GRAPH CONNECTIVITY

9 Elementary Properties

Definition 9.1: A graph G is said to be connected if for every pair of vertices there is a path joining them. The maximal connected subgraphs are called components.

Definition 9.2: The connectivity number $\kappa(G)$ is defined as the minimum number of vertices whose removal from G results in a disconnected graph or in the trivial graph (=a single vertex). A graph G is said to be k-connected if $\kappa(G) \geq k$.

Clearly, if G is k-connected then $|V(G)| \geq k+1$ and for $n, m>2, \kappa\left(K_{n}\right)=$ $n-1, \kappa\left(C_{n}\right)=2, \kappa\left(P_{n}\right)=1$ and $\kappa\left(K_{n, m}\right)=\min (m, n)$.

Definition 9.3: The connectivity number $\lambda(G)$ is defined as the minimum number of edges whose removal from G results in a disconnected graph or in the trivial graph (=a single vertex). A graph G is said to be k-edge-connected if $\lambda(G) \geq k$.

Theorem 9.1 (Whitney): Let G be an arbitrary graph, then $\kappa(G) \leq \lambda(G) \leq$ $\delta(G)$.

Proof: Let v be a vertex with $d(v)=\delta(G)$, then removing all edges incident to v disconnects v from the other vertices of G. Therefore, $\lambda(G) \leq \delta(G)$. If $\lambda(G)=0$ or 1 , then $\kappa(G)=\lambda(G)$. On the other hand, if $\lambda(G)=k \geq$ 2 , let $x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{k} y_{k}$ are be the edges whose removal causes G to be disconnected (where some of the x_{i}, resp. y_{i}, vertices might be identical). Denote V_{1} and V_{2} as the components of this disconnected graph. Then, either V_{1} contains a vertex v different from $x_{1}, x_{2}, \ldots, x_{k}$, meaning that removing x_{1}, \ldots, x_{k} causes v to be disconnected from V_{2}. Or, $V_{1}=\left\{x_{1}, \ldots, x_{k}\right\}$, where
$\left|V_{1}\right| \leq k$ (some x_{i} 's might be identical). Now, in this case, x_{1} has at most k neighbors (being $\left|V_{1}\right|-1$ in V_{1} and $k-\left(\left|V_{1}\right|-1\right)$ in V_{2}). Moreover, $\lambda(G)=k$, thus, $d\left(x_{1}\right)=k$ and the removal of the k neighbors of x_{1} cause G to be disconnected.
Q.E.D.

Let G be a graph of order $n \geq k+1 \geq 2$. If G is not k-connected then there are two disjoint sets of vertices V_{1} and V_{2}, with $\left|V_{1}\right|=n_{1} \geq 1$, $\left|V_{2}\right|=n_{2} \geq 1$ and $n_{1}+n_{2}+k-1=n$ such that the vertices of V_{i} have a degree of at most $n_{i}-1+k-1, i=1,2$. (Indeed, the $k-1$ vertices that are not in $\left|V_{1}\right| \cup\left|V_{2}\right|$ separate the sets V_{1} and $\left.V_{2}\right)$.

Corollary 9.1 (Bondy (1969)): Let G be a graph with vertices x_{1}, x_{2}, \ldots, $x_{n}, d\left(x_{1}\right) \leq d\left(x_{2}\right) \leq \ldots \leq d\left(x_{n}\right)$. Suppose for some $k, 0 \leq k \leq n$, that $d\left(x_{j}\right) \geq j+k-1$, for $j=1,2, \ldots, n-1-d\left(x_{n-k+1}\right)$, then G is k-connected.

Proof: Suppose that G is not k-connected. Then $\exists V_{1}, V_{2} \subset V(G)$ such that $V_{1} \cap V_{2}=\emptyset,\left|V_{1}\right|=n_{1},\left|V_{2}\right|=n_{2}, n_{1}+n_{2}=n-k+1$ and $d(x) \leq n_{i}+k-2$ for $x \in V_{i}$. Now, $X=\left\{x_{j} \mid j \geq n-k+1\right\}$ is a set of k elements all with a degree larger than or equal to $d\left(x_{n-k+1}\right)$. Hence, there is at least one $x \in X \cap\left(V_{1} \cup V_{2}\right)$. Without loss of generality, say in $X \cap V_{2}$.
Thus, $n_{2} \geq d\left(x_{n-k+1}\right)+1-(k-1)=d\left(x_{n-k+1}\right)-k+2$ and $n_{1}=n-k+1-n_{2} \leq$ $n-1-d\left(x_{n-k+1}\right)$. Take $x_{j} \in V_{1}$ such that j is maximal $\left(j \geq n_{1}\right)$, then $n_{1}+k-1 \leq d\left(x_{n_{1}}\right) \leq d\left(x_{j}\right) \leq n_{1}+k-2$ (by construction).
Q.E.D.

Thus, if G is a graph with vertices $x_{1}, x_{2}, \ldots, x_{n}$, with $d\left(x_{1}\right) \leq \ldots \leq d\left(x_{n}\right)=$ $\Delta(G)$ and $d\left(x_{j}\right) \geq j$ for $j=1, \ldots, n-\Delta(G)-1$, then G is connected. The reverse is, obviously, not true.

Corollary 9.2 (Chartrand and Harary (1968)): Let $G \neq K_{n}$ be a graph of order n, then $\kappa(G) \geq 2 \delta(G)+2-n$.

Proof: Let $k=2 \delta(G)+2-n$. It suffices to show $d\left(x_{j}\right) \geq j+k-1$, for $j=1, \ldots, n-1-\delta(G)$ (because $d\left(x_{n-k+1}\right) \geq \delta(G)$). This is certainly true if $d\left(x_{j}\right) \geq n-1-\delta(G)+k-1$ for all $j=1, \ldots, n-1-\delta(G)$ and $n-1-\delta(G)+k-1=\delta(G)$.
Q.E.D.

Exercises 9.1: On graph connectivity:

1. Give 4 graphs G_{1}, G_{2}, G_{3} and G_{4} such that $0<\kappa\left(G_{1}\right)=\lambda\left(G_{1}\right)=\delta\left(G_{1}\right)$, $0<\kappa\left(G_{2}\right)<\lambda\left(G_{2}\right)=\delta\left(G_{2}\right), 0<\kappa\left(G_{3}\right)=\lambda\left(G_{3}\right)<\delta\left(G_{3}\right)$, and $0<\kappa\left(G_{4}\right)<\lambda\left(G_{4}\right)<\delta\left(G_{4}\right)$.
2. Give a graph G such that $\kappa(G)=2 \delta(G)+2-n>0$.
3. Determine the minimum $e(n)$ such that all graphs with n vertices and $e(n)$ edges are connected ($=1$-connected).
4. Let G be a graph with n vertices and e edges, show $\kappa(G) \leq \lambda(G) \leq$ $\lfloor 2 e / n\rfloor$.
5. Let G be a graph with $\delta(G) \geq\lfloor n / 2\rfloor$, then G connected. Moreover, $\lambda(G)=\delta(G)$ [Hint: Prove that any component C_{i} of G, after removing $\lambda(G)<\delta(G)$ edges, contains at least $\delta(G)+1$ vertices.].
6. Let G be any 3 -regular graph, i.e., $\delta(G)=\Delta(G)=3$, then $\kappa(G)=$ $\lambda(G)$. Draw a 4-regular planar graph G such that $\kappa(G) \neq \lambda(G)$.

Theorem 9.2: Given the integers n, δ, κ and λ, there is a graph G of order n such that $\delta(G)=\delta, \kappa(G)=\kappa$, and $\lambda(G)=\lambda$ if and only if one of the following conditions is satisfied:

1. $0 \leq \kappa \leq \lambda \leq \delta<\lfloor n / 2\rfloor$,
2. $1 \leq 2 \delta+2-n \leq \kappa \leq \lambda=\delta<n-1$,
3. $\kappa=\lambda=\delta=n-1$.

Of course, if $\kappa(G)=0$, then so is $\lambda(G)$.

Proof: Let G be any graph of order n with $\delta(G)=\delta, \kappa(G)=\kappa$, and $\lambda(G)=\lambda$. Then, (a) $\delta(G)<\lfloor n / 2\rfloor$, that is, condition 1 is true, or (b) $\lfloor n / 2\rfloor \leq \delta(G)<n-1$, meaning that $2 \delta \geq 2\lfloor n / 2\rfloor \geq n-1$, or $2 \delta+2-n \geq 1$. Thus, by Corollary 1.2 and Exercise 1.1.5 we have condition 2. Or (c) if $\delta(G)=n-1$, then $G=K_{n}$ and $\kappa(G)=\lambda(G)=\delta(G)=n-1$.
Thus we have to show that if condition 1,2 or 3 is satisfied then there is a graph G with appropriate constants $n, \kappa, \lambda, \delta$. Suppose that condition 1 holds. Let $G_{1}=K_{\delta+1}, G_{2}=K_{n-\delta-1}, u_{1}, \ldots, u_{\delta+1} \in G_{1}$ and $v_{1}, \ldots, v_{\delta+1} \in G_{2}$ (notice, $K_{\delta+1} \subset G_{2}$). Next, set $G=G_{1} \cup G_{2}$ and add the edges $u_{1} v_{1}, \ldots, u_{\kappa} v_{\kappa}$ and $u_{\kappa+1} v_{1}, \ldots, u_{\lambda} v_{1}$ to G. Then, $\kappa(G)=\kappa$, by removing the vertices $v_{1}, \ldots, v_{\kappa}$,
$\lambda(G)=\lambda$, by removing the edges between G_{1} and G_{2}, and $\delta(G)=\delta$, by considering the vertex $u_{\delta+1}$. Suppose that condition 2 holds. Let $G_{1}=K_{\kappa}$, $G_{2}=K_{a}, G_{3}=K_{b}$ and $G_{0}=G_{1}+\left(G_{2} \cup G_{3}\right)$, where $a=\lfloor(n-\kappa) / 2\rfloor$ and $b=\lfloor(n-1-\kappa) / 2\rfloor$ (notice, $a+b=n-\kappa-1)^{7}$. To construct G, add a vertex v to G_{0} and joint it to the vertices of G_{1} and to $\delta-\kappa$ vertices of G_{3} (this is possible because $2 \delta+2-n \leq \kappa$ implies that $\delta-\kappa \leq b)$. Then, $\kappa(G)=\kappa$, by removing the vertices of $G_{1}, \lambda(G)=\lambda$, by removing the edges to v, and $\delta(G)=\delta$, by considering the vertex v. Finally, if condition 3, holds, set $G=K_{n}$.
Q.E.D.

10 Menger's Theorem

Definition 10.1: The local connectivity $\kappa(x, y)$ of two non-adjacent vertices is the minimum number of vertices separating x from y. If x and y are adjacent vertices, their local connectivity is defined as $\kappa_{H}(x, y)+1$ where $H=G-x y$. Similarly, we define the local edge-connectivity $\lambda(x, y)$.

Clearly, $\kappa(G)=\min \{\kappa(x, y) \mid x, y \in G, x \neq y\}$. The aim of this section is to discuss the fundamental connections between $\kappa(x, y)$ and the set of $x y$ paths. Two paths in a graph G are said to be independent if every common vertex is an endvertex of both paths. A set of independent $x y$ paths is a set of paths any two of which are independent. Obviously, if there are k independent $x y$ paths then $\kappa(x, y) \geq k$. Menger's Theorem states that the converse is true. We prove the theorem by means of an elegant proof by Dirac (1969).

Theorem 10.1 (Menger (1926)): Let $x, y \in G, x \neq y$. There exists a set of $\kappa(x, y)$ independent paths between x and y and this set is maximal.

Proof: We use induction on $m=n+e$, the sum of the number of vertices and edges in G. We show that if $S=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ is a minimum set (that is, a subset of the smallest size) that separates x and y, then G has at least k independent paths between x and y. The case for $k=1$ is clear, and this takes care of the small values of m, required for the induction.
(1) Assume that x and y have a common neighbor $z \in \Gamma(x) \cap \Gamma(y)$. Then necessarily $z \in S$. In the smaller graph $G-z$ the set $S-z$ is a minimum

[^0]set that separates x and y, and so the induction hypothesis yields that there are $k-1$ independent paths between x and y in $G-z$. Together with the path $x z y$, there are k independent paths in G as required.
(2) Assume that $\Gamma(x) \cap \Gamma(y)=\emptyset$ and denote by H_{x} and H_{y} as the connected components of $G-S$ for x and y, respectively.
(2a) Suppose that the separating set $S \not \subset \Gamma(x)$ and $S \not \subset \Gamma(y)$. Let z be a new vertex, and define G_{z} to be the graph with the vertices $V\left(H_{x} \cup S \cup z\right)$ having the edges of $G\left[H_{x} \cup S\right]$ together with the edges $z w_{i}$ for all $i=1, \ldots, k$. The graph G_{z} is connected and it is smaller than G. Indeed, in order for S to be a minimum separating set, all w_{i} vertices have to be adjacent to some vertex in H_{y}. This shows that $e\left(G_{z}\right) \leq e(G)$ and, moreover, assumption (2a) rules out the case $H_{y}=y$, therefore $n\left(G_{z}\right)<n(G)$ in the present case. If T is any set that separates x and z in G_{z}, then T will separate x from all $w_{i} \in S-(T \cap S)$ in G. This means that T separates x and y in G. Since k is the size of a minimum separating set, $|T|=k$. We noted that G_{z} is smaller than G , and thus by the induction hypothesis, there are k independent paths from x to z in G_{z}. This is possible only if there exist k independent paths from x to w_{i}, for $i=1, \ldots, k$, in H_{x}. Using a symmetric argument one finds k independent paths from y to w_{i} in H_{y}. Combining these paths proves the theorem.
(2b) Suppose that all separating sets S are a subset of $\Gamma(x)$ or $\Gamma(y)$. Let P be the shortest path from x to y in G, then P contains at least 4 vertices, we refer to the second and third node as u and v. Define G_{n} as $G-u v$ (that is, remove the edge between u and v). If the smallest set T that separates x from y in G_{n} has a size k, then by induction, we are done. Suppose that $|T|<k$, then x and y are still connected in $G-T$ and every path from x to y in $G-T$ necessarily travels along the edge $u v$. Therefore, $u, v \notin T$. Also, $T_{u}=T \cup u$ and $T_{v}=T \cup v$ are both minimum separating sets in G (of size k). Thus, $T_{v} \subset \Gamma(x)$ or $T_{v} \subset \Gamma(y)$ (by (2b)). Now, P is the shortest path, so $v \notin \Gamma(x)$, hence, $T_{v} \subset \Gamma(y)$. Moreover, $u \in \Gamma(x)$, thus $T_{u} \subset \Gamma(x)$. Combining these two results we find $T \subset \Gamma(x) \cap \Gamma(y)$ (and T is not empty). Which contradicts assumption (2).
The set is maximal, because the existence of k independent paths between x and y implies that $\kappa(x, y) \geq k$.
Q.E.D.

Another way to state this result is the following: A necessary and sufficient condition for a graph to be k-connected is that any two distinct vertices x and y can be joined by k independent paths.

Exercises 10.1: On Menger's Theorem:

- Let G be a graph with $|G| \geq k+1$, then G is k-connected if and only if for all k-element subsets $V_{1}, V_{2} \in V(G)$, there is a set of k paths from V_{1} to V_{2} which have no vertex in common. [$V_{1} \cap V_{2}$ is not necessarily empty, thus, some paths might be trivial paths].

Let U be a set of vertices of a graph G and let x be a vertex not in U. An $x U$ fan is defined as a set of $|U|$ paths from x to U, any two of which have only the vertex x in common.

Theorem 10.2 (Dirac (1960)): A graph G is k-connected if and only if $|G| \geq$ $k+1$ and for any k-set $U \in V(G)$ and $x \in V(G)-U$, there is an $x U$ fan.

Proof: (a) Suppose that G is k-connected, $U \subset V(G),|U|=k$ and $x \in$ $V(G)-U$. Let H be the graph obtained from G by adding a vertex y and joining y to every vertex in U. Clearly, H is also k-connected. Therefore, by Menger's theorem, we find that there are k independent $x y$ paths in H. Omitting the edges incident with y, we find the required $x U$ fan.
(b) Suppose $|G| \geq k+1$ and that S is a $(k-1)$-set separating x and y, for some vertices x and y. Then, G does not contain an $x(S \cup y)$ fan.

Exercises 10.2: On Dirac's Theorem:

1. If G is k-connected ($k \geq 2$), then for any set of k vertices $\left\{a_{1}, \ldots, a_{k}\right\}$ there is a cycle containing all of them. [Hint: Use induction on k and distinguish between the case where the cycle C contains an additional vertex $x \notin\left\{a_{1}, \ldots, a_{k-1}\right\}$ and the case where it does not.]
2. Give an example of a graph for which there is for any set of k points, a cycle containing all of them, but that is not k-connected $(k>2)$.

11 Additional Exercises

Definition 11.1: Let $k \geq 1$. Consider the set B^{k} of all binary sequences of length k. For instance, $B^{3}=\{000 ; 001 ; 010 ; 100 ; 011 ; 101 ; 110 ; 111\}$. Let Q_{k} be the graph (called the k-cube) with $V\left(Q_{k}\right)=B^{k}$, where $u v \in E\left(Q_{k}\right)$ if and only if the sequences u and v differ in exactly one place.

Exercises 11.1: On k-cube graphs Q_{k} :

- Determine the order of Q_{k}. Show that Q_{k} is regular, and determine $e\left(Q_{k}\right)$ for each $k \geq 1$.
- Compute $\chi\left(Q_{k}\right)$ for all $k \geq 1$.
- Prove that $\kappa\left(Q_{k}\right)=\lambda\left(Q_{k}\right)=\delta\left(Q_{k}\right)=k$ [Hint: use induction on k. Consider the graphs G_{0} and G_{1} induced by the vertices $0 u$ and $1 u$, respectively. Let S be a minimal set that disconnects Q_{k}, then S must disconnect G_{0} or G_{1}].
- Determine the k values for which Q_{k} is planar.

[^0]: ${ }^{7} G+H$ is used here to reflect the graph obtained by $G \cup H$ and adding an edge between every vertex $x \in G$ and $y \in H$

