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GRAPH CONNECTIVITY

9 Elementary Properties

Definition 9.1: A graph G is said to be connected if for every pair of vertices
there is a path joining them. The maximal connected subgraphs are called
components.

Definition 9.2: The connectivity number κ(G) is defined as the minimum
number of vertices whose removal from G results in a disconnected graph or
in the trivial graph (=a single vertex). A graph G is said to be k-connected
if κ(G) ≥ k.

Clearly, if G is k-connected then |V (G)| ≥ k + 1 and for n, m > 2, κ(Kn) =
n − 1, κ(Cn) = 2, κ(Pn) = 1 and κ(Kn,m) = min(m, n).

Definition 9.3: The connectivity number λ(G) is defined as the minimum
number of edges whose removal from G results in a disconnected graph or in
the trivial graph (=a single vertex). A graph G is said to be k-edge-connected
if λ(G) ≥ k.

Theorem 9.1 (Whitney): Let G be an arbitrary graph, then κ(G) ≤ λ(G) ≤
δ(G).

Proof: Let v be a vertex with d(v) = δ(G), then removing all edges incident
to v disconnects v from the other vertices of G. Therefore, λ(G) ≤ δ(G).
If λ(G) = 0 or 1, then κ(G) = λ(G). On the other hand, if λ(G) = k ≥
2, let x1y1, x2y2, . . . , xkyk are be the edges whose removal causes G to be
disconnected (where some of the xi, resp. yi , vertices might be identical).
Denote V1 and V2 as the components of this disconnected graph. Then, either
V1 contains a vertex v different from x1, x2, . . . , xk, meaning that removing
x1, . . . , xk causes v to be disconnected from V2. Or, V1 = {x1, . . . , xk}, where
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|V1| ≤ k (some xi’s might be identical). Now, in this case, x1 has at most k
neighbors (being |V1|−1 in V1 and k− (|V1|−1) in V2). Moreover, λ(G) = k,
thus, d(x1) = k and the removal of the k neighbors of x1 cause G to be
disconnected.

Q.E.D.

Let G be a graph of order n ≥ k + 1 ≥ 2. If G is not k-connected
then there are two disjoint sets of vertices V1 and V2, with |V1| = n1 ≥ 1,
|V2| = n2 ≥ 1 and n1 + n2 + k − 1 = n such that the vertices of Vi have a
degree of at most ni − 1+ k − 1, i = 1, 2. (Indeed, the k− 1 vertices that are
not in |V1| ∪ |V2| separate the sets V1 and V2).

Corollary 9.1 (Bondy (1969)): Let G be a graph with vertices x1, x2, . . . ,
xn, d(x1) ≤ d(x2) ≤ . . . ≤ d(xn). Suppose for some k, 0 ≤ k ≤ n, that
d(xj) ≥ j + k − 1, for j = 1, 2, . . . , n− 1− d(xn−k+1), then G is k-connected.

Proof: Suppose that G is not k-connected. Then ∃V1, V2 ⊂ V (G) such that
V1 ∩ V2 = ∅, |V1| = n1, |V2| = n2, n1 + n2 = n − k + 1 and d(x) ≤ ni + k − 2
for x ∈ Vi. Now, X = {xj |j ≥ n − k + 1} is a set of k elements all with
a degree larger than or equal to d(xn−k+1). Hence, there is at least one
x ∈ X ∩ (V1 ∪ V2). Without loss of generality, say in X ∩ V2.
Thus, n2 ≥ d(xn−k+1)+1−(k−1) = d(xn−k+1)−k+2 and n1 = n−k+1−n2 ≤
n − 1 − d(xn−k+1). Take xj ∈ V1 such that j is maximal (j ≥ n1), then
n1 + k − 1 ≤ d(xn1

) ≤ d(xj) ≤ n1 + k − 2 (by construction).
Q.E.D.

Thus, if G is a graph with vertices x1, x2, . . . , xn, with d(x1) ≤ . . . ≤ d(xn) =
∆(G) and d(xj) ≥ j for j = 1, . . . , n − ∆(G) − 1, then G is connected. The
reverse is, obviously, not true.

Corollary 9.2 (Chartrand and Harary (1968)): Let G 6= Kn be a graph of
order n, then κ(G) ≥ 2δ(G) + 2 − n.

Proof: Let k = 2δ(G) + 2 − n. It suffices to show d(xj) ≥ j + k − 1,
for j = 1, . . . , n − 1 − δ(G) (because d(xn−k+1) ≥ δ(G)). This is certainly
true if d(xj) ≥ n − 1 − δ(G) + k − 1 for all j = 1, . . . , n − 1 − δ(G) and
n − 1 − δ(G) + k − 1 = δ(G).

Q.E.D.

Exercises 9.1: On graph connectivity:
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1. Give 4 graphs G1, G2, G3 and G4 such that 0 < κ(G1) = λ(G1) = δ(G1),
0 < κ(G2) < λ(G2) = δ(G2), 0 < κ(G3) = λ(G3) < δ(G3), and
0 < κ(G4) < λ(G4) < δ(G4).

2. Give a graph G such that κ(G) = 2δ(G) + 2 − n > 0.

3. Determine the minimum e(n) such that all graphs with n vertices and
e(n) edges are connected (= 1-connected).

4. Let G be a graph with n vertices and e edges, show κ(G) ≤ λ(G) ≤
⌊2e/n⌋.

5. Let G be a graph with δ(G) ≥ ⌊n/2⌋, then G connected. Moreover,
λ(G) = δ(G) [Hint: Prove that any component Ci of G, after removing
λ(G) < δ(G) edges, contains at least δ(G) + 1 vertices.].

6. Let G be any 3-regular graph, i.e., δ(G) = ∆(G) = 3, then κ(G) =
λ(G). Draw a 4-regular planar graph G such that κ(G) 6= λ(G).

Theorem 9.2: Given the integers n, δ, κ and λ, there is a graph G of order
n such that δ(G) = δ, κ(G) = κ, and λ(G) = λ if and only if one of the
following conditions is satisfied:

1. 0 ≤ κ ≤ λ ≤ δ < ⌊n/2⌋,

2. 1 ≤ 2δ + 2 − n ≤ κ ≤ λ = δ < n − 1,

3. κ = λ = δ = n − 1.

Of course, if κ(G) = 0, then so is λ(G).

Proof: Let G be any graph of order n with δ(G) = δ, κ(G) = κ, and
λ(G) = λ. Then, (a) δ(G) < ⌊n/2⌋, that is, condition 1 is true, or (b)
⌊n/2⌋ ≤ δ(G) < n−1, meaning that 2δ ≥ 2⌊n/2⌋ ≥ n−1, or 2δ +2−n ≥ 1.
Thus, by Corollary 1.2 and Exercise 1.1.5 we have condition 2. Or (c) if
δ(G) = n − 1, then G = Kn and κ(G) = λ(G) = δ(G) = n − 1.
Thus we have to show that if condition 1, 2 or 3 is satisfied then there is a
graph G with appropriate constants n, κ, λ, δ. Suppose that condition 1 holds.
Let G1 = Kδ+1, G2 = Kn−δ−1, u1, . . . , uδ+1 ∈ G1 and v1, . . . , vδ+1 ∈ G2 (no-
tice, Kδ+1 ⊂ G2). Next, set G = G1∪G2 and add the edges u1v1, . . . , uκvκ and
uκ+1v1, . . . , uλv1 to G. Then, κ(G) = κ, by removing the vertices v1, . . . , vκ,
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λ(G) = λ, by removing the edges between G1 and G2, and δ(G) = δ, by
considering the vertex uδ+1. Suppose that condition 2 holds. Let G1 = Kκ,
G2 = Ka, G3 = Kb and G0 = G1 + (G2 ∪ G3), where a = ⌊(n − κ)/2⌋ and
b = ⌊(n−1−κ)/2⌋ (notice, a+b = n−κ−1)7. To construct G, add a vertex
v to G0 and joint it to the vertices of G1 and to δ − κ vertices of G3 (this is
possible because 2δ + 2 − n ≤ κ implies that δ − κ ≤ b). Then, κ(G) = κ,
by removing the vertices of G1, λ(G) = λ, by removing the edges to v, and
δ(G) = δ, by considering the vertex v. Finally, if condition 3, holds, set
G = Kn.

Q.E.D.

10 Menger’s Theorem

Definition 10.1: The local connectivity κ(x, y) of two non-adjacent vertices
is the minimum number of vertices separating x from y. If x and y are
adjacent vertices, their local connectivity is defined as κH(x, y) + 1 where
H = G − xy. Similarly, we define the local edge-connectivity λ(x, y).

Clearly, κ(G) = min{κ(x, y)|x, y ∈ G, x 6= y}. The aim of this section is to
discuss the fundamental connections between κ(x, y) and the set of xy paths.
Two paths in a graph G are said to be independent if every common vertex
is an endvertex of both paths. A set of independent xy paths is a set of paths
any two of which are independent. Obviously, if there are k independent xy
paths then κ(x, y) ≥ k. Menger’s Theorem states that the converse is true.
We prove the theorem by means of an elegant proof by Dirac (1969).

Theorem 10.1 (Menger (1926)): Let x, y ∈ G, x 6= y. There exists a set of
κ(x, y) independent paths between x and y and this set is maximal.

Proof: We use induction on m = n + e, the sum of the number of vertices
and edges in G. We show that if S = {w1, w2, . . . , wk} is a minimum set
(that is, a subset of the smallest size) that separates x and y, then G has at
least k independent paths between x and y. The case for k = 1 is clear, and
this takes care of the small values of m, required for the induction.
(1) Assume that x and y have a common neighbor z ∈ Γ(x) ∩ Γ(y). Then
necessarily z ∈ S. In the smaller graph G − z the set S − z is a minimum

7 G+H is used here to reflect the graph obtained by G∪H and adding an edge between

every vertex x ∈ G and y ∈ H
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set that separates x and y, and so the induction hypothesis yields that there
are k − 1 independent paths between x and y in G − z. Together with the
path xzy, there are k independent paths in G as required.
(2) Assume that Γ(x)∩Γ(y) = ∅ and denote by Hx and Hy as the connected
components of G − S for x and y, respectively.
(2a) Suppose that the separating set S 6⊂ Γ(x) and S 6⊂ Γ(y). Let z be a
new vertex, and define Gz to be the graph with the vertices V (Hx ∪ S ∪ z)
having the edges of G[Hx∪S] together with the edges zwi for all i = 1, . . . , k.
The graph Gz is connected and it is smaller than G. Indeed, in order for S
to be a minimum separating set, all wi vertices have to be adjacent to some
vertex in Hy. This shows that e(Gz) ≤ e(G) and, moreover, assumption (2a)
rules out the case Hy = y, therefore n(Gz) < n(G) in the present case. If
T is any set that separates x and z in Gz, then T will separate x from all
wi ∈ S − (T ∩S) in G. This means that T separates x and y in G. Since k is
the size of a minimum separating set, |T | = k. We noted that Gz is smaller
than G, and thus by the induction hypothesis, there are k independent paths
from x to z in Gz. This is possible only if there exist k independent paths
from x to wi, for i = 1, . . . , k, in Hx. Using a symmetric argument one finds
k independent paths from y to wi in Hy. Combining these paths proves the
theorem.
(2b) Suppose that all separating sets S are a subset of Γ(x) or Γ(y). Let P
be the shortest path from x to y in G, then P contains at least 4 vertices,
we refer to the second and third node as u and v. Define Gn as G−uv (that
is, remove the edge between u and v). If the smallest set T that separates
x from y in Gn has a size k, then by induction, we are done. Suppose that
|T | < k, then x and y are still connected in G − T and every path from x
to y in G − T necessarily travels along the edge uv. Therefore, u, v 6∈ T .
Also, Tu = T ∪ u and Tv = T ∪ v are both minimum separating sets in G
(of size k). Thus, Tv ⊂ Γ(x) or Tv ⊂ Γ(y) (by (2b)). Now, P is the shortest
path, so v 6∈ Γ(x), hence, Tv ⊂ Γ(y). Moreover, u ∈ Γ(x), thus Tu ⊂ Γ(x).
Combining these two results we find T ⊂ Γ(x) ∩ Γ(y) (and T is not empty).
Which contradicts assumption (2).
The set is maximal, because the existence of k independent paths between x
and y implies that κ(x, y) ≥ k. Q.E.D.

Another way to state this result is the following: A necessary and sufficient
condition for a graph to be k-connected is that any two distinct vertices x
and y can be joined by k independent paths.
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Exercises 10.1: On Menger’s Theorem:

• Let G be a graph with |G| ≥ k +1, then G is k-connected if and only if
for all k-element subsets V1, V2 ∈ V (G), there is a set of k paths from
V1 to V2 which have no vertex in common. [V1 ∩ V2 is not necessarily
empty, thus, some paths might be trivial paths].

Let U be a set of vertices of a graph G and let x be a vertex not in U . An
xU fan is defined as a set of |U | paths from x to U , any two of which have
only the vertex x in common.

Theorem 10.2 (Dirac (1960)): A graph G is k-connected if and only if |G| ≥
k + 1 and for any k-set U ∈ V (G) and x ∈ V (G) − U , there is an xU fan.

Proof: (a) Suppose that G is k-connected, U ⊂ V (G), |U | = k and x ∈
V (G) − U . Let H be the graph obtained from G by adding a vertex y and
joining y to every vertex in U . Clearly, H is also k-connected. Therefore,
by Menger’s theorem, we find that there are k independent xy paths in H .
Omitting the edges incident with y, we find the required xU fan.
(b) Suppose |G| ≥ k + 1 and that S is a (k − 1)-set separating x and y, for
some vertices x and y. Then, G does not contain an x(S ∪ y) fan.

Q.E.D.

Exercises 10.2: On Dirac’s Theorem:

1. If G is k-connected (k ≥ 2), then for any set of k vertices {a1, . . . , ak}
there is a cycle containing all of them. [Hint: Use induction on k and
distinguish between the case where the cycle C contains an additional
vertex x 6∈ {a1, . . . , ak−1} and the case where it does not.]

2. Give an example of a graph for which there is for any set of k points,
a cycle containing all of them, but that is not k-connected (k > 2).

11 Additional Exercises

Definition 11.1: Let k ≥ 1. Consider the set Bk of all binary sequences of
length k. For instance, B3 = {000; 001; 010; 100; 011; 101; 110; 111}. Let Qk

be the graph (called the k-cube) with V (Qk) = Bk, where uv ∈ E(Qk) if and
only if the sequences u and v differ in exactly one place.
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Exercises 11.1: On k-cube graphs Qk:

• Determine the order of Qk. Show that Qk is regular, and determine
e(Qk) for each k ≥ 1.

• Compute χ(Qk) for all k ≥ 1.

• Prove that κ(Qk) = λ(Qk) = δ(Qk) = k [Hint: use induction on k.
Consider the graphs G0 and G1 induced by the vertices 0u and 1u,
respectively. Let S be a minimal set that disconnects Qk, then S must
disconnect G0 or G1].

• Determine the k values for which Qk is planar.


