we find 7' C I'(x) N I'(y) (and T is not empty).
Which contradicts assumption (2).

The set is maximal, because the existence of k£ independent paths between x
and y implies that k(z,y) > k. Q.ED.

Another way to state this result is the following: A necessary and sufficient
condition for a graph to be k-connected is that any two distinct vertices x
and y can be joined by k independent paths.
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EXERCISES 10.1: On Menger’s Theorem:

e Let G be a graph with |G| > k+1, then G is k-connected if and only if
for all k-element subsets Vi, Va € V(G), there is a set of k paths from
V1 to Vo which have no vertex in common. [V; NV, is not necessarily
empty, thus, some paths might be trivial paths].

Let U be a set of vertices of a graph G and let x be a vertex not in U. An
2U fan is defined as a set of |U| paths from = to U, any two of which have
only the vertex x in common.

THEOREM 10.2 (Dirac (1960)): A graph G is k-connected if and only if |G| >
k+ 1 and for any k-set U € V(G) and x € V(G) — U, there is an zU fan.

Proof: (a) Suppose that G is k-connected, U C V(G), |U| = k and z €
V(G) — U. Let H be the graph obtained from G by adding a vertex y and
joining y to every vertex in U. Clearly, H is also k-connected. Therefore,
by Menger’s theorem, we find that there are k independent xy paths in H.
Omitting the edges incident with y, we find the required zU fan.

(b) Suppose |G| > k + 1 and that S is a (k — 1)-set separating x and y, for
some vertices  and y. Then, G does not contain an z(S Uy) fan. QED

EXERCISES 10.2: On Dirac’s Theorem:

1. If G is k-connected (k > 2), then for any set of k vertices {aq, ..., ax}
there is a cycle containing all of them. [Hint: Use induction on k and
distinguish between the case where the cycle C' contains an additional
vertex = & {ay,...,ax_1} and the case where it does not.]

2. Give an example of a graph for which there is for any set of k points,
a cycle containing all of them, but that is not k-connected (k > 2).

11 Additional Exercises

DEFINITION 11.1: Let k£ > 1. Consider the set B* of all binary sequences of
length k. For instance, B> = {000;001;010;100; 011;101;110; 111}. Let Qg
be the graph (called the k-cube) with V(Qy) = B¥, where uv € E(Q;) if and
only if the sequences u and v differ in exactly one place.
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EXERCISES 11.1: On k-cube graphs Q:

e Determine the order of ;. Show that () is regular, and determine
e(Qy) for each k > 1.

e Compute x(Qy) for all & > 1.

e Prove that k(Qx) = MQx) = d(Qx) = k [Hint: use induction on k.
Consider the graphs Gy and G; induced by the vertices Ou and 1lu,
respectively. Let S be a minimal set that disconnects QJ¢, then S must
disconnect Gy or G].

e Determine the k values for which )y is planar.



